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Abstract

The objective of this Diploma Thesis is the implementation of differentiated Deep
Neural Networks (DNNs), within a gradient-based optimization method in fluid
mechanics, for predicting both the objective function values and its gradient, and
therefore decreasing the overall computational cost of the optimization.

In the proposed method, DNNs, after being trained on a set of patterns for which
the objective function values are available, are used to replace both the code sim-
ulating the fluid flow and its adjoint solver computing gradients w.r.t. the design
variables in problems governed by partial differential equations. The derivatives of
the responses of the trained DNNs with respect to its inputs (which are the design
variables of the optimization problem) are computed using automatic differentiation
in reverse accumulation mode. Parametric studies on the DNNs hyperparameters
are conducted, regarding the accuracy in both their predictions and gradients. Prior
to successfully and efficiently supporting the optimization loop, gradients are verified
against finite differences as well as the adjoint method.

The proposed DNN-driven shape optimization method is presented in two variants.
The first (standard), involves DNNs trained only on the objective function values.
The second, involves DNNs trained on both the objective function values and its sen-
sitivity derivatives (gradient-assisted training), computed using the adjoint method.
Two implementations of the latter are presented: The first, is based on the Sobolev
Training of DNNs while the second is a new concept, based on the principles of
the polynomial Hermite interpolation. All variants are demonstrated in CFD ap-
plications. The standard variant is used for the shape optimization of two isolated
airfoils (inviscid and turbulent flow) and an S-bend duct (laminar flow). The Sobolev
and Hermite variants are demonstrated in the turbulent flow case. The efficiency



of the proposed optimization in all its variants is compared with an adjoint-based
optimization.
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ITepiAndn

Y1oyoc authg TG dimhwpaTixhc gpyaciag elvor 1 uhoTolnon e dladpelong Twv Bo-
tdv Nevpovixav Aixtowy (BNA), xou n yeron toug oe pio awtioxpotixy pédodo
BehtioTonolnong 0To TEBID TNG UNYAUVIXAC PEVCTAY, Yo TNV TEOBAEdn 1600 TV TV
NG CUVEETNOTG-OTOYOU OCO XUl TWV TUQUYWYWY TNG XL, CUVETKS, TN UEWOT Tou
GLYOALXOU UTIOMOYLO TIX0U XOGTOUC TN BEATIoTOTOMOTS.

Ynv mpotewvouevn uédodo, too BNA, agol exnawdeutody oe éva ohvoro potiBwy-
OELyudTwy Yl ta omolar efvon Slodéctueg oL THES NG CUVEETNONG-CTOY 0L, YENOWo-
TOLOVTOL YO VOl AVTIXATUC THCOLY TOGO TOV XMOIXO TOU TEOCOUOWWVEL T1| P01 TOU
PEUCTOU, GO0 XA TOV UTOAOYIOUO TWYV TOQUYWYWY (S TEOS TI UETUBANTES OYEDBLAOUO0
ue ) ouluyy uédodo, oe TEOBATUATA TOU BLETOVTOL Amd UERIXES DlapOpXEC EELOMOELC.
O apdrywyol twv anoxploeny twy extoudeupévey BNA we npoc tic eloddouc toug (ot
omoleg ebvo ot petafintéc oyedioouol Tou Teoliiuatoc Bedtiotonoinong) utohoyilo-
VTOL Y ENOILOTOLOVTAS AVTIoTROPT auTouaTr dlapodplon. Emmiéov, cuunepihopfdvovto
TOEUUETELXEC UEAETEC WC TTPOG TG (Unep)nocpozpé‘cpoug v BNA, écov agopd 1660 TNV
oxpifela Twv TpolAédedy Toug, 660 o TV TaEaYOYwWY Toug. Ilpv and TNy emTUYN
xou amoTeheopaTiXY UTooThEEN Tou Pedyou BektioTonolnong, ol UTOAOYILOUEVES To-
edywyot Twv BNA enakniciovton Evavtt TV TETEPAOUEVLY BLUPORMY, XoNOS Xl TNG
ouluyolg uedédou.

H npotewvéuevn pédodog Behtiotomoinong oyrjlatog odnyoluevn ard ta BNA, topou-
owdleton ue 600 maporiayés. H mpddtn, nepthoufdvet BNA mou €youv exnoudeutel uévo
OTIC THEC TNEG OLVEETNONC-0TOYOL, EVE 1) BeUTERY, TepthaufBdver BNA nou éyouv ex-
TOUOEVTEL TOGO OTIC TYWES TNG CUVIRETNONC-0TOYOU, OGO X0k OTIC TWES TWYV TR WY WV
evatodnotac ol onolec unohoyilovtar pe T culuyy| uédodo. H tekeutala mopaiiayn
nopouotdleton ye 800 vhortooels: H mpwtn Pacileton otnv xatd Sobolev exnaideuon



v BNA, eve 1) 6eltepn anotehel puar véo 16€ar, Bactouévn oTic apy€c TNG TOAUOVUXAC
nopepBoiric Hermite. ‘Olec ov mapahhayés egapudélovion oe npofirjuoata TroloyloTi-
xfic Pevotoduvouuxrdc. H medtn mopodloyy| yenowonoteiton yia ) BeAtiotonolnon
OYUATOS BV0 UEUOVOUEVWY AEQOTOUMY (og ate3r) xon TUEBWON pov']) 0L EVOC oY WYOU
S-bend (O‘CPO)T‘/] eor)). Ot uhomoioelg Sobolev xouw Hermite tng Settepne mopahhoryfig
Topouotdalovial 0Ty Tepintwon Tng Tupfndoug poric. H anoteieopatindtnto TG TEO-
TEWVOPEVNS EVBd0L BeATioToToNONG, 08 OAEC TIC TUPUAAXYES TNG, CUYXEIVETOL UE WLl
BehtioTonoinon nou Baocileton otn culuyT uédodo.
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Chapter 1

Introduction

1.1 Artificial Intelligence and Machine Learning

Over the past few years, the evolution of Artificial Intelligence (AI) and Machine
Learning (ML) has been nothing short of transformative. Advancements in comput-
ing power, the availability of large datasets, and breakthroughs in algorithm design
have propelled Al and ML to new heights. Deep learning, a subfield of ML that
focuses on neural networks with many layers, has led to significant breakthroughs
in areas like image recognition, natural language processing, and speech synthe-
sis. This progress has enabled Al systems to achieve human-level performance in
tasks such as playing complex games and generating creative content. With the
rapid development of Al-driven applications like self-driving cars, virtual assistants,
and recommendation systems, we're witnessing a fundamental transformation of in-
dustries and society as Al and ML continue to evolve. Let’s not forget the global
impact of the recent breakthrough, ChatGPT, a language model created by OpenAl
designed to understand and generate human-like text based on the received input.
With the introduction of such a powerful tool, new possibilities for innovation and
exploration in technology have opened up, along with the raise of complex ethical,
societal, and regulatory questions.

ML, as a subfield of Al, focuses on developing algorithms and models that enable
computers to learn from data and make predictions or decisions without being explic-
itly programmed [I]. There are several types of ML [2], each with its own approach
and characteristics. The main types of ML and the included tasks in each case are
presented in Fig. |1.1] These are briefly:

e Supervised Learning: In supervised learning, the algorithm learns from la-
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beled training data, where the input data is paired with corresponding target
values. The goal is to learn a mapping from inputs to outputs, allowing the
model to make predictions on new, unseen data. Common tasks include classi-
fication (assigning labels to data points) and regression (predicting continuous
values).

Unsupervised Learning: In unsupervised learning, the algorithm works
with unlabeled data, seeking to find patterns or structures within the data.
This includes clustering (grouping similar data points together) and dimension-
ality reduction (reducing the number of features while preserving important
information).

Reinforcement Learning: Reinforcement learning involves an agent that
interacts with an environment to learn how to take actions that maximize
a cumulative reward over time. The agent learns through trial and error,
receiving feedback in the form of rewards or penalties based on its actions.
It’s often used for tasks like game playing and robotic control.

Machine Learning

Supervised Learning Unsupervised Learning ReinforcementLearning

Classification Clustering
A Enviranment
3?"' ; @ :
® -
..' — ’.’.. It
Fa . @
/ 8o
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Regression ' Bl il
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Figure 1.1: Different Types of ML. Figure from [3].



1.2 Supervised ML Models for Regression in CFD
Applications

In this Diploma Thesis, supervised ML models will be used for regression tasks in
the field of Computational Fluid Dynamics (CFD). It was decided to procceed with
Deep Neural Networks (DNNs), offspring models of the general Artificial Neural
Networks (ANNs) family, that belong in the deep learning subset of ML. Beside
ANNS, there are other worth-mentioning ML algorithms that have gained ground
in the field of CFD and optimization, with the most commonly used being Random
Forests and Support Vector Regression [4, 5], among others. An overview of the
models follows, in order to demonstrate their main functionalities. Since, in this
work, there is significant interest about the gradients of the models with respect to
their inputs, the differentiability of each ML model, along with the capabilities and
challenges involved in the computation of the gradient in each case, are presented
and compared.

1.2.1 Random Forests

Random Forests [6] is a popular ML algorithm used for both classification and
regression tasks, based on the ensemble learning technique. It’s designed to improve
the performance and robustness of the so-known decision trees by combining the
predictions of multiple trees. Ensemble uses two types of methods:

e Bootstrap Aggregating (Bagging): Random Forests employ a technique
called bootstrapping, where multiple subsets of the original dataset are created
by randomly sampling with replacement. Each subset is known as a ”bootstrap
sample.”

e Boosting: It combines weak learners into strong learners by creating sequen-
tial models such that the final model has the highest accuracy. A decision tree
is constructed for each ”"bootstrap sample” with a subset of features rather
than all the features, that helps introduce diversity in the trees.

Each decision tree is constructed by recursively partitioning the data based on the
selected features. The tree continues to grow until a stopping criterion is met, such
as reaching a maximum depth, a minimum number of samples in a leaf node, or no
further improvements in impurity reduction. Once all the trees are built, they col-
lectively make predictions on new data. For regression problems, all the individual
trees’ predictions are averaged to obtain the final regression prediction, as shown
in Fig. [1.2l This ensemble approach helps to reduce overfitting and improve the
generalization performance of the model.
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Figure 1.2: Demonstration of the Random Forest Model. Figure from [7].

Random Forests have the ability to handle high-dimensional data, detect feature
importance, and mitigate overfitting. They are also robust to noisy data and outliers
and imune to the curse of dimensionality. However, they may require tuning of
hyperparameters, such as the number of trees and the maximum depth of individual
trees. Their performance is evidenced in various works in the field of fluid mechanics
and aerodynamics, as in [7, &, [Q].

1.2.2 Support Vector Regression

Support Vector Regression (SVR) [10] is a type of ML algorithm used for regression
analysis. The goal of SVR is to find a function that approximates the relationship
between the input variables and a continuous target variable, while minimizing the
prediction error. Unlike Support Vector Machines (SVMs) used for classification
tasks, SVR seeks to find a hyperplane that best fits the data points in a continuous
space. This is achieved by mapping the input variables to a high-dimensional feature
space and finding the hyperplane that maximizes the margin (distance) between the
hyperplane and the closest data points, while also minimizing the prediction error.
SVR can handle non-linear relationships between the input variables and the target
variable by using a kernel function to map the data to a higher-dimensional space.
This makes it a powerful tool for regression tasks where there may be complex rela-
tionships between the input variables and the target variable. The most important
parameters of an SVR are:

e Kernel: A kernel helps us find a hyperplane in the higher dimensional space
without increasing the computational cost. Kernel functions are used to im-
plicitly perform the transformation into the higher-dimensional feature space
without explicitly calculating the transformed features. Common kernels in-
clude Linear, Polynomial, Radial Basis Function (RBF), and more.



e Hyperplane: The hyperplane, in the transformed feature space, that best
approximates the relationship between the input features and the target values.

e Decision Boundary: A decision boundary can be thought of as a distance
from the original hyperplane. A "margin of error” is defined around the pre-
dicted output for each data point, represented by two hyperplanes: an upper
margin (¢-insensitive) and a lower margin (-£ -insensitive) as shown in Fig. (1.3

Y4 Input Space 'r_,' ® e Y} Feature Space Primal Space
b
Kernel L ™
Mappin Regression | ¢
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e
4 ]
s \‘
= s
X K(x)

Figure 1.3: (Left) The initial features are placed on the input space along with
the initial hyperplane of the SVR and the defined decision boundary (Middle) After
a kernel-mapping procedure, the original features are tranformed and placed in a new
space, in which the margin of error will be minimized. (Right) The resulting hyperplane
that best fits the input data after the regression procedure is demontrated on the primal
feature space. Figure from [11)].

In SVR, the goal is to minimize the margin of error between the predicted output
and the true output, while still allowing for a certain degree of error (controlled by
hyperparameters). This is achieved by finding the hyperplane that minimizes the
sum of the errors within the defined margins while maximizing the margin width.
Assuming that the equation of the hyperplane is Y = w - X + b and the equations
of the decision boundary are w- X +b = ¢ and w - X + b = —¢ for the upper and
lower boundary respectively, the objective of the SVR optimization is formulated as
a constrained optimization problem expressed by

—{<w-X+b<¢ (1.1)

SVR seeks to find a balance between fitting the data and preventing overfitting
by introducing the margin of error. It also incorporates a regularization term that
controls the trade-off between fitting the training data closely and having a simple
model that generalizes well to new data. It’s important to tune hyperparameters
like the regularization parameter and the kernel choice in order to achieve the best
performance on a specific dataset. The performance of SVRs is demonstrated in
various CFD-related works, as in [12] [13].



1.2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) [14] are computational models inspired by the
structure and function of the human brain. They consist of layers of interconnected
nodes, called neurons, organized into input, hidden, and output layers. The config-
uration of a basic ANN is shown in Fig. [1.4

Feedforward

\ 4

Input layer Hidden layers Output layer

Backpropagation

Neufon

Figure 1.4: Demonstration of a typical ANN architecture. Figure from [15].

Neurons process input data through weighted connections and apply activation func-
tions, producing output that is then passed to the next layer. During training, ANNs
adjust the weights to minimize the difference between their predictions and actual
target values using optimization algorithms. This process involves forward propaga-
tion to compute predictions and backward propagation (backpropagation) to update
weights based on the calculated gradients. By iteratively fine-tuning weights over
multiple epochs, ANNs learn to capture complex patterns and relationships in data,
enabling them to make accurate predictions on new, unseen data. ANNs are an
extremely powerful tool in CFD applicaitons and the performance of their subclass
models, DNNs, will be presented later in this Chapter.

1.2.4 An Overview on the Differentiability of the most Com-

mon ML Models used for Regression

Random Forests, Support Vector Regression and ANNs are powerful ML tools, but
they have different characteristics when it comes to computing derivatives. Since
this work emphasizes in the computation and use of the models’ gradients in an
optimization process, the differentiability of each model must be considered. The
capabilities and challenges when computing the derivatives of the most popular ML
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models used in regression are presented in summary

e Random Forests: Random Forests are non-differentiable models [16]. Since
they are constructed as an ensemble of decision trees, they do not involve an
optimization process that requires the computation of gradients. Instead, they
rely on a simple, parallel, and non-differentiable procedure for training each
decision tree independently. The lack of differentiability means that Random
Forests may not perform as well as differentiable models in tasks that require
learning intricate patterns and representations from data.

e Support Vector Regression: SVRs’ differentiability is limited to a subdif-
ferentiability concept, which can affect the overall optimization process. SVRs
typically involve loss functions that are not easily differentiable, such as the e-
insensitive loss [L7]. This makes it challenging to compute derivatives directly
from the trained SVR model. Additionally, SVRs are often optimized using
techniques like Quadratic Programming (QP) that do not inherently provide
the necessary information for differentiating the model and their performance
might depend on the choice of the kernel function. Among these techniques,
the most common one is to solve the Langragian Dual Problem of the op-
timization, as in [18]. The problem is transformed into its Lagrangian dual
form and Lagrange multipliers (also known as dual variables) are introduced
to express the optimization problem as a function of these multipliers. As a
result, this method does not require the explicit differentiation of the model.

e Artificial Neural Networks: ANNs are highly differentiable models [T9] and
enable the use of backpropagation to compute gradients (derivatives) analyt-
ically. Backpropagation efficiently calculates gradients by propagating errors
backward through the network layers using the chain rule of calculus. Modern
learning frameworks like TensorFlow and PyTorch provide automatic differ-
entiation capabilities, making it easy to compute accurate derivatives during
training and optimization processes. Due to their well-established architec-
tures and optimization techniques, neural networks are designed to handle
complex functions and capture intricate relationships within the data. This
allows them to compute accurate derivatives for a wide range of functions.

Technically, it is possible to estimate the derivatives of all models using numerical
methods, such as finite differences [20]. However, it is not a common or efficient
approach due to the complexity and limitations involved. Finite differences would
require perturbing input data points and observing the corresponding changes in
the predictions, which can introduce additional uncertainty and complexity, espe-
cially in cases where the models may not accurately capture the underlying function
behavior. In the case of Random Forests, the discrete and piecewise nature of the
predictions would make it difficult to define meaningful derivatives. Their predic-
tions can be highly discontinuous, especially at decision boundaries, while finite
differences typically assume a continuous function. Also, even if the derivatives for
each individual tree were computed, combining these derivatives in a meaningful way
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to obtain derivatives for the entire forest would likely be challenging. Similarly, the
SVR models produce piecewise linear predictions based on support vectors and their
associated coefficients. This piecewise nature of the predictions can make it difficult
to compute meaningful derivatives using finite differences, especially at points where
the model transitions from one support vector to another.

1.3 DNNs in CFD and Optimization

So far, CFD-based optimization tools for large scale applications usually rely on
gradient-based techniques supported by the adjoint method, [21, 22]. The latter
computes the gradient of the objective function with respect to (w.r.t.) the design
variables at a cost which is independent of their number N. At the same time, DNNs
and their integration within simulations are gaining ground due to their ability to
handle large volumes of complex data at low computational cost and resources.

For instance, [23] uses conditional variational autoencoders and an integrated gen-
erative network for the inverse design of supercritical airfoils. [24] presents a solver
based on ML models that predict the required numerical fluxes, in compressible
fluid flows, based on high-resolution runs; the solver was fully differentiated using
automatic differentiation (AD). A toolkit based on complex-step finite differences
for the numerical differentiation of neural networks was proposed in [25], making it
computationally lightweight by overcoming the high-order chain rule. In [26], the
authors of PCOpt proposed a DNN-based surrogate for the turbulence closure of
the Reynolds-Averaged Navier Stokes (RANS) equations; the role of the DNN is to
replace the numerical solution of the turbulence and transition models. The DNN-
assisted RANS solver was combined with an evolutionary algorithm to optimize the
shape of a transonic turbine blade and a car model. ML surrogates were used in
aerodynamic shape optimization of transonic airfoils, in [27]. In [2§8], the perfor-
mance of MLL models used in aerodynamic shape optimization is reviewed, and the
efficiency of more advanced models using appropriate geometry parameterization so
as to reduce the dimensionality of the design space, is presented. In [29], a numerical
methodology based on modal decomposition coupled with the regression analysis for
creating reduced-order models of fluid flows is demonstrated. In [30)], the efficiency
of the adjoint-based optimization is accelerated using DNNs to predict the mapping
between the adjoint vector and the local flow variables.

This Diploma Thesis proposes the implementation of differentiated DNNs, within
a gradient-based optimization method in fluid mechanics, for predicting both the
objective function values and its gradient, in order to reduce the overall cost of the
optimization [31].



1.4 Thesis Outline

Following the Introduction, this Thesis is organized as follows:

Chapter 2: A brief introduction in DNNs and how they work. The basic
concepts involved, their configuration and hyperparameters, as well as the
constituents of the training process are presented. In addition, the technique
used to differentiate the DNNs with respect to their inputs is demonstrated,
and a study on the parameters that influence the quality of the computed
gradients is performed.

Chapter 3: The proposed DNN-driven optimization algorithm is presented
and explained, along with the adjoint-based algorithm used for comparison.
The in-house softwares and tools involved in each method are presented and
the proposed optimization is demontrated in simple function approximation
problem.

Chapter 4: The proposed optimization algorithm is demonstrated on the
shape optimization of the symmetric NACAO0012 isolated airfoil. The flow
around the airfoil is inviscid and the DNN-driven optimization is compared
with an adjoint-based optimization in terms of efficiency and cost.

Chapter 5: The proposed method is demonstrated on the shape optimization
of an S-bend duct with laminar flow. Additional capabilities of the proposed
algorithm are explored and the DNN-driven optimization is compared with its
adjoint-based counterpart.

Chapter 6: The proposed method is demonstrated on the shape optimization
of the low-speed S8052 isolated airfoil. The flow around the airfoil is turbulent
and the DNN-driven optimization is compared with an adjoint-based opti-
mization in terms of efficiency and cost. A parametric study on the size of the
database used to train the DNNs is performed, in order to demonstrate the
sensitivity of both the model’s predictions and computed gradients when the
database’s size increases.

Chapter 7: The incorporation of the DNNs’ gradients in the training process
is demonstrated and implemented with two variations, based on the Sobolev
training method and the Hermite interpolation, respectively. The proposed al-
gorithm is re-newed, in which gradient-assisted trained DNNs are used to drive
the descent during the optimization. The re-newed DNN-driven optimiza-
tion is demonstrated on the S8052 airfoil’s shape optimization and compared
with the original DNN-Driven algorithm and an adjoint-based optimization,
in terms of efficiency and cost.
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Chapter 2

Deep Neural Networks

2.1 Neuron Model and Network Architecture

DNNSs, as a subset of ANNs, are computational systems that mimic the biological
neural systems [14]. The modeling and implementation of a neural network is pri-
marly inspired by the functionality of the basic computational unit of the brain: the
neuron. A neuron is considered in its coarse representation, in which all its opera-
tions are summarized in the functionality of its two main constituents: the branches
(dendrites) and the axon. All neurons receive input signals from their dendrites
and are sequently transfered to the main body, where they all get summed. If the
final sum is above a certain threshold the neuron can fire, delivering output signals
(spikes) along its axon. The axon eventually branches out and connects to dendrites
of other neurons via communicative junctions, known as synapses, transfering the
output signals to the neighbour neurons. In reality, biological neural networks are
significantly complex dynamical systems, in which a vast amount of non-linear com-
putations is performed, and the timing and change rate of operations has a serious
effect on the outcome as well. Recently, new models such as Spiking Deep Neural
Networks [?] have been developed in order to capture the composition of such com-
plex systems, however their performance is still a topic of research for the neural
network community.

The sequence of operations involved in the coarse representation of a neuron mo-
tivated the deployment of a mathematical model, focusing on the existance of a
computational unit able to collect, process and as well fire signals when defined
criteria are met. At the computational model of a neuron signals that travel along
the axons interact multiplicatively with the dendrites of other neurons, based on the
synaptic strength at that synapse. Synaptic strengths, known as weights, control
the influence of signals from one neuron to another and thus, are the parameteres
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to be learned. The firing rate of a neuron is modeled by an activation function (f),
which represents the frequency of the spikes along the axon. The biological and
mathematical representation of a neuron are presented and compared in Fig. [2.1]
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Figure 2.1: (Left) Representation of a biological neuron and its main constituents.
(Right) The mathematical model of a neuron and its core operations. Figure from
(https://cs231n.github.io/neural-networks-1/).

A shown in Fig. DNNs are organized into layers, each performing specific func-
tions to process the input data and produce the desired output [32]. Their most sig-
nificant distinction is their depth, as they can have multiple hidden layers, enabling
them to learn hierarchical features and representations. Other neural network archi-
tectures might have fewer hidden layers or even just a single hidden layer, making
them shallower and less capable of capturing intricate patterns. The arrangement
of these layers defines the DNN architecture, that is typically organized as:

e Input Layer: The input layer is the initial layer of the network and receives
the raw input data. The number of nodes (neurons) in this layer corresponds
to the dimensions of the input data.

e Hidden Layers: These are the layers between the input and output layers and
are responsible for learning increasingly abstract and complex features from the
input data. A DNN can have multiple hidden layers, and these layers are where
the "deep” aspect of deep learning comes into play. Each hidden layer consists
of multiple neurons and, herein, the layers are fully connected, meaning each
neuron is connected to every neuron in the previous and subsequent layers.

e Output Layer: The output layer produces the final prediction or result of
the network. The number of nodes in this layer corresponds to the number of
dimensions in the output.

The neurons in each layer are typically followed by an activation function. Activa-
tion functions introduce non-linearity to the network, allowing it to learn complex
relationships in the data. Each connection between neurons has associated weights
and biases, parameters that are learned during the training process.
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2.2 Training Process of DNNs

2.2.1 The gradient-based optimization problem

The training process of DNNs is formulated as a gradient-based optimization prob-
lem in which the network’s parameters (weights and biases) are iteratively updated
in order to minimize a defined loss function. An overview of the steps taken during
the training algorithm follows:

1. Parameter Initialization: The weights and biases of the network are initial-
ized with small random values. Proper initialization is important to prevent
the network from getting stuck in local minima during training.

2. Forward Propagation: During each iteration (epoch) of training, input data
is fed into the network’s input layer. The data passes through the hidden
layers, and the network computes predictions using the current weights and
biases.

3. Loss Function Calculation: The output of the network is compared to the
actual target values using a loss function, that quantifies the difference between
the predicted output and the true values.

4. BackPropagation: After calculating the loss, the network performs back-
propagation. Backpropagation involves calculating the gradients of the loss
with respect to the network’s parameters, using the chain rule of calculus.
Gradients indicate how much each parameter should be adjusted to decrease
the overall loss.

5. Gradient Descent: With the gradients calculated, an optimization algo-
rithm (optimizer) is used to update the parameters, by adjusting them in the
direction that reduces the loss. Learning rate, which determines the step size
of the parameter updates, is a critical hyperparameter in this process.

6. Parameter Update: The parameters are updated based on the calculated
gradients and the learning rate.

Steps 2 to 6 are repeated for multiple epochs, in which the network processes the
entire training dataset. The process continues until a predefined stopping condition
is met, usually a maximum number of epochs. To properly monitor the training,
the model ’s hyperparameters must be carefully tuned. These hyperparameters
involve the selection of the appropriate loss function and optimizer, along with the
optimal learning rate. Another consideration while training a DNN, is the common
phenomenon known as ”Overfitting”, where a model learns to perform well on the
training data but fails to generalize to new data due to capturing noise and random
fluctuations [33]. The behavior of an overfitted model is presented in Fig. 2.2]
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Figure 2.2: (Left) Behavior of a poor-trained model that results in underfitting of the
data. (Middle) Behavior of a better trained DNN that captures more accurately the
underlying relations of the data. (Right) Behavior of an overfitted model that fails to
generalize on unseen data. Figure from [33]

The most common way to overcome this issue is to use the Validation technique;
During training, a set of data, to be referred as validation set, is set aside and
can not be seen by the network. After a pre-defined epoch frequency, the network’s
performance on the validation set is evaluated, in order to monitor the generalization
ability of the DNN and assist in its hyperparameter tuning. As a result, validation
prevents overfitting and allows for early stopping if the validation performance starts
deteriorating.

2.2.2 Loss Functions for Regression Tasks

The loss function measures the discrepancy between the predicted output of the
neural network and the actual target values [34]. It quantifies how well the network
is performing on a specific task and the choice of the loss function depends on the
nature of the problem being solved. The most commonly used loss functions for
regression problems are the Mean Absolute Error (MAE) and Mean Squared Error

(MSE), expressed in Egs. respectively.

N
1 .
MAE = — > |y — il (2.1)
=1
1 N
MSE:— i—Aiz 22
N;(y i) (2.2)

y; is the target value of each sample indexed with ¢ = 1, ..., N. N is the total number
of samples and g; is the predicted value from the DNN. Both loss functions behave
differently during the optimization; MAE is less sensitive to outliers and treats all
errors equally, compared to MSE. This makes it a good choice when the dataset
contains noisy data points that might skew the predictions. However, MAE has a
discontinuous gradient at zero, which can make the training more challenging. On
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the other hand, MSE has a smooth gradient at all points, which aids in faster and
more stable optimization using gradient-based methods, while is more sensitive to
outliers, as squaring the errors amplifies their effect. The selection between MAE
and MSE depends on the characteristics of the dataset and the problem to be solved.
In the case of outliers, the more robust MAE loss would be preferable. The MSE
loss is more suitable for a non-noisy dataset and for strongly penalizing larger errors.

2.2.3 The Adam Optimizer

The optimizer is the algorithm responsible for updating the weights and biases of
the neural network during the training process [35]. There are various optimiza-
tion algorithms available, each with its own characteristics and advantages. The
most common ones are stochastic gradient descent (SGD), Adam, RMSprop, and
Adagrad, among others. Each optimizer has different hyperparameters, such as the
learning rate, momentum, decay rates, and more. In this work, all DNNs are trained
using the Adam optimizer. Adam [36] stands for ” Adaptive Moment Estimation”
and involves a combination of two gradient descent methodologies:

Momentum: This algorithm is used to accelerate the gradient descent algorithm
by taking into consideration the ‘exponentially weighted average’ of the gradients.
Using averages makes the algorithm converge towards the minima in a faster pace.
The weights are updated as follows:

W1 = Wy — amy (2.3)

where wy, w; 1 are the model’s weights at the time steps ¢, ¢+ 1 respectively, a is the
learning rate and,

5wt

=B+ (1= 6) |2 (2.4

(;%t is the derivative of the loss function (L) with respect to the model’s weights
at the current time step (t), m;, m;_; are the aggregates of gradients at time steps

t,t—1 respectively and (3, is a moving average parameter with the default value of 0.9.

Root Mean Square Propagation (RMSprop): In RMSprop, instead of tak-
ing the cumulative sum of squared gradients, the ‘exponential moving average’ is
considered as follows:

a oL
Wiyl = Wt — m : L;—wt} (2.5)
where, )
oL
V¢ = th,1 + (1 — B) [5—thj| (26)
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vy is the sum of square of past gradients and € is a small positive constant (default
value 107®) used to avoid division by zero when v; approaches zero.

The formula for computing the model’s weights updates results from the combination
of Egs. 2.3 and [2.5], respectively, as:

a

—_— ey 2.7
(ve +€) 27)

W41 = Wt —

=

Combining the advantages of previous models, the Adam optimizer is considered
as one of the most versatile optimization algorithms, offering efficient convergence
and adaptability to the learning process. While its performance can depend on the
hyperparameter settings of the model, it’s still the most commonly used optimizer
for training neural networks and the most popular in the literature.

2.3 Differentiation of DNNs

2.3.1 Reverse Automatic Differentiation

Reverse Automatic Differentiation (RAD) is the core technique used to compute
gradients efficiently in neural networks [37, 38]. During training, it enables the
network to learn by adjusting its parameters based on the gradients of the loss func-
tion with respect to those parameters. In forward pass, input data travels through
the layers of the network, and intermediate values are stored. In the reverse pass,
gradients are computed in a top-down manner, starting from the loss function and
propagating backwards. Gradients are calculated using the chain rule of calculus,
where each layer’s contribution to the gradient is the product of the local gradi-
ent of the layer’s activation function and the upstream gradients. The traces of the
forward and backward pass are presented in Fig. for a simple model architecture.

While during the training process the models’ gradients are computed with respect
to their parameteres, herein RAD is used to compute the DNN’s gradients with
respect to their input variables. As evidenced from Fig. the outcome of the full
forward pass of a DNN is a result of repeated matrix multiplications, interwoven with
the application of the activation functions. Consequently, the computed derivatives
resulting from the DNN’s differentiation will be highly determined by the model’s
architecture (width and depth), the - fixed - weights resulting from the training
process and, the used activation functions [39, 40, 4T].
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Figure 2.3: Demonstration of the RAD technique. The traces of the forward pass of
the model are shown in black. The traces of the backward pass during the differentiation
of the loss function (J) are shown in red. Figure from [{2].

2.3.2 Parameters that Influence the Computed Gradients

Neural Network Architecture: The number of the DNN hidden layers and their
neurons (width and depth) will determine the number of weights that will be as-
signed to each input feature, giving insight into the importance of that feature in
making predictions. In networks with more complex structures, computing the gra-
dients with respect to their inputs can be more intricate, due to the interactions and
flow of information across different parts of the architecture. Especially in networks
with high-dimensional inputs, the gradients can be sensitive to small changes in
individual input dimensions, making interpretation and analysis challenging.

Weights Initialization and Non-Unique Solutions: Neural networks are sen-
sitive to their initial weights. This sensitivity is particularly pronounced in deep
architectures, where slight changes in the initial weights can lead to different trajec-
tories during optimization, resulting in different solutions. This non-deterministic
behavior inherent in the training of DNNs can have notable implications for the
computed gradients with respect to their inputs and their stability, causing fluctua-
tions in their directions and magnitudes for the same input across different training
runs or solutions.

Weights Magnitude and Sign: The magnitude and sign of the weights in a
trained DNN play an important role in shaping its gradients. Larger magnitudes of
weights amplify the impact of input changes on the model’s output, while both their
magnitude and sign determine the strength of the activations across the model’s lay-
ers. The interplay between weight magnitudes and signs defines the sensitivity of the
model to input variations and therefore its gradients. However, the values assigned
to the weights after training are such as to properly approximate the output target,
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and, in case the training fails to capture the complex interactions and dependencies
between inputs and the underlying patterns of the data, the accuracy of the com-
puted gradients will be in question as well.

Activation Functions: Activation functions and their derivatives have a signifi-
cant influence on the computed gradients of the DNN. The most commonly used
activations in the literature are the Rectified Linear Unit (ReLU), the Exponential
Linear Unit (ELU), the Gaussian Error Linear Unit (GELU), the tanh and sigmoid.
Complementary, the less popular Scaled Exponential Linear Unit (SELU) and the
Sigmoid-weighted Linear Unit (swish) are also presented. The activation functions,
as expressed from Egs. 2.8 - are demonstrated along with their derivatives in
Fig. computed on an input variable = in the range of [—5, 5].

0, f 0
ReLU = {  ''%= (2.8)
x, forz>0

ReLU is a piecewise linear function that will output the input directly if it is positive,
otherwise, it will output zero. It has become the default activation function for many
types of neural networks.

(2.9)

LU = ale®+1), forx <0
x, forx >0

ELU [43] is an alternate of ReLU. It can output negative values and it slowly becomes
smooth until its output is equal to —a. The ELU’s hyperparameter o > 0 controls
the value to which an ELU saturates for negative net inputs, diminishing various
problems such as vanishing gradients.

a(e®+1), forxz <0

(2.10)
x, for x > 0

SELU:s-{

SELU [44] resembles ELU and induces self-normalizing properties. The values of «
and scale (s) are chosen so that the mean and variance of the inputs are preserved
between two consecutive layers, as long as the weights are initialized correctly. The
default values are o = 1.67326324 and s = 1.05070098 respectively.

GELU = 2-0(z) = %x {1 Verf <%)} - %x (1 + tanh [\/g (z + 0.044715$3)]>

(2.11)
®(z) is the standard Gaussian cumulative distribution function. The GELU nonlin-
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earity weights inputs by their percentile, rather than gates inputs by their sign as
in ReLU [45]. Consequently the GELU can be thought of as a smoother ReLU.

et —e”

tanh = ——— (2.12)
gmoid — — (2.13)
sigmoid = ——— :
g 1+e®
T
sh = x - si d = 2.14
swish = x - sigmoid(fz) Ty (2.14)

Swish [46] is a self-gating activation function with a constant or trainable parameter
S € [0, 1], that allows better tuning of the activation and maximization of the prop-
agated information. This results in smoother gradients and better generalization.
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Figure 2.4: Representation of the most commonly used activation functions in the
literature (Top) and their derivatives (Bottom).
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As shown in Fig. [2.4] some activations of the ReLU family, such as ReLU and SELU,
are non-smooth activations and its variants introduce non-differentiability at zero.
This is known as the "Dying ReLLU” phenomenon, which can result in unstable or
noisy gradients with respect to the inputs, especially around zero. On the other
hand, GELU, ELU and swish are smooth activation functions and have continuous
derivatives, providing more stable and interpretable gradients. The derivatives of
GELU and swish can also yield negative values, contributing in a more flexible way
to the sign of the network’s gradients. The sigmoid and tanh activations and their
derivatives are also smooth and continuous, however they can saturate for large or
small inputs, squashing the input values into a limited range and resulting in the
so-known phenomenon of ”Vanishing gradients”. Vanishing gradients occur when
gradients become extremely small, such as to approach zero, resulting in negligible
and stalled computed values.
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Chapter 3

The Proposed DNN-Driven
Gradient-Based Optimization

3.1 Introduction

Herein, the proposed DNN-driven optimization algorithm is presented. The pro-
posed method is compared with the adjoint-based optimization, since the latter is so
widely used in CFD-based optimization. The steps of both optimization algorithms
are described and presented, as well as the in-house softwares and tools involved
in each case. Before going to the CFD-based applications, the proposed method
is demonstrated in the minimization of a manifold, bi-variate function, in order to
better visualize the DNN-driven descent and the capabilities of the algorithm.

3.2 The Adjoint-Based Optimization Algorithm

The adjoint technique [47] is used in order to compute the sensitivities of an objec-
tive function (or constraint), concerning the design variables. It is widely used in
CFED to support gradient-based algorithms, as it has the lowest cost of computing
derivatives of functions in problems governed by partial differential equations. It
can be implemented with two variants, the continuous and the discrete adjoint. In
the continuous adjoint method, the gradient of the objective function is computed
by solving adjoint equations derived (in the form of PDEs) from the governing fluid
flow equations. This involves solving the forward (primal) flow problem, formulating
and solving the adjoint equations and then, computing sensitivities with respect to
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design variables. The discrete adjoint method handles the discretized flow /primal
equations on meshes. It follows a similar process, discretizing equations, solving the
forward problem, solving discrete adjoint equations, and finally obtaining sensitivi-
ties for optimization. Both methods are crucial for efficiently optimizing designs in
CFD, since computing gradients through finite differences would be computationally
expensive.

In this work, the continuous adjoint approach is used; A Lagrangian function is
formed by adding the objective function to be minimized to the integral (over the
flow domain) of the residuals of the flow equations multiplied by the adjoint variables
(or Lagrange multipliers). It is evident that objective and Lagrangian functions take
on the same value as the flow equations are always satisfied and, thus, their residuals
are zero. Therefore, the gradient of the Lagrangian, rather than the objective func-
tion, can be computed. This is differentiated w.r.t. to the design variables and terms
multiplying the derivatives of flow variables w.r.t. to the design variables are set to
zero, leading to the adjoint equations. The adjoint equations are derived in the form
of partial differential equations which are, then, discretized and numerically solved
using the in-house solver, PUMA [4§]. In the adjoint-based optimization, each cycle
comprises the numerical solution of the Navier-Stokes equations, that of the adjoint
equations and the computation of the sensitivity derivatives (SDs) used to update
the design variables vector. Without loss of generality, all updates are computed by
steepest descent. The number of optimization cycles to be carried out is determined
by a convergence-or-cost related termination criterion.

3.3 DNNs as Surrogates of the Flow and Adjoint
CFD Solver in Optimization

Alternatively, this work proposes the replacement of both the flow and the adjoint
equations solvers with a trained DNN, which predicts both the objective function
value and the SDs. The proposed optimization algorithm is demonstrated in the
flow chart of Fig.[3.1 Working with DNNs, the first step is to collect the necessary
training data and create the database (to be referred to DBpyy) which the DNN
will be trained on. Herein, the DBpyy is formed by sampling the design space using
the Latin Hypercube Sampling (LHS) technique [49], generating the corresponding
geometries and evaluating them on the CFD solver. The LHS is effective in case the
number of samples must be kept small, and is widely used in DNNs. In this work,
reducing the size of the DBpny is important as all of its entries should be evaluated
on the costly CFD code.

Once the initial DBpyy resulting from the LHS is available, each round (this term is
used to distinguish this loop and the gradient-based descent loop of step [2], in which
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Figure 3.1: Flow-Chart of the proposed DNN-driven gradient-based optimization
algorithm.

optimization cycles are performed by updating the design vector and the gradient)
of the proposed algorithm comprises the following steps:

1. Train the DNN using the data available in the DBpny. Herein, the model’s
configuration is carefully selected in order to achieve high accuracy in both its
predicitons and computed gradients. The setup, training and differentiation
of the DNNs is carried out in the TensorFlow framework (v2.6.0), [50], using
Python.

2. Iteratively optimize (till convergence) by applying gradient-based descent us-
ing, exclusively, the DNN-based sensitivities. In the general case, a number
of entries selected from the DBpyy can be used as starting points (starting
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designs) and perform as many runs as the number of starting points.

3. Re-evaluate (all or part of) the “optimized” solution(s) on the CFD tool; the
use of quotes (“optimized”) makes clear that this is the best solution according
to the DNN.

4. Update the DBpnn with all the recently evaluated solutions, if necessary, and
repeat all four steps starting from step Il The termination criterion is related
to the DNN prediction accuracy.

In step |1, the DNN is configured differently in each problem. Experience has shown
that, the use of a single DNN in all problems is not a viable solution, in CFD-based
analysis. Regarding this work, the demonstrated problems involve different physics,
hence, different models are deployed for each case. The DNNs hyperparameters
result either by a trial-and-error procedure regarding the models’s accuracy in both
their predictions and computed gradients, or, they are optimized using the in-house
evolutionary algorithm software, EASY [51I]. The DNNs are configured only once
and then can be used to drive optimizations with any user-defined objective func-
tion (assuming the geometry parameterization and the flow conditions remain the
same). The cost of configuring the DNNs’ architecture varies from case to case and,
in compare with the cost of solving the flow equations, it can be considered relatively
smaller. Especially in the case where solving the flow problem is computationally
expensive, i.e. in turbulent flow, the cost of ”searching” for the DNNs’ configura-
tion is even less important. At all demonstated cases, the cost needed to configure
a model’s architecture is assumed negligilbe, as a one-time task that once it’s fin-
ished, provides a DNN model that can be flexibly used in multiple optimizations
that involve different objective functions.

In both the adjoint-based and the DNN-driven optimizations, the design variables
are not allowed to outpass their upper or lower boundaries, defined when sampling
the geometries for constructing the DBpyy. If, after an update (performed in step
2)), the design variables’ values violate the defined boundaries, these values are set
equal to their upper or lower limits, respectively.

3.4 In-House Software and Tools

e PUMA: All flow simulations are performed using the in-house GPU-accelerated
CFD solver, PUMA, [52, 48] which numerically solves the Navier-Stokes equa-
tions for compressible and incompressible fluids; herein the compressible flow
variant is used. The flow and their (continuous) adjoint equations are dis-
cretized on unstructured/hybrid meshes, using the vertex-centered finite vol-
ume technique. The viscous flow equations for compressible fluids are written
in the form

24



afh]?, a v’ics
R, = 2k Tk 3.1

where

U __

U =[pv, pukvL+Ppdik  PURU2+DOak  pURUs+POsk purhs]” are the inviscid and
Vis = [0 Ty Top Tsx VeTek + qk]T the viscous fluxes. p, p, v, and h; stand
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is the Kronecker symbol, respectively. The viscous stress tensor is given by
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flux. All computations are made with second-order accuracy. The inviscid
(Euler), laminar and turbulent flow models of simulation are included and,
when the latter is selected, PUMA implements a variaty of turbulence models,
such as the Spalart-Allmaras model, the standard k-epsilon model and the
baseline and SST variants of the k-w model.

In both the flow and adjoint solvers of PUMA, high parallel efficiency is
achieved by the use of Mixed Precision Arithmetics (MPA), [52]. MPA re-
duces the memory footprint of the code and the memory transactions of the
GPU threads with the device memory, without affecting code’s accuracy. In
particular, the memory demanding computations of the coefficient matrices of
the linearized systems is performed with double, though these are stored in
single, precision accuracy. The residuals of the equations, determining the ac-
curacy of the simulation, are always computed and stored in double precision.

In addition to the flow and adjoint solvers, PUMA contains a set of shape
and mesh morphing (parameterization) techniques based on volumetric Non-
Uniform Rational B-Splines (NURBS), [53]. The geometry to be optimized
and (part of) the grid are encapsulated within a NURBS lattice. A knot
vector and a degree must be defined for each parametric direction. Each time
the NURBS lattice points (a.k.a. control points) are displaced, the geometry
changes and the CFD grid is adapted to it.

EASY: EASY is a general purpose, high fidelity software for the search of op-
timal solutions in single-or multi-objective problems. The software has been
extensively used in engineering applications and provides users with a high
degree of control over the optimization process. Along with a wide range of
options on genetic algorithms and evolutionary strategies, the tool also sup-
ports the approximation of single and multi-objective functions using ANNs
for time consuming problems, and numerous others features, such as optimal
selection of the taining patterns, multilevel algorithms, i.e. Hierarchical opti-
mization, as well as the ability to incorporate metamodels when dealing with
computationally expensive evaluation tools.
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3.5 Demonstration of the proposed DNN-Driven
Optimization Algorithm

The proposed optimization method is demonstrated on the minimization of the bi-
variate function F'(X,Y)

F(X,Y) = cos(2X) + sin(3Y) + sin(X?) + cos(Y?), X,Y € [-1.6,1.6] (3.2)

As shown in Fig. [3.2] F' is symmetric and has two local minima on the design space,
located at (X,Y) = (1.5,1.5) and (X,Y) = (1.5, —1.5) respectively. These points
wouldn’t be the function’s minimas if the (X,Y) domain was expanded beyond the
range of (—1.6, 1.6), as verified from the non-zero values of the F' derivatives at these
specific points.

Figure 3.2: The analytical F surface (Left) and its derivatives w.r.t. X (Middle)
and Y (Right) are represented on the X-Y domain.

First, the design space is sampled using the LHS technique and 25 samples (X-Y
combinations) are generated. For each sample the value of F' is computed and all
data are normalized within the [0, 1] range according to their minimum and max-
imum values in the samples. Next, a DNN model is trained on the DBpnxy. The
model’s configuration resulted after a trial-and-error procedure on its hyperparame-
ters and consisted of 4 hidden layers with 32 —64 — 32— 32 neurons respectively. This
DNN architecture was assessed in terms of accuracy (of both F' and its gradient) by
combining the most commonly used activation functions (mentioned in the previous
Chapter) in all the DNN’s layers. The MSE loss is selected as the loss function and
Adam as the optimizer with a learning rate of 0.001. After the model was trained,
it was evaluated on a test set of XY values (Fig. and then, it was differentiated
w.r.t. X ( Fig. and Y (Fig. [3.5) respectively in order to compute the two partial
derivatives of the DNN approximation function.
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Figure 3.3: The analytical F function is compared with the predicted surfaces of
DNNs, when using diffferent activation functions in their layers.

ReLU GELU ELU

0
0.0 15 15 Y

X, .
sigmoid

Figure 3.4: The analytical derivative of F w.r.t. X is compared with the predicted
derivatives of DNNs, when using diffferent activation functions in their layers.
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Figure 3.5: The analytical derivative of F w.r.t. Y is compared with the predicted
derivatives of DNNs, when using diffferent activation functions in their layers.

It can be observed that all DNNs’ approximation functions properly match the an-
alytical function. However, after differentiating the DNNs, deviations are observed
on both the derivatives. When the ReLLU or SELU activations are used on the DNN
layers, the computed gradients are coarser than the ’smooth’ analytical surfaces,
due to the non-continuity of the specific activations. The best gradient accuracy is
achieved when using the GELU or ELU activations.

The trained DNNs are used in steepest descent algorithms in order to find the
minimum of F' in the (X, Y) space. Herein, (1.0, 1.0) is selected as the initialization
point and 10 optimization cycles are carried out with a descent step of 0.1. The
DNN-driven descents are compared with the analytical descent, in which both F’ and
its derivatives are computed by their explicit mathematical expressions, in (Fig.|3.6)).
As previously mentioned, at each optimization cycle’s update, the design variables
(herein the X, Y inputs) can not outpass their upper and lower boundaries in the
samples. However, the prerequisite of a succesful DNN-driven optimization, is the
capability of the DNNs to extrapolate the output values, herein predicting an output
that has a lower F' value than the sample with the minimum F' value encoutered in
the DBpnn. DNNs can struggle with extrapolation, as they might not have learned
meaningful patterns and generalize beyond the training data range, and therefore
their predictions for out-of-range values might not be accurate or reliable. For a
better visualization of the range of the F' values that the DNNs were trained on, the
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25 generated samples included in the DBpny are placed in the X-Y domain, in Fig.
B.6l

=— Sample with Min. F Value
—— Analytical
—a— Mol
= GELU
- SELU
— ELT
== tanh
—— sigmoid

Analytical
ReLU 1
e GELU

SELU

ELU  fF °
—— tanh

sigmoid e

# Optimization Cycles

Figure 3.6: (Left) Representation of the F' surface on the X-Y domain, along with
the analytical and DNN-driven descents, when using different activation functions,
and the 25 samples included in the DBpny. (Right) Convergence of F at the 10
optimization cycles. The minimum value of F' in the samples is drawn with a dotted
line, for comparison.

The steepest descent driven by the DNN trained with the GELU activation results in
a solution that matches better the solution of the analytical descent, in comparison
with the other activation functions. When the SELU or sigmoid activations are
used, the DNN-driven descents result in solutions with a higher F' value than the
min. F in the samples, and when the ReLU is used, the descent only decreases F’ till
that value. On the contrary, the descents driven by DNNs trained with the GELU,
ELU and tanh activations result in solutions with lower values than min. F. One
concern pertaining the convergence of F' when using the ReLU, SELU and sigmoid
activations, is that F' remains fixed after it reaches a cetrain threshold (herein, the
convergence curve 'flattens’ after the 2" optimization cycle). This behavior is due to
the saturation of specific activation functions (that affects the computed gradients)
or the incapability to output negative values (that affects the predictions), and can
be better understood if the function’s convergnce is drawn using the normalized
values. The convergence of normalized F', to be referred as F'*, is shown in Fig. 3.7}

Since, now, the min. F* value corresponds to 0, the models must predict negative
outputs in order to further decrease F*. As shown in Fig. 2.4] ReLU and sigmoid
activations are incapable of outputing negative values, and therefore can not predict
a lower F* value than the one included in the DBpyy. In addition, sigmoid and
tanh suffer from the 'vanishing saturation’ phenomenon, near the regions that their
outputs are close to 0 and 1, and —1 and 1, respectively. In these saturated regions,
the activation function outputs values that are close to the limits, often lead to
gradients that approach or become zero. The ’stalling’ of the gradients does not
allow the update of the design variables during the optimization, and therefore
prevent the decrease of F*. Despite the behavior of these activations, they can lead
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Figure 3.7: Convergence of F* at the 10 optimization cycles. The minimum value
of F* in the samples is drawn with a dotted line, for comparison.

to both accurate predictions and gradients with a performance that varies from case
tot case, and therefore they should not be excluded. The occuring limitations can
be overcomed by appropriately normalizing the data before training. Normalization
is a common practice in deep learning, as it helps in stabilizing and speeding up
the training process. It ensures that the input features have a similar scale and
it prevents some features from dominating the learning process due to their larger
magnitudes. In minimization problems, such as the ones concerned in this work, a
solution would be to normalize the training data with a value that is by a percent
lower than the minimum encoutered in the samples. In that way, 0 corresponds to a
lower value than the minimum in the DBpyy, allowing activations that output only
positive values to predict values outside the range of the training samples. Since
the trained DNN will be used in an optimization, the new minimum value used for
normalizing the data must be selected according to the best-case-scenario of the
improvement expected during the optimization, to prevent the same behavior.
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Chapter 4

Problem I: Gradient-Based
Optimization of an Isolated Airfoil

in Inviscid Flow

4.1 Introduction

Problem I refers to the shape optimization of the NACA0012 (symmetric) airfoil.
The flow around NACAQ0012 is inviscid and the objective is to re-design the airfoil’s
shape in order to match a user-defined lift coefficient. First, a DNN is assessed
and trained to predict the lift coefficient values of the airfoil, when given as input
the y-coordinates of the lattice box’s control points that parameterize its shape. A
parametric study is performed on the model’s hyperparameters focusing on the se-
lection of the appropriate activation functions, so as to achieve high accuracy in both
the model’s predictions and derivatives. Later, a gradient-based optimization is per-
formed fully driven by the DNN, which provides both the objective function’s values
and its sensitivity derivatives. The DNN-driven descent optimization is compared
with an adjoint-based optimization in terms of effectiveness and cost.
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4.2 Flow Conditions, Mesh and Shape Parame-
terization

The flow around the NACAO0012 airfoil is inviscid with free-stream Mach number
and flow angle equal to M., = 0.50 and a, = 2°, respectively. An unstructured
mesh with ~7.8K nodes is used, shown in Fig. [£.1] The farfield boundaries of the
computational domain are located about 10 chords away from the airfoil.
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Figure 4.1: Problem I: (Left) Mesh of the whole computational domain. (Right)
Close-up view of the mesh surrounding the airfoil.

The airfoil shape as well as part of the surrounding mesh are controlled by the 10x7
NURBS lattice of Fig. 16 out of the 70 control points are allowed to be displaced
in the normal-to-the chord (c), or vertical, direction, resulting to N =16 design
variables (and, thus, 16 will be the inputs to the DNN), in total. The design variables
(5 € RY) are allowed to change within the 40.05¢ around their initial values, so as
to avoid the overlapping of the lattice lines. The control points coinciding with the
leading and trailing edge of the airfoil remain fixed.

Figure 4.2: Problem I: NURBS control lattice parameterizing the airfoil contour.
Control points in blue are fixed; red ones can be displaced in the normal-to-the-chord
direction.
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4.3 DNN Configuration and Training

A DNN model is assessed, so as to predict the lift coefficient (C) of the NACA0012
airfoil. C7, is the lift force (L) exerted by the flow on the airfoil normalized by the dy-
namic pressure coefficient multiplied by the airfoil’s chord (c), as Cp, = L/(3pUZ2c),
where U, is the farfield velocity. The LHS technique is used for generating 20 differ-
ent combinations of the design variables, corresponding to 20 different airfoil shapes.
The generated samples are shown in Fig. [4.3] Each sampled geometry is evaluated
on the CFD solver and C}, is computed. Thus, the DNN model’s input is a [20x 16]
tensor with the sampled coordinates of the lattice control points, with the [20x 1]
tensor of the corresponding C}, values as output. During the training process, 20%
of the generated patterns is splitted for creating the validation set, thus, a set of
15 airfoil geometries is used for training the DNN and a fixed set of 5 geometries is
used for validating it.

Figure 4.3: Problem I: All the generated airfoil shapes contained in the DBpyy.

4.3.1 Parametric Study on the DNN’s hyperparameters

The DNN'’s configuration derives after a parametric study /trial-and-error procedure
for the model’s hyperparameters, focusing mainly on the number of the hidden lay-
ers, the number of neurons per layer and the activation functions. For this first
problem, the selected configuration has four hidden layers, with 32, 32, 64 and 32
neurons, respectively. This DNN architecture was assessed in terms of accuracy
(of both Cp and its gradient w.r.t. the design variables) by combining different
activation functions. Four DNNs using the ReLU, the GELU, the sigmoid and the
tanh activation functions in all hidden layers are trained and compared. All mod-
els achieve high accuracy in predicting C';, however the accuracy of the computed
derivatives differs for each model. The results are summarized in Fig. [£.4 The
DNN-based SDs for the baseline geometry using GELU are in better agreement
with FDs. Small discrepancies are observed in the derivatives w.r.t. some design
variables, preserving though the sign of the SDs, in contrast to other activation
functions that yield even wrongly signed SDs.
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Figure 4.4: Problem I: SDs of Cp (w.r.t. the design variables) for the baseline
geometry computed with FDs (black) and derived from the DNN'’s differentiation for
the different activation functions: ReLU (red), GELU (blue), sigmoid (green), tanh
(orange). The SDs computed by the adjoint method of PUMA are omitted as these
are practically identical to those computed by FDs.

4.3.2 DNN Loss Convergence and Accuracy Metrics

After the configuration of the DNN’s architecture, the tuning of the rest hyperpa-
rameters of the model follows. The Mean Squared Error (MSE) is used as the loss
function during training and Adam is selected as the optimizer, with a learning rate
of 0.001. In order to configure the optimal number of epochs for training the DNN,
a starting number of 1000 epochs is selected. The convergence of both the training
and validation losses during the 1000 epochs is presented in Fig. [4.5f approximately
600 epochs are sufficient for achieving an MSE magnitude of around ~ 1075 for both
the training and the validation set.

The trained DNN is called to predict the C value of each sampled geometry in
the DBpyy and the percentage of the Mean Absolute Error (MAE) between the
predictions and the exact C, (as evaluated on the CFD code) is computed according
to In Fig. the predictions are compared to the exact C values and the
computed MAE metric for both the training and validation set is shown in a bar-
chart. A MAE value of less than 1% is achieved for the training set with the mean
value of 0.45%. For the validation set, a mean MAE value of 2.65% is achieved,
where

MAE (%) = 100 - | kcrp = Crovy (4.1)
Crcrp
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Figure 4.5: Problem I: (Left) The convergence of the training (red) and validation
(blue) losses during the traininng process of the DNN. (Right) View, in scale, of the
convergence of the two losses during training. Upon the convergence of the valida-
tion loss, noisy fluctuations occur after approximately 700 — 800 epochs, but still of
insignificant magnitude.
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Figure 4.6: Problem I: (Left) The Cr,/CL; ratio values (red) for each sampled ge-
ometry in the DBpyn (sorted), where Cpyp is the Cp, value at the baseline geometry,
is compared with the predicted values using the DNN (blue) respectively. (Right) The
computed percentage MAE metric for each sample in both the training (blue) and val-
idation (red) sets.

4.4 The DNN - Driven Optimization Run

The optimization aims at re-designing the initial airfoil so as to match a user-defined
lift coefficient value (Cf target). The objective function (to be minimized) is

F = (CL - C(L,target)2 (42)

DN | —

where Cp targer = 0.6 - 1072, twice as high as the Oy of the baseline profile. Two
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runs are carried out; the first run relies exclusively on the DNN using the GELU
activation function (as concluded after the previously presented parametric study),
while the second one on PUMA and its adjoint solver. Upon convergence of the
DNN-based optimization run, the “optimized” solution is re-evaluated on PUMA.
This is then added to the DBpyy, the DNN is re-trained, and the optimization is
repeated. Three rounds (each of them including re-evaluations of one “optimized”
solution per cycle and DNN re-training) were sufficient to reach the optimal solution
with a deviation in the C}, values (w.r.t. to the CJ, 14r4e¢) less than 1%. Given that the
cost of a DNN-based optimization as well as that of the DNN training is practically
negligible (w.r.t. the cost of a CFD run, even if the less costly inviscid flow model is
used), the optimization turnaround time is 23 TUs. This includes the cost to form
the DBpny (20 TUs) and the three CED based re-evaluations. On the other hand,
the adjoint-based run (with cost of 2 TUs per cycle) needs 32 TUs for reaching
the target Cp targer value. The convergence histories of the optimization runs are
presented in Fig. [4.7]
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Figure 4.7: Problem I: (Top) Convergence history of the optimization runs based on
the adjoint method (red) and the differentiated DNN (black). Solutions of the DNN-
based optimization which are re-evaluated on the CFD tool are shown in filled blue
circles. (Bottom) Close-up view of the previous curve between TU 20 and 25.
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In this problem, the overall cost of the optimization is expected to be small, as one
CFD run in a 2D inviscid flow is, in general, computationally inexpensive. The gain
on the total cost of the proposed optimization method would be more apparent in
3D cases, as well as turbulent or even unsteady problems. Overall, the DNN-based
optimization is by ~31% less expensive than the adjoint-based run and resulted in
an even better solution.

4.5 Comparison of the Optimized Geometries

The optimized airfoil shapes that resulted from the two optimization runs are com-
pared in Fig. the curvature on both the suction and pressure side of the opti-
mized airfoils was modifyed, in order to increase C'y. The Mach number fields around
the optimized airfoils are compared with the baseline airfoil; overall, the flow speed
increased (pressure decreased) over the suction side of the optimized airfoils, in order
to match the target lift coefficient C, target-
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Figure 4.8: Problem I: (Top) Shape of the baseline (black) and optimized airfoils
based on the adjoint method (blue) and the differentiated DNN (red). (Bottom) Mach
number fields for the baseline (left) and optimized airfoil resulted from the adjoint
method (center) and the differentiated DNN (right).
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Chapter 5

Problem II: Gradient-Based
Optimization of an S-Bend Duct

with Laminar Flow

5.1 Introduction

Problem II deals with the shape optimization of an S-bend duct in order to minimize
the total pressure losses between the duct’s inlet and outlet domain. Problem II
differs from Problem I since this is an internal (rather than external) aerodynamic
case, it has a differernt flow model (viscous flow) and a different objective function.
A DNN is assesed and trained on the generated DBpyy geometries in order to
predict the total pressure losses of the duct, when taking as input the y-coordinates
of the lattice control points that parameterize its shape. The trained DNN is then
used as a surrogate in the gradient-based shape optimization of the baseline duct
and the results of the DNN-driven optimization are compared with the outcome of
an adjoint-based optimization. Since the DNN-driven descent is of negligible cost,
herein a number of individual optimization runs are carried out, starting from each
generated sample in the DBpyy. This alternative approach is proposed in order to
demonstrate another capability of the DNN-driven algorithm, as a promising way
of overcoming the limitation of the gradient-based optimization methods, in which
the optimal solutions highly depend on the initialization point.

39



5.2 Flow Conditions, Mesh and Shape Parame-

terization

The re-design of the S-bend duct aims at the minimization of the mass-averaged
total pressure losses between the inlet (/) and the outlet (O). The objective to
minimize is

J pepvadS + [ pipvndS
St So

[ pv,dS
St

F =

(5.1)

where p;, v, are the total pressure and the normal velocity pointing outwards to
the CFD domain (this is why in the numerator of Eq. the sum, rather than the
difference of two integrals appears). F' stands for the losses occuring in the flow due
to the viscous effects. The flow is laminar with Re =1.84 - 10* (Reynolds number
based on the duct width) and inlet velocity U =20 m/s. The Mach Number and the
total pressure losses fields of the flow for the baseline geometry are shown in Fig.
b.1} The maximum contributions to F are computed near the walls of the S-shaped
part of the duct as expected.

Mach o041 004 006 D08 012

Figure 5.1: Problem II: (Top) Mach Number Field of the baseline geometry. (Bot-
tom) Total Pressure Losses Fields of the baseline geometry.

A structured CFD mesh of ~90K nodes is generated in order to simulate the flow
inside the duct. The duct shape is parameterized using a 8 x9 NURBS lattice, Fig.
. 20, (out of the 72) control points are allowed to move in the y direction, yielding
N =20 design variables (20 inputs to the DNN) in total. The design variables are
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allowed to change within the £0.05¢ around their initial values, so as to avoid the
overlapping of the lattice lines.

Figure 5.2: Problem II: Control points of the volumetric NURBS control lattice,
parameterizing the S-bend duct. Blue points are kept fived, whereas red ones can be
displaced in the y direction.

5.3 DNN Configuration and Training

A DBpny of 50 duct geometries is used to train the DNN and 20% of the generated
patterns is splitted to form the (fixed) validation set. In comparison to Problem
I, herein a larger DBpnn is constructed, since there are more design variables and
viscocity is also on board. The DNN gets the [50 x 20] tensor of the y coordinates
of the control points of all samples as input and computes the [50 x 1] tensor of
the F values (Eq. 5.1). As in Problem I, the model’s configuration was decided
after comparing various hyperparameter combinations, and is made of 7 layers with
32,64,128,256,128, 64,32 neurons; the GELU activation function is used for all
hidden layers and the sigmoid for the output one. Since the sigmoid activation is
selected for the output layer, the minimum value for normalizing the training pat-
terns is selected by a percentage lower that the minimum value ecountered in the
samples, herein by 10% lower. After configuring the DNN’s architecture the rest of
its hyperparameters are tuned; The MSE is used as the loss function and Adam as
the optimizer with a learning rate of 0.001. Again, the sufficient number of epochs to
train the model must be decided, thus, a starting number of 2000 epochs is selected.

As shown in Fig. [5.3] the training loss rapidly converges, however the validation loss
remains fixed to a high value throughout the whole training process. This is due to
the fact that the DNN model predictions are validated on a fixed set of data that
is not adequate for generalization. To overcome this limitation, the technique of
cross-validation (or rotation estimation) is used, in which different portions of the
DBpnn data are used to validate and train the model on different iterations, during
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the training process. Herein, 10 iterations of 200 epochs are carried out, where the
DNN predictions in each iteration are validated on a different set of data. The DNN
predictions of F' when using fixed and shuffled training-validation sets are compared

in Fig.
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Figure 5.3: Problem II: (Left) The convergence of the training (blue) and validation
(green) loss in the case of fized training-validation sets is compared with the conver-
gence of the training (orange) and validation (red) loss in the case of shuffled sets.
(Right) A scaled view of the losses convergence. In this view, the decrease in both the
training and validation losses after each iteration is observed.
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Figure 5.4: Problem II: The F/F, ratio values (blue) for each sampled geometry in
the DBpyn (sorted), where Fy is computed at the baseline geometry, are compared
with the predicted values of the DNN when using fixved (green) and shuffled (orange)
training and validation sets respectively. The improvement in the predictions accuracy
in the case of cross-validation is observed.

The percentage MAE metric in both cases is computed and demonstated in Fig.|5.5]
the mean MAE value of the validation set in the case of fixed sets is 0.46%), while it

42



decreases significantly when using the cross-validation technique in the value of 0.007
% . The sensitivity derivatives of F' w.r.t. the design variables are computed for
both cases and presented in Fig. Small discrepancies are observed for both val-
idation methods, however the computed derivatives when using the cross-validation
technique match better the reference adjoint ones, verifying again the effectiveness
of the method.
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Figure 5.5: Problem II: (Left) The computed percentage MAE metric for each sample
in both the training (orange) and validation (blue) sets in the case that they remain
fized during training. (Right) The percentage MAE metric of the DBpyy samples
when the cross-validation technique is used. In this case, the samples used for training
and validating the DNN cannot be distinguished as they change after each iteration.
In this case, the MAE values are significantly smaller, verifying the effectiveness of
shuffling the training and validation data during the training of the model.
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Figure 5.6: Problem II: SDs of F (w.r.t. the design variables) for the baseline

geometry computed with Adjoint (red) and derived from the DNN'’s differentiation
when using fized (blue) and shuffled (green ) training-validation sets.
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5.4 The DNN - Driven Optimization Run

Since the descent phase of the DNN-driven optimization algorithm is of negligible
cost, it was decided to perform optimization runs starting from all sampled geome-
tries forming the DBpnn;, i.e. 50 runs in total (Fig. ). Though this is not what
this work generally proposes, such a decision was made since it allows an exhaustive
exploitation of the design space and showcases the appearance of many local minima
in this kind of problems.

- 1.05

[ 1.00

15t Round:
50 cycles

Figure 5.7: Problem II: Representation of the 50 DNN-Driven optimization runs
starting from each sample in the DBpyn. The convergence of F normalized with Fy,
is different for each run, resulting in 50 different ’optimal’ solutions.

Upon completion of the 50 optimization runs, the designer may decide which of
the “optimized” solutions should undergo a CFD-based re-evaluation, at the ad-
ditional cost of one TU each. Herein, it is decided to re-evaluate 10% of the 50
“optimized” solutions, i.e. the top 5 of them. These are added to the DBpnn, the
DNN is re-trained and a second optimization round starts. The outcomes of the 5
DNN-based runs, each of which based on an updated (re-trained) DNN, result in
new “optimized” solutions that are re-evaluated on the CFD tool and appended to
the DBpyn. Two re-trainings of the DNN proved sufficient to obtain a DNN pre-
diction accuracy less than 0.5%. At the end of this round, only the best among the
five “optimized” solutions are re-evaluated, resulting in a reduction in F' by 4.6%
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compared to the baseline geometry. The overall cost of the DNN-based optimization
is 61 TUs, consisting of: 50 TUs to generate the DBpxn, 10 TUs (=2 x 5) to evaluate
the 5 top “optimized” solutions at the end of each cycle and, finally, 1 TU for the
evaluation of the final “optimized” geometry on the CFD code. For comparison, an
adjoint-based optimization is also performed. The optimization loop results in the
same reduction in F' compared to the baseline geometry and requires 30 cycles till
convergence, at the cost of 60 TUs. The overall DNN-driven optimization and the
adjoint based optimization are compared in Fig. |5.8

-— T T T ] LI
O e L
0.99 , .............. ................ ............... ........... § .................. ..... ]
A : : : Joid :
‘ : : : LA :
F/FBL 098 :. ............. ,, ................ , ............... , ....... g .................. ..... N
: : : : . Bz :
0.97 b\ T— — — J- VS8 — ]
8 : : N
: s -
0'96 : .............. .............. ................ ......... ‘ -‘ ........................... —— AdJOHlt Optimization
: . . i —\ e CFD-Re-Evaluations
0 10 20 3640 50 60|
,,,,,,,,,,, Time Units \
0.9560 "’T’ | | T T T
A i i i i i
: st j : : : H
0'9555 _k\\]\.RQuIld ............ , ................. ,.. ......... J
0.9550 PONG z
. __ ............. \\§§— ..... feererenniarennan ......... N
F/Fpr ’?\znd Roind
0.9545 _ .................. .................. \‘~-‘ ......... ]
: : : —==->® 37 Round
0.9540 . veererdeennreean -
0.9535

50.0 52.5 55.0 57.5 60.0 62.5
Time Units

Figure 5.8: Problem II: (Top) Convergence history of the optimization runs based
on the adjoint method (red) and the differentiated DNN (black). Solutions of the
DNN-based optimization which are re-evaluated on the CFD tool are shown in filled
blue circles. (Bottom) Close-up view of the previous curve, in order to make a clear
comparison between the adjoint curve and the three solutions “optimized” by the DNN-
driven run and re-evaluated on the CFD code.

In Problem II, achieving high accuracy on the DNN’s predictions and sensitivi-
ties was a more difficult task, in comparison to Problem I. Thus, the complexity
of the problem (type of the flow, geometry parameterization and selection of the
number of design variables) determines the efficancy of the DNN’s training and
consequently, its performance during the optimization. To improve the accuracy
of both the DNN’s predictions and sensitivities, a larger training DBpny could be
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used. Overall, the proposed method had the same performance as the adjoint-based
optimization, resulting in the same reduction in F' at (almost) the same compu-
tational cost. The proposed method also allows multiple optimization runs to be
carried out simultaneously, due to the negligible cost of the DNN-driven descent.
This capability is promising and useful for two reasons: First, for exploring multi-
ple solutions in problems with many local minima and secondly, for overcoming the
limitation of the gradient-based optimization, in which the outcome highly depends
on the initialization point.

5.5 Comparison of the Optimized Geometries

The duct shapes optimized using adjoint and the DNN-assisted method are com-
pared with the baseline geometry in Fig. [5.9] The total pressure losses field for the
baseline, and the optimized ducts by the two methods are presented in Fig. [5.10 It
is clear that the optimization changed the lower side of the duct in order to avoid a
small (incipient) separation, shown as a red spot in the baseline geometry. This red
spot develops as a narrow red path that reaches the domain exit. The total pressure
losses distributions on the inlet and outlet domains of the baseline and optimized
ducts are presented in Fig.|5.11l The distributions are computed on the vertical (y)
distance at each domain, that ranges from 0 to the duct’s diameter (from the duct’s
lower side in each domain until its upper side), herein D = 0.2[m] .

Figure 5.9: Problem II: Shape of the baseline (black), the adjoint-based (red) and the
DNN-based (blue) optimized ducts. Azes not in scale (x:y=1:2).
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Figure 5.10: Problem II: Total pressure losses for the baseline (top) , the optimized
by the adjoint method (center) and the optimized by the proposed DNN-driven method
(bottom) geometries.
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Figure 5.11: Problem II: (Top) Total pressure distribution at the duct’s inlet and
outlet domains for the baseline and the optimized geometries using the adjoint and the
proposed DNN-driven methods. (Bottom) Total pressure difference between the inlet
and outlet distributions for the same duct geometries.
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Chapter 6

Problem III: Turbulent Flow

Around an Airfoil

6.1 Introduction

The application of the proposed algorithm on the shape optimization of a the Low-
Speed airfoil S8052 is presented as Problem III. The flow is turbulent and the op-
timization’s goal is to re-design the initial airfoil’s shape in order to minimize the
drag coefficient while matching a, user-defined, target lift coefficient. When per-
forming the optimization, the two objectives are expressed as two individual terms
in a common objective function. Two distinguished DNN models are trained on the
generated patterns in the DBpyy, in order to predict the values of the two coeffi-
cients respectively. Both models take as input the y-coordinates of the lattice box’s
control points that parameterize the airfoil’s shape. Once trained, they are used to
drive the airfoil’s shape optimization, where each model provides the predictions and
sensitivity derivatives of the lift and drag coefficient. As in the previous problems,
the effectiveness and outcome of the DNN-driven optimization are compared with
the outcome of an adjoint-based optimization.
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6.2 Flow Conditions, Mesh and Shape Parame-
terization

The flow around the S8052 low-speed airfoil is turbulent with Re=5-10° (Reynolds
number based on the airfoil chord). The free-stream Mach number and flow angle are
equal to M., =0.021 and a,, =10°, respectively. A C-type mesh with ~3.8K nodes
is used, shown in Fig. [6.I] The farfield boundaries of the computational domain
are located about 10 chords away from the airfoil. The mesh lattice lines around
the airfoil start from a distance vertical to the airfoil’s chord around ~ 107 [m)]
in order to ensure that the boundary layer region is included. For the simulation,
turbulence is modeled according to the Spalart - Allmaras turbulence model. The
flow conditions of the baseline geometrty are depicted in Fig. 6.2l The turbulence
viscocity field can be observed with greater magnitude after the 2/3 of the airfoil’s
chord approximately.
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Figure 6.1: Problem III: (Left) Mesh of the whole computational domain. (Right)
Detail of the mesh surrounding the airfoil.
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Figure 6.2: Problem III: (Left) Mach number field for the baseline geometry. (Right)
Turbulent viscocity field contour for the baseline airfoil.

The airfoil’s shape as well as part of the sourrounding mesh are controlled by the
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10x 7 NURBS lattice of Fig. [6.3] 16 out of the 70 control points are allowed to be
displaced in the normal-to-the chord direction, resulting to N=16 design variables,
in total. The design variables (b € RN) are allowed to change within the £0.20c
around their initial values, so as to avoid the overlapping of the lattice lines. The

control points coinciding with the leading and trailing edge of the airfoil remain
fixed.

Figure 6.3: Problem III: NURBS control lattice parameterizing the airfoil contour.
Control points in blue are fixed; red ones can be displaced in the normal-to-the-chord
direction.

6.3 DNN Configuration and Training

Herein, two separate models are deployed, one for predicting the lift coefficient (C7)
of the airfoil and one for predicting the drag coefficient (Cp). Cp is defined similarly
to Cp, as the drag force (D) exerted by the flow on the airfoil normalized by the
dynamic pressure coefficient multiplied by the airfoil’s chord (c). Because of the
turbulent flow’s nature and its significant impact on the drag force, it was decided
to isolate the predictions of the two coefficients using two separate models, to be
referred as DNN¢, and DNN¢, respectively. The separation of the two models will
not only allow a better focus on the two target coefficients, but will also improve the
accuracy of the computed gradients that are expected to differ noticeably in both
scale and nature. A DBpny consisting of 40 airfoil geometries is used to train the
two models and the cross-validation technique is again selected. Each deployed DNN
gets as input the [50x 16] tensor of the DBpny samples control points y coordinates
and computes the [50 x 1] tensor of the C7, or Cp values respectively.

The configurations of the two models were optimized using the in-house evolutionary
algorithm software, EASY. Two separate optimizations were carried out for each
model regarding the architecture hyperparameters: the number of hidden layers,
the number of neurons per hidden layer and the activation functions (hidden layers-
output layer). The rest hyperparameters remained fixed during the optimization.
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The MSE was selected as the loss function and Adam as the optimizer with a
learning rate of 0.001. As in Problem II, a pattern of 10 iterations of 200 epochs
was selected for cross-validating the models. The objective of each optimization was
the minimization of the baseline geometry’s sensitivity derivatives error on the first
iteration. The error was measured as the total sum of the absolute differences values
between the computed DNN sensitivities and the reference adjoint sensitivities w.r.t
each DNN input. The optimized architectures of the DN N¢, and DN N¢,, models
are presented in Table [6.1]

DNN Neurons per Hidden Layer Activations
DNNg, | 1024 - 64 - 4096 - 1024 - 128 -128 | GELU - ReLU
DNN¢,, | 32 - 32 - 4096 - 256 - 128 GELU - sigmoid

Table 6.1: Problem III: The optimized configurations of the two models.

The convergence of the loss function during the training of the two models is shown in
Fig. After training, the models are called to predict the C';, and Cp coefficients
of each sample in the DBpyy and their predictions are depicted on the Cp-Cp
space, normalized with the baseline geometry’s values respectively (Fig. [6.5]). The
percentage MAE metric value of each sample’s Cp, Cp prediction is computed and
presented in Fig. As the two models were cross-validated, the training and
validation sets dynamically changed after every iteration, hence, a mean MAE value
of all samples in the DBpnn representing both the training and validation sets is
computed. In both cases, a mean MAE value of around ~ 0.08%. is achieved. The
sensitivity derivatives of both C';, and Cp w.r.t. the models inputs are computed for
the baseline geometry after the differentiation of the two models and are compared
with the reference sensitivities of when using the FDs and the adjoint method in
Fig. The computed C', SDs satisfactory match the reference SDs, while in the
computed Cp SDs discrepancies and even opposite sign at specific design variables
are observed.
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Figure 6.4: Problem III: (Left) The convergence of the training (red) and validation
(blue) loss during the trainng of the DN N¢, model. At specific epochs small spikes can
be observed but still of insignificant magnitude. (Right) Convergence of the training
(orange) and validation (purple) loss during the trainng of the DN N¢,, model.
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Figure 6.5: Problem III: The CFD-evaluated values (red) of Cr,,Cp for each sampled
geometry in the DBpyn are represented on the Cp — Cp space and are compared
with the predicted values (blue) of the two DNN models. The target and predicted
coefficients are normalized with the baseline geometry’s Crp, Cpy, values, respectively.
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Figure 6.6: Problem III: Left) The computed percentage MAE metric for the pre-
diction of the Cr, coefficient of each sample in the DBpyy. (Right) The computed
percentage MAE metric for the prediction of the Cp coefficient of each sample in the
DBppnn.
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Figure 6.7: Problem III: The SDs of Cr, (Top) and Cp (Bottom) w.r.t. the design

variables for the baseline geometry are compared with the computed SDs with FDs
(black), adjoint (red) and derived from the DN N¢, ’s differentiation (blue).

6.4 The DNN - Driven Optimization Run

The gradient-based optimization aims at designing a new airfoil in which the Cp is
minimized, while the C}, coefficient’s value has not decreased over the 10% of the
baseline’s value. Thus, a Cf t4rger equal to 0.9C7 is set and the objective function
(to be minimized) is

1
F= CD + 5 (CL - CL,target)2 (61)

Two runs are carried out; the first run relies exclusively on the DNN, while the
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second one on PUMA and its adjoint solver. Once the DNN-based optimization run
converges, the “optimized” solution is re-evaluated on PUMA. As shown in Fig. [7.17],
just one DNN-driven descent followed by one CFD re-evaluation was sufficient to
reach the optimal solution. Given that the cost of a DNN-based optimization as well
as that of the DNN training is practically negligible, the optimization turnaround
time is 41 TUs. This includes the cost to form the DBpyy (40 TUs) and the cost of
the one CFD based re-evaluation. On the other hand, the adjoint-based run needs
50 TUs to converge. In Fig. the Cp, and Cp values of the DNN-driven and the
adjoint-based optimization solutions are placed on the Cp — Cp space along with
the DBpnn samples used to train the two DNN models for comparison.
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Figure 6.8: Problem III: (Top) Convergence history of the optimization runs based
on the adjoint method (red) and the differentiated DNN (black). The solution of the
DNN-based optimization which is re-evaluated on the CFD tool is shown in filled blue
circle. (Bottom) Close-up view of the previous curve.

Even though Problem III deals with turbulent flow, the effectiveness of the proposed
optimization method is again evidenced. Herein, the DNN-based optimization is by
~20% less expensive than the adjoint-based run and results to a 4% reduction in Cp.
The adjoint-based optimization achieves a 3% reduction in Cp. As observed from
Fig. , the solution of the DNN-driven optimization (after evaluated on the CFD
tool) has a lower Cp value than the minimum Cp, value of the training samples in the
DBpnn, while it matches the CJ, 14,4t With a deviaiton of 0.1% from the target. The
solution resulting from the adjoint-based optimization matches better the Cp target
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value (deviation of 0.01%), in comparison to the DNN-driven optimization’s solution,
that decreased I’ by decreasing the airfoil’s C'p value.
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Figure 6.9: Problem III: (Top) Representation of the DBpnn samples (green), the
adjoint-based optimization’s solution (red) and the DNN-driven optimization’s solution
(blue) on the Cp, — Cp space. The DNN - driven optimization’s solution is placed
outside the DBpnn samples area, verifying the effectiveness of the proposed algorithm.
(Bottom) Close - up view on the two solutions.

6.5 Comparison of the Optimized Geometries, Mach
Number and Turbulent Viscosity Fields

The optimized airfoil shapes that resulted from the two optimization runs are com-
pared in Fig. [6.10, The Mach number field around the optimized airfoils are com-
pared with the baseline airfoil in Fig. overall, the flow speed increased (pressure
decreased) over the suction side of the optimized airfoils, in order to match the target
lift coefficient Cf, t4rget. The turbulent viscocity fields of the baseline and optimized
geometries are compared in Fig. |6.12]
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Figure 6.10: Problem III: Shape of the baseline (black) and optimized airfoils based
on the adjoint method (blue) and the differentiated DNN (red).

Figure 6.11: Problem III: Mach number field for the baseline (left) and optimized
airfoil resulted from the adjoint method (center) and the differentiated DNN (right)

Figure 6.12: Problem III: Turbulent viscocity field for the baseline (left) and op-
timized airfoil resulted from the adjoint method (center) and the differentiated DNN

(right)

6.6 Proposals for Improving the DNN Predictions
and Gradient Accuracy

At the case of the S8052 airfoil and at all the other demonstrated problems, the
DBpnn was kept as small as possible in order to avoid the increase in the overall
optimization cost. However, training the DNNs on a small DBpyy can lead to several
limitations, such as overfitting, generalization difficulty and high variance, mainly
due to the data scarcity. A parametric study on the DBpny size is conducted in
order to show the accuracy changes in both the DN N¢, and DN N¢,, predictions
and computed gradients. Along with the initial DBpyy that contained 40 different
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airfoil geometries, three additional databases are constructed consisting of 100, 150
and 250 patterns respectively. The DN Ny, and DN N¢,, models are trained upon
each DBpny and then are evaluated on 10 test geometries not included in any of
the databases. The computed values of Cf,Cp of one of the 10 samples in the
test set are compared with the reference CFD-based values in Table [6.2] Next, the
two models are differentated in order to compute the C, C'p SDs of the same test
geometry. The comparison of the SDs is shown in Fig. |6.13]

| [ C [Cp |
| CFD evaluation | 20.621508 | 33.581847 |
| | DNN¢, | DNN¢, |

DBpxy — 40 20.742136 | 32.813233
DBpny — 100 | 20.656996 | 33.803564
DBpny — 150 | 20.599524 | 33.636081
DBpny — 250 | 20.632137 | 33.586472

Table 6.2: Problem III: Table containing the CFD-evaluated Cr,, Cp values of the test
geometry. The reference values are compared with the predicted values of the DN N¢,
and DN N¢,, models, when trained on a DBpyn consisting of 40, 100, 150 and 250
airfoil geometries respectively.

The accuracy of the predictions is improved when the DBpyy size increases until
a specific number of samples (herein 100 samples, almost 5 times the number of
the design variables). Increasing further the size of the DBpyy doesn’t improve the
DNNs’ accuracy significantly. These observations can be verified for all other sam-
ples in the test set. The computed C7, SDs match the reference SDs for all DBpny
sizes. On the contrary, achieving high accuracy on the C'p SDs is a more difficult
task. Deviations are observed from the reference SDs, with gradual improvement as
the DBpny size increases (again, the improvement is evident until a specific number
of entries).

Even though the predictions and the computed gradients of both the DN N¢, and
DN N¢,, models are more accurate when trained on a larger DBpny, the optimiza-
tion can be succesfully driven by the DNNs even when trained on a small DBpny
(almost 2 times the number of the design variables). As in all gradient-based al-
gorithms used in optimization, it is possible to converge even when the non-exact
gradients values are used, as long as their sign is correct. As a result, the challenge
in the proposed DNN-driven optimization is to select the DBpyy s size such that to
strike the right balance between the accuracy of the DNN (on both its predictions
and its gradient) and the overall cost of the optimization. It is preferable to to
keep a small DBpyy size for training the DNNs, even though discrepancies might
occur on their predicitons or gradients, and then improve their accuracy during the
optimization process, by performing CFD re-evaluations of the ’optimal’ solutions
and re-trainings, as many as needed.
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Figure 6.13: Problem III: The SDs of Cr, (Top) and Cp (Bottom) w.r.t. the de-
sign variables for the test geometry computed with FDs (black) and resulting from the
DN N¢, model’s differentiation when trained on a DBpny consisting of 40 (red), 100
(green), 150 (orange) and 250 (blue) sample airfoils respectively.

Another proposal for improving the accuracy of the DNN predictions and computed
gradients is to include more information about the target during training, such as
the target values derivatives up to a specific order. That would encode additional
information about the target on the model’s parameters and possibly lead to ac-
curacy improvement. The potentials of the gradient-assisted training of DNNs is
studied and demonstrated in the next Chapter.
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Chapter 7

Gradient-Assisted Training of
DNNs

7.1 Introduction

In this Chapter, the derivatives of the target functions (usually, the objective func-
tion) are implemented in the DNN training process in addition to the target function
itself. This method aims at improving the accuracy of the computed gradients, as
well as the data-efficiency and generalization capabilities of the learned approxi-
mations, by encoding additional information about the target function within the
parameters of the neural network. The incorporation of the DNN gradients in the
training process is presented in two variants. The first implementation is based on
the Sobolev Training method of DNNs. The second, is a new idea that is based
on the principles of the Hermite interpolation and thus, is referred as the Hermite
Method. Both variants are tested on function-gradient approximation applications
in mathematics and later extended to the approximation of the C, Cp coefficients
of the S8052 airfoil and its sensitivity derivatives as initially presented in Chapter
6. The trained DNNs (with both variants) are used to drive the shape optimization
of the same airfoil and the results are compared with the DNN-driven optimization
of the standard-trained DNNs and the adjoint-based optimization.
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7.2 Implementation I: The Sobolev Method

7.2.1 Sobolev Training for Deep Neural Networks

The Sobolev training method for deep neural networks was first introduced by Czar-
necki [54], as a method to incorporate the target derivatives in addition to the target
values while training. The method was inspired by the work of Hornik [55], which
proved the universal approximation theorems for neural networks in Sobolev spaces,
where distances between functions are defined both in terms of their differences
in values and differences in values of their derivatives. A Sobolev Space [56] is a
vector space of functions equipped with a norm that is a combination of LP-norms
of functions together with its derivatives up to a given order. Consequently, the
loss function to be minimized during the Sobolev training in the case of one target
output and one input variable, is defined as the total sum of the norm-differences of
the DNN predictions (y;) and target values (y;) in addition to the total sum of the
norm-differences of the computed derivatives of the DNN w.r.t. each input (D,7;)
and the target derivatives (D,y;), as expressed in

N N
Losssopore = LOSSfunc + Losngad = Z LI}(igw yz> + Z Lg(Dzyzu D;U?Jz) (71)
i=1 =1

D, is the differential operator w.r.t. the variable x and ¢ = 1,..., N, where N is
the total number of samples in the DBpnyy. The L?, Lé’ stand for the selected LP-
norms for measuring the error of the predicted function values and the computed
gradients respectively: The MAE corresponds to p = 1 and the MSE for p = 2.
For multi-output regression problems in which DNNs are used to approximate more
than one targets, the Loss,,. term would contain as many constituent terms as
the number of targets. Similarly, in the common case of multiple DNN inputs, the
Lossgrqq constituent contains one term for each partial derivative, measuring the
error of the target(s) derivatives w.r.t each input. In addition, an appropriate set of
weights could be applied to each term of the LosSgporer, SO as to properly tune the
overall loss during training and allow for a finer and more qualitative learning from
the DNN.

Practically, the difference of a Sobolev-trained DNN (Fig. [7.1)) with a standard
trained-DNN| pertaining the training process, is that the gradient of the target(s)
w.r.t. their input(s) is also computed during training (using external code provided
by the user, based on the black-box RAD function of the TensorFlow framework)
and is compared with the target/reference gradient values, by adding additional

62



term(s) at the loss function. Consequently, the DBpyy in the Sobolev case not only
contains the target(s) values, but also the values of their first derivative(s) computed
at each sample. It is evident that when the Sobolev training method is applied to
CFED problems, the computational cost unavoidably increases, due to the expensive
computation of the required SDs. Herein, the reference SDs will be computed using
the adjoint method, so as to keep the cost as small as possible.

—— Forward Pass
Backward Pass

Figure 7.1: Implementation I : DNN configuration with one input layer (blue) , user-
defined hidden layers (black) and one output layer (green). The model’s predictions ()
are computed from the forward pass of the model and the prediction’s gradient w.r.t.
the x input (Dyy) is computed using RAD. During training, both the predictions and
their gradient are compared with their target values, respectively, using the Sobolev-
type loss function.

The empirical success of the Sobolev training method is demonstrated in a number
of works, as in [57], where it was proven that an overparameterized (with more than
the necessary parameters to fit the training data accurately) two-layer ReL.U neural
network trained on the Sobolev loss with gradient flow from random initialization can
fit any given function values and any given directional derivatives, under a separation
condition on the input data, and in [58], where the Sobolev loss is implemented for
training thermodynamic-informed neural networks in order to gain control over the
derivatives of the learned functions and derive thermodynamically consistent and
interpretable elastoplasticity models that, exhibit excellent learning capacity. In
[59], the direct impacts of Sobolev training on neural network surrogate models
embedded in optimization problems was examined, where it was shown that sobolev
trained surrogate models result in more accurate derivatives (in addition to more
accurately predicting outputs), with direct benefits in gradient-based optimization.
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7.2.2 Demonstration of the Sobolev Method on the Approx-
imation of a Bi-Variate Function

The implementation of the Sobolev training method is demonstrated on the bi-
variate function of Chapter 3. To properly incorporate the target derivatives in
the training process, it must be ensured that they are in the same scale with the
derivatives resulting from the DNN’s differentiation. The scale of the computed
DNN derivatives depends on the transformations (scaling) applied to the generated
DBpnn patterns before training. At all demonstrated cases, both the DNN ’s inputs
and outputs are normalized within the range of [0, 1] according to their minimum
and maximum values in the sampled data, as in equations

X — X
X = — - 7.2
Xmax_Xmin ( )

Y — Yo
Y = — ™" 7.3
Ymax_Ymin ( )

F — Fp
Fr=_—_—__"" 7.4
Fmam_Fmin ( )

Since the DNN will be trained on the normalized data, the derivatives of F™* w.r.t. X*
and Y™ respectively will be computed. The relation between the target derivatives
on the original scale and the computed DNN derivatives results from the chain rule

dF*  dF*dF dX  Xpae — Xpin  dF
dX* dF dX dX*  Foue — Fon  dX

(7.5)

dF*  dF*dF dY  Ypa = Yoin dF
dY*  dF dY dY*  Fouw — Foin dY

(7.6)

It is concluded that in order to properly incorporate the derivatives in the training
process, each partial derivative must be multiplied with the fraction of the range of
the reference input variable with the range of the target output. When the target
derivatives are brought to the same scale as the DNN derivatives, they will not
necessarily be in the range of [0,1], but will vary within a range that is formed by
the ranges of the sampled input and output data respectively. In that case, the two
loss terms L08S fyne and Lossg,qq of Eq. will be in different scale as well. On the
TensorFlow-Keras [60] framework implementation, although a common optimizer is
used regarding the overall Lossgypoen, it is possible to use different loss functions
for the Lossfun. and Lossg.qq constituents or even to multiply each term with a
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different weight during training. In that way, a different penalty is applyed to each
constituent and the total loss function is properly tuned, allowing more qualitative
learning from the DNNs.

Again, a DNN is assessed (same configuration as in Chapter 3) and trained on the
dF dF

values of both function F' and its two partial derivatives 75, 5 on the DBpyn. The
MSE is used for both loss constituents and Adam as the optimizer with a learning
rate of 0.001. Although there is a small scale difference between the target values
and the derivatives, no limitations were encoutered during training, thus, no ancilary
weights were applied on the two losses. After training, the predictions of F' were
calculated and the DNN was differentiated w.r.t X and Y respectively. The resulting
predictions and derivatives are presented on Fig. in compare with their target
counterparts, as well as the predictions and computed derivatives of the standard-
trained DNN respectively. The Sobolev-trained DNN achieved high accuracy in
predicting F', same as in the case of the standard-trained DNN. Improvement was
observed on both the computed derivatives, where their surfaces’ curvature was

properly captured.

Figure 7.2: Implementation I : (Top) The F surface predicted by the Sobolev-trained
DNN (green) is compared with the predicted surface of the standard-trained DNN (blue)
and the analytical surface (red). (Bottom) The same comparison is shown for the
deriwatives of F w.r.t. X (Left) and Y (Right).
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7.2.3 Demonstration of the Sobolev Method on Problem III

As in Problem III, two separate DNN models are trained according to the Sobolev
method in order to predict the S8052 airfoil’s C'p, C'p coefficients respectively. The
total loss function of Eq. consists of N, = 16, in total, gradient loss constituents
that are summed up and added to the function loss constituent,

Ns Ny

LOSSsobolev = Z L];f('gw yz) + Z LZ(Dx]gza D:chy1> (77>

i=1 j=1

A DBpnn of 25 airfoil geometries is generated using the LHS method in order to
train the DNNs. For each sample in the DBpyy the SDs (w.r.t. the design variables)
are computed using the adjoint method. 20% of the sampled airfoils is used to cross-
validate the models with the pattern of 8 iterations of 200 epochs each. Since new
information about the targets is now included in the training, the previous DNN
configurations are no longer guaranteed to be optimal. Two new optimizations were
carried out using the EASY software in order to configure the optimal architecture
of the two models. The objective of the optimization was to minimize the LosSoporew
on the first iteration. The rest of the models hyperparameters remained fixed during
training. The MSE was used as the loss function for all constituents and Adam as
the optimizer with a learning rate of 0.001. Again, no ancilary weights were applied
on the individual loss terms. The optimized architectures are presented in Table

1

DNN Neurons per Hidden Layer Activations
DNN¢, | 1024 - 1024 - 2048 - 512 - 64 -4096 - 32 - 2048 -1024 | ReLU - GELU
DNN¢,, | 4096 - 4096 - 64 - 32 - 256 - 256 - 2048 - 64 GELU - GELU

Table 7.1: Problem III: The optimized configurations of the two models.

The loss convergence of the two models, again to be referred as DN N¢, and DN N¢,,
respectively, is presented in Fig. Instead of showing the total loss, it was decided
to plot the function and gradient terms separately in order to isolate the convergence
of each constituent. The function term in this case refers to the coefficients loss and
the gradient term to the sensitivities loss. Once trained, the models are called to
predict the C';, and Cp coefficients of each sample in the DBpyy and their predictions
are depicted on the C-Cp space, normalized with the baseline geometry’s values
respectively (Fig.[7.4]). The percentage MAE metric value of each sample’s Cp, Cp
prediction is computed and presented in Fig. [.5} A mean MAE value of around
~ 0.25% is achieved for the Cp, predictions and a value of around ~ 0.04% for the
Cp predictions. The sensitivity derivatives of both Cp and Cp w.r.t. the models
inputs are computed for the baseline geometry after the differentiation of the two
models and are compared with the sensitivities of the standard-trained DNNs and
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their reference FDs and ajoint counterparts in Fig. The computed Cp, SDs
satisfactory match the reference SDs, while the C'p SDs were significantly improved

in compare with those of the standard-trained DNN.

0.175
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Figure 7.3: Implementation I : The convergence of the training (blue) and validation
(green) function loss terms and the convergence of the training (orange) and validation

(red) gradient loss terms during the training of the DN N¢, (Left) and the DN N¢,,

(Right) models. In both cases, 1600 epochs, in total, were sufficient for all loss func-
tions to fully converge.
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Figure 7.4: Implementation I : The CFD-evaluated values (red) of Cr,Cp for each
sampled geometry in the DBpny are represented on the Cp, — Cp space and are com-
pared with the predicted values (green) of the two DNN models. The target and pre-
dicted coefficients are normalized with the baseline geometry’s Crp, Cpy, values.
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Figure 7.5: Implementation I : The computed percentage MAE metric for the Cr
(Left) and the Cp (Right) predictions of each sample in the DBpnn.
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Figure 7.6: Implementation I : SDs of Cr, (Top) and Cp (Bottom) w.r.t. the design
variables for the baseline geometry computed with FDs (black), Adjoint (red), the
standard-trained DNN (blue) and the Sobolev-trained DNN (green).
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7.3 Implementation II: The Hermite Method

7.3.1 Hemite Interpolation

In Numerical Analysis, the Hermite Interpolation is a method of polynomial inter-
polation which generalizes the Lagrange interpolation [61]. The original definition
refers to problems of one variable with one target output and is used in the case
both the target’s values and its first derivatives are known for the given sample
points. Similarly to the Lagrange interpolation, the total approximation function
is formed by a set of basis polynomials in order to pass through the target points
and coincide with the given values of its derivatives at these points as well. Herein,
two different types of (orthogonal) basis polynomials are defined for each sample,
such as to disengage the interpolation of the target’s values from the interpolation
of the derivative values. The first type of polynomials, to be referred as H;, where
j = 1,..., Ny contribute only to the interpolation of the target values, while the
second type of polynomials, to be referred as Fj, contribute only to the interpola-
tion of the derivative values. To implement this, the H; polynomials must return 1
when computed at the x; sample if ¢ = 7, where ¢+ = 1, ..., N, and 0 at any other x;
sample, while the ﬁj polynomials must return 0 when computed at the x; sample.
The opposite rule applies to the derivatives of the basis polynomials, H’ and F;-,
respectively. The described properties are expressed as

Hj(w:) = 6 : Hi(x;) =0
H(x;) =0 : ﬁ;(xl) = 5 (7.8)

The Lagrange polynomials satisfy the equation L;(z;) = 5; and therefore are used
to define the Hermite basis polynomials according to the formulas

Hj(z) = (1 — 2L} (2;)(z — 2;))(Lj(2))? (7.9)

_ﬁj z) = (z — ;) (Li(x))?

The final interpolation function is a linear combination of the Hermite basis poly-
nomials multiplyed with the target output or target derivative respectively as

ola) =3 Hy(hyy + STy (7.10)

The Hermite interpolation method can be extended for the interpolation of bi-variate
or even multi-variate functions and their derivatives. The basic developed concepts
for the implementation of the multivariate Hermite interpolation were described in
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[62], while many recent works present modern and intelligent techniques for applying
the hermite interpolation on higher dimensions. In [63], new algorithms for Hermite
interpolation and evaluation over finite fields of characteristic two were presented, in
which the algorithms first reduced the Hermite problems to instances of the standard
multipoint interpolation and evaluation problems and then solved them by existing
fast algorithms. In [64], the Hermite interpolation was studied on n-dimensional
non-equally spaced, rectilinear grids over a field of characteristic zero, given the
values of the function at each point of the grid and the partial derivatives up to a
maximum degree.

Other works propose the use of ML models in order to overcome the challenges of
the Hermite interpolation in high dimensions and on irregular domains. In [65],
Radial Basis Functions (RBF's) were applied as a suitable tool to high dimensional
Hermite interpolation problem on irregular domains. The available derivatives in-
formation was presented using fractional order derivatives instead of integer ones
and the optimal recovery conditions for the fractional Hermite interpolant were in-
vestigated and presented. In [66], the authors of PCOpt proposed a new variant of
Radial Basis Function Networks (RBFNs), with enhanced capacity to approximate
any input—output mapping defined by a collection of activation signals and the corre-
sponding responses. The nonlinear mapping from the input to the hidden network
units was modified by taking into account approximate values of the directional
slopes of the response surface with respect to the free parameters. In [67], an adap-
tive self-organizing Hermite-polynomial-based neural control system was proposed,
were its capability of achievieng favorable control performance in real-time systems
was evidenced. The system was composed of a neural controller and a supervisor
compensator, designed to eliminate the approximation error between the neural con-
troller and the ideal feedback controller without chattering phenomena. The neural
controller consisted of one input, 3 intermediate, and one output layer; The first in-
termediate layer, named as "Hermite layer’, was a hidden layer in which the Hermite
basis polynomials were used as activation functions. The second intermediate layer,
that was referred as 'reception layer’, consisted of one node in which the summation
of all the incoming signals was performed. Finally, the third intermediate layer was
a hidden layer with a custom activation function, that was practically resposible for
eliminating the error between the neural and the ideal controller.

In this Diploma Thesis, an alternative implementation method of the multivariate
Hermite interpolation is proposed, using DNNs as surrogates of the Hermite basis
polynomials. This method explores a new way of incorporating the target values
derivatives in the training process and its capabilities in achievieng higher accuracy
in both the DNN ’s predictions and computed derivatives.

70



7.3.2 DNNs as Surrogates of the Hermite Basis Polynomials

The formula of the total approximation function of Eq. can equivalently be
re-expressed as the sum of two matrix products as

9(wi=1) Hj—y(zi=1) Hj—1(zi=n,) Y (2i=1)
9(@iz2) | _ | Hj=2(ziz1) Hj—s(zi=n,) Y(ziea) |
9(Ti=n,) Hj_n, (i=1) Hij—n,(vj=n,)| Y (®i=n,)
(7.11)
Hj1(2i=1) Hji(i=n,) Y'(2iz1)
j=2(Ti=1) j=2(Ti=N,) Y'(2i=2)

Hj:Ns (x’i:1> Hj:Ns (:UZ':NS) Yl(xi:NS)

The first matrix contains the values of the Ny, in total, H; basis polynomials where
j = 1,..., Ny, computed at each z; sample where ¢+ = 1,..., Ny and equals to the
identity matrix in order to satisfy the Hermite interpolation’s conditions of Eq.[7.§|
The second matrix contains the values of the ﬁj basis polynomials computed at
each x; sample and therefore equals to the zero matrix. The two [Ny X N,| matri-
ces are multiplied with the [N; x 1] vectors containing the target values and the
derivative values respectively, and the products of the two multiplications are added
to compute the total interpolation values.

At the proposed implementation, the two sets of basis polynomials H}, F]-, are mod-
eled by two distinguished DNN branches, to be referred as By and Bgyqq respec-
tively. In this case, the values of the two matrices of Eq. are no longer provided
by polynomials with an explicit mathematical expression, but are computed by two
separate DNN branches in N, discrete points. The number of neurons at that layer
in each branch is set equal to Ny in order to provide the [Ny x N tensor when
computed at all samples. These layers are to be referred as 'Basis layers’. Next, the
output matrices of the two individual Basis layers are multiplied with the vectors
containing the target values and the derivative values respectively, and the two mul-
tiplication products are again added in order to form the total DNN approximation
function. Instead of performing the two multiplications as a post-process procedure,
it was decided to add one more layer after the Basis layer of each branch, with fixed,
non-trainable weights. The weights of the By,,.’s output layer are assigned with the
values of the target, while the weights of the By,.4’s output layer are assigned with
the values of the derivatives. In addition, it can be decided whether an activation
function will be used on these output layers. The proposed architecture is shown in
Fig. . In summary, the Bjy,e, Bgraa branches consist of the following layers:
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e Input Layer: Both branches have an input layer with the dimension of the
model’s inputs.

e Hidden Layers: By, and By,.q have a user-defined number of hidden layers
that is not necessarily equal for the two branches.

e Basis Layer: The Basis layer follows the hidden layers. The number of nodes
is set equal to the number of samples (Ny) so as to output the [Ny x Ns] tensor
when computed at all samples included in the DBpyy. The resulting kernels,
to referred as filters, replace the tensors containing the values of the analytical
Hermite basis polynomials H;(x) and H;(z), respectively, of Eq. ??.

e Output Layer: The output layer of By,,. has the dimensionality of the
targets. Herein, one target is considered. The samples’ target values (y;) are
set as the weights of the output layer and remain fixed during the training
process. The output layer of B¢ has the dimensionality of the input. In
case of one variable, the samples’ derivatives values (y;) are set as the output
layer’s weights that, similarly, remain fixed during training. The outcomes of
the Byne and Bg,qq output layers are added in order to form the total DNN
interpolation function g(z).
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Figure 7.7: Implementation II: Demonstration of the proposed DNN architecture for
one input and one target. The model’s input (x) sequentally passes through the in-
put layer (red), hidden layers (black) and Basis layer (blue) of the Bfyne and Bgrad
branches, respectively. A final output layer (green) follows, where the use of an ac-
tivation function is also possible. The outcomes of the two output layers are added,
forming the total DNN interpolation function g(z).

After configuring the structure of the surrogate model, the next step is to enforce the
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Hermite interpolation’s conditions. One variation would be to train the proposed
DNN such that the outputs of the two Basis layers equal the identity and zero
matrix, respectively. In that case, however, no information about the target would
pass on the model’s parameters. Herein, it was decided to apply the conditions on
the total approximation function, by using a Sobolev-type loss function,

Ns Ns
LOSShermite - LOSSfunc + Lossg’r’ad = Z Lz;(gm yz) + Z LZ(DJJQM nyz) (712)
=1 =1

The DNN is trained such that the output approximation function g (even though it
consists of two different function-weighted and gradient-weighted terms) to match
the target function and, after differentiated, to match the target derivative. Since
no restrictions are applied to the output matrices of the Basis layers during training,
they will not necessarily be equal to the identity and zero matrices, as in standard
Hermite interpolation. Herein, the contribution of each branch will be determined
during training. The advantage of this method is that it can easily be extended to
higher dimensions. For example, in the case of n (input) variables and one target,
the implementation would only require to set the number of neurons on the output
layer of Bgyrqq branch equal to n, so as to compute the n partial derivatives of the
target w.r.t. each input. Again, a Sobolev-type function, that would consist of one
function loss term and n constituent gradient loss terms, can be used.

7.3.3 Demonstrarion of the Hermite Method on the Ap-

proximation of Uni-Variate and Bi-Variate Functions

The proposed Hermite method is demonstrated in the uni-variate function

Fi(z) = sin(3x) + cos(x?), x € [—0.8,0.8] (7.13)

To train the Hermite-structured DNN, 20 samples of x are generated using the LHS
method. The configuration of each branch in the surrogate model resulted from a
trial-and-error procedure. The By, branch consists of 4 hidden layers with 32-64-
32-32 neurons each and the By,,q branch consists of 5 hidden layers with 32-64-64-
32-32 neurons. In both branches the GELU activation is selected for the hidden
layers and it is decided to activate the output layers with the Linear activation. The
training patterns are normalized in the range of [0, 1], as in the Sobolev case, and
the cross-validation technique is again used to validate the model during training.
The MSE loss is used as the loss function for all constituents of the Losspermite and
Adam as the optimizer with a learning rate of 0.001. The predicted values of F; from
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the trained model as well as the contribution functions of each branch are shown in

Fig. [7.8]
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Figure 7.8: Implementation II : (Left) The computed values of Fy at the 20 samples
(black) are compared with the predicted values of the surrogate model (blue), resulting
from the combination of the Bun. contribution function (red) and the Bgpqq contri-
bution function (green). (Right) The derivative of Fy computed at the samples values
(black) are compared with the derivative values resulting from the differentiation of the
DNN5s approzimation function (blue). The computed DNN derivative results from the
combination of the Bpyn.’s differentiation (red) and the Byyqq’s differentiation.

In comparison with the standard Hermite interpolation, herein the two DNN branches
contribute equally and complementary to each other, resulting in two different con-
stituent functions that are combined in order to form the total approximation func-
tion. To better visualize the contribution of each branch, the filters of the standard
and the surrogate interpolation method are compared in Fig. [7.9; The standard
H; and Fj filters are point-cloud representations of the identity and zero matrix
respectively, as expected. For each sample there is a unique contribution, that is
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due to the H; filter only. At the DNN implementation, two types of contributions
are observed. First, both the Hj, Hj filters contribute to the total interpolation.
Second, there is no longer a disunion between the samples, but the total outcome
results from the linear combination of all samples. The value computed at each
sample is influenced by a different set of samples values each time, resulting in a
'’blended’ point-cloud distribution. For comparison, the gradients of the standard
and surrogate filters that contribute when computing the gradient of the total inter-
polation, are presented in Fig. Again, the different contribution patterns can
be observed between the two implementations, in addition to a scale difference that
is due to the use of activation functions in the case of the DNN implementation.
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Figure 7.9: Implementation II : Comparison of the H; (Top) and H; (Bottom) filters
of the standard Hermite interpolation (Left) and the DNN variant (Right).
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Figure 7.10: Implementation II : Comparison of the HJI (Top) and F; (Bottom)
filters of the standard Hermite interpolation (Left) and the DNN wvariant (Right).

The Hermite interpolation function is unique, meaning that there is only one possible
function that can exactly interpolate a given set of data points and their associated
derivatives using the Hermite interpolation method. Herein, the total DNN approx-
imation function highly depends on the model’s architecture and mainly, on the
used activation functions. To exploit the possible outcomes of the surrogate model,
a parametric study is conducted on the previous example, focusing on the activa-
tions used on the two output layers of the model; The DNN is re-trained with a
different combination of the GELU, tanh, sigmoid and Linear activations on its out-
put layers, and, the case in which no activations are used is also considered. Each
training always results in one of the three patterns shown in Fig. [7.11} The two
branches can either contribute complementary to each other and have an equivalent
influence on the total interpolation, or, the total approximation function can be,
almost exclusively, learned by one of the two branches and then the other branch
undertakes the role of "filling the gap” whenever it is needed.

76



2.0 ®
o Qe 3 0®.°.8 ¢
® °® o® ® * '
15 L o ® 4
° 2
L 2 °®
L]
1.0 * e o * 8
oo
° %
o ® L]
F1 0.5 Fi o ® 090 e
‘?: ° oo oo ° ‘o o
® © [ ]
. Qo .o # ° bt * o ¢
0.0 SRR 2 ® ® -1 ¢ e (]
* °
° *
@ P ° o
-0.5 h - -2 ° i ini e
4@ Function Training Samples @ Gradient Training Samples
L ® DNN Interpolation ° ® @® DNN Interpolation's Gradient
-1.0 ° e ® Bpunc Contribution _3 ° ® By, Contribution
' ) ®  Bgrag Contribution ® B,y Contribution
-08 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8 -08 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8
Variable x Values Variable x Values
2.0 ¢ Function Training Samples 3 L 3 @
@ DNN Interpolation * * L 4 A4 @
@® Brunc Contribution ® * P
- > S
1.5- @ Bgrag Contribution & 2
* o %, 1 * *
1.0 ®
* €
F e 00 o e ll:.l.'. e e o @ Filol ooe @ P P S - .o
05 e N
* ° C
. ¢ ’ e ®
M L
0.0 ®e o ®» . °
° —24 4 Gradient Training Samples
° ® DNN Interpolation's Gradient
-0.5 ™ ® Bj,, Contribution
®e o ~31 @ B, Contribution
-08 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8 -0.8 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8
Variable x Values Variable x Values
4 Function Training Samples o® [ ™Y s o o
20 @ DNN Interpolation o N ® ) ®
‘Y1 @ Bpnc Contribution & @ 3 L 4 3
@ Bgg Contribution ® ¢ ¢ PY * *
€ @
o * > 2 * * !
15 *
* o 1 .4 b4
° '.
Fi1.0 Fi
° o 00 o
* ° L
(IR 4 0 ® ®
L J D
°® 1 ® %
051 @ o -1 2 ® ®
° “’ °® o o°
o 4
L 4 5 Gradient Training Samples
® *® 2
0.0 ®. & b4 ® ® DNN Interpolation's Gradient
®. o 6 ® Bj,, Contribution
oo0 ° 0 000 ° = -3 @ B, Contribution
-08 -06 -04 -02 0.0 0.2 0.4 0.6 0.8 -0.8 -06 -04 -0.2 0.0 0.2 0.4 0.6 0.8

Variable x Values Variable x Values

Figure 7.11: Implementation II : The representations of Fig. are re-constructed
in the case the tanh or sigmoid (top), the GELU (middle) and Linear or None (Bot-
tom) activations are used on the two output layers of the surrogate model.

The proposed method is extended to the bi-variate function of Chapter 3. The
predicted values of F' and its two partial derivatives computed from the trained
model as well as the contribution functions of each branch are shown in Fig. [7.12]
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The function is learned mainly by the By, branch and the two constituents of By, .4
correct the curvature and position of the By, ’s output. Deviations are observed in

the predicted surface near the boundaries of the X-Y domain, that lead to inaccurate
derivatives near that region.
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Figure 7.12: Implementation Il : (Top) The target function F' (red) is compared with
the predicted function (blue) of the surrogate model (left). The predicted surface results
from the combination of the Bpyn. contribution (purple) and the two contributions of
the Bgrqq branch, that refer to the partial derivative of F w.r.t. X (orange) and
Y (green) respectively (right). The same representations are depicted for the partial
derivative of F' w.r.t. X (Middle) and w.r.t. Y (Bottom).
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7.3.4 Demonstration of the Hermite Method on Problem
111

In Problem III, two separate DNN models are trained according to the Hermite
method in order to predict the S8052 airfoil’s Cp, C'p coefficients respectively. The
total loss function consists again of NV, = 16, in total, gradient loss constituents that
are summed up and added to the function loss constituent, as expressed in

Ns Nb
LOSSh@rmite = Z Ll}(gza yz> + Z Lz;(Dngza Dny7,> (714)
i=1 j=1

The DBpny of the 25 airfoil geometries is used to train the DNNs where 20% of the
sampled airfoils is used to cross-validate the models with the pattern of 7 iterations of
200 epochs each. Two new optimizations were carried out using the EASY software
in order to configure the optimal architecture of the two models. The objective
of the optimization was to minimize the LosSSpermite On the first cross-validation
iteration. The rest of the models hyperparameters remained fixed during training.
The MSE is used as the loss function for all constituents and Adam as the optimizer
with a learning rate of 0.001. The normalized values of the C},Cp coefficients and
their sensitivity derivatives are computed within the [0, 1] range for all samples in
the DBpnn thus, no ancilary weights are applied on the individual loss terms. The
optimized architectures are presented in Table

DN N¢, | Neurons per Hidden Layer Activations

B unc 2048 - 4096 -128 - 25 GELU - tanh
Bgrad 64 - 32 - 4096 - 64 - 32 - 2048 - 128 - 64 - 25 GELU - tanh
DN Nc¢,, | Neurons per Hidden Layer Activations

B func 4096 - 4096 - 1024 - 32 - 32 - 2048 - 32 - 32 - 25 | GELU - GELU
Bgrad 1024 - 128 - 128 - 32 - 512 - 25 GELU - ReLlU

Table 7.2: Implementation II : Optimal Configurations of the surrogate models.

The loss convergence of the two models, again to be referred as DN N¢, and DN N¢,,
respectively, is presented in Fig. Instead of showing the total loss, it is decided
to plot the function and gradient terms separately in order to isolate the convergence
of each constituent. The function term in this case refers to the coefficients loss and
the gradient term to the sensitivities loss. Once trained, the models are called to
predict the Cf, and Cp coefficients of each sample in the DBpyy and its predictions
are depicted on the C-Cp space, normalized with the baseline geometry’s values
respectively (Fig. . The percentage MAE metric value of each sample’s C, Cp
prediction is computed and presented in Fig. [7.15. A mean MAE value of around
~ 0.3% is achieved for the C}, predictions and a value of around ~ 0.085% for the Cp
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predictions. The SDs of both C'f, and C'p w.r.t. the models inputs are computed for
the baseline geometry after the differentiation of the two models and are compared
with the sensitivities of the standard-trained DNNs, the Sobolev-trained DNNs and
their reference FDs and ajoint values in Fig. The computed C, SDs satisfactory
match the reference SDs, while deviations are observed on the Cp SDs at specific

design variables.
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Figure 7.13: Implementation II : The convergence of the training (blue) and vali-
dation (green) function loss terms and the convergence of the training (orange) and
validation (red) gradient loss terms during the trainng of the DN N¢, (Left) and the
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Figure 7.14: Implementation II : The CFD-evaluated values (yellow) of Cr,Cp for
each sampled geometry in the DBpny are represented on the Cp, — Cp space and are
compared with the predicted values (purple) of the two DNN models. The target and
predicted coefficients are normalized with the baseline values Crp,Cpy -
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Figure 7.15: Implementation II : The computed percentage MAFE metric for the Cp,
(Left) and Cp (Right) predictions of each sample in the DBpnn.
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Figure 7.16: Implementation II : The SDs of C1, (Top) and Cp (Bottom) w.r.t. the
design variables for the baseline geometry computed with FDs (black), adjoint (red),
the standard-trained DNN (blue), the Sobolev-trained DNN (green) and the Hermite-
trained DNN (purple).
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7.4 S8052 Airfoil’s Shape Optimization using the
Sobolev-trained and Hermite-trained DNNs

The Sobolev-trained and Hermite-trained DNNs are used to drive the S8052 airfoil’s
shape optimization with the same objective function as in Chapter 6. Two separate
DNN-driven descents are carried out driven by the two models. In this case, the
cost to form the DBpny is 50 TUs; 25 TUs required for the evaluation of each
sampled airfoil on the CFD tool and 25 more TUs for the computation of the SDs of
each geometry using the adjoint solver. At both optimization runs, just one DNN -
driven descent followed by one CFD re-evaluation is sufficient to reach the optimal
solution, resulting in 51 TUs turnaround time. In Fig.[7.17] the two optimization are

compared with the optimization of the standard-trained DNN and the adjoint-based
optimization.

I DBpnn (Sobolev & Hermite)
1.0 %< 7
[ DBpnN (Standard)
- = =
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I 3 3
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5 B g g ]
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Figure 7.17: Problem III: (Top) Convergence history of the optimization runs based
on the adjoint method (red) and the differentiated DNNs (black). The CFD re-
evaluated solutions of the standard-trained (blue), the Sobolev-trained (green) and
the Hermite-trained (purple) DNN-driven descents are shown in filled circle points.

(Bottom) Close-up view of the previous curve at the area of the solutions for better
comparison.
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All DNN-driven optimizations achieve a better solution than the adjoint-based opti-
mization, however, the turnaround time of the Sobolev and Hermite runs is slightly
higher, due to the increased cost of constructing the DBpny. For comparison, in Fig.
[6.9] the Cy, and Cp values of all the DNN-driven and the adjoint-based optimization
solutions are placed on the C', — C'p space along with the DBpyy samples used to
train the DNN models in each case. The three DNN solutions reduce the Cp value
at the optimized geometry (5% reduction with the Sobolev variant and 4% with the
Hermite) and result in a small deviation from the Cf jqrger (0.1% with the Sobolev
variant and 0.2% with the Hermite). On the contrary, the solution of the adjoint
based optimization matches the Cf, 14rger for a higher Cp value.
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Figure 7.18: Problem III: (Left) Representation of the 40 DBpnn samples (green)
used to train the standard DNN, the adjoint-based optimization’s solution (red) and
the standard-trained DNN-driven optimization’s solution (blue) on the Cr, — Cp space
(top). Close - up view on the two solutions (Bottom). (Right) Representation of the
25 DBpnn samples (yellow) used to train the Sobolev and Hermite DNNs, the adjoint-
based optimization’s solution (red) and the Sobolev-trained (green) and Hermite-trained
(purple) DNN-driven optimization’s solutions on the C, — Cp space (top). Close - up
view on the three solutions (Bottom).
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7.5 Comparison of the Adjoint-Based and the DNIN-
Driven Optimization Runs

The optimized airfoil shapes that resulted from the four optimization runs are com-
pared with the baseline geometry in Fig. [7.19, The pressure coefficient (Cp) and
friction coefficient (C'y) of each optimized geometry are presented in Figs. and
77, respectively. For comparison, the Cp and C} coefficients of the baseline geome-
try are shown in Fig. [7.2I] The Mach number field around the optimized airfoils is
depicted in Fig. and the turbulent viscocity field in Fig. [7.25

Adjoint Standard
< - R
.
Baseline
Soholev Hermite
e —ee Y —_—
g ) - — \_____________,—f’

Figure 7.19: Problem III: The optimized geometries resulting from the adjoint-based
(red), the standard-trained (blue), the Sobolev-trained (green) and the Hermite-trained
(purple) DNN-driven optimizations are compared with the baseline geometry (black).
The objective of the optimization was to reduce the airfoil’s Cp, while not decreasing
its Cr, under the 10% of the Cpp value.

The four optimizations result in four different airfoils. The optimized geometries
of the adjoint-based and standard-trained DNN - driven optimizations are similar;
the airfoil’s curvature on both the suction and pressure side is properly modifyed
so as to match the Cp t4rger and decrease the Cp coefficient. At the optimized
airfoil of the Sobolev-trained DNN optimization a flatter suction side is observed
in compare to the baseline geometry, in addition to the formation of a cavity on
the pressure side. As verifyed in Fig.[7.22] this cavity contributes to the overall lift
production, as it increases the pressure difference between the pressure and suction
side of the airfoil. The cavity’s shape is formed such that the resulting C'y to match
the target coefficient’s value. On the other hand, the flatter suction side surface
decreases the airfoil’s C'p, as it allows the flow to remain attached over a longer
part of the airfoil. In a flat, or nearly flat, upper surface the turbulent boundary
layer remains relatively thin and well-behaved over a larger portion of the airfoil’s
upper surface and consequently, the turbulent boundary layer experiences lower skin
friction drag. This behavior can be verifyed from the decrease of the C coefficient
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of the optimized airfoil in Fig. [7.23] Similarly to the Sobolev case’s solution, a
cavity is formed on the pressure side near the trailing edge of the Hermite case’s
optimized airfoil, contributing to the increase of Cf, such as to match the Cr sarget-
The surface of the suction side is almost flat until the point where a curved slope is
formed, due to the creation of cavity on the pressure side of the airfoil. This slope
locally increases the C'p as shown in Fig. which is later decreased due to the

re-flattening of the suction side’s surface until the trailing edge.
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Figure 7.20: Problem III: The (Cr, — CL target)/CrLp and Cp/Cpy values of the op-
timized geometries resulting from the adjoint-based (red), the standard-trained (blue),
the Sobolev-trained (green) and the Hermite-trained (purple) DNN-driven optimiza-
tions are compared with the baseline values (black).
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Figure 7.21: Problem III: (Left) The Cp distribution over the suction and pressure
side of the airfoil for the baseline geometry. (Right) The Cy distribution over the
suction and pressure side of the airfoil for the baseline geometry.
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Figure 7.22: Problem III: (Top) The Cp distribution over the suction and pressure
side of the optimized airfoils resulting from the adjoint-based (red) and the standard-
trained DNN (blue) optimizations is presented. (Bottom) The Cp distribution over the
suction and pressure side of the optimized airfoils resulting from the Sobolev -trained
DNN (green) and the Hermite-trained DNN (purple) optimizations is shown.
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Figure 7.23: Problem III: (Top) The C; distribution over the suction and pressure
side of the optimized airfoils resulting from the adjoint-based (red) and the standard-
trained DNN (blue) optimizations is presented. (Bottom) The Cy distribution over the
suction and pressure side of the optimized airfoils resulting from the Sobolev -trained
DNN (green) and the Hermite-trained DNN (purple) optimizations is shown.
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Figure 7.24: Problem III: (Top) Mach Number field of the optimized airfoils re-
sulting from the adjoint-based (red) and the standard-trained (blue) DNN-driven op-
timizations. (Bottom) Mach Number field of the optimized airfoils resulting from the
Sobolev -trained (green) and the Hermite-trained (purple) DNN-driven optimizations.
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Figure 7.25: Problem III: (Top) Turbulent viscocity field of the optimized airfoils
resulting from the adjoint-based (red) and the standard-trained (blue) DNN-driven op-
timizations. (Bottom) Turbulent viscocity field of the optimized airfoils resulting from

the Sobolev -trained (green) and the Hermite-trained (purple) DNN-driven optimiza-
tions.
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Chapter 8

Conclusion

8.1 Overview

In this Diploma Thesis, the implementation of differentiated DNNs, within a gradient-
based optimization method in Computational Fluid Dynamics, for predicting the
objective function values and their gradients w.r.t the design variables, was demon-
strated and assessed. In the newly developed method, DNNs, after being trained
on a set of patterns for which the objective function values are available, were used
to replace both the code simulating the fluid flow and its adjoint solver computing
gradients in CFD problems. To form the training dataset, the baseline geometries
were parameterized using NURBS lattices, and the samples were generated using
the LHS technique. The size of the database was selected according to the number
of the design variables involved in each case, as well as the complexity of the used
flow model. Prior to successfully and efficiently supporting the optimization loop,
the DNNs’ gradients were verified against finite differences and the adjoint method.
The proposed DNN-driven shape optimization method was used to optimize the
shapes of two isolated airfoils (in inviscid and turbulent flow conditions), as well as
a curved duct (with laminar flow conditions). Both the efficiency and efficacy of the
programmed software were compared with an adjoint-based optimization.

For the first isolated airfoil case (NACA0012), the objective was to re-design the
airfoil’s shape, so as to match a target Cf, (CL target = 0.6 - 1072). The flow around
the airfoil was inviscid, with a free-stream Mach Number of 0.5 and flow angle of
2°. A database of 20 airfoil geometries was generated in order to train the DNN.
Its configuration resulted from a trial-and-error procedure on its hyperparameters,
and a parametric study regarding the accuracy in both its predicitons and gradient
was conducted, focusing mainly on the used activation functions. The proposed
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optimization, driven by the trained DNN, resulted in a slightly better solution when
compared with the adjoint-based optimization, at 31% less computational cost.

For the S-Bend case, the objective was to miminize the total pressure losses be-
tween the inlet and outlet. The flow inside the duct was laminar with Reynolds
number R, = 1.84-10% A database of 50 training patterns was generated for train-
ing the DNN and its configuration resulted from a trial-and-error procedure on its
hyperparameters, the criterion being its accuracy (on both the predictions and the
gradient). In this case, the training samples were normalized in the range of (0,1)
using a minimun value which was by 10% lower than the minimum encoutered in
the samples, due to the use of the sigmoid activation function on the output layer
of the model. In addition, the ’cross-validation’ technique was first introduced, that
due to its efficacy, was later used in the other isolated airfoil case, too. The pro-
posed optimization resulted in the same reduction in the objective function’s value
as with the adjoint method (4.6%), at the same computational cost. In addition, a
new capability of the proposed algorithm was demonstrated, by performing multiple
DNN-driven descents simultaneously, starting from different initialization points.

For the second airfoil case (S8052), the objective was to minimize the C'p, while not
decreasing its C, below 10% of that of the baseline geometry. The flow around the
airfoil was turbulent, with Reynolds number R, = 5-10°, a free steam Mach Number
of 0.5 and a flow angle of 10°. A database of 40 airfoils was generated. Herein, two
separate DNNs were trained to predict the airfoil’s C', and Cp, respectively, and
their configurations were optimized using EASY. The two models were used to drive
the airfoil’s optimization, that resulted in a better solution than the adjoint-based
optimization at 20% less computational cost. The optimized geometry using the
proposed method had a by 4% lower Cp value (while matching the target Cp, with
a 0.1% deviation), in comparison with the adjoint’s solution that had by 3% lower
Cp value (while matching the target C, with a 0.01% deviation). In addition, a
parametric study regarding the size of the database used to train the models was
conducted, in order to study the models” accuracy, in terms of both its response and
the gradient of the response.

Next, the use of DNNs that were trained in both the objective function values and its
gradient in the proposed optimization was studied. The gradient-assisted training of
DNNs was implemented in two variants, the so-named Sobolev and Hermite variants.
Both variants of the proposed algorithm were demontrated in the shape optimiza-
tion of the second isolated airfoil, with the same geometry parameterization, flow
conditions and the same objective function. A database of 25 airfoils was generated,
including both the objective function’s values and its gradients, computed using the
adjoint method. Again two separate DNNs were used for predicting the airfoil’s C',
and Cp, respectively, and both models’ configurations were optimized using EASY.
The computed gradients of DNNs were verified against finite differences and the ad-
joint method. The proposed optimization when using the gradient-assisted trained

92



DNNs resulted in a better solution than the adjoint-based optimization. The com-
putational cost was the same as the adjoint, and, slightly higher than the cost of the
standard DNN-driven method. Specifically, the Sobolev variant’s solution had a 5%
lower C'p value (while matching the target lift coefficient with a 0.01% deviation),
and the Hermite variant’s solution had a 4% lower Cp value (while matching the
target lift coefficient with a 0.02% deviation).

8.2 Conclusions

By completing the code development and various studies in this Diploma Thesis,
the following conclusions are drawn:

e DNN Architecture and Activation Functions: The configuration of the
DNNs and, in particular, the activation functions play a key role in both
the accuracy of the DNN predictions and computed gradients, as well as the
efficacy of the proposed optimization algorithm. First, the gradients that
result from the DNNs’ differentiation highly depend on the continuity and
the saturation behavior of the activation functions. After parametric studies
conducted in this Diploma Thesis, it was concluded that the use of the GELU
activation (exclusively, in all the DNNs’ layers, or, only in their hidden layers
and then combined with the proper activation function on the output layer)
leads to the computation of more accurate gradients, without sploiling the
accuracy of the predictions. Next, the DNNs’ performance, when used in
optimizations, highly depends on the capability of the activations to output
negative values, in order to decrease the objective function’s value beyond the
minimum one encoutered in the samples. For this reason, the training data
must properly be normalized. A value that is by a percentage lower than the
minimum value in the DBpny could be used, according to the used activations.
It was concluded that the GELU activation function outperforms, again, the
most commonly used activations in the literature.

e Size of the DBpnn: The size of the DBpyy is a trade-off between the DNNs’
accuracy (in both their predictions and gradients) and the total cost of the
optimization. At the demonstrated CFD problems, the DBpny’s size was kept
as small as possible so as not to increase the computational cost. In some
cases, the small size of DBpny lead to deviations in both the computed DNN
gradients from their reference (adjoint) values, and the DNN-driven descents’
outcomes from their re-evaluations on the CFD tool. However, this limitation
was overcomed by performing re-trainings of the DNNs on the new evaluated
‘optimal’ solutions during the optimization. As concluded from the parametric
study regarding the DBpnn'’s size of Chapter 3, the DNNs’ accuracy improves
when the DBpynn's size increases until a specific number of samples. Above
that number, the difference in the DNNs accuracy is not that significant. As
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a result, it is preferable to to keep a small DBpny size for training the DNNs,
even though discrepancies might occur on their predicitons or gradients, and
then improve their accuracy during the optimization process, by performing
CFD re-evaluations of the 'optimal’ solutions and re-trainings (as many as
needed). At all demonstrated CFD problems, this pattern was proven succesful
in keeping the overall cost of the optimization small.

DNN-driven optimization: Overall, it was proven that DNNs can sucess-
fully replace both the flow and adjoint solver in CFD-based optimizations and
therefore decrease their turnaround time. Both the efficacy and efficiency of
the proposed DNN-driven gradient-based optimization method was evidenced,
as it lead to better (with lower objective function value) solutions compared
to the widely-used adjoint method, at either the same computational cost
with the latter, or by a percentage lower than that. In addition, due to its
efficiency, the proposed optimization offers flexible capabilities, such as per-
forming multiple DNN-driven descents simultaneously, starting from different
initialization points. This capability is promising in overcoming the limita-
tions of the gradient-based optimization methods, that highly depend on the
initialization point, or, even exploitate multiple solutions in case of many local
minima. A key advantage of the proposed optimization is that, once the DNNs
are trained, they can be used in optimizations with different objective func-
tions (if the CFD mesh, geometry parameterization and flow conditions remain
the same). In comparison with other methods, including the adjoint, different
optimization runs must be carried out for different objective functions.

Gradient-Assisted Training of DNNs: When the training of DNNs in-
corporates the targets’ derivatives in addition to the target values, it was
concluded that the accuracy of the computed DNN gradients increases, with-
out spoiling the accuracy of the predicitons. However, since the computation
of the gradients in CFD problems is computationaly expensive, the cost of
forming the DBpnn increases and, consequently, the overall cost of the opti-
mization. If an efficient method, such as the adjoint, is used to compute the
gradient of the DBpny samples, as in the demonstrated cases of this Diploma
Thesis, the proposed optimization can lead to even better solutions, at the
same computational cost with the adjoint method, or slightly higher cost than
the DNN-driven optimization when using DNNs that are trained without gra-
dient information. As a result, if an adjoint solver is available, it would be
preferable to perform the proposed optimization with DNNs that are trained
on both the targets’ values and derivatives, still, with a small DBpyy size.
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8.3 Future Work Proposals

Based on the implementation of DNNs in gradient-based optimization in CFD, the
following future works are proposed:

e First, alternative techniques for implementing the DNNs’ gradients in the
training process could be studied. Apart from new implementation ideas,
the capability of computing high order derivatives of DNNs would be an inter-
esting topic of research, in order to extend the proposed optimization method
to other fields, such as robust optimization or to allow the use of a Newton
method into the optimization loop.

e Next, the efficacy and capabilities of the proposed DNN-driven optimization
could be studied in cases where irregularities occur in the objective function
gradients, such as in high-speed aerodynamics (creation of shock waves and
boundary layers) or in geometries with discontinuities, as well as in cases
where computing the gradients has high memory requirements and/or calls
for computational resources, as in unsteady CFD problems.

e Finally, the proposed optimization method could be extended to Multi-Objective
Optimization (MOO) problems in CFD. A common objective function could
be used, containing as many terms as the number of the optimization’s objec-
tives, where each term is multiplied with the appropriate weight. Next, DNNs
could be trained to predict each term of the objective function (a common
model could be used for all terms, however this increases the possibility of
spoiling the models’ accuracy in both their predictions and gradients). Due
to the negligible cost of the gradient-based DNN-driven descent, many opti-
mization runs could be carried out, where in each run, the weights of each
term of the objective function change (according to the designer), in order to
prioritize different objectives at each optimization run. The collection of all
the DNN-driven descents’ solutions, after evaluated on the CFD code, could
form a ” Paretto Front” and therefore replace the costly evolutionary algorithm
softwares that are commonly used for MOO problems in CFD.
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Ewcaywyy

Y1oyoc e Aimhwpatinic authc Epyoaotog, etvar 1) vhomoinon tng dlapodplong twv Bo-
Midv Nevpwvixdv Awxtiov (BNA), xa n npdtaon yehone touc oe uio outtoxpatixn
uévodo Behtiotomoinong oto mEdlo TNG PNYAVIXAC PEUCTMY, TOCO Yo TNV TEOBAe(N
TV TYWOV NG OLVEETNONG-0TOY0L, OGO XuL TWV TUPAYOYwWY evucinoioc. H mpo-
Tevouevn pédodog mapouctdletal Ye 500 TapUAAXYES GO0 APOEd TNV EXTAUOEUCT) TCV
BNA, n mpdTn ¥enoyomoiovTog dixTud eEXTUOEVOUEVI UOVO OTIC TYES TNG EXACTOTE
CUVIETNOTC-CTOYOU %Ok 1) OEUTEQT] YENOHLOTOLOVTAS DIXTUN EXTIUDEVOUEV GTIC TWIES
NS CUVAPETNONC-OTOYOL Yo TV Topay®ywy evatcdnotac. H tedeutaio mopokhoryt| mo-
pouotdleton pe 6o vhomotfoel, Bactlopeveg oty pédodo exnaideuong BNA Sobolev
xou oty napeufolrr) Hermite, avtiotorya. H mpotewvduevn pédodog odnyolduevn amd ta
BNA egapuéotnyxe yio tn BEATIOTOTONGT) TOLU GYHUATOS BUO UEUOVOUEVLY UEQOTOUMDY
(pe aTpiBh) xou TuEBWOT PoY| avtioTorya), xowe xat evog aywyol S-bend (ue oTpomTH
por’]). H amodotixdtnta %ot T0 UTOAOYLOTIXG XOOTOC TNG TREOTEWOUEVNS UeD6d0L ou-
yxeldnxay ye ) Bektiotonoinon pe tn culuyr pédodo.

Teyxvnty Nonuooivr xow Badid Nevpwvixd Aixtua

To teleutada ypoévia, 1 tpéodoc otnv Teyvnth Nonuootvn (TN) xon tn Mnyovixn
Méidnon (MM) Aoy porySodor %o HETUUORPWTIXH, UE ORO X0t TEPLOTOTER LovTEND MM
v Bploxouy eqopuoyt oe Topelc Tng xadnuepvoTnTag, Ye Wwialtepn éugoaon ota BNA.
To BAN [I] efvor unoloytotind povtéla eumvevopéva ond t doun xat tn Aettoupyia
ToL avlp®TvVou eyxe@dlou. AmoTtehobvtal amd SLcUVOEDEUEVOUC xOUfous, YVWGToUg
(¢ VEUPWVES, OLITETAYUEVOUS OF ETINEDO El6OB0L, xELUPd entineda xat eninedo e£600L.
To mo adloonuelwto yopuxtneloTixd Toug ebvar To Bddoc Toug, xadoe Ymopoly va
otodéTouy moAudELIUN XEUPE ETUMEDN, EMITEENOVTAS TOUG VO XUTOVOHGOUY LEQUPYLXS
YAPOXTNELO TIXG X0l AVATHPAC TAOELS TwV dedouévwy. Ot vevphveg enelepydlovTon Oe-
BOUEVAL ELGOBOL Y ENOULOTIOIOVTAS O TadUIOUEVES GUVBECELS (Bdiem) Xou e@apudlovy Gu-
VopTAOELS evepyoToinong, SnuoveY®VTaS Uiot €£000 TOU OTr GUVEYELN, METABIBETOL GTO
enduevo otpwua. Kotd tn didpxeio tne exmoudeutinrc dwdixacioc, ta BNA npocap-
uolouv ta Bden Yo Vo EAAYIC TOTOWGOLY TNV amoXAoY PeTalld Twv TeoBhédenv Toug
XL TWV TEAUYUATIXOV THOYV-CTOY WY, YENOHOTOIOVTS 0AYopriuoug BeATioTonoinorg.
Méow tng emavoinmtinic Bertinong twy Papnv oe ToAaThég enoyég exmaldeuong, To
BNA podaivouv mepimhoxa potifo xou oyéoelg uéoa ota dedouéva, emitpénovioug €Tt
axpBelc mpoPAédeic oe véa, dyvmoTa oe autd, dedouéva. H evowudtonon twv BNA oe
Tpocouolwoelc TrohoyioTxhc Peuctoduvapinrc (TPA) eivon LOLodTEQOL OLUDEDOUEVT),
AOY® TNG IXAVOTNTAS TOUg Va yeloilovTal HEYFAOUS GYX0UG BEBOUEVWLY UE YAUUNAG UTO-
Aoytotixd x6ctog xan mépoue [2 B]. Agol exnardeutoly, unopolv va emiToyUvouy )
OLadLxaolar TEOCOUOIWONS AVTIXIG TWVTIS YEPOC, 1) 0AOXANEO, To epyaieio TPA.

H Yuluyrc Médodog Behtiotonoinong

H ouluyhc pédodoc [] yenoylomoteiton yior ToV UTONOYIOUS TV TOEoy Yy euotodn-
olag ULag cuVEETNONC-0TOYOU WS TEOS TIG PETOPANTES oyedlaouol. Xpnotdomoteitol
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gupéne oty TPA vyl v unootiplen autioxpatixdy alyopliuwy, xodoe €yet To yo-
UNAGTEQRO XOOTOC UTOAOYLOUOU THEAY (YWY GUVURTHOEWY GE TEOBAAUATO TOU BLETOVTOL
amb UEPWES Blapopixéc eCloMOELC. e auThAv TNV gpyacia yenoulomotinxe 1 ouve-
g ouluyrc pédodoc. Kdlde xixhog Bertiotonoinong mepihopfdver tnv apriuntixn
enilvon Ty edlonoewy Navier-Stokes, twv culuy®V €lOMOOEWMY XL TOV UTOAOYLOHO
TWY TOEUYWY®Y EVaoYNolag TOU YENCHLOTOLUYTOL Yo TNV AVUVEMOY TOU BlavOoHo-
T0¢ PETUBANTOY oyediacuol. Ot avavehaoelg utohoyilovton pe T uédodo TN andtoung
%680V 1o 0 aEtiuoS TV (OUXAWY BedTioTonolnong oplleton and xpLtrhpta GUYXAL-
one 1 xéotouc. Ou e€iowoeic Navier-Stokes emhbovtan pe tov emAvtn PUMA, [5,
TOU gpYUcTNEIOL YLol TNV TUEUAAXYY| TNG CUUTIEGTAC POTG, XUl TOCO OL POIXEC OGO
xou ouluyeic elOMOELS BLOXELTOTOLVUVTAL OE UN) Bopnpéva/ UPpdwd TAEYpaTa, YeNot-
HOTIOLOVTAS TNV TEYVIXT] TwV TEMERAUOUEVGLY OYxwY. Ol e€lotOOEIC GUVEXTIXTC POTIC Yid
CUUTIEG T PEUGTA YEAPOVTOL OTT) ORGP

_Ofm O
N a’Ek 8xk n

67OV ,i"“:[pvk PURUL+PO1k  pURV2+DO2,  pURUs+POs  pURhy]” elvon ou atpifeic xou
3 T ’ 7 Ja ’
25 =10 Tip Tor Tak VeTer + Qi) €lvon ol cuvexTixéc POEC. p, p, Uk xou hy elvan
oL 6pol TuxvoTNnTog, TEong, ToydTNTag, ohxrc eviaimiog xou Sy, elvor to oUuPo-
Ao Ttou Kronecker avtiotowya. O mivoxoag cuvextixwy tdoewv dlvetal ond Tiy, =

R, 0 (1)

]T

OTm Oz Oz
Yepudtnrac. ‘Ohot or utoloylopol yivovta ue axp(Beta debtepne tne. Xtov PUMA
nepthopBdvovton T povtéla tpocouoinone ateBolc (Euler), otpmthc xat tupfidoug
eoTc, EVG 0TV TEAeuTaia TEP(TTWOT), diveTon 1) EMAoYT| TOAUdELIUWY LovTEAWY TORPNC,
omwe To poviého twv Spalart-Allmaras, to Tumxd yoviého k-g xat, o Bacixd xa ot
SST mapahharyéc Tou povtédou k-w.

! <6”’“ + Ot _ gékm 6ve> OTOU p €lVol O GUVTEAECTAG CUVEXTIXOTNTOG XL G 1) PO

ITootewopevog Ahyoprdpog Arttoxpatixric BeAtiotonoinong ue BNA

Evohoxtind, mpotetvetan vor ovtixatac toadodv 1000 0 emAITNG p0HE 0G0 xou Twv GLlu-
YoV e€looewy ue extondeuuéva BNA nou tpofiénouy 160 Ty Tiun tne cuvdptnonc-
0TOY 0L OGO X0l TWV TUEAYOYwWY evaoincioc. To mento BrAua elvor 1 Bnutovpyio Tng
Bdomng dedouévwy ue v omola Vo exmandeutody Too BNA. T tov oxond autd, ot
apY €S YEWUETPlEC TOU XdE TEOPBAAUATOC TUQUUETEOTOLOVVTAL YENOLOTOLOVTIS O-
yxopetpixéc NURBS, [6], (Syhual[l]) e onuelo enéyyou (petafhnrtéc oyedaopod) tou
UTOPOVY VoL UETATOTUG TOVY, E0W, XATA TNV XataxdpueT diebiuvor. H teyvixr| deryuarto-
Andioc Latin Hypercube Sampling,[7], (amoteheopatixn 6tov amouteiton pixpdg aptipodg
Serypdtwv) yenoylonoteiton yior T dnutovpyia Twv Setyudtwy, To onolo 0T cUVEYELL
agoroyolvtar otov PUMA. To péyetoc tng Bdong dedouévmwy emAéyeton avahoyo pe
TOV apLUd TWV PETUBANTOV GYEBIAGUOV XOU TNV TOAUTAOXOTN T TOU EXUC TOTE HOVTEAOU
pofic. Metd tn Bnuiovpyia tne Bdone Bedouévmy, xdde yipog (autdc o 6poc Yenotuo-
moteltan yior var Stoxpbvel autdv tov Bedyo amd Tov Pedyo andtoung xadodou clupenva
ue to Bripa 2 Tou mpotevéuevou olyopiluou) mepthouBdver Tar axdroudo Bruorta:



1. Exnaidevon tou BNA pe to Selypota tng Bdone dedopévemv (o ontola, €66, o-
Srootorronototvtar 6ho oo (0, 1) clupove Ue Tic EAGYLOTES Xot YEYIOTES THIES
TOoUC oTa Ssiypaw). H apyitextovixr) Tou poviéhou mpénel vo emheyVel npooe-
XX, pe Wuitepn éugoon oty EmAOYY WY cUVIPTHoEWY evepyomoinong [§],
ot onofeg emBpoly onuavTXd T6c0 6Ty axpifela (TpoBhéPewy xou mapayhyYwy)
v BNA, 600 xou o1 anodotixdtnta g npotevouevng puedodou. H ulomoinon
npeayuatonon|inxe oto mhaicto tou TensorFlow (v2.6.0),[9], ue Python.

2. Enavoinmui Behtiotonoinon (uéyet tn o0yxhion) epapuélovtog andtopn xédo-
00 YENOWOTOIOVTAS, UTOXAEICTIXG, TIS ToEAYdYOouS Tou utoloyilovtol and
Sopoplon tou BNA, pe avtiotpogn autdpotn dwopdplon, [10]. Xe xdde xdxdo
BehtioTonolnong, ol YETOBANTEC OYEBACUOL BeV EMITEETETAL Vo LEMEQIOOUY Ta
Gve xon x4t 6ptd Toug Tor omolo oploTxay xatd TN Oerypotohndla. Q¢ éva
‘axpaio’ oEVEEL0, TOMMATAES XUTAUYWEYOEC TOU ETAEYOVTAL amd TN Bdon dedo-
HEVGLY UTopoLY va yenowdomointoly wg onueta exxivnong (oszwconoincng) O
VoL eEXTEAEGTOOY TOGES %ddodoL, 6oeg ot 0 apriude Twv onuelny exxivnorng.

3. EnavaZlohdynomn (6Awv 1 uépixddv) twv ‘BeATo ToToinuéVLY’ NIGEWY UE TOV XL
xo. TPA. H yprion elooywyay (‘Pertiotonomuéveny’) xadiotd capéc dtt aut
elvor 1 xahOteEn Abon olugnva ue 1o BNA,

4. Evnuépnon tng Bdong dedouévwy pe OAeC TIC Tpooputa alloAOYNUEVES AIOELL,
edv elvan omapoitnTo, xou enavdhndn 1wy tecodpwy Brudtwy (amd to Prua 1).
To xpitripto Teppatiogol oyetileton ue v axpifea medPfiedne Tou BNA.

Y10 Brpa 1, to BNA Swpoppavovtal dlapopeTtind o xdie mpéinua. Eureoixd, n
yenon evoc uovo BNA oe dha tor mpofBhrjuata 6ev evoeixvuton oty avdiuor otny TPA,
ool Biénovtan and dtapopeTiny| puowc]. Ot apyttextovinéc Twv BNA mooéxudayv eite
e o dtadwcasior doxug-xat-hddoug oyeTind e TNV oxplBela TV HOVTEAWY TOCO GTIC
TEOPAEPELS, GCO XL GTIC TPy WYOUS TOUC, ElTe BEATIOTOTOLAUNXOY YETCILOTOWVTOC
T0 hoytouixd e€ehixtixddv ahyopiduwy, EASY, [II]. Agol oplotel n apyltextovixy
Toug (xou exmoudeutolv), o BNA umopoLV va yenowonotndoly yla BEATIOTOTOOELC
UE OTIOLONTOTE GUVAPTNOTN-GTOYO Tou oplleTon amd TOV GYEDIUCTN (unodétovtac 6L
oL YEwUETElEG xaL cUVDTXES POTIC TORUUEVOLY (Blec), EMOUEVLS TO XOGTOG ebpeong g
apyttextovxnc v BNA 6ev Aaufdvetar unodn,.

. S
— L A S a——
— . .
. s
. . .

YxAuo 1t IAéyua napapetporoinons (UmAe) ka1 onpeia eAéyyov (kékkiva) twy yew-
petpidhy tng NACA0012 (Apiotepd), tov S-bend (Méon) kar tng S8052 (Aekid).

BeAtiwotonoinon pwiag Mepovoupévng Acpotoprc (Ateirg Por)



Yro poPhnua I, n npotewvduevn uédodog yenowwomotfinxe yia tn PeAtio tonoinom tou
oyfuatog tng acpotounc NACA0012, ote To emavaoyedlaouévo oyfuc Vo Toupldlel
ue évay 6Ty 0-Tr| Tou oLUVTEAESTH dveoTc (CLiarger = 0.6 - 1072). H po¥| ylpw ond
v aepotouy eivan atpBnc (Euler) pe yovia a = 22 xou oprdud Mach = 0.5 yioo Ty
en’ dmepo por). T v exnaideuorn tou BNA, Snuoveyfinxe wo Bdorn dedopévev
ue 20 dapopeTinéc yewuetplee. H apyitextovinn Tou yovtéhou npoéxulde amd pia Slo-
Ouxooior SOXIUAC-XAU-CPENINTOC OYETIXG PE TIC (UTER) ToPAUETEOUS TOU, EVE BLeytn
TOEUUETEIXY MEAETN oyeTd pe TNV axpifela 1600 Twv TeoBiédewy Tou dixtlou xou
TWY TUEAY YWY TOV, EGTLALOVTOS XURIKC OTIC YENOWOTOLOUUEVES CUVIRTHOELS EVERYO-
Tolnong (Exr’]poc. Meyoahitepn axpifelor emTUY Y AVETOL PE TN YEHOT TNS CUVAETNOTNS
GELU. H npotewoéuevn Bektiotonoinon odiynoe oe xahldtepn Aoon (Lydua |3) oe
obyxpelon pe auth g ouluyolc uedddou, éyovtag xotd 31% uxpedTERO UTOAOYIOTIXG
x607oc. oty enitevdn Tou otdyoU, yeetdoTnxay 3 enav-extoudevoelc Tou BNA.

1.50 % CFD xx ] 0.04| —

x %] I GELU
L4 DNN xx g EE sigmoid
1.25F X = =3 tanh
: el EE RelLU
N 2 0.02F i W 8
5 1.00F )(x g
S 075} s > ol I]I]
o U o 3 XX = 0.00 [ 8
0.50 f =
g
0.25F mx » —0.02 - ]
1 3 5 7 9 1113 1517 19 1234567 8 910111213141516
Sample ID (Sorted) Design Variables

ExAna 2: IlpdPAnua I: (Apotepd) IpopAépers tov ourtedeotny dvawons twy detypdtwy
(ra&wounuéva) oe avykpion pe tg abiodoynuéves tipés atov kaddika TPA. (Aekid) On
rapdywyor tov BNA dtav éyel exnaidevtel jie DlagopeTiké§ ouvapTioes evepyonoinons,
o€ oUYKpIoN € TIS Tapaywyovs avapopds Twy TETEPATIUEVWY OlAPOPY.

I.M.I.QE"LP-PF. 017 035 052 9.70 | !Mﬂh.!ﬂ.ﬂﬂ 035 .@51_01“] |Ml¢h 000 047 035 052 070

YA 3: IpdPAnua I: (Ildvw) Or BeATioToTONUEVES YEWIETPIES L€ TNY TPOTEWSUEVT)
(umke) kar Tn ovluyry (toptokali) puédodo oe alykpion ue tny apxikn (pavpn). (Kdtw)
Ta media apriduob Mach yia tnv apxikr) yewuetpia (apiotepd), tn BeAtiotonomnuérn e
™ xprion tov BNA (uéon) kar tng ovluvyols uetédouv (6eiid).

Beltiotonoinor evéoc S-bend Aywyol (Etpwth Por)



Yy nepintwon tou aywyol (ITpdBinua II), o otdyoc eivan 1) ehoylotonoinom twv ohi-
XV amWAELOY Teong petadd elobdou xau e€6dou. H pot| uéoa otov aywyod eivon 6TomTh
ue opdud Reynolds R, = 1.84 - 10*. T v exnaddevorn tou BNA Snuovpydnxoy
50 DElyUoTo AYWYWOY oL 1) EYLTEXTOVIXY Tou OTO0U Tpoéxule amd i Sladactio
BONUYLH|G-XAU-CPIAIATOG UE YVOUOVAL TNV oxpBEtal T600 TwV TEOPAEPEDY 600 XaL TeV
TOEAY YWY TOUS Xy AUl . Edw, ta dedopéva exnaidevong adoo tatonotinxay ue
eNytotn T xotd 10% uixpdtepn amd Ty eEAGyLo TN TOL UTOAOYIOG THXE XorTd TNy o&Lo-
AOYNOT TV OELYUTLY, AOYW TNE YPNONS TN OLYUOED0UE GUVERTNOTC EVERYOTOINoNG
oto otpwua €£6dou Tou BNA. H oryuoedrc dev €yel apvntind cOVOAO TYWV (emo-
HEVOS OEV EMITEETEL TNV TEOPBAE(N uxedTepng TS amd TNV EAGYLO TN TOU UTHPYEL OTA
oelypaTa sxmciBeuong) X0 Y oeax TNEILETOL Amd TO PUUVOUEVO TOU XOPECUOU EEAPAVIOT-
¢, xotd To omoio o TapdywyoL TNg cuvdeTnoNg exundevilovton 6Tay 1 Ty TS elvor
%0v1d 670 0 (ETOPEVOC AANOUDVEL TIC TTORAY DY OUS TIOU YENOLIOTO0UVTAL OTY BEATIOTO-
noinon). Emmiéov, edd etodyeton 1 teyvixt| ‘cross-validation” yia tnyv enixlpwon twy
OEDOPEVWY EXTaLdELUOTC, 1) OTola, AOYW TNG ATOBOTIXOTNTAC TG, Vo yenowonotniel xou
ot emoueva tpoPAfuata. H mpotewduevn Bedtiotonolnon odfynoe oty Bl peiowon
e ouvdpTnong-otéyou (Syfua ) pe ™ ouluyr uédodo (4,6%), éyovrac to (Blo uno-
hoyiotixd xootoc. T mhien olyxiion, yeeldotnxay 3 enov-extondeldelc Tou BNA.
Téhoc, ANoyw Tou undevixol x6cToug TNe xoddou mou odnyeitow andé BNA, avode-
bOmxe plor evohhaxtiny| ixavoTnToL TOLU TEOTEWVOUEVOL aAYopidoL: 1 TeayuaToTOMo
TOAMOTAGOY %3680V, TAVTOYEOVA, EEXVOVTIS AT6 BLPORETIXE GTUELN apytxoTolnoNg,
UE TPOOTTES BEATIWONE TOV aUTIOXEATIXWY UeVOOwY BeATioTOTOIMONE TTOL E€UPTWVTOL
onuovTXd amd Tor onpeio exxivnone.

1.08F

e CFD ‘:;7 0.6F iy
+ DNN (Fixed) I |“I
A |
sl
AL |
-0.2 |I |I

0.98 ﬁ 1 —04r ||

0 10 20 30 40 50 -0.6 12345678 91011121314151617181920

Sample ID (Sorted) Design Variables

B Adjoint
Il DNN (Fixed)

1.06 [ B DNN (Shuffled) |

DNN (Shuffled)

1.04 1
F/F)

1.02

1.00

Sensitivity Derivatives

SxAue 4: IlpdpAnua II: (Apotepd) HpofAépers twv atwready ohikris tieons twy dery-
pdtwv (ta&wvounuéva) oe alykpion pe ts abiokoynpérves tués ovov kadika TPA. (Ae-
&ud) Or napdywyor tou BNA oe oUykpion pe ti§ mapaydyovs avagopds tns ouluvyols
petéoou.

Beltiotonoinon wioag Mepovouévng Acpotourc (TupBhdng Poy)

Yy nepintwon auty (ITedBrnua III), otédyoc eivor 1 ehayiotonoinon tou cuvtehe-
ot omo¥éhrovoos Tne apyxhc acpotounc (S8052), ywelc va peiwldel o cuvteheotrc
dvwone xdte and to 10% e apyxic yewpetplac. H poh ylpw and tny acpotoun
elvon TuEPKdNE, pe apwiud Reynolds R, = 5 - 105, oprdud Mach tne en’ dmeo potic
0.021 xou ywvia a = 10°. 310 cuyxexpyévo TpoBinua exmoudebTnxay 800 EEYwWELoTd
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YA 5: IlpdpAnua II: (Apwotepd) Ta media ohikris wieons ya tny apxikn yewpetpia
(ndvw), tn PeAtiotomonuérvn ue tn xprion tov BNA (uéon) ka1 tns ovluyols pedédov
(kdtw). (Ae&id) Or BeAtiotomomnpéves yewuetple§ e tny mpotewduevn (UtA€) kar T
ovluyrj (kékkivn) pédodo, o€ alykpion pe tnr apxikn (uadpn).

BNA vy v mpéfredn twv cuvieheoT®V dvwone xou omovérxoucag, avtioTotya,
oe Bdon dedouévwy 40 agpotoudy. O apyttextoviés Twv dTiwy PeitioTonotiin-
X0V YENOHLOTOLWVTOS To Aoylouxd EASY, ue otdyo tnv oxpifeia twv unoloylopévev
ooy WYwy (Lyhua @ H Bertiotonoinon tng S8052 pe tnv mpotewduevn pédodo
odhynoe oe xahitepn hoon (Eyrua oo exeivn g ovluyolc pedddou, €yovtag
xotd 20% Wixpdtepo uTohoYIoTIXG x60ToC. BB Bev ypeidotnxay enov-exmoudeloels
v BNA. H Beltiotonoimnuévn yewpetpio elye xotd 4% youniétepn T ouviekeo
omo¥EAKOLCUC amd TNV aEYIXY) (eved tadprale TNV T 0TOY0U CUVTEAEGTY| AVWONG
ue omdxhion 0,1%), oe obyxpion pe ) hoon e ouluyoic pedddou mou elye xatd
3% younhdtepn Ty cLVTEAEGTY| oOUEAXOUCAS, OAAG UE XUAUTERY TROGEYYION TOU
otéyou (ue amdxhion 0,01 %). Emmiéov, nporyuatonotiinxe mopauetoixry uehétn oye-
Tixd e to péyedoc tne Bdomng Bedouévmy Tou yenooToleiton yiol TNV EXTOUBEVCT) TOV
BNA, npoxewévou va puehetniel 1 enidpacn otny axpifBeia 1600 1wV TeofAédewy, 600
XOL TWY TopayOYwY. And 1N uehétn €yive gavepd 6TL 1 axpifela twv BNA Behtidve-
Tou 600 10 péyedog g Bdong Sedouévmy auEdvetal PEYEL Vol GUYXEXQWEVO apLiuo
OELYUATWY, EVG Bev Tapatnpee(ton onuoavTxy BeAtivon Tdve ard Tov apriud autd.

: : : CL/Crp Cp/Cp,p
x ] T T T T T T T
1.25F % CFD. 4 15h A mm FDs 2 - D
'X e DNNs 23 : B Adjoint 2 B Adjoint
1.20F o 1 & = DNNG, z I 1 = DNN,
g 1.0 i 1 ¢ 1§
SE¥ R I IR | (FSRNARS T I
Q X ox bed 2 20 fr—!—iréarvr———r—rT.Ierr—
105} et SR N nl ([ [T - | |
x e x x 0.0 e TR TR RS g T8 TR TR T TR AR R RS =
1.00 S £ 2
x XX & 8 -1y i
0.95F o x | 4 P -osf | | |
0.9 1.0 11 12345678 910111213141516 12345678 910111213141516
Cr/Cr,p Design Variables Design Variables

YxAuo 6: IlpdBAnua III: (Apwotepd) IHpoPAépers twry ourtedéotdy dvwons kar omi-
oUélkovoag Ty Oetyudtwy, o€ oUykpion pe TS abiodoynuéves Tiuég otov kaoika TPA.
O1 tapdywyor twv owtedeotdr dvwons (Méon) kar omodéAkovoas (Aekid) and ta BNA
o€ oUYKpIoN) € TIS TEMEPATEVES 01apopés Kkal Ttns ouvluyols uedodou.



ExAue 7: HpdPAnua III: (Ildvw) Or BeAtiotomomnuéves yemuetples e Tny tpoteviue-
vn (umAe) ka1 T ovluyn (kdkkivn) pédodo ae avykpion ue tny apxikr (patpn). (Kdww)
Ta redia apiduod Mach ya tny apxaxn yewuetpia (apiotepd), tny fedtiotonomuévn e
™ xprion tov BNA (uéon) kar tns ovluvyols ueédouv (6eid).

Beltiotonoinon pioac Mepovouévne Acpotopnis (TueBddne Por), pe
BNA Exnoudevuéva e tic YTAonowoeig Sobolev xouw Hermite

YAoroinon Sobolev: Katd tnv ulomoinon Sobolev, [12], ot mopdywyor tou BNA
¢ TEOS TIC El0OB0UC Tou uTohoyilovTtal xotd Tn SLdpxelo TNG exmaldevong, xaL ou-
Yxpivovton (towtdypova Ue TN olyxElon TwY TEOBAEPEwY Ue TIC TYWEC-OTOYOUS) UE TIC
TOEAY(YYOUS avapopdc UToAoYLopéve Pe Tn ouluyt) pédodo. H obyxpeion yivetou mpo-
o¥étovtog 160U EMITAEOV 6RPOUC GTY GUVAPTNOT XOGTOUS (UE XUTdAANIY o Ttdduto),
6o0L %ot ot (psptxs’g) TOEAYWYOL WS TEOS TIC UETABANTES ELGOOOU.

YAonoinomn Hermite: H vhonoinon Hermite, [13], Booiletor oty 1déa tne aptd-
untrc mapeuBorric Hermite, xatd tnv onoia opilovton 6Vo owoyéveeg optoywviey
TOAUWYOULY Bdong, €Tl WOTE YOVO 1) TEWTH VoL CUVELGQEREL OTNV TEAXY| GUVERTNOT
nopedBorrc (Yo TNV TOEEUBORY TV THOV-OTOYWY TV BElyHdTwY), EVE 6Tay oauTH
TPy WYLOTEL, Var GUVELGQEPEL UGVO 1) BeUTEPN otxoyévela (Yla TNV TOEEUBOM TwV To-
paydywv toug). T'ioe v vhomoinon pe yerion BNA, opilovton 800 Eeywptotol xhddot
OTOWY, MOOTE VA JOVIEAOTOLCOUY TIC BU0 AUTES OXOYEVELEG TOALKVOUWY Bdong. Ot
500 ¥AdBoL ATOTEAOUVTAL A6 EVOL GTEMHA ELGABOV, EVa oPLIUO XPUPHY GTROUATWY (0
oprdu6e Toug unopel va dtapépet yio xdde xhddo), éva otpwua ‘Bdonc xou éva otpdua
e€6dou. Y10 otpwua Bdond, opllovta téc0ot veupthveg 660¢ xou 0 apriude Twv deLY-
UATWY EXTALOEVONG, HOTE VO TPOCOUOLOCOLY TO ATOTEAEOUA TMV TOAUWVUULY Bdong.
TN CUVEYELL, T (m—sxnw%et’)mpa) Bden Tou oTpwuATOS EE6B0U EELOOVOVTAUL UE TIC
TWEC-OTOYOUC TWV OELYUATWY, OTOV TEMOTO XAUD0, XL UE TIC THES TWV TOQUYOYWY
Toug, oToV 6eVTepo. Ol €660t and Toug BUO XAEBOUC TEOCTIVEVTOL, BLOHOPPHBVOVTIC
€T0L TNV TEMXT) GLUVEETNOT TUEEUBOANC XAT avorhoylar UE QUTY| TNG AVOAUTIXHAC TOREU-
Boifc Hermite (Zxﬁpoc . H exnaldeuon yivetar xt €66 ye pla ouvdptnon xdotoug
TOTOU Sobolev, pbévo oL oL TYWEC-GTOYOL TV BELYHATWY CUYXEIVOVTUL UE TNV TEAXN

8



¢€0do tou mpotewvouevou BAN (ddpotoua e€68wv twv 500 xhEdwV) xat oL Tapdywyot
AVOPORAS, CUYXEIVOVTAL PE TIC TORAYWYOUS TNG CUVAETNONG AUTAS. LTNV vhotolnon
ue yenon BNA, ot 800 ¥AddoL GUVELGPEEOLY IGOTIIN X0 CUUTATNEWUATIXG GTNY TEAXN
nopepfoly) (oe avtideon pe v avahuter| pédodo) xar 1 xée cuvelo@opd e&upTtdton
ONUOVTIXG Tt TNV ApYITEXTOVIXY) Tou XdUE XAdBoL xon xuplwe, amd TIC CUVIPTHOELS
evepyoroinong. ‘Eva mAcovéxtnua tng mpotevouevng vhomoinong pe to BNA etvar 61t
umopet exoha var emextadel yio TNV ToEEPBOAY TOAGY PETUBANTGY ELIGOBOU.

B,flmr
-

Ny Ny

St o @9 =Y 0@y + ) By

Byrad ) . =1 j=1

Yxnpo 8: Ipotewduervn Apytektovikr) BNA ya tny vdomoinon Hermite.

O mpotewvdpevog ahyopriuog ue tig vhonoioelg Sobolev xou Hermite e@apudotnxe
ot Beltiotonolnon tng acpotounc S8052 (idiec cuvinxeg porg xou (Bl cuvdptnon-
otéyou). Xenowornotinxay 600 BNA yia v mpdPiedn twv cuvtekestdv dvemaong
xou omioVéAxovsaS avtioTolya,, Ta onola extoudedTNHaY o€ Ao SedOUEVLY 25 aEpo-
TouwY, Ot Topdywyot evatcdnolac Tewv detypdtwy utoloyiotnxay ye tn culuyr uédodo
X0 GEYITEXTOVIXEC TwV OXTUWY BeATioTorotinxay yenowonowmvias tov EASY, ue
yvouovo Ty axplBelo 1wy TeoBAédewy xou Topaydywy Toug (Lyhua El) H véec vho-
Tooelc e pedodou odrynoay o xahbtepn Ao oe olyxpeton e 0 ouluyr uédodo.
Ouolwg x €dw, dev ypewdotnxay enav-extoudevoel Twv BNA. To xéotog tng Beh-
TioTomolnong oy To Blo ue tng ouluyolc Yedddou xal ehapes LPNAGTERO amd TO
x607T0¢ TN apyxhc viomoinone. H Abon tne vhomoinone Sobolev eiye 5% YOUNAOTE-
on Ty ouvteheo T omoBéhxoucag (pe andxhion 0,01% and tov otdy0 cuviekeo
dvwong) xar n Aoon tne uhomoinone Hermite etye 4% younhotepn tiun cuvieAeo T
omovérxovoog (ue andxhon 0,02 % and tov otdy0).

Yupnepdopata

And Tic perétec ouunepabveton 6Tt T BNA unopolv amoteAEopaTing VoL avTIXoTo-
OTHOOLY TOGO ToV EMAUTN POHC, 650 %ok TwV GLLLYKOY EEICWOENY, TEOBAETOVTAC TNV
TIT TNG CLVAPTNOTNG-OTOYOU Xl TWV TAPAYOYWY guvancinoiag, otay yenotwononoiy
oe auttoxpatixés uedodoug Behtiotonoinong oto medlo g TPA. Agol exmoudeuto-
Oy, T BNA unopolv va ypnowonoinioldy euéhixta oc ToAéS BEATIO TOTO|OELS (uloc

9



1.5

w

1.0p

0.5

CL/CLp

N FDs

I Adjoint

I DNNg, - Standard
B DNNg, - Sobolev

I DNN, - Hermite

(=]

. FDs
B Adjoint

] mEE DNNg, - Standard

B DNNg, - Sobolev

I DNNg, - Hermite

Sensitivity Derivatives
Sensitivity Derivatives

oo, ol ol
v 1

OVO O OUR OO0 PO ot 0PN OO FOO OO POV OO VL OO0 PO
12345678 910111213141516
Design Variables

C Desgn veriables
Sxhue 9: IIpdpAnua III: Or mapdywyor twy ovvtedeotdr dvwons (Apotepd) kar omi-
oOélkovoas (Aeiid) ané ta BNA exmaidevuéva katd Sobolev kar Hermite oe oUykpion
€ TS mapaywyovs twy apxikwy BNA | twy nemepaouévwy dapopy kair tng ovluyols
petoodou.
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099 + s
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D . e Adjoint
095 " e Standard
i R ® Sobolev
——————" e Hermite
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Xy 10: HpdpAnua II: Or BeAtiotomomnuéves yewpetpies and kdle vAomoinon tov
TPOTEWOUEVOU aAyoplOov ouyKpivovTal e TNy PEATIOTOTOINEY) YewETPIa and T ou-
Quyn uédodo ka1 tny apxikn. O1r Aoeg tomoletodvtar otov Xwpo Twy OUVTEAETTWY
dvwong-omoUélkodoag ya ovykpion.

CLYXEXPUIEVNG YEWPETEIUC OE GUYXEXPIIEVES CUVINXES), UE BIOPOPETIXESC CUVOPTHOELC-
otoyouc. H axpifeia twv mopayodywv twv BNA 6co xou 1 amoteheouatindtTnTo Tng
TEOTEWVOUEVNC BEATIOTOTOMONG E€UPTMVTAL ONUAVTIXG AT TIC GUVOPTACELS EVEQYOTO-
tnong, 6mou n GELU avadetydnxe n mo xotddinin. H adénon tou peyédoug tng Bdorng
0edouévmY BehTidvel TNy axplBela TV BxTimY, ohAd aUEAVEL THUTOYEOVA TO UTOAO-
YIOTXO x00T0¢ NS BedTioTonoinong. Xuvendq, 1 exnaideuon twv BNA oe uxpéc
Bdoewc dedouévev elvan o cupgépouoa, agol 1 axplBela Tng TEAC Abong unopel
vo BedTiodel ye emav-exmaudeloEl TwY dXTUOY xatd TN PehtioTtonoinon. Téhog, 7
ELOUY WYY TV ToRay YWy evotcdnciag otny extaldeuon twv BNA Behtiwoe 1600 v
oxplBEtar TV TapaY YWY TOoug, 660 XAl TNV amOdOCT TNG TEOTEWVOUEVNS PehtioTonoln-
onc. H véa ulomoinon mpoteiveton évavtt tng apywhc, av BéBoua 1 ouluyhc uédodog
YL TOV UTIOAOYIGHO TGV TOQUYWMYWY TV delypdtwy eivan dardéoiun.
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