
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Deep Neural Networks and their Differentiation for use in
Gradient-Based Aerodynamic Shape Optimization

Diploma Thesis

Konstantina Kovani

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2023

ii

Acknowledgements

I would first like to take this opportunity to express my sincere gratitude to my
supervisor, Professor Kyriakos C. Giannakoglou. I am deeply grateful for his in-
valuable support and guidance throughout my Diploma Thesis, and for giving me
the opportunity to be a member of the PCOpt/NTUA team for almost 2 years. His
scientific expertise, problem-solving approach to challenging topics, and his com-
mendable skill in conveying his knowledge to his students have been truly inspiring
for me, during all the years of my studies. I consider myself very fortunate that
I was able to work under his diligent supervision, and his mentoring in academic
matters and beyond has helped me grow as a prospective engineer and as a person.

Secondly, I would like to express my profound appreciation to all the members
of the PCOpt/NTUA team for their enthusiastic support. I am wholeheartedly
thankful to PhD Candidate Marina Kontou and Dr. Varvara Asouti, whose guidance
and assistance have been invaluable and truly inspiring. I feel deeply grateful for
welcoming me into your team, providing academic advice and consultation during
my studies, and for always sharing chocolates with me.

Lastly, I would like to thank my parents and my sister, Eleni, for always supporting
me and believing in me throughout my studies. I am thankful to my friends for
accompanying me along the journey and creating unforgettable memories.

iii

iv

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Deep Neural Networks and their Differentiation for use in
Gradient-Based Aerodynamic Shape Optimization

Diploma Thesis

Konstantina Kovani

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2023

Abstract

The objective of this Diploma Thesis is the implementation of differentiated Deep
Neural Networks (DNNs), within a gradient-based optimization method in fluid
mechanics, for predicting both the objective function values and its gradient, and
therefore decreasing the overall computational cost of the optimization.

In the proposed method, DNNs, after being trained on a set of patterns for which
the objective function values are available, are used to replace both the code sim-
ulating the fluid flow and its adjoint solver computing gradients w.r.t. the design
variables in problems governed by partial differential equations. The derivatives of
the responses of the trained DNNs with respect to its inputs (which are the design
variables of the optimization problem) are computed using automatic differentiation
in reverse accumulation mode. Parametric studies on the DNNs hyperparameters
are conducted, regarding the accuracy in both their predictions and gradients. Prior
to successfully and efficiently supporting the optimization loop, gradients are verified
against finite differences as well as the adjoint method.

The proposed DNN-driven shape optimization method is presented in two variants.
The first (standard), involves DNNs trained only on the objective function values.
The second, involves DNNs trained on both the objective function values and its sen-
sitivity derivatives (gradient-assisted training), computed using the adjoint method.
Two implementations of the latter are presented: The first, is based on the Sobolev
Training of DNNs while the second is a new concept, based on the principles of
the polynomial Hermite interpolation. All variants are demonstrated in CFD ap-
plications. The standard variant is used for the shape optimization of two isolated
airfoils (inviscid and turbulent flow) and an S-bend duct (laminar flow). The Sobolev
and Hermite variants are demonstrated in the turbulent flow case. The efficiency

of the proposed optimization in all its variants is compared with an adjoint-based
optimization.

ii

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Βαθιά Νευρωνικά Δίκτυα και η Διαφόρισή τους για Χρήση στην

Αιτιοκρατική Βελτιστοποίηση Αεροδυναμικών Μορφών

Διπλωματική Εργασία

Κωνσταντίνα Κοβάνη

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2023

Περίληψη

Στόχος αυτής της διπλωματικής εργασίας είναι η υλοποίηση της διαφόρισης των Βα-

θιών Νευρωνικών Δικτύων (ΒΝΔ), και η χρήση τους σε μία αιτιοκρατική μέθοδο

βελτιστοποίησης στο πεδίο της μηχανικής ρευστών, για την πρόβλεψη τόσο των τιμών

της συνάρτησης-στόχου όσο και των παραγώγων της και, συνεπώς, τη μείωση του

συνολικού υπολογιστικού κόστους της βελτιστοποίησης.

Στην προτεινόμενη μέθοδο, τα ΒΝΔ, αφού εκπαιδευτούν σε ένα σύνολο μοτίβων-

δειγμάτων για τα οποία είναι διαθέσιμες οι τιμές της συνάρτησης-στόχου, χρησιμο-

ποιούνται για να αντικαταστήσουν τόσο τον κώδικα που προσομοιώνει τη ροή του

ρευστού, όσο και τον υπολογισμό των παραγώγων ως προς τις μεταβλητές σχεδιασμού

με τη συζυγή μέθοδο, σε προβλήματα που διέπονται από μερικές διαφορικές εξισώσεις.

Οι παράγωγοι των αποκρίσεων των εκπαιδευμένων ΒΝΔ ως προς τις εισόδους τους (οι

οποίες είναι οι μεταβλητές σχεδιασμού του προβλήματος βελτιστοποίησης) υπολογίζο-

νται χρησιμοποιώντας αντίστροφη αυτόματη διαφόριση. Επιπλέον, συμπεριλαμβάνονται

παραμετρικές μελέτες ως προς τις (υπερ)παραμέτρους των ΒΝΔ, όσον αφορά τόσο την

ακρίβεια των προβλέψεών τους, όσο και των παραγώγων τους. Πριν από την επιτυχή

και αποτελεσματική υποστήριξη του βρόχου βελτιστοποίησης, οι υπολογιζόμενες πα-

ράγωγοι των ΒΝΔ επαληθεύονται έναντι των πεπερασμένων διαφορών, καθώς και της

συζυγούς μεθόδου.

Η προτεινόμενη μέθοδος βελτιστοποίησης σχήματος οδηγούμενη από τα ΒΝΔ, παρου-

σιάζεται με δύο παραλλαγές. Η πρώτη, περιλαμβάνει ΒΝΔ που έχουν εκπαιδευτεί μόνο

στις τιμές της συνάρτησης-στόχου, ενώ η δεύτερη, περιλαμβάνει ΒΝΔ που έχουν εκ-

παιδευτεί τόσο στις τιμές της συνάρτησης-στόχου, όσο και στις τιμές των παραγώγων

ευαισθησίας οι οποίες υπολογίζονται με τη συζυγή μέθοδο. Η τελευταία παραλλαγή

παρουσιάζεται με δύο υλοποιήσεις: Η πρώτη βασίζεται στην κατά Sobolev εκπαίδευση

των ΒΝΔ, ενώ η δεύτερη αποτελεί μια νέα ιδέα, βασισμένη στις αρχές της πολυωνυμικής

παρεμβολής Hermite. ΄Ολες οι παραλλαγές εφαρμόζονται σε προβλήματα Υπολογιστι-
κής Ρευστοδυναμικής. Η πρώτη παραλλαγή χρησιμοποιείται για τη βελτιστοποίηση

σχήματος δύο μεμονωμένων αεροτομών (σε ατριβή και τυρβώδη ροή) και ενός αγωγού

S-bend (στρωτή ροή). Οι υλοποιήσεις Sobolev και Hermite της δεύτερης παραλλαγής
παρουσιάζονται στην περίπτωση της τυρβώδους ροής. Η αποτελεσματικότητα της προ-

τεινόμενης μεθόδου βελτιστοποίησης, σε όλες τις παραλλαγές της, συγκρίνεται με μια

βελτιστοποίηση που βασίζεται στη συζυγή μέθοδο.

ii

Contents

Contents i

1 Introduction 1

1.1 Artificial Intelligence and Machine Learning 1

1.2 Supervised ML Models for Regression in CFD Applications 3

1.2.1 Random Forests . 3

1.2.2 Support Vector Regression . 4

1.2.3 Artificial Neural Networks . 6

1.2.4 An Overview on the Differentiability of the most Common ML

Models used for Regression . 6

1.3 DNNs in CFD and Optimization . 8

1.4 Thesis Outline . 9

2 Deep Neural Networks 11

2.1 Neuron Model and Network Architecture 11

2.2 Training Process of DNNs . 13

2.2.1 The gradient-based optimization problem 13

2.2.2 Loss Functions for Regression Tasks 14

2.2.3 The Adam Optimizer . 15

2.3 Differentiation of DNNs . 16

2.3.1 Reverse Automatic Differentiation 16

2.3.2 Parameters that Influence the Computed Gradients 17

3 The Proposed DNN-Driven Gradient-Based Optimization 21

i

3.1 Introduction . 21

3.2 The Adjoint-Based Optimization Algorithm 21

3.3 DNNs as Surrogates of the Flow and Adjoint CFD Solver in Opti-

mization . 22

3.4 In-House Software and Tools . 24

3.5 Demonstration of the proposed DNN-Driven Optimization Algorithm 26

4 Problem I: Gradient-Based Optimization of an Isolated Airfoil

in Inviscid Flow 31

4.1 Introduction . 31

4.2 Flow Conditions, Mesh and Shape Parameterization 32

4.3 DNN Configuration and Training . 33

4.3.1 Parametric Study on the DNN’s hyperparameters 33

4.3.2 DNN Loss Convergence and Accuracy Metrics 34

4.4 The DNN - Driven Optimization Run 35

4.5 Comparison of the Optimized Geometries 37

5 Problem II: Gradient-Based Optimization of an S-Bend Duct

with Laminar Flow 39

5.1 Introduction . 39

5.2 Flow Conditions, Mesh and Shape Parameterization 40

5.3 DNN Configuration and Training . 41

5.4 The DNN - Driven Optimization Run 44

5.5 Comparison of the Optimized Geometries 46

6 Problem III: Turbulent Flow Around an Airfoil 49

6.1 Introduction . 49

6.2 Flow Conditions, Mesh and Shape Parameterization 50

6.3 DNN Configuration and Training . 51

6.4 The DNN - Driven Optimization Run 54

ii

6.5 Comparison of the Optimized Geometries, Mach Number and Turbu-

lent Viscosity Fields . 56

6.6 Proposals for Improving the DNN Predictions and Gradient Accuracy 57

7 Gradient-Assisted Training of DNNs 61

7.1 Introduction . 61

7.2 Implementation I: The Sobolev Method 62

7.2.1 Sobolev Training for Deep Neural Networks 62

7.2.2 Demonstration of the Sobolev Method on the Approximation

of a Bi-Variate Function . 64

7.2.3 Demonstration of the Sobolev Method on Problem III 66

7.3 Implementation II: The Hermite Method 69

7.3.1 Hemite Interpolation . 69

7.3.2 DNNs as Surrogates of the Hermite Basis Polynomials 71

7.3.3 Demonstrarion of the Hermite Method on the Approximation

of Uni-Variate and Bi-Variate Functions 73

7.3.4 Demonstration of the Hermite Method on Problem III 79

7.4 S8052 Airfoil’s Shape Optimization using the Sobolev-trained and

Hermite-trained DNNs . 82

7.5 Comparison of the Adjoint-Based and the DNN-Driven Optimization

Runs . 84

8 Conclusion 91

8.1 Overview . 91

8.2 Conclusions . 93

8.3 Future Work Proposals . 95

Bibliography 97

iii

iv

Chapter 1

Introduction

1.1 Artificial Intelligence and Machine Learning

Over the past few years, the evolution of Artificial Intelligence (AI) and Machine
Learning (ML) has been nothing short of transformative. Advancements in comput-
ing power, the availability of large datasets, and breakthroughs in algorithm design
have propelled AI and ML to new heights. Deep learning, a subfield of ML that
focuses on neural networks with many layers, has led to significant breakthroughs
in areas like image recognition, natural language processing, and speech synthe-
sis. This progress has enabled AI systems to achieve human-level performance in
tasks such as playing complex games and generating creative content. With the
rapid development of AI-driven applications like self-driving cars, virtual assistants,
and recommendation systems, we’re witnessing a fundamental transformation of in-
dustries and society as AI and ML continue to evolve. Let’s not forget the global
impact of the recent breakthrough, ChatGPT, a language model created by OpenAI
designed to understand and generate human-like text based on the received input.
With the introduction of such a powerful tool, new possibilities for innovation and
exploration in technology have opened up, along with the raise of complex ethical,
societal, and regulatory questions.

ML, as a subfield of AI, focuses on developing algorithms and models that enable
computers to learn from data and make predictions or decisions without being explic-
itly programmed [1]. There are several types of ML [2], each with its own approach
and characteristics. The main types of ML and the included tasks in each case are
presented in Fig. 1.1. These are briefly:

� Supervised Learning: In supervised learning, the algorithm learns from la-

1

beled training data, where the input data is paired with corresponding target
values. The goal is to learn a mapping from inputs to outputs, allowing the
model to make predictions on new, unseen data. Common tasks include classi-
fication (assigning labels to data points) and regression (predicting continuous
values).

� Unsupervised Learning: In unsupervised learning, the algorithm works
with unlabeled data, seeking to find patterns or structures within the data.
This includes clustering (grouping similar data points together) and dimension-
ality reduction (reducing the number of features while preserving important
information).

� Reinforcement Learning: Reinforcement learning involves an agent that
interacts with an environment to learn how to take actions that maximize
a cumulative reward over time. The agent learns through trial and error,
receiving feedback in the form of rewards or penalties based on its actions.
It’s often used for tasks like game playing and robotic control.

Figure 1.1: Different Types of ML. Figure from [3].

2

1.2 Supervised ML Models for Regression in CFD

Applications

In this Diploma Thesis, supervised ML models will be used for regression tasks in
the field of Computational Fluid Dynamics (CFD). It was decided to procceed with
Deep Neural Networks (DNNs), offspring models of the general Artificial Neural
Networks (ANNs) family, that belong in the deep learning subset of ML. Beside
ANNs, there are other worth-mentioning ML algorithms that have gained ground
in the field of CFD and optimization, with the most commonly used being Random
Forests and Support Vector Regression [4, 5], among others. An overview of the
models follows, in order to demonstrate their main functionalities. Since, in this
work, there is significant interest about the gradients of the models with respect to
their inputs, the differentiability of each ML model, along with the capabilities and
challenges involved in the computation of the gradient in each case, are presented
and compared.

1.2.1 Random Forests

Random Forests [6] is a popular ML algorithm used for both classification and
regression tasks, based on the ensemble learning technique. It’s designed to improve
the performance and robustness of the so-known decision trees by combining the
predictions of multiple trees. Ensemble uses two types of methods:

� Bootstrap Aggregating (Bagging): Random Forests employ a technique
called bootstrapping, where multiple subsets of the original dataset are created
by randomly sampling with replacement. Each subset is known as a ”bootstrap
sample.”

� Boosting: It combines weak learners into strong learners by creating sequen-
tial models such that the final model has the highest accuracy. A decision tree
is constructed for each ”bootstrap sample” with a subset of features rather
than all the features, that helps introduce diversity in the trees.

Each decision tree is constructed by recursively partitioning the data based on the
selected features. The tree continues to grow until a stopping criterion is met, such
as reaching a maximum depth, a minimum number of samples in a leaf node, or no
further improvements in impurity reduction. Once all the trees are built, they col-
lectively make predictions on new data. For regression problems, all the individual
trees’ predictions are averaged to obtain the final regression prediction, as shown
in Fig. 1.2. This ensemble approach helps to reduce overfitting and improve the
generalization performance of the model.

3

Figure 1.2: Demonstration of the Random Forest Model. Figure from [7].

Random Forests have the ability to handle high-dimensional data, detect feature
importance, and mitigate overfitting. They are also robust to noisy data and outliers
and imune to the curse of dimensionality. However, they may require tuning of
hyperparameters, such as the number of trees and the maximum depth of individual
trees. Their performance is evidenced in various works in the field of fluid mechanics
and aerodynamics, as in [7, 8, 9].

1.2.2 Support Vector Regression

Support Vector Regression (SVR) [10] is a type of ML algorithm used for regression
analysis. The goal of SVR is to find a function that approximates the relationship
between the input variables and a continuous target variable, while minimizing the
prediction error. Unlike Support Vector Machines (SVMs) used for classification
tasks, SVR seeks to find a hyperplane that best fits the data points in a continuous
space. This is achieved by mapping the input variables to a high-dimensional feature
space and finding the hyperplane that maximizes the margin (distance) between the
hyperplane and the closest data points, while also minimizing the prediction error.
SVR can handle non-linear relationships between the input variables and the target
variable by using a kernel function to map the data to a higher-dimensional space.
This makes it a powerful tool for regression tasks where there may be complex rela-
tionships between the input variables and the target variable. The most important
parameters of an SVR are:

� Kernel: A kernel helps us find a hyperplane in the higher dimensional space
without increasing the computational cost. Kernel functions are used to im-
plicitly perform the transformation into the higher-dimensional feature space
without explicitly calculating the transformed features. Common kernels in-
clude Linear, Polynomial, Radial Basis Function (RBF), and more.

4

� Hyperplane: The hyperplane, in the transformed feature space, that best
approximates the relationship between the input features and the target values.

� Decision Boundary: A decision boundary can be thought of as a distance
from the original hyperplane. A ”margin of error” is defined around the pre-
dicted output for each data point, represented by two hyperplanes: an upper
margin (ξ-insensitive) and a lower margin (-ξ -insensitive) as shown in Fig. 1.3
.

Figure 1.3: (Left) The initial features are placed on the input space along with
the initial hyperplane of the SVR and the defined decision boundary (Middle) After
a kernel-mapping procedure, the original features are tranformed and placed in a new
space, in which the margin of error will be minimized. (Right) The resulting hyperplane
that best fits the input data after the regression procedure is demontrated on the primal
feature space. Figure from [11].

In SVR, the goal is to minimize the margin of error between the predicted output
and the true output, while still allowing for a certain degree of error (controlled by
hyperparameters). This is achieved by finding the hyperplane that minimizes the
sum of the errors within the defined margins while maximizing the margin width.
Assuming that the equation of the hyperplane is Y = w ·X + b and the equations
of the decision boundary are w ·X + b = ξ and w ·X + b = −ξ for the upper and
lower boundary respectively, the objective of the SVR optimization is formulated as
a constrained optimization problem expressed by

−ξ ≤ w ·X + b ≤ ξ (1.1)

SVR seeks to find a balance between fitting the data and preventing overfitting
by introducing the margin of error. It also incorporates a regularization term that
controls the trade-off between fitting the training data closely and having a simple
model that generalizes well to new data. It’s important to tune hyperparameters
like the regularization parameter and the kernel choice in order to achieve the best
performance on a specific dataset. The performance of SVRs is demonstrated in
various CFD-related works, as in [12, 13].

5

1.2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) [14] are computational models inspired by the
structure and function of the human brain. They consist of layers of interconnected
nodes, called neurons, organized into input, hidden, and output layers. The config-
uration of a basic ANN is shown in Fig. 1.4.

Figure 1.4: Demonstration of a typical ANN architecture. Figure from [15].

Neurons process input data through weighted connections and apply activation func-
tions, producing output that is then passed to the next layer. During training, ANNs
adjust the weights to minimize the difference between their predictions and actual
target values using optimization algorithms. This process involves forward propaga-
tion to compute predictions and backward propagation (backpropagation) to update
weights based on the calculated gradients. By iteratively fine-tuning weights over
multiple epochs, ANNs learn to capture complex patterns and relationships in data,
enabling them to make accurate predictions on new, unseen data. ANNs are an
extremely powerful tool in CFD applicaitons and the performance of their subclass
models, DNNs, will be presented later in this Chapter.

1.2.4 An Overview on the Differentiability of the most Com-

mon ML Models used for Regression

Random Forests, Support Vector Regression and ANNs are powerful ML tools, but
they have different characteristics when it comes to computing derivatives. Since
this work emphasizes in the computation and use of the models’ gradients in an
optimization process, the differentiability of each model must be considered. The
capabilities and challenges when computing the derivatives of the most popular ML

6

models used in regression are presented in summary

� Random Forests: Random Forests are non-differentiable models [16]. Since
they are constructed as an ensemble of decision trees, they do not involve an
optimization process that requires the computation of gradients. Instead, they
rely on a simple, parallel, and non-differentiable procedure for training each
decision tree independently. The lack of differentiability means that Random
Forests may not perform as well as differentiable models in tasks that require
learning intricate patterns and representations from data.

� Support Vector Regression: SVRs’ differentiability is limited to a subdif-
ferentiability concept, which can affect the overall optimization process. SVRs
typically involve loss functions that are not easily differentiable, such as the ϵ-
insensitive loss [17]. This makes it challenging to compute derivatives directly
from the trained SVR model. Additionally, SVRs are often optimized using
techniques like Quadratic Programming (QP) that do not inherently provide
the necessary information for differentiating the model and their performance
might depend on the choice of the kernel function. Among these techniques,
the most common one is to solve the Langragian Dual Problem of the op-
timization, as in [18]. The problem is transformed into its Lagrangian dual
form and Lagrange multipliers (also known as dual variables) are introduced
to express the optimization problem as a function of these multipliers. As a
result, this method does not require the explicit differentiation of the model.

� Artificial Neural Networks: ANNs are highly differentiable models [19] and
enable the use of backpropagation to compute gradients (derivatives) analyt-
ically. Backpropagation efficiently calculates gradients by propagating errors
backward through the network layers using the chain rule of calculus. Modern
learning frameworks like TensorFlow and PyTorch provide automatic differ-
entiation capabilities, making it easy to compute accurate derivatives during
training and optimization processes. Due to their well-established architec-
tures and optimization techniques, neural networks are designed to handle
complex functions and capture intricate relationships within the data. This
allows them to compute accurate derivatives for a wide range of functions.

Technically, it is possible to estimate the derivatives of all models using numerical
methods, such as finite differences [20]. However, it is not a common or efficient
approach due to the complexity and limitations involved. Finite differences would
require perturbing input data points and observing the corresponding changes in
the predictions, which can introduce additional uncertainty and complexity, espe-
cially in cases where the models may not accurately capture the underlying function
behavior. In the case of Random Forests, the discrete and piecewise nature of the
predictions would make it difficult to define meaningful derivatives. Their predic-
tions can be highly discontinuous, especially at decision boundaries, while finite
differences typically assume a continuous function. Also, even if the derivatives for
each individual tree were computed, combining these derivatives in a meaningful way

7

to obtain derivatives for the entire forest would likely be challenging. Similarly, the
SVR models produce piecewise linear predictions based on support vectors and their
associated coefficients. This piecewise nature of the predictions can make it difficult
to compute meaningful derivatives using finite differences, especially at points where
the model transitions from one support vector to another.

1.3 DNNs in CFD and Optimization

So far, CFD-based optimization tools for large scale applications usually rely on
gradient-based techniques supported by the adjoint method, [21, 22]. The latter
computes the gradient of the objective function with respect to (w.r.t.) the design
variables at a cost which is independent of their number N . At the same time, DNNs
and their integration within simulations are gaining ground due to their ability to
handle large volumes of complex data at low computational cost and resources.

For instance, [23] uses conditional variational autoencoders and an integrated gen-
erative network for the inverse design of supercritical airfoils. [24] presents a solver
based on ML models that predict the required numerical fluxes, in compressible
fluid flows, based on high-resolution runs; the solver was fully differentiated using
automatic differentiation (AD). A toolkit based on complex-step finite differences
for the numerical differentiation of neural networks was proposed in [25], making it
computationally lightweight by overcoming the high-order chain rule. In [26], the
authors of PCOpt proposed a DNN-based surrogate for the turbulence closure of
the Reynolds-Averaged Navier Stokes (RANS) equations; the role of the DNN is to
replace the numerical solution of the turbulence and transition models. The DNN-
assisted RANS solver was combined with an evolutionary algorithm to optimize the
shape of a transonic turbine blade and a car model. ML surrogates were used in
aerodynamic shape optimization of transonic airfoils, in [27]. In [28], the perfor-
mance of ML models used in aerodynamic shape optimization is reviewed, and the
efficiency of more advanced models using appropriate geometry parameterization so
as to reduce the dimensionality of the design space, is presented. In [29], a numerical
methodology based on modal decomposition coupled with the regression analysis for
creating reduced-order models of fluid flows is demonstrated. In [30], the efficiency
of the adjoint-based optimization is accelerated using DNNs to predict the mapping
between the adjoint vector and the local flow variables.

This Diploma Thesis proposes the implementation of differentiated DNNs, within
a gradient-based optimization method in fluid mechanics, for predicting both the
objective function values and its gradient, in order to reduce the overall cost of the
optimization [31].

8

1.4 Thesis Outline

Following the Introduction, this Thesis is organized as follows:

� Chapter 2: A brief introduction in DNNs and how they work. The basic
concepts involved, their configuration and hyperparameters, as well as the
constituents of the training process are presented. In addition, the technique
used to differentiate the DNNs with respect to their inputs is demonstrated,
and a study on the parameters that influence the quality of the computed
gradients is performed.

� Chapter 3: The proposed DNN-driven optimization algorithm is presented
and explained, along with the adjoint-based algorithm used for comparison.
The in-house softwares and tools involved in each method are presented and
the proposed optimization is demontrated in simple function approximation
problem.

� Chapter 4: The proposed optimization algorithm is demonstrated on the
shape optimization of the symmetric NACA0012 isolated airfoil. The flow
around the airfoil is inviscid and the DNN-driven optimization is compared
with an adjoint-based optimization in terms of efficiency and cost.

� Chapter 5: The proposed method is demonstrated on the shape optimization
of an S-bend duct with laminar flow. Additional capabilities of the proposed
algorithm are explored and the DNN-driven optimization is compared with its
adjoint-based counterpart.

� Chapter 6: The proposed method is demonstrated on the shape optimization
of the low-speed S8052 isolated airfoil. The flow around the airfoil is turbulent
and the DNN-driven optimization is compared with an adjoint-based opti-
mization in terms of efficiency and cost. A parametric study on the size of the
database used to train the DNNs is performed, in order to demonstrate the
sensitivity of both the model’s predictions and computed gradients when the
database’s size increases.

� Chapter 7: The incorporation of the DNNs’ gradients in the training process
is demonstrated and implemented with two variations, based on the Sobolev
training method and the Hermite interpolation, respectively. The proposed al-
gorithm is re-newed, in which gradient-assisted trained DNNs are used to drive
the descent during the optimization. The re-newed DNN-driven optimiza-
tion is demonstrated on the S8052 airfoil’s shape optimization and compared
with the original DNN-Driven algorithm and an adjoint-based optimization,
in terms of efficiency and cost.

9

10

Chapter 2

Deep Neural Networks

2.1 Neuron Model and Network Architecture

DNNs, as a subset of ANNs, are computational systems that mimic the biological
neural systems [14]. The modeling and implementation of a neural network is pri-
marly inspired by the functionality of the basic computational unit of the brain: the
neuron. A neuron is considered in its coarse representation, in which all its opera-
tions are summarized in the functionality of its two main constituents: the branches
(dendrites) and the axon. All neurons receive input signals from their dendrites
and are sequently transfered to the main body, where they all get summed. If the
final sum is above a certain threshold the neuron can fire, delivering output signals
(spikes) along its axon. The axon eventually branches out and connects to dendrites
of other neurons via communicative junctions, known as synapses, transfering the
output signals to the neighbour neurons. In reality, biological neural networks are
significantly complex dynamical systems, in which a vast amount of non-linear com-
putations is performed, and the timing and change rate of operations has a serious
effect on the outcome as well. Recently, new models such as Spiking Deep Neural
Networks [?] have been developed in order to capture the composition of such com-
plex systems, however their performance is still a topic of research for the neural
network community.

The sequence of operations involved in the coarse representation of a neuron mo-
tivated the deployment of a mathematical model, focusing on the existance of a
computational unit able to collect, process and as well fire signals when defined
criteria are met. At the computational model of a neuron signals that travel along
the axons interact multiplicatively with the dendrites of other neurons, based on the
synaptic strength at that synapse. Synaptic strengths, known as weights, control
the influence of signals from one neuron to another and thus, are the parameteres

11

to be learned. The firing rate of a neuron is modeled by an activation function (f),
which represents the frequency of the spikes along the axon. The biological and
mathematical representation of a neuron are presented and compared in Fig. 2.1.

Figure 2.1: (Left) Representation of a biological neuron and its main constituents.
(Right) The mathematical model of a neuron and its core operations. Figure from
(https://cs231n.github.io/neural-networks-1/).

A shown in Fig. 1.4, DNNs are organized into layers, each performing specific func-
tions to process the input data and produce the desired output [32]. Their most sig-
nificant distinction is their depth, as they can have multiple hidden layers, enabling
them to learn hierarchical features and representations. Other neural network archi-
tectures might have fewer hidden layers or even just a single hidden layer, making
them shallower and less capable of capturing intricate patterns. The arrangement
of these layers defines the DNN architecture, that is typically organized as:

� Input Layer: The input layer is the initial layer of the network and receives
the raw input data. The number of nodes (neurons) in this layer corresponds
to the dimensions of the input data.

� Hidden Layers: These are the layers between the input and output layers and
are responsible for learning increasingly abstract and complex features from the
input data. A DNN can have multiple hidden layers, and these layers are where
the ”deep” aspect of deep learning comes into play. Each hidden layer consists
of multiple neurons and, herein, the layers are fully connected, meaning each
neuron is connected to every neuron in the previous and subsequent layers.

� Output Layer: The output layer produces the final prediction or result of
the network. The number of nodes in this layer corresponds to the number of
dimensions in the output.

The neurons in each layer are typically followed by an activation function. Activa-
tion functions introduce non-linearity to the network, allowing it to learn complex
relationships in the data. Each connection between neurons has associated weights
and biases, parameters that are learned during the training process.

12

2.2 Training Process of DNNs

2.2.1 The gradient-based optimization problem

The training process of DNNs is formulated as a gradient-based optimization prob-
lem in which the network’s parameters (weights and biases) are iteratively updated
in order to minimize a defined loss function. An overview of the steps taken during
the training algorithm follows:

1. Parameter Initialization: The weights and biases of the network are initial-
ized with small random values. Proper initialization is important to prevent
the network from getting stuck in local minima during training.

2. Forward Propagation: During each iteration (epoch) of training, input data
is fed into the network’s input layer. The data passes through the hidden
layers, and the network computes predictions using the current weights and
biases.

3. Loss Function Calculation: The output of the network is compared to the
actual target values using a loss function, that quantifies the difference between
the predicted output and the true values.

4. BackPropagation: After calculating the loss, the network performs back-
propagation. Backpropagation involves calculating the gradients of the loss
with respect to the network’s parameters, using the chain rule of calculus.
Gradients indicate how much each parameter should be adjusted to decrease
the overall loss.

5. Gradient Descent: With the gradients calculated, an optimization algo-
rithm (optimizer) is used to update the parameters, by adjusting them in the
direction that reduces the loss. Learning rate, which determines the step size
of the parameter updates, is a critical hyperparameter in this process.

6. Parameter Update: The parameters are updated based on the calculated
gradients and the learning rate.

Steps 2 to 6 are repeated for multiple epochs, in which the network processes the
entire training dataset. The process continues until a predefined stopping condition
is met, usually a maximum number of epochs. To properly monitor the training,
the model ’s hyperparameters must be carefully tuned. These hyperparameters
involve the selection of the appropriate loss function and optimizer, along with the
optimal learning rate. Another consideration while training a DNN, is the common
phenomenon known as ”Overfitting”, where a model learns to perform well on the
training data but fails to generalize to new data due to capturing noise and random
fluctuations [33]. The behavior of an overfitted model is presented in Fig. 2.2.

13

Figure 2.2: (Left) Behavior of a poor-trained model that results in underfitting of the
data. (Middle) Behavior of a better trained DNN that captures more accurately the
underlying relations of the data. (Right) Behavior of an overfitted model that fails to
generalize on unseen data. Figure from [33]

The most common way to overcome this issue is to use the Validation technique;
During training, a set of data, to be referred as validation set, is set aside and
can not be seen by the network. After a pre-defined epoch frequency, the network’s
performance on the validation set is evaluated, in order to monitor the generalization
ability of the DNN and assist in its hyperparameter tuning. As a result, validation
prevents overfitting and allows for early stopping if the validation performance starts
deteriorating.

2.2.2 Loss Functions for Regression Tasks

The loss function measures the discrepancy between the predicted output of the
neural network and the actual target values [34]. It quantifies how well the network
is performing on a specific task and the choice of the loss function depends on the
nature of the problem being solved. The most commonly used loss functions for
regression problems are the Mean Absolute Error (MAE) and Mean Squared Error
(MSE), expressed in Eqs. 2.1, 2.2 respectively.

MAE =
1

N

N∑
i=1

|yi − ŷi| (2.1)

MSE =
1

N

N∑
i=1

(
yi − ŷi)

2 (2.2)

yi is the target value of each sample indexed with i = 1, ..., N . N is the total number
of samples and ŷi is the predicted value from the DNN. Both loss functions behave
differently during the optimization; MAE is less sensitive to outliers and treats all
errors equally, compared to MSE. This makes it a good choice when the dataset
contains noisy data points that might skew the predictions. However, MAE has a
discontinuous gradient at zero, which can make the training more challenging. On

14

the other hand, MSE has a smooth gradient at all points, which aids in faster and
more stable optimization using gradient-based methods, while is more sensitive to
outliers, as squaring the errors amplifies their effect. The selection between MAE
and MSE depends on the characteristics of the dataset and the problem to be solved.
In the case of outliers, the more robust MAE loss would be preferable. The MSE
loss is more suitable for a non-noisy dataset and for strongly penalizing larger errors.

2.2.3 The Adam Optimizer

The optimizer is the algorithm responsible for updating the weights and biases of
the neural network during the training process [35]. There are various optimiza-
tion algorithms available, each with its own characteristics and advantages. The
most common ones are stochastic gradient descent (SGD), Adam, RMSprop, and
Adagrad, among others. Each optimizer has different hyperparameters, such as the
learning rate, momentum, decay rates, and more. In this work, all DNNs are trained
using the Adam optimizer. Adam [36] stands for ”Adaptive Moment Estimation”
and involves a combination of two gradient descent methodologies:

Momentum: This algorithm is used to accelerate the gradient descent algorithm
by taking into consideration the ‘exponentially weighted average’ of the gradients.
Using averages makes the algorithm converge towards the minima in a faster pace.
The weights are updated as follows:

wt+1 = wt − amt (2.3)

where wt, wt+1 are the model’s weights at the time steps t, t+1 respectively, a is the
learning rate and,

mt = βmt−1 + (1− β)

[
δL

δwt

]
(2.4)

δL
δwt

is the derivative of the loss function (L) with respect to the model’s weights
at the current time step (t), mt,mt−1 are the aggregates of gradients at time steps
t, t−1 respectively and β, is a moving average parameter with the default value of 0.9.

Root Mean Square Propagation (RMSprop): In RMSprop, instead of tak-
ing the cumulative sum of squared gradients, the ‘exponential moving average’ is
considered as follows:

wt+1 = wt −
a

(vt + ϵ)
1
2

·
[
δL

δwt

]
(2.5)

where,

vt = βvt−1 + (1− β)

[
δL

δwt

]2
(2.6)

15

vt is the sum of square of past gradients and ϵ is a small positive constant (default
value 10−8) used to avoid division by zero when vt approaches zero.

The formula for computing the model’s weights updates results from the combination
of Eqs. 2.3 and 2.5, respectively, as:

wt+1 = wt −
a

(vt + ϵ)
1
2

·mt (2.7)

Combining the advantages of previous models, the Adam optimizer is considered
as one of the most versatile optimization algorithms, offering efficient convergence
and adaptability to the learning process. While its performance can depend on the
hyperparameter settings of the model, it’s still the most commonly used optimizer
for training neural networks and the most popular in the literature.

2.3 Differentiation of DNNs

2.3.1 Reverse Automatic Differentiation

Reverse Automatic Differentiation (RAD) is the core technique used to compute
gradients efficiently in neural networks [37, 38]. During training, it enables the
network to learn by adjusting its parameters based on the gradients of the loss func-
tion with respect to those parameters. In forward pass, input data travels through
the layers of the network, and intermediate values are stored. In the reverse pass,
gradients are computed in a top-down manner, starting from the loss function and
propagating backwards. Gradients are calculated using the chain rule of calculus,
where each layer’s contribution to the gradient is the product of the local gradi-
ent of the layer’s activation function and the upstream gradients. The traces of the
forward and backward pass are presented in Fig. 2.3 for a simple model architecture.

While during the training process the models’ gradients are computed with respect
to their parameteres, herein RAD is used to compute the DNN’s gradients with
respect to their input variables. As evidenced from Fig. 2.3, the outcome of the full
forward pass of a DNN is a result of repeated matrix multiplications, interwoven with
the application of the activation functions. Consequently, the computed derivatives
resulting from the DNN’s differentiation will be highly determined by the model’s
architecture (width and depth), the - fixed - weights resulting from the training
process and, the used activation functions [39, 40, 41].

16

Figure 2.3: Demonstration of the RAD technique. The traces of the forward pass of
the model are shown in black. The traces of the backward pass during the differentiation
of the loss function (J) are shown in red. Figure from [42].

2.3.2 Parameters that Influence the Computed Gradients

Neural Network Architecture: The number of the DNN hidden layers and their
neurons (width and depth) will determine the number of weights that will be as-
signed to each input feature, giving insight into the importance of that feature in
making predictions. In networks with more complex structures, computing the gra-
dients with respect to their inputs can be more intricate, due to the interactions and
flow of information across different parts of the architecture. Especially in networks
with high-dimensional inputs, the gradients can be sensitive to small changes in
individual input dimensions, making interpretation and analysis challenging.

Weights Initialization and Non-Unique Solutions: Neural networks are sen-
sitive to their initial weights. This sensitivity is particularly pronounced in deep
architectures, where slight changes in the initial weights can lead to different trajec-
tories during optimization, resulting in different solutions. This non-deterministic
behavior inherent in the training of DNNs can have notable implications for the
computed gradients with respect to their inputs and their stability, causing fluctua-
tions in their directions and magnitudes for the same input across different training
runs or solutions.

Weights Magnitude and Sign: The magnitude and sign of the weights in a
trained DNN play an important role in shaping its gradients. Larger magnitudes of
weights amplify the impact of input changes on the model’s output, while both their
magnitude and sign determine the strength of the activations across the model’s lay-
ers. The interplay between weight magnitudes and signs defines the sensitivity of the
model to input variations and therefore its gradients. However, the values assigned
to the weights after training are such as to properly approximate the output target,

17

and, in case the training fails to capture the complex interactions and dependencies
between inputs and the underlying patterns of the data, the accuracy of the com-
puted gradients will be in question as well.

Activation Functions: Activation functions and their derivatives have a signifi-
cant influence on the computed gradients of the DNN. The most commonly used
activations in the literature are the Rectified Linear Unit (ReLU), the Exponential
Linear Unit (ELU), the Gaussian Error Linear Unit (GELU), the tanh and sigmoid.
Complementary, the less popular Scaled Exponential Linear Unit (SELU) and the
Sigmoid-weighted Linear Unit (swish) are also presented. The activation functions,
as expressed from Eqs. 2.8 - 2.14, are demonstrated along with their derivatives in
Fig. 2.4, computed on an input variable x in the range of [−5, 5].

ReLU =

{
0, for x < 0

x, for x ≥ 0
(2.8)

ReLU is a piecewise linear function that will output the input directly if it is positive,
otherwise, it will output zero. It has become the default activation function for many
types of neural networks.

ELU =

{
α(ex + 1), for x < 0

x, for x ≥ 0
(2.9)

ELU [43] is an alternate of ReLU. It can output negative values and it slowly becomes
smooth until its output is equal to −α. The ELU’s hyperparameter α > 0 controls
the value to which an ELU saturates for negative net inputs, diminishing various
problems such as vanishing gradients.

SELU = s ·

{
α(ex + 1), for x < 0

x, for x ≥ 0
(2.10)

SELU [44] resembles ELU and induces self-normalizing properties. The values of α
and scale (s) are chosen so that the mean and variance of the inputs are preserved
between two consecutive layers, as long as the weights are initialized correctly. The
default values are α = 1.67326324 and s = 1.05070098 respectively.

GELU = x·Φ(x) = 1

2
x

[
1 + erf

(
x√
2

)]
=

1

2
x

(
1 + tanh

[√
2

π

(
x+ 0.044715x3

)])
(2.11)

Φ(x) is the standard Gaussian cumulative distribution function. The GELU nonlin-

18

earity weights inputs by their percentile, rather than gates inputs by their sign as
in ReLU [45]. Consequently the GELU can be thought of as a smoother ReLU.

tanh =
ex − e−x

ex + e−x
(2.12)

sigmoid =
1

1 + e−x
(2.13)

swish = x · sigmoid(βx) =
x

1 + e−βx
(2.14)

Swish [46] is a self-gating activation function with a constant or trainable parameter
β ∈ [0, 1], that allows better tuning of the activation and maximization of the prop-
agated information. This results in smoother gradients and better generalization.

−4 −2 0 2 4
Variable x Val es

−2

−1

0

1

2

3

4

5

Ac
tiv
at
io
n
F

nc
tio

ns

ReLU
GELU
SELU
ELU
tanh
sigmoid
swish

−4 −2 0 2 4
Variable x Value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ac
tiv

at
io
n
Fu

nc
tio

n
 D

er
iv
at
iv
e

ReLU
GELU
SELU
ELU
tanh
 igmoid
 wi h

Figure 2.4: Representation of the most commonly used activation functions in the
literature (Top) and their derivatives (Bottom).

19

As shown in Fig. 2.4, some activations of the ReLU family, such as ReLU and SELU,
are non-smooth activations and its variants introduce non-differentiability at zero.
This is known as the ”Dying ReLU” phenomenon, which can result in unstable or
noisy gradients with respect to the inputs, especially around zero. On the other
hand, GELU, ELU and swish are smooth activation functions and have continuous
derivatives, providing more stable and interpretable gradients. The derivatives of
GELU and swish can also yield negative values, contributing in a more flexible way
to the sign of the network’s gradients. The sigmoid and tanh activations and their
derivatives are also smooth and continuous, however they can saturate for large or
small inputs, squashing the input values into a limited range and resulting in the
so-known phenomenon of ”Vanishing gradients”. Vanishing gradients occur when
gradients become extremely small, such as to approach zero, resulting in negligible
and stalled computed values.

20

Chapter 3

The Proposed DNN-Driven

Gradient-Based Optimization

3.1 Introduction

Herein, the proposed DNN-driven optimization algorithm is presented. The pro-
posed method is compared with the adjoint-based optimization, since the latter is so
widely used in CFD-based optimization. The steps of both optimization algorithms
are described and presented, as well as the in-house softwares and tools involved
in each case. Before going to the CFD-based applications, the proposed method
is demonstrated in the minimization of a manifold, bi-variate function, in order to
better visualize the DNN-driven descent and the capabilities of the algorithm.

3.2 The Adjoint-Based Optimization Algorithm

The adjoint technique [47] is used in order to compute the sensitivities of an objec-
tive function (or constraint), concerning the design variables. It is widely used in
CFD to support gradient-based algorithms, as it has the lowest cost of computing
derivatives of functions in problems governed by partial differential equations. It
can be implemented with two variants, the continuous and the discrete adjoint. In
the continuous adjoint method, the gradient of the objective function is computed
by solving adjoint equations derived (in the form of PDEs) from the governing fluid
flow equations. This involves solving the forward (primal) flow problem, formulating
and solving the adjoint equations and then, computing sensitivities with respect to

21

design variables. The discrete adjoint method handles the discretized flow/primal
equations on meshes. It follows a similar process, discretizing equations, solving the
forward problem, solving discrete adjoint equations, and finally obtaining sensitivi-
ties for optimization. Both methods are crucial for efficiently optimizing designs in
CFD, since computing gradients through finite differences would be computationally
expensive.

In this work, the continuous adjoint approach is used; A Lagrangian function is
formed by adding the objective function to be minimized to the integral (over the
flow domain) of the residuals of the flow equations multiplied by the adjoint variables
(or Lagrange multipliers). It is evident that objective and Lagrangian functions take
on the same value as the flow equations are always satisfied and, thus, their residuals
are zero. Therefore, the gradient of the Lagrangian, rather than the objective func-
tion, can be computed. This is differentiated w.r.t. to the design variables and terms
multiplying the derivatives of flow variables w.r.t. to the design variables are set to
zero, leading to the adjoint equations. The adjoint equations are derived in the form
of partial differential equations which are, then, discretized and numerically solved
using the in-house solver, PUMA [48]. In the adjoint-based optimization, each cycle
comprises the numerical solution of the Navier-Stokes equations, that of the adjoint
equations and the computation of the sensitivity derivatives (SDs) used to update
the design variables vector. Without loss of generality, all updates are computed by
steepest descent. The number of optimization cycles to be carried out is determined
by a convergence-or-cost related termination criterion.

3.3 DNNs as Surrogates of the Flow and Adjoint

CFD Solver in Optimization

Alternatively, this work proposes the replacement of both the flow and the adjoint
equations solvers with a trained DNN, which predicts both the objective function
value and the SDs. The proposed optimization algorithm is demonstrated in the
flow chart of Fig. 3.1. Working with DNNs, the first step is to collect the necessary
training data and create the database (to be referred to DBDNN) which the DNN
will be trained on. Herein, the DBDNN is formed by sampling the design space using
the Latin Hypercube Sampling (LHS) technique [49], generating the corresponding
geometries and evaluating them on the CFD solver. The LHS is effective in case the
number of samples must be kept small, and is widely used in DNNs. In this work,
reducing the size of the DBDNN is important as all of its entries should be evaluated
on the costly CFD code.

Once the initial DBDNN resulting from the LHS is available, each round (this term is
used to distinguish this loop and the gradient-based descent loop of step 2, in which

22

Figure 3.1: Flow-Chart of the proposed DNN-driven gradient-based optimization
algorithm.

optimization cycles are performed by updating the design vector and the gradient)
of the proposed algorithm comprises the following steps:

1. Train the DNN using the data available in the DBDNN. Herein, the model’s
configuration is carefully selected in order to achieve high accuracy in both its
predicitons and computed gradients. The setup, training and differentiation
of the DNNs is carried out in the TensorFlow framework (v2.6.0), [50], using
Python.

2. Iteratively optimize (till convergence) by applying gradient-based descent us-
ing, exclusively, the DNN-based sensitivities. In the general case, a number
of entries selected from the DBDNN can be used as starting points (starting

23

designs) and perform as many runs as the number of starting points.

3. Re-evaluate (all or part of) the “optimized” solution(s) on the CFD tool; the
use of quotes (“optimized”) makes clear that this is the best solution according
to the DNN.

4. Update the DBDNN with all the recently evaluated solutions, if necessary, and
repeat all four steps starting from step 1. The termination criterion is related
to the DNN prediction accuracy.

In step 1, the DNN is configured differently in each problem. Experience has shown
that, the use of a single DNN in all problems is not a viable solution, in CFD-based
analysis. Regarding this work, the demonstrated problems involve different physics,
hence, different models are deployed for each case. The DNNs hyperparameters
result either by a trial-and-error procedure regarding the models’s accuracy in both
their predictions and computed gradients, or, they are optimized using the in-house
evolutionary algorithm software, EASY [51]. The DNNs are configured only once
and then can be used to drive optimizations with any user-defined objective func-
tion (assuming the geometry parameterization and the flow conditions remain the
same). The cost of configuring the DNNs’ architecture varies from case to case and,
in compare with the cost of solving the flow equations, it can be considered relatively
smaller. Especially in the case where solving the flow problem is computationally
expensive, i.e. in turbulent flow, the cost of ”searching” for the DNNs’ configura-
tion is even less important. At all demonstated cases, the cost needed to configure
a model’s architecture is assumed negligilbe, as a one-time task that once it’s fin-
ished, provides a DNN model that can be flexibly used in multiple optimizations
that involve different objective functions.

In both the adjoint-based and the DNN-driven optimizations, the design variables
are not allowed to outpass their upper or lower boundaries, defined when sampling
the geometries for constructing the DBDNN. If, after an update (performed in step
2), the design variables’ values violate the defined boundaries, these values are set
equal to their upper or lower limits, respectively.

3.4 In-House Software and Tools

� PUMA: All flow simulations are performed using the in-house GPU-accelerated
CFD solver, PUMA, [52, 48] which numerically solves the Navier-Stokes equa-
tions for compressible and incompressible fluids; herein the compressible flow
variant is used. The flow and their (continuous) adjoint equations are dis-
cretized on unstructured/hybrid meshes, using the vertex-centered finite vol-
ume technique. The viscous flow equations for compressible fluids are written
in the form

24

Rn =
∂f inv

nk

∂xk

− ∂fvis
nk

∂xk

= 0 (3.1)

where

f inv
k =[ρvk ρvkv1+pδ1k ρvkv2+pδ2k ρvkv3+pδ3k ρvkht]

T are the inviscid and
f vis
k = [0 τ1k τ2k τ3k vℓτℓk + qk]

T the viscous fluxes. ρ, p, vk and ht stand
for the fluid’s density, pressure, velocity components, total enthalpy and δkm
is the Kronecker symbol, respectively. The viscous stress tensor is given by

τkm=µ
(

∂vk
∂xm

+ ∂vm
∂xk

− 2
3
δkm

∂vℓ
∂xℓ

)
where µ is the bulk viscosity and qk the heat

flux. All computations are made with second-order accuracy. The inviscid
(Euler), laminar and turbulent flow models of simulation are included and,
when the latter is selected, PUMA implements a variaty of turbulence models,
such as the Spalart-Allmaras model, the standard k-epsilon model and the
baseline and SST variants of the k-ω model.

In both the flow and adjoint solvers of PUMA, high parallel efficiency is
achieved by the use of Mixed Precision Arithmetics (MPA), [52]. MPA re-
duces the memory footprint of the code and the memory transactions of the
GPU threads with the device memory, without affecting code’s accuracy. In
particular, the memory demanding computations of the coefficient matrices of
the linearized systems is performed with double, though these are stored in
single, precision accuracy. The residuals of the equations, determining the ac-
curacy of the simulation, are always computed and stored in double precision.

In addition to the flow and adjoint solvers, PUMA contains a set of shape
and mesh morphing (parameterization) techniques based on volumetric Non-
Uniform Rational B-Splines (NURBS), [53]. The geometry to be optimized
and (part of) the grid are encapsulated within a NURBS lattice. A knot
vector and a degree must be defined for each parametric direction. Each time
the NURBS lattice points (a.k.a. control points) are displaced, the geometry
changes and the CFD grid is adapted to it.

� EASY: EASY is a general purpose, high fidelity software for the search of op-
timal solutions in single-or multi-objective problems. The software has been
extensively used in engineering applications and provides users with a high
degree of control over the optimization process. Along with a wide range of
options on genetic algorithms and evolutionary strategies, the tool also sup-
ports the approximation of single and multi-objective functions using ANNs
for time consuming problems, and numerous others features, such as optimal
selection of the taining patterns, multilevel algorithms, i.e. Hierarchical opti-
mization, as well as the ability to incorporate metamodels when dealing with
computationally expensive evaluation tools.

25

3.5 Demonstration of the proposed DNN-Driven

Optimization Algorithm

The proposed optimization method is demonstrated on the minimization of the bi-
variate function F (X, Y)

F (X, Y) = cos(2X) + sin(3Y) + sin(X2) + cos(Y 3), X, Y ∈ [−1.6, 1.6] (3.2)

As shown in Fig. 3.2, F is symmetric and has two local minima on the design space,
located at (X, Y) = (1.5, 1.5) and (X, Y) = (1.5,−1.5) respectively. These points
wouldn’t be the function’s minimas if the (X,Y) domain was expanded beyond the
range of (−1.6, 1.6), as verified from the non-zero values of the F derivatives at these
specific points.

X

−2.0
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0 Y−2.0−1.5

−1.0−0.5
0.0 0.5 1.0 1.5 2.0

F

−3
−2
−1
0
1
2

X

−2.0−1.5−1.0−0.50.00.51.0 1.5 2.0

Y

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.52.0

dF
/d
X

−4

−2

0

2

4

X

−2.0−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Y
−2.0−1.5

−1.0−0.5
0.00.5

1.01.5
2.0

dF
/d
Y

−8
−6
−4
−2
0
2
4
6
8

Figure 3.2: The analytical F surface (Left) and its derivatives w.r.t. X (Middle)
and Y (Right) are represented on the X-Y domain.

First, the design space is sampled using the LHS technique and 25 samples (X-Y
combinations) are generated. For each sample the value of F is computed and all
data are normalized within the [0, 1] range according to their minimum and max-
imum values in the samples. Next, a DNN model is trained on the DBDNN. The
model’s configuration resulted after a trial-and-error procedure on its hyperparame-
ters and consisted of 4 hidden layers with 32−64−32−32 neurons respectively. This
DNN architecture was assessed in terms of accuracy (of both F and its gradient) by
combining the most commonly used activation functions (mentioned in the previous
Chapter) in all the DNN’s layers. The MSE loss is selected as the loss function and
Adam as the optimizer with a learning rate of 0.001. After the model was trained,
it was evaluated on a test set of X,Y values (Fig. 3.3) and then, it was differentiated
w.r.t. X (Fig. 3.4) and Y (Fig. 3.5) respectively in order to compute the two partial
derivatives of the DNN approximation function.

26

X

-1.5

0.0

1.5 Y-1.5

0.0
1.5

F

−2

0

2

ReLU

X

-1.5

0.0

1.5 Y-1.5

0.0
1.5

F

−2

0

2

GELU

X

-1.5

0.0

1.5 Y-1.5

0.0
1.5

F

−2
0
2

ELU

X

-1.5

0.0

1.5 Y-1.5

0.0
1.5

F

−2
0
2

SELU

X

-1.5

0.0

1.5 Y-1.5

0.0
1.5

F

−2
0
2

tanh

X

-1.5

0.0

1.5 Y-1.5

0.0
1.5

F

−2

0

2

sigmoid

Figure 3.3: The analytical F function is compared with the predicted surfaces of
DNNs, when using diffferent activation functions in their layers.

X

-1.5 0.0 1.5 Y-1.5
0.0

1.5

−2

0

2
dF
dX

ReLU

X

-1.5 0.0 1.5 Y-1.5
0.0

1.5

−2

0

2
dF
dX

GELU

X

-1.5 0.0 1.5 Y-1.5
0.0

1.5

−2

0

2
dF
dX

ELU

X

-1.5 0.0 1.5 Y-1.5
0.0

1.5

−2

0

2
dF
dX

SELU

X

-1.5 0.0 1.5 Y-1.5
0.0

1.5

−2

0

2
dF
dX

tanh

X

-1.5 0.0 1.5 Y-1.5
0.0

1.5

−2

0

2
dF
dX

sigmoid

Figure 3.4: The analytical derivative of F w.r.t. X is compared with the predicted
derivatives of DNNs, when using diffferent activation functions in their layers.

27

X

-1.5
0.0
1.5

Y
-1.5 0.0 1.5

−5

0
dF
dY

ReLU

X

-1.5
0.0
1.5

Y
-1.5 0.0 1.5

−5

0
dF
dY

GELU

X

-1.5
0.0
1.5

Y
-1.5 0.0 1.5

−5

0
dF
dY

ELU

X

-1.5
0.0
1.5

Y
-1.5 0.0 1.5

−5

0
dF
dY

SELU

X

-1.5
0.0
1.5

Y
-1.5 0.0 1.5

−5

0

5
dF
dY

tanh

X

-1.5
0.0
1.5

Y
-1.5 0.0 1.5

−5

0

5
dF
dY

sigmoid

Figure 3.5: The analytical derivative of F w.r.t. Y is compared with the predicted
derivatives of DNNs, when using diffferent activation functions in their layers.

It can be observed that all DNNs’ approximation functions properly match the an-
alytical function. However, after differentiating the DNNs, deviations are observed
on both the derivatives. When the ReLU or SELU activations are used on the DNN
layers, the computed gradients are coarser than the ’smooth’ analytical surfaces,
due to the non-continuity of the specific activations. The best gradient accuracy is
achieved when using the GELU or ELU activations.

The trained DNNs are used in steepest descent algorithms in order to find the
minimum of F in the (X, Y) space. Herein, (1.0, 1.0) is selected as the initialization
point and 10 optimization cycles are carried out with a descent step of 0.1. The
DNN-driven descents are compared with the analytical descent, in which both F and
its derivatives are computed by their explicit mathematical expressions, in (Fig. 3.6).
As previously mentioned, at each optimization cycle’s update, the design variables
(herein the X, Y inputs) can not outpass their upper and lower boundaries in the
samples. However, the prerequisite of a succesful DNN-driven optimization, is the
capability of the DNNs to extrapolate the output values, herein predicting an output
that has a lower F value than the sample with the minimum F value encoutered in
the DBDNN. DNNs can struggle with extrapolation, as they might not have learned
meaningful patterns and generalize beyond the training data range, and therefore
their predictions for out-of-range values might not be accurate or reliable. For a
better visualization of the range of the F values that the DNNs were trained on, the

28

25 generated samples included in the DBDNN are placed in the X-Y domain, in Fig.
3.6.

Figure 3.6: (Left) Representation of the F surface on the X-Y domain, along with
the analytical and DNN-driven descents, when using different activation functions,
and the 25 samples included in the DBDNN. (Right) Convergence of F at the 10
optimization cycles. The minimum value of F in the samples is drawn with a dotted
line, for comparison.

The steepest descent driven by the DNN trained with the GELU activation results in
a solution that matches better the solution of the analytical descent, in comparison
with the other activation functions. When the SELU or sigmoid activations are
used, the DNN-driven descents result in solutions with a higher F value than the
min. F in the samples, and when the ReLU is used, the descent only decreases F till
that value. On the contrary, the descents driven by DNNs trained with the GELU,
ELU and tanh activations result in solutions with lower values than min. F. One
concern pertaining the convergence of F when using the ReLU, SELU and sigmoid
activations, is that F remains fixed after it reaches a cetrain threshold (herein, the
convergence curve ’flattens’ after the 2nd optimization cycle). This behavior is due to
the saturation of specific activation functions (that affects the computed gradients)
or the incapability to output negative values (that affects the predictions), and can
be better understood if the function’s convergnce is drawn using the normalized
values. The convergence of normalized F , to be referred as F ∗, is shown in Fig. 3.7.

Since, now, the min. F ∗ value corresponds to 0, the models must predict negative
outputs in order to further decrease F ∗. As shown in Fig. 2.4, ReLU and sigmoid
activations are incapable of outputing negative values, and therefore can not predict
a lower F ∗ value than the one included in the DBDNN. In addition, sigmoid and
tanh suffer from the ’vanishing saturation’ phenomenon, near the regions that their
outputs are close to 0 and 1, and −1 and 1, respectively. In these saturated regions,
the activation function outputs values that are close to the limits, often lead to
gradients that approach or become zero. The ’stalling’ of the gradients does not
allow the update of the design variables during the optimization, and therefore
prevent the decrease of F ∗. Despite the behavior of these activations, they can lead

29

0 2 4 6 8 10
Op#imiza#i n Cycles

−0.2

0.0

0.2

0.4

0.6

0.8

F*

Sample wi#h Min. F* Value
Analy#ical
ReLU
GELU
SELU
ELU
#anh
sigm id

Figure 3.7: Convergence of F ∗ at the 10 optimization cycles. The minimum value
of F ∗ in the samples is drawn with a dotted line, for comparison.

to both accurate predictions and gradients with a performance that varies from case
tot case, and therefore they should not be excluded. The occuring limitations can
be overcomed by appropriately normalizing the data before training. Normalization
is a common practice in deep learning, as it helps in stabilizing and speeding up
the training process. It ensures that the input features have a similar scale and
it prevents some features from dominating the learning process due to their larger
magnitudes. In minimization problems, such as the ones concerned in this work, a
solution would be to normalize the training data with a value that is by a percent
lower than the minimum encoutered in the samples. In that way, 0 corresponds to a
lower value than the minimum in the DBDNN, allowing activations that output only
positive values to predict values outside the range of the training samples. Since
the trained DNN will be used in an optimization, the new minimum value used for
normalizing the data must be selected according to the best-case-scenario of the
improvement expected during the optimization, to prevent the same behavior.

30

Chapter 4

Problem I: Gradient-Based

Optimization of an Isolated Airfoil

in Inviscid Flow

4.1 Introduction

Problem I refers to the shape optimization of the NACA0012 (symmetric) airfoil.
The flow around NACA0012 is inviscid and the objective is to re-design the airfoil’s
shape in order to match a user-defined lift coefficient. First, a DNN is assessed
and trained to predict the lift coefficient values of the airfoil, when given as input
the y-coordinates of the lattice box’s control points that parameterize its shape. A
parametric study is performed on the model’s hyperparameters focusing on the se-
lection of the appropriate activation functions, so as to achieve high accuracy in both
the model’s predictions and derivatives. Later, a gradient-based optimization is per-
formed fully driven by the DNN, which provides both the objective function’s values
and its sensitivity derivatives. The DNN-driven descent optimization is compared
with an adjoint-based optimization in terms of effectiveness and cost.

31

4.2 Flow Conditions, Mesh and Shape Parame-

terization

The flow around the NACA0012 airfoil is inviscid with free-stream Mach number
and flow angle equal to M∞ = 0.50 and α∞ = 2◦, respectively. An unstructured
mesh with ∼ 7.8K nodes is used, shown in Fig. 4.1. The farfield boundaries of the
computational domain are located about 10 chords away from the airfoil.

Figure 4.1: Problem I: (Left) Mesh of the whole computational domain. (Right)
Close-up view of the mesh surrounding the airfoil.

The airfoil shape as well as part of the surrounding mesh are controlled by the 10×7
NURBS lattice of Fig. 6.3. 16 out of the 70 control points are allowed to be displaced
in the normal-to-the chord (c), or vertical, direction, resulting to N =16 design
variables (and, thus, 16 will be the inputs to the DNN), in total. The design variables

(⃗b ∈ RN) are allowed to change within the ±0.05c around their initial values, so as
to avoid the overlapping of the lattice lines. The control points coinciding with the
leading and trailing edge of the airfoil remain fixed.

Figure 4.2: Problem I: NURBS control lattice parameterizing the airfoil contour.
Control points in blue are fixed; red ones can be displaced in the normal-to-the-chord
direction.

32

4.3 DNN Configuration and Training

A DNN model is assessed, so as to predict the lift coefficient (CL) of the NACA0012
airfoil. CL is the lift force (L) exerted by the flow on the airfoil normalized by the dy-
namic pressure coefficient multiplied by the airfoil’s chord (c), as CL = L/(1

2
ρU2

∞c),
where U∞ is the farfield velocity. The LHS technique is used for generating 20 differ-
ent combinations of the design variables, corresponding to 20 different airfoil shapes.
The generated samples are shown in Fig. 4.3. Each sampled geometry is evaluated
on the CFD solver and CL is computed. Thus, the DNN model’s input is a [20×16]
tensor with the sampled coordinates of the lattice control points, with the [20×1]
tensor of the corresponding CL values as output. During the training process, 20%
of the generated patterns is splitted for creating the validation set, thus, a set of
15 airfoil geometries is used for training the DNN and a fixed set of 5 geometries is
used for validating it.

Figure 4.3: Problem I: All the generated airfoil shapes contained in the DBDNN.

4.3.1 Parametric Study on the DNN’s hyperparameters

The DNN’s configuration derives after a parametric study/trial-and-error procedure
for the model’s hyperparameters, focusing mainly on the number of the hidden lay-
ers, the number of neurons per layer and the activation functions. For this first
problem, the selected configuration has four hidden layers, with 32, 32, 64 and 32
neurons, respectively. This DNN architecture was assessed in terms of accuracy
(of both CL and its gradient w.r.t. the design variables) by combining different
activation functions. Four DNNs using the ReLU, the GELU, the sigmoid and the
tanh activation functions in all hidden layers are trained and compared. All mod-
els achieve high accuracy in predicting CL, however the accuracy of the computed
derivatives differs for each model. The results are summarized in Fig. 4.4. The
DNN-based SDs for the baseline geometry using GELU are in better agreement
with FDs. Small discrepancies are observed in the derivatives w.r.t. some design
variables, preserving though the sign of the SDs, in contrast to other activation
functions that yield even wrongly signed SDs.

33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−0.02

0.00

0.02

0.04

Se
ns
iti
vi
ty
 D
er
iv
at
iv
es

FDs
GELU
sigm id
tanh
ReLU

Figure 4.4: Problem I: SDs of CL (w.r.t. the design variables) for the baseline
geometry computed with FDs (black) and derived from the DNN’s differentiation for
the different activation functions: ReLU (red), GELU (blue), sigmoid (green), tanh
(orange). The SDs computed by the adjoint method of PUMA are omitted as these
are practically identical to those computed by FDs.

4.3.2 DNN Loss Convergence and Accuracy Metrics

After the configuration of the DNN’s architecture, the tuning of the rest hyperpa-
rameters of the model follows. The Mean Squared Error (MSE) is used as the loss
function during training and Adam is selected as the optimizer, with a learning rate
of 0.001. In order to configure the optimal number of epochs for training the DNN,
a starting number of 1000 epochs is selected. The convergence of both the training
and validation losses during the 1000 epochs is presented in Fig. 4.5; approximately
600 epochs are sufficient for achieving an MSE magnitude of around ∼10−5 for both
the training and the validation set.

The trained DNN is called to predict the CL value of each sampled geometry in
the DBDNN and the percentage of the Mean Absolute Error (MAE) between the
predictions and the exact CL (as evaluated on the CFD code) is computed according
to 4.1. In Fig. 4.6 the predictions are compared to the exact CL values and the
computed MAE metric for both the training and validation set is shown in a bar-
chart. A MAE value of less than 1% is achieved for the training set with the mean
value of 0.45%. For the validation set, a mean MAE value of 2.65% is achieved,
where

MAE (%) = 100 ·
∣∣∣∣CL,CFD − CL,DNN

CL,CFD

∣∣∣∣ (4.1)

34

0 200 400 600 800 1000
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
SE

 L
os

s

Training
Validation

0 200 400 600 800 1000
Epochs

0

1

2

3

4

5

M
SE

 L
os

s

1e-4

Training
Validation

Figure 4.5: Problem I: (Left) The convergence of the training (red) and validation
(blue) losses during the traininng process of the DNN. (Right) View, in scale, of the
convergence of the two losses during training. Upon the convergence of the valida-
tion loss, noisy fluctuations occur after approximately 700 − 800 epochs, but still of
insignificant magnitude.

1 3 5 7 9 11 13 15 17 19
Sample ID (Sorted)

0.25

0.50

0.75

1.00

1.25

1.50

C
L/
C
L,
b

CFD
DNN

0 5 10 15 20
Sample ID (Sorted)

0

1

2

3

4

5

M
AE

 (%
)

Mean Validation MAE

Mean Training MAE

Training
Validation

Figure 4.6: Problem I: (Left) The CL/CL,b ratio values (red) for each sampled ge-
ometry in the DBDNN (sorted), where CL,b is the CL value at the baseline geometry,
is compared with the predicted values using the DNN (blue) respectively. (Right) The
computed percentage MAE metric for each sample in both the training (blue) and val-
idation (red) sets.

4.4 The DNN - Driven Optimization Run

The optimization aims at re-designing the initial airfoil so as to match a user-defined
lift coefficient value (CL,target). The objective function (to be minimized) is

F =
1

2
(CL − CL,target)

2 (4.2)

where CL,target = 0.6 · 10−2, twice as high as the CL of the baseline profile. Two

35

runs are carried out; the first run relies exclusively on the DNN using the GELU
activation function (as concluded after the previously presented parametric study),
while the second one on PUMA and its adjoint solver. Upon convergence of the
DNN-based optimization run, the “optimized” solution is re-evaluated on PUMA.
This is then added to the DBDNN, the DNN is re-trained, and the optimization is
repeated. Three rounds (each of them including re-evaluations of one “optimized”
solution per cycle and DNN re-training) were sufficient to reach the optimal solution
with a deviation in the CL values (w.r.t. to the CL,target) less than 1%. Given that the
cost of a DNN-based optimization as well as that of the DNN training is practically
negligible (w.r.t. the cost of a CFD run, even if the less costly inviscid flow model is
used), the optimization turnaround time is 23 TUs. This includes the cost to form
the DBDNN (20 TUs) and the three CFD based re-evaluations. On the other hand,
the adjoint-based run (with cost of 2 TUs per cycle) needs 32 TUs for reaching
the target CL,target value. The convergence histories of the optimization runs are
presented in Fig. 4.7.

0 5 10 15 20 25 30
Time Units

0.0

0.2

0.4

0.6

0.8

1.0

F/FBL

DBDNN

D
N
N
-D
ri
ve
n
D
es
ce
nt

Adjoint
Optimization
CFD
Re-Evaluations

20 21 22 23 24 25
Time Units

0

2

4

6

F/FBL

1e-4

Adjoint Optimization
CFD Re-Evaluations

Figure 4.7: Problem I: (Top) Convergence history of the optimization runs based on
the adjoint method (red) and the differentiated DNN (black). Solutions of the DNN-
based optimization which are re-evaluated on the CFD tool are shown in filled blue
circles. (Bottom) Close-up view of the previous curve between TU 20 and 25.

36

In this problem, the overall cost of the optimization is expected to be small, as one
CFD run in a 2D inviscid flow is, in general, computationally inexpensive. The gain
on the total cost of the proposed optimization method would be more apparent in
3D cases, as well as turbulent or even unsteady problems. Overall, the DNN-based
optimization is by ∼31% less expensive than the adjoint-based run and resulted in
an even better solution.

4.5 Comparison of the Optimized Geometries

The optimized airfoil shapes that resulted from the two optimization runs are com-
pared in Fig. 4.8; the curvature on both the suction and pressure side of the opti-
mized airfoils was modifyed, in order to increase CL. The Mach number fields around
the optimized airfoils are compared with the baseline airfoil; overall, the flow speed
increased (pressure decreased) over the suction side of the optimized airfoils, in order
to match the target lift coefficient CL,target.

Figure 4.8: Problem I: (Top) Shape of the baseline (black) and optimized airfoils
based on the adjoint method (blue) and the differentiated DNN (red). (Bottom) Mach
number fields for the baseline (left) and optimized airfoil resulted from the adjoint
method (center) and the differentiated DNN (right).

37

38

Chapter 5

Problem II: Gradient-Based

Optimization of an S-Bend Duct

with Laminar Flow

5.1 Introduction

Problem II deals with the shape optimization of an S-bend duct in order to minimize
the total pressure losses between the duct’s inlet and outlet domain. Problem II
differs from Problem I since this is an internal (rather than external) aerodynamic
case, it has a differernt flow model (viscous flow) and a different objective function.
A DNN is assesed and trained on the generated DBDNN geometries in order to
predict the total pressure losses of the duct, when taking as input the y-coordinates
of the lattice control points that parameterize its shape. The trained DNN is then
used as a surrogate in the gradient-based shape optimization of the baseline duct
and the results of the DNN-driven optimization are compared with the outcome of
an adjoint-based optimization. Since the DNN-driven descent is of negligible cost,
herein a number of individual optimization runs are carried out, starting from each
generated sample in the DBDNN. This alternative approach is proposed in order to
demonstrate another capability of the DNN-driven algorithm, as a promising way
of overcoming the limitation of the gradient-based optimization methods, in which
the optimal solutions highly depend on the initialization point.

39

5.2 Flow Conditions, Mesh and Shape Parame-

terization

The re-design of the S-bend duct aims at the minimization of the mass-averaged
total pressure losses between the inlet (I) and the outlet (O). The objective to
minimize is

F =

∫
SI

ptρvndS +
∫
SO

ptρvndS∫
SI

ρvndS
(5.1)

where pt, vn are the total pressure and the normal velocity pointing outwards to
the CFD domain (this is why in the numerator of Eq. 5.1, the sum, rather than the
difference of two integrals appears). F stands for the losses occuring in the flow due
to the viscous effects. The flow is laminar with Re= 1.84 · 104 (Reynolds number
based on the duct width) and inlet velocity U=20 m/s. The Mach Number and the
total pressure losses fields of the flow for the baseline geometry are shown in Fig.
5.1. The maximum contributions to F are computed near the walls of the S-shaped
part of the duct as expected.

Figure 5.1: Problem II: (Top) Mach Number Field of the baseline geometry. (Bot-
tom) Total Pressure Losses Fields of the baseline geometry.

A structured CFD mesh of ∼90K nodes is generated in order to simulate the flow
inside the duct. The duct shape is parameterized using a 8×9 NURBS lattice, Fig.
5.2. 20, (out of the 72) control points are allowed to move in the y direction, yielding
N =20 design variables (20 inputs to the DNN) in total. The design variables are

40

allowed to change within the ±0.05c around their initial values, so as to avoid the
overlapping of the lattice lines.

Figure 5.2: Problem II: Control points of the volumetric NURBS control lattice,
parameterizing the S-bend duct. Blue points are kept fixed, whereas red ones can be
displaced in the y direction.

5.3 DNN Configuration and Training

A DBDNN of 50 duct geometries is used to train the DNN and 20% of the generated
patterns is splitted to form the (fixed) validation set. In comparison to Problem
I, herein a larger DBDNN is constructed, since there are more design variables and
viscocity is also on board. The DNN gets the [50×20] tensor of the y coordinates
of the control points of all samples as input and computes the [50×1] tensor of
the F values (Eq. 5.1). As in Problem I, the model’s configuration was decided
after comparing various hyperparameter combinations, and is made of 7 layers with
32, 64, 128, 256, 128, 64, 32 neurons; the GELU activation function is used for all
hidden layers and the sigmoid for the output one. Since the sigmoid activation is
selected for the output layer, the minimum value for normalizing the training pat-
terns is selected by a percentage lower that the minimum value ecountered in the
samples, herein by 10% lower. After configuring the DNN’s architecture the rest of
its hyperparameters are tuned; The MSE is used as the loss function and Adam as
the optimizer with a learning rate of 0.001. Again, the sufficient number of epochs to
train the model must be decided, thus, a starting number of 2000 epochs is selected.

As shown in Fig. 5.3 the training loss rapidly converges, however the validation loss
remains fixed to a high value throughout the whole training process. This is due to
the fact that the DNN model predictions are validated on a fixed set of data that
is not adequate for generalization. To overcome this limitation, the technique of
cross-validation (or rotation estimation) is used, in which different portions of the
DBDNN data are used to validate and train the model on different iterations, during

41

the training process. Herein, 10 iterations of 200 epochs are carried out, where the
DNN predictions in each iteration are validated on a different set of data. The DNN
predictions of F when using fixed and shuffled training-validation sets are compared
in Fig. 5.4.

0 500 1000 1500 2000
Epochs

0.000

0.005

0.010

0.015

0.020

0.025

M
SE

 L
os

s

Fixed Training set
Fixed Validation set
Shuffled Training set
Shuffled Validation set

0 500 1000 1500 2000
Epochs

0

0.5

1.0

1.5

2.0
1e-3

Fixed Training set
Fixed Validation set
Shuffled Training set
Shuffled Validation set

Figure 5.3: Problem II: (Left) The convergence of the training (blue) and validation
(green) loss in the case of fixed training-validation sets is compared with the conver-
gence of the training (orange) and validation (red) loss in the case of shuffled sets.
(Right) A scaled view of the losses convergence. In this view, the decrease in both the
training and validation losses after each iteration is observed.

0 10 20 30 40 50
Sample ID (Sorted)

0.98

1.00

1.02

1.04

1.06

1.08

F/Fb

CFD
DNN (Fixed)
DNN (Shuffled)

Figure 5.4: Problem II: The F/Fb ratio values (blue) for each sampled geometry in
the DBDNN (sorted), where Fb is computed at the baseline geometry, are compared
with the predicted values of the DNN when using fixed (green) and shuffled (orange)
training and validation sets respectively. The improvement in the predictions accuracy
in the case of cross-validation is observed.

The percentage MAE metric in both cases is computed and demonstated in Fig. 5.5;
the mean MAE value of the validation set in the case of fixed sets is 0.46%, while it

42

decreases significantly when using the cross-validation technique in the value of 0.007
% . The sensitivity derivatives of F w.r.t. the design variables are computed for
both cases and presented in Fig. 5.6. Small discrepancies are observed for both val-
idation methods, however the computed derivatives when using the cross-validation
technique match better the reference adjoint ones, verifying again the effectiveness
of the method.

0 10 20 30 40 50
Sample ID (Sorted)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
N

N
 (F

ix
ed

) M
AE

 (%
)

Mean Validation MAE

Mean Training MAE

Training
Validation

0 10 20 30 40 50
Sample ID (Sorted)

0.00

0.01

0.02

0.03

0.04

0.05

D
N

N
 (S

hu
ff

le
d)

 M
AE

 (%
)

Mean MAE value

Figure 5.5: Problem II: (Left) The computed percentage MAE metric for each sample
in both the training (orange) and validation (blue) sets in the case that they remain
fixed during training. (Right) The percentage MAE metric of the DBDNN samples
when the cross-validation technique is used. In this case, the samples used for training
and validating the DNN cannot be distinguished as they change after each iteration.
In this case, the MAE values are significantly smaller, verifying the effectiveness of
shuffling the training and validation data during the training of the model.

1 2 3 4 5 6 7 8 9 1011121314151617181920

Design Variables

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Se
ns
iti
vi
ty
 D
er
iv
at
iv
es

Adj int
DNN (Fixed)
DNN (Shuffled)

Figure 5.6: Problem II: SDs of F (w.r.t. the design variables) for the baseline
geometry computed with Adjoint (red) and derived from the DNN’s differentiation
when using fixed (blue) and shuffled (green) training-validation sets.

43

5.4 The DNN - Driven Optimization Run

Since the descent phase of the DNN-driven optimization algorithm is of negligible
cost, it was decided to perform optimization runs starting from all sampled geome-
tries forming the DBDNN, i.e. 50 runs in total (Fig. 5.7). Though this is not what
this work generally proposes, such a decision was made since it allows an exhaustive
exploitation of the design space and showcases the appearance of many local minima
in this kind of problems.

0

1st Round:
 50 cycles

50 # Sample ID
0

10
20

30
40

50
0.95

1.00

1.05

F
Fb

DBDNN Samples

Figure 5.7: Problem II: Representation of the 50 DNN-Driven optimization runs
starting from each sample in the DBDNN . The convergence of F normalized with Fb,
is different for each run, resulting in 50 different ’optimal’ solutions.

Upon completion of the 50 optimization runs, the designer may decide which of
the “optimized” solutions should undergo a CFD-based re-evaluation, at the ad-
ditional cost of one TU each. Herein, it is decided to re-evaluate 10% of the 50
“optimized” solutions, i.e. the top 5 of them. These are added to the DBDNN, the
DNN is re-trained and a second optimization round starts. The outcomes of the 5
DNN-based runs, each of which based on an updated (re-trained) DNN, result in
new “optimized” solutions that are re-evaluated on the CFD tool and appended to
the DBDNN. Two re-trainings of the DNN proved sufficient to obtain a DNN pre-
diction accuracy less than 0.5%. At the end of this round, only the best among the
five “optimized” solutions are re-evaluated, resulting in a reduction in F by 4.6%

44

compared to the baseline geometry. The overall cost of the DNN-based optimization
is 61 TUs, consisting of: 50 TUs to generate the DBDNN, 10 TUs (=2×5) to evaluate
the 5 top “optimized” solutions at the end of each cycle and, finally, 1 TU for the
evaluation of the final “optimized” geometry on the CFD code. For comparison, an
adjoint-based optimization is also performed. The optimization loop results in the
same reduction in F compared to the baseline geometry and requires 30 cycles till
convergence, at the cost of 60 TUs. The overall DNN-driven optimization and the
adjoint based optimization are compared in Fig. 5.8.

0 10 20 30 40 50 60
Time Units

0.96

0.97

0.98

0.99

1.00

F/FBL

DBDNN

1s
t R
ou
nd
:

D
N
N
-D
ri
ve
n
D
es
ce
nt

Adjoint Optimization
CFD-Re-Evaluations

50.0 52.5 55.0 57.5 60.0 62.5
Time Units

0.9535

0.9540

0.9545

0.9550

0.9555

0.9560

F/FBL

1st Round

2nd Round

3rd Round

Figure 5.8: Problem II: (Top) Convergence history of the optimization runs based
on the adjoint method (red) and the differentiated DNN (black). Solutions of the
DNN-based optimization which are re-evaluated on the CFD tool are shown in filled
blue circles. (Bottom) Close-up view of the previous curve, in order to make a clear
comparison between the adjoint curve and the three solutions “optimized” by the DNN-
driven run and re-evaluated on the CFD code.

In Problem II, achieving high accuracy on the DNN’s predictions and sensitivi-
ties was a more difficult task, in comparison to Problem I. Thus, the complexity
of the problem (type of the flow, geometry parameterization and selection of the
number of design variables) determines the efficancy of the DNN’s training and
consequently, its performance during the optimization. To improve the accuracy
of both the DNN’s predictions and sensitivities, a larger training DBDNN could be

45

used. Overall, the proposed method had the same performance as the adjoint-based
optimization, resulting in the same reduction in F at (almost) the same compu-
tational cost. The proposed method also allows multiple optimization runs to be
carried out simultaneously, due to the negligible cost of the DNN-driven descent.
This capability is promising and useful for two reasons: First, for exploring multi-
ple solutions in problems with many local minima and secondly, for overcoming the
limitation of the gradient-based optimization, in which the outcome highly depends
on the initialization point.

5.5 Comparison of the Optimized Geometries

The duct shapes optimized using adjoint and the DNN-assisted method are com-
pared with the baseline geometry in Fig. 5.9. The total pressure losses field for the
baseline, and the optimized ducts by the two methods are presented in Fig. 5.10. It
is clear that the optimization changed the lower side of the duct in order to avoid a
small (incipient) separation, shown as a red spot in the baseline geometry. This red
spot develops as a narrow red path that reaches the domain exit. The total pressure
losses distributions on the inlet and outlet domains of the baseline and optimized
ducts are presented in Fig. 5.11. The distributions are computed on the vertical (y)
distance at each domain, that ranges from 0 to the duct’s diameter (from the duct’s
lower side in each domain until its upper side), herein D = 0.2[m] .

Figure 5.9: Problem II: Shape of the baseline (black), the adjoint-based (red) and the
DNN-based (blue) optimized ducts. Axes not in scale (x :y=1:2).

46

Figure 5.10: Problem II: Total pressure losses for the baseline (top) , the optimized
by the adjoint method (center) and the optimized by the proposed DNN-driven method
(bottom) geometries.

47

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
y - Distance [m]

101000

101200

101400

101600

101800

102000

P t
 [P

a]

inlet (Baseline)
outlet (Baseline)
inlet (Adjoint)
outlet (Adjoint)
inlet (DNN)
outlet (DNN)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
y - Distance [m]

0

200

400

600

800

1000

P t
,i
nl
et

−
P t

,o
ut
le
t [

Pa
]

Baseline
Adjoint
DNN

Figure 5.11: Problem II: (Top) Total pressure distribution at the duct’s inlet and
outlet domains for the baseline and the optimized geometries using the adjoint and the
proposed DNN-driven methods. (Bottom) Total pressure difference between the inlet
and outlet distributions for the same duct geometries.

48

Chapter 6

Problem III: Turbulent Flow

Around an Airfoil

6.1 Introduction

The application of the proposed algorithm on the shape optimization of a the Low-
Speed airfoil S8052 is presented as Problem III. The flow is turbulent and the op-
timization’s goal is to re-design the initial airfoil’s shape in order to minimize the
drag coefficient while matching a, user-defined, target lift coefficient. When per-
forming the optimization, the two objectives are expressed as two individual terms
in a common objective function. Two distinguished DNN models are trained on the
generated patterns in the DBDNN, in order to predict the values of the two coeffi-
cients respectively. Both models take as input the y-coordinates of the lattice box’s
control points that parameterize the airfoil’s shape. Once trained, they are used to
drive the airfoil’s shape optimization, where each model provides the predictions and
sensitivity derivatives of the lift and drag coefficient. As in the previous problems,
the effectiveness and outcome of the DNN-driven optimization are compared with
the outcome of an adjoint-based optimization.

49

6.2 Flow Conditions, Mesh and Shape Parame-

terization

The flow around the S8052 low-speed airfoil is turbulent with Re=5 · 105 (Reynolds
number based on the airfoil chord). The free-stream Mach number and flow angle are
equal to M∞=0.021 and α∞=10◦, respectively. A C-type mesh with ∼3.8K nodes
is used, shown in Fig. 6.1. The farfield boundaries of the computational domain
are located about 10 chords away from the airfoil. The mesh lattice lines around
the airfoil start from a distance vertical to the airfoil’s chord around ∼ 10−6 [m]
in order to ensure that the boundary layer region is included. For the simulation,
turbulence is modeled according to the Spalart - Allmaras turbulence model. The
flow conditions of the baseline geometrty are depicted in Fig. 6.2. The turbulence
viscocity field can be observed with greater magnitude after the 2/3 of the airfoil’s
chord approximately.

Figure 6.1: Problem III: (Left) Mesh of the whole computational domain. (Right)
Detail of the mesh surrounding the airfoil.

Figure 6.2: Problem III: (Left) Mach number field for the baseline geometry. (Right)
Turbulent viscocity field contour for the baseline airfoil.

The airfoil’s shape as well as part of the sourrounding mesh are controlled by the

50

10×7 NURBS lattice of Fig. 6.3. 16 out of the 70 control points are allowed to be
displaced in the normal-to-the chord direction, resulting to N=16 design variables,
in total. The design variables (⃗b ∈ RN) are allowed to change within the ±0.20c
around their initial values, so as to avoid the overlapping of the lattice lines. The
control points coinciding with the leading and trailing edge of the airfoil remain
fixed.

Figure 6.3: Problem III: NURBS control lattice parameterizing the airfoil contour.
Control points in blue are fixed; red ones can be displaced in the normal-to-the-chord
direction.

6.3 DNN Configuration and Training

Herein, two separate models are deployed, one for predicting the lift coefficient (CL)
of the airfoil and one for predicting the drag coefficient (CD). CD is defined similarly
to CL, as the drag force (D) exerted by the flow on the airfoil normalized by the
dynamic pressure coefficient multiplied by the airfoil’s chord (c). Because of the
turbulent flow’s nature and its significant impact on the drag force, it was decided
to isolate the predictions of the two coefficients using two separate models, to be
referred as DNNCL

and DNNCD
respectively. The separation of the two models will

not only allow a better focus on the two target coefficients, but will also improve the
accuracy of the computed gradients that are expected to differ noticeably in both
scale and nature. A DBDNN consisting of 40 airfoil geometries is used to train the
two models and the cross-validation technique is again selected. Each deployed DNN
gets as input the [50×16] tensor of the DBDNN samples control points y coordinates
and computes the [50×1] tensor of the CL or CD values respectively.

The configurations of the two models were optimized using the in-house evolutionary
algorithm software, EASY. Two separate optimizations were carried out for each
model regarding the architecture hyperparameters: the number of hidden layers,
the number of neurons per hidden layer and the activation functions (hidden layers-
output layer). The rest hyperparameters remained fixed during the optimization.

51

The MSE was selected as the loss function and Adam as the optimizer with a
learning rate of 0.001. As in Problem II, a pattern of 10 iterations of 200 epochs
was selected for cross-validating the models. The objective of each optimization was
the minimization of the baseline geometry’s sensitivity derivatives error on the first
iteration. The error was measured as the total sum of the absolute differences values
between the computed DNN sensitivities and the reference adjoint sensitivities w.r.t
each DNN input. The optimized architectures of the DNNCL

and DNNCD
models

are presented in Table 6.1.

DNN Neurons per Hidden Layer Activations
DNNCL

1024 - 64 - 4096 - 1024 - 128 -128 GELU - ReLU
DNNCD

32 - 32 - 4096 - 256 - 128 GELU - sigmoid

Table 6.1: Problem III: The optimized configurations of the two models.

The convergence of the loss function during the training of the two models is shown in
Fig. 6.4. After training, the models are called to predict the CL and CD coefficients
of each sample in the DBDNN and their predictions are depicted on the CL-CD

space, normalized with the baseline geometry’s values respectively (Fig. 6.5). The
percentage MAE metric value of each sample’s CL, CD prediction is computed and
presented in Fig. 6.6. As the two models were cross-validated, the training and
validation sets dynamically changed after every iteration, hence, a mean MAE value
of all samples in the DBDNN representing both the training and validation sets is
computed. In both cases, a mean MAE value of around ∼ 0.08%. is achieved. The
sensitivity derivatives of both CL and CD w.r.t. the models inputs are computed for
the baseline geometry after the differentiation of the two models and are compared
with the reference sensitivities of when using the FDs and the adjoint method in
Fig. 6.7. The computed CL SDs satisfactory match the reference SDs, while in the
computed CD SDs discrepancies and even opposite sign at specific design variables
are observed.

0 500 1000 1500 2000
Epochs

0.000

0.002

0.004

0.006

0.008

0.010

D
N
N
C
L
 M

SE
 L

os
s

Training loss
Validation loss

0 500 1000 1500 2000
Epochs

0.00

0.01

0.02

0.03

0.04

D
N
N
C
D
 M

SE
 L

os
s

Training loss
Validation loss

Figure 6.4: Problem III: (Left) The convergence of the training (red) and validation
(blue) loss during the trainng of the DNNCL

model. At specific epochs small spikes can
be observed but still of insignificant magnitude. (Right) Convergence of the training
(orange) and validation (purple) loss during the trainng of the DNNCD

model.

52

0.9 1.0 1.1
CL/CL,b

0.95

1.00

1.05

1.10

1.15

1.20

1.25
C
D
/C

D
,b

CFD
DNNs

Figure 6.5: Problem III: The CFD-evaluated values (red) of CL, CD for each sampled
geometry in the DBDNN are represented on the CL − CD space and are compared
with the predicted values (blue) of the two DNN models. The target and predicted
coefficients are normalized with the baseline geometry’s CL,b, CD,b values, respectively.

0 10 20 30 40
Sample ID

0.00

0.05

0.10

0.15

0.20

C
L

M
AE

 (%
)

Mean MAE value

0 10 20 30 40
Sample ID

0.0

0.1

0.2

0.3

0.4

0.5

C
D
 M

AE
 (%

)

Mean MAE value

Figure 6.6: Problem III: Left) The computed percentage MAE metric for the pre-
diction of the CL coefficient of each sample in the DBDNN. (Right) The computed
percentage MAE metric for the prediction of the CD coefficient of each sample in the
DBDNN.

53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−0.5

0.0

0.5

1.0

1.5

Se
ns

i i
vi

 y
 D

er
iv

a
iv

es

CL/CL,b
FDs
Adjoin
DNNCL

1 2 3 4 5 6 7 8 9 10111213141516

Design Variables

−1

0

1

2

Se
ns

iti
 i
ty
 D
er
i
at
i
es

CD/CD,b
FDs
Adjoint
DNNCD

Figure 6.7: Problem III: The SDs of CL (Top) and CD (Bottom) w.r.t. the design
variables for the baseline geometry are compared with the computed SDs with FDs
(black), adjoint (red) and derived from the DNNCL

’s differentiation (blue).

6.4 The DNN - Driven Optimization Run

The gradient-based optimization aims at designing a new airfoil in which the CD is
minimized, while the CL coefficient’s value has not decreased over the 10% of the
baseline’s value. Thus, a CL,target equal to 0.9CL,b is set and the objective function
(to be minimized) is

F = CD +
1

2
(CL − CL,target)

2 (6.1)

Two runs are carried out; the first run relies exclusively on the DNN, while the

54

second one on PUMA and its adjoint solver. Once the DNN-based optimization run
converges, the “optimized” solution is re-evaluated on PUMA. As shown in Fig. 7.17,
just one DNN-driven descent followed by one CFD re-evaluation was sufficient to
reach the optimal solution. Given that the cost of a DNN-based optimization as well
as that of the DNN training is practically negligible, the optimization turnaround
time is 41 TUs. This includes the cost to form the DBDNN (40 TUs) and the cost of
the one CFD based re-evaluation. On the other hand, the adjoint-based run needs
50 TUs to converge. In Fig. 6.9, the CL and CD values of the DNN-driven and the
adjoint-based optimization solutions are placed on the CL − CD space along with
the DBDNN samples used to train the two DNN models for comparison.

0 10 20 30 40 50
Time Units

0.0

0.2

0.4

0.6

0.8

1.0

F/
F B

L

DBDNN

D
N
N
-D
ri
ve
n
D
es
ce
nt

Adjoint Optimization
CFD Re-Evalutation

40 42 44 46 48 50 52
Time Units

0.1800

0.1825

0.1850

F/
F B

L

Figure 6.8: Problem III: (Top) Convergence history of the optimization runs based
on the adjoint method (red) and the differentiated DNN (black). The solution of the
DNN-based optimization which is re-evaluated on the CFD tool is shown in filled blue
circle. (Bottom) Close-up view of the previous curve.

Even though Problem III deals with turbulent flow, the effectiveness of the proposed
optimization method is again evidenced. Herein, the DNN-based optimization is by
∼20% less expensive than the adjoint-based run and results to a 4% reduction in CD.
The adjoint-based optimization achieves a 3% reduction in CD. As observed from
Fig. 6.9, the solution of the DNN-driven optimization (after evaluated on the CFD
tool) has a lower CD value than the minimum CD value of the training samples in the
DBDNN, while it matches the CL,target with a deviaiton of 0.1% from the target. The
solution resulting from the adjoint-based optimization matches better the CL,target

55

value (deviation of 0.01%), in comparison to the DNN-driven optimization’s solution,
that decreased F by decreasing the airfoil’s CD value.

0.90 0.95 1.00 1.05 1.10
CL/CL,b

0.9

1.0

1.1

1.2

1.3

1.4
C
D
/C

D
,b

DNNs - Standard Training

DBDNN Samples
Adjoint Solution
CFD Re-Evaluation
Target CL/CL,b

0.910 0.915 0.920 0.925
CL/CL,b

0.94

0.96

0.98

C
D
/C

D
,b

Adjoint Solution
CFD Re-Evaluation
Target CL/CL,b

Figure 6.9: Problem III: (Top) Representation of the DBDNN samples (green), the
adjoint-based optimization’s solution (red) and the DNN-driven optimization’s solution
(blue) on the CL − CD space. The DNN - driven optimization’s solution is placed
outside the DBDNN samples area, verifying the effectiveness of the proposed algorithm.
(Bottom) Close - up view on the two solutions.

6.5 Comparison of the Optimized Geometries, Mach

Number and Turbulent Viscosity Fields

The optimized airfoil shapes that resulted from the two optimization runs are com-
pared in Fig. 6.10. The Mach number field around the optimized airfoils are com-
pared with the baseline airfoil in Fig. 6.11; overall, the flow speed increased (pressure
decreased) over the suction side of the optimized airfoils, in order to match the target
lift coefficient CL,target. The turbulent viscocity fields of the baseline and optimized
geometries are compared in Fig. 6.12.

56

Figure 6.10: Problem III: Shape of the baseline (black) and optimized airfoils based
on the adjoint method (blue) and the differentiated DNN (red).

Figure 6.11: Problem III: Mach number field for the baseline (left) and optimized
airfoil resulted from the adjoint method (center) and the differentiated DNN (right)

Figure 6.12: Problem III: Turbulent viscocity field for the baseline (left) and op-
timized airfoil resulted from the adjoint method (center) and the differentiated DNN
(right)

6.6 Proposals for Improving the DNN Predictions

and Gradient Accuracy

At the case of the S8052 airfoil and at all the other demonstrated problems, the
DBDNN was kept as small as possible in order to avoid the increase in the overall
optimization cost. However, training the DNNs on a small DBDNN can lead to several
limitations, such as overfitting, generalization difficulty and high variance, mainly
due to the data scarcity. A parametric study on the DBDNN size is conducted in
order to show the accuracy changes in both the DNNCL

and DNNCD
predictions

and computed gradients. Along with the initial DBDNN that contained 40 different

57

airfoil geometries, three additional databases are constructed consisting of 100, 150
and 250 patterns respectively. The DNNCL

and DNNCD
models are trained upon

each DBDNN and then are evaluated on 10 test geometries not included in any of
the databases. The computed values of CL, CD of one of the 10 samples in the
test set are compared with the reference CFD-based values in Table 6.2. Next, the
two models are differentated in order to compute the CL, CD SDs of the same test
geometry. The comparison of the SDs is shown in Fig. 6.13.

CL CD

CFD evaluation 20.621508 33.581847

DNNCL
DNNCD

DBDNN − 40 20.742136 32.813233
DBDNN − 100 20.656996 33.803564
DBDNN − 150 20.599524 33.636081
DBDNN − 250 20.632137 33.586472

Table 6.2: Problem III: Table containing the CFD-evaluated CL, CD values of the test
geometry. The reference values are compared with the predicted values of the DNNCL

and DNNCD
models, when trained on a DBDNN consisting of 40, 100, 150 and 250

airfoil geometries respectively.

The accuracy of the predictions is improved when the DBDNN size increases until
a specific number of samples (herein 100 samples, almost 5 times the number of
the design variables). Increasing further the size of the DBDNN doesn’t improve the
DNNs’ accuracy significantly. These observations can be verified for all other sam-
ples in the test set. The computed CL SDs match the reference SDs for all DBDNN

sizes. On the contrary, achieving high accuracy on the CD SDs is a more difficult
task. Deviations are observed from the reference SDs, with gradual improvement as
the DBDNN size increases (again, the improvement is evident until a specific number
of entries).

Even though the predictions and the computed gradients of both the DNNCL
and

DNNCD
models are more accurate when trained on a larger DBDNN, the optimiza-

tion can be succesfully driven by the DNNs even when trained on a small DBDNN

(almost 2 times the number of the design variables). As in all gradient-based al-
gorithms used in optimization, it is possible to converge even when the non-exact
gradients values are used, as long as their sign is correct. As a result, the challenge
in the proposed DNN-driven optimization is to select the DBDNN ’s size such that to
strike the right balance between the accuracy of the DNN (on both its predictions
and its gradient) and the overall cost of the optimization. It is preferable to to
keep a small DBDNN size for training the DNNs, even though discrepancies might
occur on their predicitons or gradients, and then improve their accuracy during the
optimization process, by performing CFD re-evaluations of the ’optimal’ solutions
and re-trainings, as many as needed.

58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−0.5

0.0

0.5

1.0

1.5

Se
ns

iti
vi

ty
 D

er
iv

at
iv

es
CL/CL,b

FDs
DBDNN − 40
DBDNN − 100
DBDNN − 150
DBDNN − 250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−1.0

−0.5

0.0

0.5

1.0

1.5

Se
ns

iti
vi

ty
 D

er
iv

at
iv

es

CD/CD,b

FDs
DBDNN − 40
DBDNN − 100
DBDNN − 150
DBDNN − 250

Figure 6.13: Problem III: The SDs of CL (Top) and CD (Bottom) w.r.t. the de-
sign variables for the test geometry computed with FDs (black) and resulting from the
DNNCL

model’s differentiation when trained on a DBDNN consisting of 40 (red), 100
(green), 150 (orange) and 250 (blue) sample airfoils respectively.

Another proposal for improving the accuracy of the DNN predictions and computed
gradients is to include more information about the target during training, such as
the target values derivatives up to a specific order. That would encode additional
information about the target on the model’s parameters and possibly lead to ac-
curacy improvement. The potentials of the gradient-assisted training of DNNs is
studied and demonstrated in the next Chapter.

59

60

Chapter 7

Gradient-Assisted Training of

DNNs

7.1 Introduction

In this Chapter, the derivatives of the target functions (usually, the objective func-
tion) are implemented in the DNN training process in addition to the target function
itself. This method aims at improving the accuracy of the computed gradients, as
well as the data-efficiency and generalization capabilities of the learned approxi-
mations, by encoding additional information about the target function within the
parameters of the neural network. The incorporation of the DNN gradients in the
training process is presented in two variants. The first implementation is based on
the Sobolev Training method of DNNs. The second, is a new idea that is based
on the principles of the Hermite interpolation and thus, is referred as the Hermite
Method. Both variants are tested on function-gradient approximation applications
in mathematics and later extended to the approximation of the CL, CD coefficients
of the S8052 airfoil and its sensitivity derivatives as initially presented in Chapter
6. The trained DNNs (with both variants) are used to drive the shape optimization
of the same airfoil and the results are compared with the DNN-driven optimization
of the standard-trained DNNs and the adjoint-based optimization.

61

7.2 Implementation I: The Sobolev Method

7.2.1 Sobolev Training for Deep Neural Networks

The Sobolev training method for deep neural networks was first introduced by Czar-
necki [54], as a method to incorporate the target derivatives in addition to the target
values while training. The method was inspired by the work of Hornik [55], which
proved the universal approximation theorems for neural networks in Sobolev spaces,
where distances between functions are defined both in terms of their differences
in values and differences in values of their derivatives. A Sobolev Space [56] is a
vector space of functions equipped with a norm that is a combination of Lp-norms
of functions together with its derivatives up to a given order. Consequently, the
loss function to be minimized during the Sobolev training in the case of one target
output and one input variable, is defined as the total sum of the norm-differences of
the DNN predictions (ŷi) and target values (yi) in addition to the total sum of the
norm-differences of the computed derivatives of the DNN w.r.t. each input (Dxŷi)
and the target derivatives (Dxyi), as expressed in

Losssobolev = Lossfunc + Lossgrad =
Ns∑
i=1

Lp
f (ŷi, yi) +

Ns∑
i=1

Lp
g(Dxŷi, Dxyi) (7.1)

Dx is the differential operator w.r.t. the variable x and i = 1, ..., Ns where Ns is
the total number of samples in the DBDNN. The Lp

f , L
p
g stand for the selected Lp-

norms for measuring the error of the predicted function values and the computed
gradients respectively: The MAE corresponds to p = 1 and the MSE for p = 2.
For multi-output regression problems in which DNNs are used to approximate more
than one targets, the Lossfunc term would contain as many constituent terms as
the number of targets. Similarly, in the common case of multiple DNN inputs, the
Lossgrad constituent contains one term for each partial derivative, measuring the
error of the target(s) derivatives w.r.t each input. In addition, an appropriate set of
weights could be applied to each term of the Losssobolev, so as to properly tune the
overall loss during training and allow for a finer and more qualitative learning from
the DNN.

Practically, the difference of a Sobolev-trained DNN (Fig. 7.1) with a standard
trained-DNN, pertaining the training process, is that the gradient of the target(s)
w.r.t. their input(s) is also computed during training (using external code provided
by the user, based on the black-box RAD function of the TensorFlow framework)
and is compared with the target/reference gradient values, by adding additional

62

term(s) at the loss function. Consequently, the DBDNN in the Sobolev case not only
contains the target(s) values, but also the values of their first derivative(s) computed
at each sample. It is evident that when the Sobolev training method is applied to
CFD problems, the computational cost unavoidably increases, due to the expensive
computation of the required SDs. Herein, the reference SDs will be computed using
the adjoint method, so as to keep the cost as small as possible.

Figure 7.1: Implementation I : DNN configuration with one input layer (blue) , user-
defined hidden layers (black) and one output layer (green). The model’s predictions (ŷ)
are computed from the forward pass of the model and the prediction’s gradient w.r.t.
the x input (Dxŷ) is computed using RAD. During training, both the predictions and
their gradient are compared with their target values, respectively, using the Sobolev-
type loss function.

The empirical success of the Sobolev training method is demonstrated in a number
of works, as in [57], where it was proven that an overparameterized (with more than
the necessary parameters to fit the training data accurately) two-layer ReLU neural
network trained on the Sobolev loss with gradient flow from random initialization can
fit any given function values and any given directional derivatives, under a separation
condition on the input data, and in [58], where the Sobolev loss is implemented for
training thermodynamic-informed neural networks in order to gain control over the
derivatives of the learned functions and derive thermodynamically consistent and
interpretable elastoplasticity models that, exhibit excellent learning capacity. In
[59], the direct impacts of Sobolev training on neural network surrogate models
embedded in optimization problems was examined, where it was shown that sobolev
trained surrogate models result in more accurate derivatives (in addition to more
accurately predicting outputs), with direct benefits in gradient-based optimization.

63

7.2.2 Demonstration of the Sobolev Method on the Approx-

imation of a Bi-Variate Function

The implementation of the Sobolev training method is demonstrated on the bi-
variate function of Chapter 3. To properly incorporate the target derivatives in
the training process, it must be ensured that they are in the same scale with the
derivatives resulting from the DNN’s differentiation. The scale of the computed
DNN derivatives depends on the transformations (scaling) applied to the generated
DBDNN patterns before training. At all demonstrated cases, both the DNN ’s inputs
and outputs are normalized within the range of [0, 1] according to their minimum
and maximum values in the sampled data, as in equations

X∗ =
X −Xmin

Xmax −Xmin

(7.2)

Y ∗ =
Y − Ymin

Ymax − Ymin

(7.3)

F ∗ =
F − Fmin

Fmax − Fmin

(7.4)

Since the DNN will be trained on the normalized data, the derivatives of F ∗ w.r.t. X∗

and Y ∗ respectively will be computed. The relation between the target derivatives
on the original scale and the computed DNN derivatives results from the chain rule

dF ∗

dX∗ =
dF ∗

dF

dF

dX

dX

dX∗ =
Xmax −Xmin

Fmax − Fmin

· dF
dX

(7.5)

dF ∗

dY ∗ =
dF ∗

dF

dF

dY

dY

dY ∗ =
Ymax − Ymin

Fmax − Fmin

· dF
dY

(7.6)

It is concluded that in order to properly incorporate the derivatives in the training
process, each partial derivative must be multiplied with the fraction of the range of
the reference input variable with the range of the target output. When the target
derivatives are brought to the same scale as the DNN derivatives, they will not
necessarily be in the range of [0,1], but will vary within a range that is formed by
the ranges of the sampled input and output data respectively. In that case, the two
loss terms Lossfunc and Lossgrad of Eq. 7.1 will be in different scale as well. On the
TensorFlow-Keras [60] framework implementation, although a common optimizer is
used regarding the overall Losssobolev, it is possible to use different loss functions
for the Lossfunc and Lossgrad constituents or even to multiply each term with a

64

different weight during training. In that way, a different penalty is applyed to each
constituent and the total loss function is properly tuned, allowing more qualitative
learning from the DNNs.

Again, a DNN is assessed (same configuration as in Chapter 3) and trained on the
values of both function F and its two partial derivatives dF

dX
, dF
dY

on the DBDNN. The
MSE is used for both loss constituents and Adam as the optimizer with a learning
rate of 0.001. Although there is a small scale difference between the target values
and the derivatives, no limitations were encoutered during training, thus, no ancilary
weights were applied on the two losses. After training, the predictions of F were
calculated and the DNN was differentiated w.r.t X and Y respectively. The resulting
predictions and derivatives are presented on Fig. 7.2 in compare with their target
counterparts, as well as the predictions and computed derivatives of the standard-
trained DNN respectively. The Sobolev-trained DNN achieved high accuracy in
predicting F , same as in the case of the standard-trained DNN. Improvement was
observed on both the computed derivatives, where their surfaces’ curvature was
properly captured.

X

−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5 Y−1.5−1.0

−0.5 0.0 0.5 1.0 1.5

−2

−1

0

1

2

X

−1.5−1.0−0.50.00.51.01.5
Y

−1.5−1.0−0.50.00.51.01.5

−2

−1

0

1

2

X
−1.5−1.0−0.50.00.5

1.01.5

Y
−1.5−1.0−0.50.00.51.01.5

−6

−4

−2

0

2

4

6

Figure 7.2: Implementation I : (Top) The F surface predicted by the Sobolev-trained
DNN (green) is compared with the predicted surface of the standard-trained DNN (blue)
and the analytical surface (red). (Bottom) The same comparison is shown for the
derivatives of F w.r.t. X (Left) and Y (Right).

65

7.2.3 Demonstration of the Sobolev Method on Problem III

As in Problem III, two separate DNN models are trained according to the Sobolev
method in order to predict the S8052 airfoil’s CL, CD coefficients respectively. The
total loss function of Eq. 7.7 consists of Nb = 16, in total, gradient loss constituents
that are summed up and added to the function loss constituent,

Losssobolev =
Ns∑
i=1

[
Lp
f (ŷi, yi) +

Nb∑
j=1

Lp
g(Dxj

ŷi, Dxj
yi)

]
(7.7)

A DBDNN of 25 airfoil geometries is generated using the LHS method in order to
train the DNNs. For each sample in the DBDNN the SDs (w.r.t. the design variables)
are computed using the adjoint method. 20% of the sampled airfoils is used to cross-
validate the models with the pattern of 8 iterations of 200 epochs each. Since new
information about the targets is now included in the training, the previous DNN
configurations are no longer guaranteed to be optimal. Two new optimizations were
carried out using the EASY software in order to configure the optimal architecture
of the two models. The objective of the optimization was to minimize the Losssobolev
on the first iteration. The rest of the models hyperparameters remained fixed during
training. The MSE was used as the loss function for all constituents and Adam as
the optimizer with a learning rate of 0.001. Again, no ancilary weights were applied
on the individual loss terms. The optimized architectures are presented in Table
7.1.

DNN Neurons per Hidden Layer Activations
DNNCL

1024 - 1024 - 2048 - 512 - 64 -4096 - 32 - 2048 -1024 ReLU - GELU
DNNCD

4096 - 4096 - 64 - 32 - 256 - 256 - 2048 - 64 GELU - GELU

Table 7.1: Problem III: The optimized configurations of the two models.

The loss convergence of the two models, again to be referred asDNNCL
andDNNCD

respectively, is presented in Fig. 7.3. Instead of showing the total loss, it was decided
to plot the function and gradient terms separately in order to isolate the convergence
of each constituent. The function term in this case refers to the coefficients loss and
the gradient term to the sensitivities loss. Once trained, the models are called to
predict the CL and CD coefficients of each sample in the DBDNN and their predictions
are depicted on the CL-CD space, normalized with the baseline geometry’s values
respectively (Fig. 7.4). The percentage MAE metric value of each sample’s CL, CD

prediction is computed and presented in Fig. 7.5; A mean MAE value of around
∼ 0.25% is achieved for the CL predictions and a value of around ∼ 0.04% for the
CD predictions. The sensitivity derivatives of both CL and CD w.r.t. the models
inputs are computed for the baseline geometry after the differentiation of the two
models and are compared with the sensitivities of the standard-trained DNNs and

66

their reference FDs and ajoint counterparts in Fig. 7.6; The computed CL SDs
satisfactory match the reference SDs, while the CD SDs were significantly improved
in compare with those of the standard-trained DNN.

0 500 1000
Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
N
N
C
L
 M

SE
 L

os
s

Training loss (CL)
Validation loss (CL)
Training loss (SDs)
Validation loss (SDs)

0 500 1000 1500
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

D
N
N
C
D
 M

SE
 L

os
s

Training loss (CD)
Validation loss (CD)
Training loss (SDs)
Validation loss (SDs)

Figure 7.3: Implementation I : The convergence of the training (blue) and validation
(green) function loss terms and the convergence of the training (orange) and validation
(red) gradient loss terms during the training of the DNNCL

(Left) and the DNNCD

(Right) models. In both cases, 1600 epochs, in total, were sufficient for all loss func-
tions to fully converge.

0.9 1.0 1.1
CL/CL,b

1.00

1.05

1.10

1.15

1.20

C
D
/C

D
,b

CFD
DNNs

Figure 7.4: Implementation I : The CFD-evaluated values (red) of CL, CD for each
sampled geometry in the DBDNN are represented on the CL − CD space and are com-
pared with the predicted values (green) of the two DNN models. The target and pre-
dicted coefficients are normalized with the baseline geometry’s CL,b, CD,b values.

67

0 5 10 15 20 25
Sample ID

0.0

0.2

0.4

0.6

0.8

1.0

1.2
C
L

M
AE

 (%
) Mean MAE value

0 5 10 15 20 25
Sample ID

0.0

0.1

0.2

0.3

0.4

C
D
 M

AE
 (%

)

Mean MAE value

Figure 7.5: Implementation I : The computed percentage MAE metric for the CL

(Left) and the CD (Right) predictions of each sample in the DBDNN.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variable

−0.5

0.0

0.5

1.0

1.5

Se
n

iti
vi
ty
 D

er
iv
at
iv
e

CL/CL,b

FD
Adjoint
DNNCL - Standard
DNNCL - Sobolev

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−1

0

1

2

Se
ns

i i
vi

 y
 D

er
iv

a
iv

es

CD/CD,b

FDs
Adjoin
DNNCD - Standard
DNNCD - Sobolev

Figure 7.6: Implementation I : SDs of CL (Top) and CD (Bottom) w.r.t. the design
variables for the baseline geometry computed with FDs (black), Adjoint (red), the
standard-trained DNN (blue) and the Sobolev-trained DNN (green).

68

7.3 Implementation II: The Hermite Method

7.3.1 Hemite Interpolation

In Numerical Analysis, the Hermite Interpolation is a method of polynomial inter-
polation which generalizes the Lagrange interpolation [61]. The original definition
refers to problems of one variable with one target output and is used in the case
both the target’s values and its first derivatives are known for the given sample
points. Similarly to the Lagrange interpolation, the total approximation function
is formed by a set of basis polynomials in order to pass through the target points
and coincide with the given values of its derivatives at these points as well. Herein,
two different types of (orthogonal) basis polynomials are defined for each sample,
such as to disengage the interpolation of the target’s values from the interpolation
of the derivative values. The first type of polynomials, to be referred as Hj, where
j = 1, ..., Ns contribute only to the interpolation of the target values, while the
second type of polynomials, to be referred as Hj, contribute only to the interpola-
tion of the derivative values. To implement this, the Hj polynomials must return 1
when computed at the xi sample if i = j, where i = 1, ..., Ns and 0 at any other xi

sample, while the Hj polynomials must return 0 when computed at the xi sample.

The opposite rule applies to the derivatives of the basis polynomials, H ′
j and H

′
j,

respectively. The described properties are expressed as

Hj(xi) = δ i
j , H ′

j(xi) = 0

Hj(xi) = 0 , H
′
j(xi) = δ i

j

(7.8)

The Lagrange polynomials satisfy the equation Lj(xi) = δ i
j and therefore are used

to define the Hermite basis polynomials according to the formulas

Hj(x) = (1− 2L′
j(xj)(x− xj))(Lj(x))

2

Hj(x) = (x− xj)(Lj(x))
2 (7.9)

The final interpolation function is a linear combination of the Hermite basis poly-
nomials multiplyed with the target output or target derivative respectively as

g(x) =
Ns∑
j=1

Hj(x)yj +
Ns∑
j=1

Hj(x)y
′
j (7.10)

The Hermite interpolation method can be extended for the interpolation of bi-variate
or even multi-variate functions and their derivatives. The basic developed concepts
for the implementation of the multivariate Hermite interpolation were described in

69

[62], while many recent works present modern and intelligent techniques for applying
the hermite interpolation on higher dimensions. In [63], new algorithms for Hermite
interpolation and evaluation over finite fields of characteristic two were presented, in
which the algorithms first reduced the Hermite problems to instances of the standard
multipoint interpolation and evaluation problems and then solved them by existing
fast algorithms. In [64], the Hermite interpolation was studied on n-dimensional
non-equally spaced, rectilinear grids over a field of characteristic zero, given the
values of the function at each point of the grid and the partial derivatives up to a
maximum degree.

Other works propose the use of ML models in order to overcome the challenges of
the Hermite interpolation in high dimensions and on irregular domains. In [65],
Radial Basis Functions (RBFs) were applied as a suitable tool to high dimensional
Hermite interpolation problem on irregular domains. The available derivatives in-
formation was presented using fractional order derivatives instead of integer ones
and the optimal recovery conditions for the fractional Hermite interpolant were in-
vestigated and presented. In [66], the authors of PCOpt proposed a new variant of
Radial Basis Function Networks (RBFNs), with enhanced capacity to approximate
any input–output mapping defined by a collection of activation signals and the corre-
sponding responses. The nonlinear mapping from the input to the hidden network
units was modified by taking into account approximate values of the directional
slopes of the response surface with respect to the free parameters. In [67], an adap-
tive self-organizing Hermite-polynomial-based neural control system was proposed,
were its capability of achievieng favorable control performance in real-time systems
was evidenced. The system was composed of a neural controller and a supervisor
compensator, designed to eliminate the approximation error between the neural con-
troller and the ideal feedback controller without chattering phenomena. The neural
controller consisted of one input, 3 intermediate, and one output layer; The first in-
termediate layer, named as ’Hermite layer’, was a hidden layer in which the Hermite
basis polynomials were used as activation functions. The second intermediate layer,
that was referred as ’reception layer’, consisted of one node in which the summation
of all the incoming signals was performed. Finally, the third intermediate layer was
a hidden layer with a custom activation function, that was practically resposible for
eliminating the error between the neural and the ideal controller.

In this Diploma Thesis, an alternative implementation method of the multivariate
Hermite interpolation is proposed, using DNNs as surrogates of the Hermite basis
polynomials. This method explores a new way of incorporating the target values
derivatives in the training process and its capabilities in achievieng higher accuracy
in both the DNN ’s predictions and computed derivatives.

70

7.3.2 DNNs as Surrogates of the Hermite Basis Polynomials

The formula of the total approximation function of Eq. 7.10 can equivalently be
re-expressed as the sum of two matrix products as


g(xi=1)
g(xi=2)

...
g(xi=Ns)

 =


Hj=1(xi=1) ... Hj=1(xi=Ns)
Hj=2(xi=1) ... Hj=2(xi=Ns)

...
Hj=Ns(xi=1) ... Hj=Ns(xj=Ns)

 ·


Y (xi=1)
Y (xi=2)

...
Y (xi=Ns)

 +


Hj=1(xi=1) ... Hj=1(xi=Ns)
Hj=2(xi=1) ... Hj=2(xi=Ns)

...
Hj=Ns(xi=1) ... Hj=Ns(xi=Ns)

 ·


Y ′(xi=1)
Y ′(xi=2)

...
Y ′(xi=Ns)


(7.11)

The first matrix contains the values of the Ns, in total, Hj basis polynomials where
j = 1, ..., Ns, computed at each xi sample where i = 1, ..., Ns and equals to the
identity matrix in order to satisfy the Hermite interpolation’s conditions of Eq. 7.8.
The second matrix contains the values of the Hj basis polynomials computed at
each xi sample and therefore equals to the zero matrix. The two [Ns × Ns] matri-
ces are multiplied with the [Ns × 1] vectors containing the target values and the
derivative values respectively, and the products of the two multiplications are added
to compute the total interpolation values.

At the proposed implementation, the two sets of basis polynomials Hj, Hj, are mod-
eled by two distinguished DNN branches, to be referred as Bfunc and Bgrad respec-
tively. In this case, the values of the two matrices of Eq. 7.11 are no longer provided
by polynomials with an explicit mathematical expression, but are computed by two
separate DNN branches in Ns discrete points. The number of neurons at that layer
in each branch is set equal to Ns in order to provide the [Ns × Ns] tensor when
computed at all samples. These layers are to be referred as ’Basis layers’. Next, the
output matrices of the two individual Basis layers are multiplied with the vectors
containing the target values and the derivative values respectively, and the two mul-
tiplication products are again added in order to form the total DNN approximation
function. Instead of performing the two multiplications as a post-process procedure,
it was decided to add one more layer after the Basis layer of each branch, with fixed,
non-trainable weights. The weights of the Bfunc’s output layer are assigned with the
values of the target, while the weights of the Bgrad’s output layer are assigned with
the values of the derivatives. In addition, it can be decided whether an activation
function will be used on these output layers. The proposed architecture is shown in
Fig. 7.7. In summary, the Bfunc, Bgrad branches consist of the following layers:

71

� Input Layer: Both branches have an input layer with the dimension of the
model’s inputs.

� Hidden Layers: Bfunc and Bgrad have a user-defined number of hidden layers
that is not necessarily equal for the two branches.

� Basis Layer: The Basis layer follows the hidden layers. The number of nodes
is set equal to the number of samples (Ns) so as to output the [Ns×Ns] tensor
when computed at all samples included in the DBDNN. The resulting kernels,
to referred as filters, replace the tensors containing the values of the analytical
Hermite basis polynomials Hj(x) and Hj(x), respectively, of Eq. ??.

� Output Layer: The output layer of Bfunc has the dimensionality of the
targets. Herein, one target is considered. The samples’ target values (yj) are
set as the weights of the output layer and remain fixed during the training
process. The output layer of Bgrad has the dimensionality of the input. In
case of one variable, the samples’ derivatives values (y′j) are set as the output
layer’s weights that, similarly, remain fixed during training. The outcomes of
the Bfunc and Bgrad output layers are added in order to form the total DNN
interpolation function g(x).

Figure 7.7: Implementation II: Demonstration of the proposed DNN architecture for
one input and one target. The model’s input (x) sequentally passes through the in-
put layer (red), hidden layers (black) and Basis layer (blue) of the Bfunc and Bgrad

branches, respectively. A final output layer (green) follows, where the use of an ac-
tivation function is also possible. The outcomes of the two output layers are added,
forming the total DNN interpolation function g(x).

After configuring the structure of the surrogate model, the next step is to enforce the

72

Hermite interpolation’s conditions. One variation would be to train the proposed
DNN such that the outputs of the two Basis layers equal the identity and zero
matrix, respectively. In that case, however, no information about the target would
pass on the model’s parameters. Herein, it was decided to apply the conditions on
the total approximation function, by using a Sobolev-type loss function,

Losshermite = Lossfunc + Lossgrad =
Ns∑
i=1

Lp
f (ĝi, yi) +

Ns∑
i=1

Lp
g(Dxĝi, Dxyi) (7.12)

The DNN is trained such that the output approximation function g (even though it
consists of two different function-weighted and gradient-weighted terms) to match
the target function and, after differentiated, to match the target derivative. Since
no restrictions are applied to the output matrices of the Basis layers during training,
they will not necessarily be equal to the identity and zero matrices, as in standard
Hermite interpolation. Herein, the contribution of each branch will be determined
during training. The advantage of this method is that it can easily be extended to
higher dimensions. For example, in the case of n (input) variables and one target,
the implementation would only require to set the number of neurons on the output
layer of Bgrad branch equal to n, so as to compute the n partial derivatives of the
target w.r.t. each input. Again, a Sobolev-type function, that would consist of one
function loss term and n constituent gradient loss terms, can be used.

7.3.3 Demonstrarion of the Hermite Method on the Ap-

proximation of Uni-Variate and Bi-Variate Functions

The proposed Hermite method is demonstrated in the uni-variate function

F1(x) = sin(3x) + cos(x3), x ∈ [−0.8, 0.8] (7.13)

To train the Hermite-structured DNN, 20 samples of x are generated using the LHS
method. The configuration of each branch in the surrogate model resulted from a
trial-and-error procedure. The Bfunc branch consists of 4 hidden layers with 32-64-
32-32 neurons each and the Bgrad branch consists of 5 hidden layers with 32-64-64-
32-32 neurons. In both branches the GELU activation is selected for the hidden
layers and it is decided to activate the output layers with the Linear activation. The
training patterns are normalized in the range of [0, 1], as in the Sobolev case, and
the cross-validation technique is again used to validate the model during training.
The MSE loss is used as the loss function for all constituents of the Losshermite and
Adam as the optimizer with a learning rate of 0.001. The predicted values of F1 from

73

the trained model as well as the contribution functions of each branch are shown in
Fig. 7.8.

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Variable x Val es

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

F1

F nction Training Samples
DNN Interpolation
Bfunc Contrib tion
Bgrad Contrib tion

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Variable x Values

−3

−2

−1

0

1

2

3

F ′
1

Gradien Training Samples
DNN In erpola ion's Gradien
B ′
func Con ribu ion

B ′
grad Con ribu ion

Figure 7.8: Implementation II : (Left) The computed values of F1 at the 20 samples
(black) are compared with the predicted values of the surrogate model (blue), resulting
from the combination of the Bfunc contribution function (red) and the Bgrad contri-
bution function (green). (Right) The derivative of F1 computed at the samples values
(black) are compared with the derivative values resulting from the differentiation of the
DNNś approximation function (blue). The computed DNN derivative results from the
combination of the Bfunc’s differentiation (red) and the Bgrad’s differentiation.

In comparison with the standard Hermite interpolation, herein the two DNN branches
contribute equally and complementary to each other, resulting in two different con-
stituent functions that are combined in order to form the total approximation func-
tion. To better visualize the contribution of each branch, the filters of the standard
and the surrogate interpolation method are compared in Fig. 7.9; The standard
Hj and Hj filters are point-cloud representations of the identity and zero matrix
respectively, as expected. For each sample there is a unique contribution, that is

74

due to the Hj filter only. At the DNN implementation, two types of contributions
are observed. First, both the Hj, Hj filters contribute to the total interpolation.
Second, there is no longer a disunion between the samples, but the total outcome
results from the linear combination of all samples. The value computed at each
sample is influenced by a different set of samples values each time, resulting in a
’blended’ point-cloud distribution. For comparison, the gradients of the standard
and surrogate filters that contribute when computing the gradient of the total inter-
polation, are presented in Fig. 7.10. Again, the different contribution patterns can
be observed between the two implementations, in addition to a scale difference that
is due to the use of activation functions in the case of the DNN implementation.

xj sample IDj=1,...,Ns

0 5 10 15 x i sa
mple

 ID

i=1,..
.,Ns

0
5

10
15

0.0
0.2
0.4
0.6
0.8
1.0

Hj(x) - Standard Filter

xj sample IDj=1,...,Ns

0 5 10 15 x i sa
mple

 ID

i=1,..
.,Ns

0
5

10
15

−0.1
0.0
0.1
0.2
0.3
0.4

Hj(x) - DNN Filter

xj sample IDj=1,...,Ns

0 5 10 15 x i sa
mple ID

i=1,...,
Ns

0
5

10
15

−0.04
−0.02
0.00
0.02
0.04

Hj(x) - Standard Filter

xj sample IDj=1,...,Ns

0 5 10 15 x i sa
mple ID

i=1,...,
Ns

0
5

10
15

−0.1
0.0
0.1
0.2
0.3
0.4
0.5

Hj(x) - DNN Filter

Figure 7.9: Implementation II : Comparison of the Hj (Top) and Hj (Bottom) filters
of the standard Hermite interpolation (Left) and the DNN variant (Right).

75

xj sample IDj=1,...,Ns

0 5 10 15 x i sa
mple ID

i=1,...,
Ns

0
5

10
15

−0.04
−0.02
0.00
0.02
0.04

H ′
j(x) - Standard Filter

xj sample IDj=1,...,Ns

0 5 10 15 x i sa
mple

 ID

i=1,..
.,Ns

0
5

10
15

0
1
2
3
4
5
6
7

H ′
j(x) - DNN Filter

xj sample IDj=1,...,Ns

0 5 10 15 x i sa
mple ID

i=1,...,
Ns

0
5

10
15

0.0
0.2
0.4
0.6
0.8
1.0

H′
j(x) - Standard Filter

xj sample IDj=1,...,Ns

0 5 10 15 x i sa
mple ID

i=1,...,
Ns

0
5

10
15

−0.5
0.0
0.5
1.0
1.5

H′
j(x) - DNN Filter

Figure 7.10: Implementation II : Comparison of the H
′
j (Top) and H

′

j (Bottom)
filters of the standard Hermite interpolation (Left) and the DNN variant (Right).

The Hermite interpolation function is unique, meaning that there is only one possible
function that can exactly interpolate a given set of data points and their associated
derivatives using the Hermite interpolation method. Herein, the total DNN approx-
imation function highly depends on the model’s architecture and mainly, on the
used activation functions. To exploit the possible outcomes of the surrogate model,
a parametric study is conducted on the previous example, focusing on the activa-
tions used on the two output layers of the model; The DNN is re-trained with a
different combination of the GELU, tanh, sigmoid and Linear activations on its out-
put layers, and, the case in which no activations are used is also considered. Each
training always results in one of the three patterns shown in Fig. 7.11; The two
branches can either contribute complementary to each other and have an equivalent
influence on the total interpolation, or, the total approximation function can be,
almost exclusively, learned by one of the two branches and then the other branch
undertakes the role of ”filling the gap” whenever it is needed.

76

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Variable x Val es

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

F1

F nction Training Samples
DNN Interpolation
Bfunc Contrib tion
Bgrad Contrib tion

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Variable x Values

−3

−2

−1

0

1

2

3

F ′
1

Gradien Training Samples
DNN In erpola ion's Gradien
B ′
func Con ribu ion

B ′
grad Con ribu ion

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Variable x Val es

−0.5

0.0

0.5

1.0

1.5

2.0

F1

F nction Training Samples
DNN Interpolation
Bfunc Contrib tion
Bgrad Contrib tion

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Variable x Values

−3

−2

−1

0

1

2

3

F ′
1

Gradien Training Samples
DNN In erpola ion's Gradien
B ′
func Con ribu ion

B ′
grad Con ribu ion

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Variable x Val es

0.0

0.5

1.0

1.5

2.0

F1

F nction Training Samples
DNN Interpolation
Bfunc Contrib tion
Bgrad Contrib tion

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Variable x Values

−3

−2

−1

0

1

2

3

4

F ′
1

Gradien Training Samples
DNN In erpola ion's Gradien
B ′
func Con ribu ion

B ′
grad Con ribu ion

Figure 7.11: Implementation II : The representations of Fig. 7.8 are re-constructed
in the case the tanh or sigmoid (top), the GELU (middle) and Linear or None (Bot-
tom) activations are used on the two output layers of the surrogate model.

The proposed method is extended to the bi-variate function of Chapter 3. The
predicted values of F and its two partial derivatives computed from the trained
model as well as the contribution functions of each branch are shown in Fig. 7.12.

77

The function is learned mainly by the Bfunc branch and the two constituents of Bgrad

correct the curvature and position of the Bfunc’s output. Deviations are observed in
the predicted surface near the boundaries of the X-Y domain, that lead to inaccurate
derivatives near that region.

X

−1.5−1.0−0.50.00.51.01.5 Y−1.5−1.0−0.5
0.0 0.5 1.0 1.5

−2
−1
0
1
2

F

X

−1.5−1.0−0.50.00.51.01.5 Y−1.5−1.0
−0.50.0

0.51.0
1.5

−15
−10
−5
0
5
10
15

X
−1.5−1.0−0.5 0.0 0.5 1.0 1.5

Y−1.5−1.0−0.50.0
0.51.0
1.5
−2

−1

0

1

2

dF
dX

X
−1.5−1.0−0.5 0.0 0.5 1.0 1.5

Y−1.5−1.0−0.50.0
0.51.0
1.5
−4
−2
0
2
4
6

X

−1.5−1.0−0.50.00.51.01.5 Y−1.5−1.0−0.5
0.0 0.5 1.0 1.5

−10
−8
−6
−4
−2
0
2 dF

dY

X

−1.5−1.0−0.50.00.51.01.5 Y−1.5−1.0−0.5
0.0 0.5 1.0 1.5

−10

−5

0

5

Figure 7.12: Implementation II : (Top) The target function F (red) is compared with
the predicted function (blue) of the surrogate model (left). The predicted surface results
from the combination of the Bfunc contribution (purple) and the two contributions of
the Bgrad branch, that refer to the partial derivative of F w.r.t. X (orange) and
Y (green) respectively (right). The same representations are depicted for the partial
derivative of F w.r.t. X (Middle) and w.r.t. Y (Bottom).

78

7.3.4 Demonstration of the Hermite Method on Problem

III

In Problem III, two separate DNN models are trained according to the Hermite
method in order to predict the S8052 airfoil’s CL, CD coefficients respectively. The
total loss function consists again of Nb = 16, in total, gradient loss constituents that
are summed up and added to the function loss constituent, as expressed in

Losshermite =
Ns∑
i=1

[
Lp
f (ĝi, yi) +

Nb∑
j=1

Lp
g(Dxj

ĝi, Dxj
yi)

]
(7.14)

The DBDNN of the 25 airfoil geometries is used to train the DNNs where 20% of the
sampled airfoils is used to cross-validate the models with the pattern of 7 iterations of
200 epochs each. Two new optimizations were carried out using the EASY software
in order to configure the optimal architecture of the two models. The objective
of the optimization was to minimize the Losshermite on the first cross-validation
iteration. The rest of the models hyperparameters remained fixed during training.
The MSE is used as the loss function for all constituents and Adam as the optimizer
with a learning rate of 0.001. The normalized values of the CL, CD coefficients and
their sensitivity derivatives are computed within the [0, 1] range for all samples in
the DBDNN thus, no ancilary weights are applied on the individual loss terms. The
optimized architectures are presented in Table 7.2.

DNNCL
Neurons per Hidden Layer Activations

Bfunc 2048 - 4096 -128 - 25 GELU - tanh
Bgrad 64 - 32 - 4096 - 64 - 32 - 2048 - 128 - 64 - 25 GELU - tanh
DNNCD

Neurons per Hidden Layer Activations
Bfunc 4096 - 4096 - 1024 - 32 - 32 - 2048 - 32 - 32 - 25 GELU - GELU
Bgrad 1024 - 128 - 128 - 32 - 512 - 25 GELU - ReLU

Table 7.2: Implementation II : Optimal Configurations of the surrogate models.

The loss convergence of the two models, again to be referred asDNNCL
andDNNCD

respectively, is presented in Fig. 7.13. Instead of showing the total loss, it is decided
to plot the function and gradient terms separately in order to isolate the convergence
of each constituent. The function term in this case refers to the coefficients loss and
the gradient term to the sensitivities loss. Once trained, the models are called to
predict the CL and CD coefficients of each sample in the DBDNN and its predictions
are depicted on the CL-CD space, normalized with the baseline geometry’s values
respectively (Fig. 7.14). The percentage MAE metric value of each sample’s CL, CD

prediction is computed and presented in Fig. 7.15. A mean MAE value of around
∼ 0.3% is achieved for the CL predictions and a value of around ∼ 0.085% for the CD

79

predictions. The SDs of both CL and CD w.r.t. the models inputs are computed for
the baseline geometry after the differentiation of the two models and are compared
with the sensitivities of the standard-trained DNNs, the Sobolev-trained DNNs and
their reference FDs and ajoint values in Fig. 7.16. The computed CL SDs satisfactory
match the reference SDs, while deviations are observed on the CD SDs at specific
design variables.

0 500 1000
Epochs

0.000

0.005

0.010

0.015

0.020

D
N
N
C
L
 M

SE
 L

os
s

Training loss (CL)
Validation loss (CL)
Training loss (SDs)
Validation loss (SDs)

0 500 1000
Epochs

0.00

0.02

0.04

0.06

0.08

D
N
N
C
D
 M

SE
 L

os
s

Training loss (CD)
Validation loss (CD)
Training loss (SDs)
Validation loss (SDs)

Figure 7.13: Implementation II : The convergence of the training (blue) and vali-
dation (green) function loss terms and the convergence of the training (orange) and
validation (red) gradient loss terms during the trainng of the DNNCL

(Left) and the
DNNCD

(Right) models.

0.9 1.0 1.1
CL/CL,b

1.00

1.05

1.10

1.15

1.20

C
D
/C

D
,b

CFD
DNNs

Figure 7.14: Implementation II : The CFD-evaluated values (yellow) of CL, CD for
each sampled geometry in the DBDNN are represented on the CL − CD space and are
compared with the predicted values (purple) of the two DNN models. The target and
predicted coefficients are normalized with the baseline values CL,b, CD,b .

80

0 5 10 15 20 25
Sample ID

0.0

0.2

0.4

0.6
C
L

M
AE

 (%
) Mean MAE value

0 5 10 15 20 25
Sample ID

0.0

0.1

0.2

0.3

0.4

0.5

C
D
 M

AE
 (%

)

Mean MAE value

Figure 7.15: Implementation II : The computed percentage MAE metric for the CL

(Left) and CD (Right) predictions of each sample in the DBDNN.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−0.5

0.0

0.5

1.0

1.5

Se
ns
iti
vi
ty
 D
er
iv
at
iv
es

CL/CL,b

FDs
Adj int
DNNCL - Standard
DNNCL - Sobolev
DNNCL - Hermite

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Va iables

−1

0

1

2

Se
ns

iti
vi
ty

 D
e

iv
at

iv
es

CD/CD,b

FDs
Adjoint
DNNCD - Standard
DNNCD - Sobolev
DNNCD - Hermite

Figure 7.16: Implementation II : The SDs of CL (Top) and CD (Bottom) w.r.t. the
design variables for the baseline geometry computed with FDs (black), adjoint (red),
the standard-trained DNN (blue), the Sobolev-trained DNN (green) and the Hermite-
trained DNN (purple).

81

7.4 S8052 Airfoil’s Shape Optimization using the

Sobolev-trained and Hermite-trained DNNs

The Sobolev-trained and Hermite-trained DNNs are used to drive the S8052 airfoil’s
shape optimization with the same objective function as in Chapter 6. Two separate
DNN-driven descents are carried out driven by the two models. In this case, the
cost to form the DBDNN is 50 TUs; 25 TUs required for the evaluation of each
sampled airfoil on the CFD tool and 25 more TUs for the computation of the SDs of
each geometry using the adjoint solver. At both optimization runs, just one DNN -
driven descent followed by one CFD re-evaluation is sufficient to reach the optimal
solution, resulting in 51 TUs turnaround time. In Fig. 7.17, the two optimization are
compared with the optimization of the standard-trained DNN and the adjoint-based
optimization.

0 10 20 30 40 50
Time Units

0.0

0.2

0.4

0.6

0.8

1.0

F/
F B

L

DBDNN (Standard)

DBDNN (Sobolev & Hermite)

D
N

N
-D

ri
ve

n
D

es
ce

nt

D
N

N
-D

ri
ve

n
D

es
ce

nt

Adjoint Optimization
CFD Re-Evalutation (Standard DNN)
CFD Re-Evalutation (Sobolev DNN)
CFD Re-Evalutation (Hermite DNN)

40 42 44 46 48 50 52
Time Units

0.1800

0.1825

0.1850

F/
F B

L

Figure 7.17: Problem III: (Top) Convergence history of the optimization runs based
on the adjoint method (red) and the differentiated DNNs (black). The CFD re-
evaluated solutions of the standard-trained (blue), the Sobolev-trained (green) and
the Hermite-trained (purple) DNN-driven descents are shown in filled circle points.
(Bottom) Close-up view of the previous curve at the area of the solutions for better
comparison.

82

All DNN-driven optimizations achieve a better solution than the adjoint-based opti-
mization, however, the turnaround time of the Sobolev and Hermite runs is slightly
higher, due to the increased cost of constructing the DBDNN. For comparison, in Fig.
6.9, the CL and CD values of all the DNN-driven and the adjoint-based optimization
solutions are placed on the CL − CD space along with the DBDNN samples used to
train the DNN models in each case. The three DNN solutions reduce the CD value
at the optimized geometry (5% reduction with the Sobolev variant and 4% with the
Hermite) and result in a small deviation from the CL,target (0.1% with the Sobolev
variant and 0.2% with the Hermite). On the contrary, the solution of the adjoint
based optimization matches the CL,target for a higher CD value.

0.90 0.95 1.00 1.05 1.10
CL/CL,b

0.9

1.0

1.1

1.2

1.3

1.4

C
D
/C

D
,b

DNNs - Standard Training

DBDNN Samples
Adjoint Solution
CFD Re-Evaluation
Target CL/CL,b

0.910 0.915 0.920 0.925
CL/CL,b

0.94

0.96

0.98

C
D
/C

D
,b

Adjoint Solution
CFD Re-Evaluation
Target CL/CL,b

0.85 0.90 0.95 1.00 1.05 1.10 1.15
CL/CL,b

0.9

1.0

1.1

1.2

1.3

1.4

C
D
/C

D
,b

DNNs - Sobolev & Hermite Training

DBDNN Samples
Adjoint Solution
CFD Re-Evaluation - Sobolev
CFD Re-Evaluation - Hermite
Target CL/CL,b

0.910 0.915 0.920 0.925
CL/CL,b

0.950

0.975

1.000

C
D
/C

D
,b

Adjoint Solution
CFD Re-Evaluation - Sobolev
CFD Re-Evaluation- Hermite
Target CL/CL,b

Figure 7.18: Problem III: (Left) Representation of the 40 DBDNN samples (green)
used to train the standard DNN, the adjoint-based optimization’s solution (red) and
the standard-trained DNN-driven optimization’s solution (blue) on the CL −CD space
(top). Close - up view on the two solutions (Bottom). (Right) Representation of the
25 DBDNN samples (yellow) used to train the Sobolev and Hermite DNNs, the adjoint-
based optimization’s solution (red) and the Sobolev-trained (green) and Hermite-trained
(purple) DNN-driven optimization’s solutions on the CL−CD space (top). Close - up
view on the three solutions (Bottom).

83

7.5 Comparison of the Adjoint-Based and the DNN-

Driven Optimization Runs

The optimized airfoil shapes that resulted from the four optimization runs are com-
pared with the baseline geometry in Fig. 7.19. The pressure coefficient (CP) and
friction coefficient (Cf) of each optimized geometry are presented in Figs. 7.22 and
??, respectively. For comparison, the CP and Cf coefficients of the baseline geome-
try are shown in Fig. 7.21. The Mach number field around the optimized airfoils is
depicted in Fig. 7.24 and the turbulent viscocity field in Fig. 7.25.

Figure 7.19: Problem III: The optimized geometries resulting from the adjoint-based
(red), the standard-trained (blue), the Sobolev-trained (green) and the Hermite-trained
(purple) DNN-driven optimizations are compared with the baseline geometry (black).
The objective of the optimization was to reduce the airfoil’s CD, while not decreasing
its CL under the 10% of the CL,b value.

The four optimizations result in four different airfoils. The optimized geometries
of the adjoint-based and standard-trained DNN - driven optimizations are similar;
the airfoil’s curvature on both the suction and pressure side is properly modifyed
so as to match the CL,target and decrease the CD coefficient. At the optimized
airfoil of the Sobolev-trained DNN optimization a flatter suction side is observed
in compare to the baseline geometry, in addition to the formation of a cavity on
the pressure side. As verifyed in Fig. 7.22, this cavity contributes to the overall lift
production, as it increases the pressure difference between the pressure and suction
side of the airfoil. The cavity’s shape is formed such that the resulting CL to match
the target coefficient’s value. On the other hand, the flatter suction side surface
decreases the airfoil’s CD, as it allows the flow to remain attached over a longer
part of the airfoil. In a flat, or nearly flat, upper surface the turbulent boundary
layer remains relatively thin and well-behaved over a larger portion of the airfoil’s
upper surface and consequently, the turbulent boundary layer experiences lower skin
friction drag. This behavior can be verifyed from the decrease of the Cf coefficient

84

of the optimized airfoil in Fig. 7.23. Similarly to the Sobolev case’s solution, a
cavity is formed on the pressure side near the trailing edge of the Hermite case’s
optimized airfoil, contributing to the increase of CL such as to match the CL,target.
The surface of the suction side is almost flat until the point where a curved slope is
formed, due to the creation of cavity on the pressure side of the airfoil. This slope
locally increases the CD as shown in Fig. 7.23, which is later decreased due to the
re-flattening of the suction side’s surface until the trailing edge.

Figure 7.20: Problem III: The (CL −CL,target)/CL,b and CD/CD,b values of the op-
timized geometries resulting from the adjoint-based (red), the standard-trained (blue),
the Sobolev-trained (green) and the Hermite-trained (purple) DNN-driven optimiza-
tions are compared with the baseline values (black).

85

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−4

−3

−2

−1

0

1

Cp

Baseline

Suction Side
Pressure Side

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Cf

Baseline

Suction Side
Pressure Side

Figure 7.21: Problem III: (Left) The CP distribution over the suction and pressure
side of the airfoil for the baseline geometry. (Right) The Cf distribution over the
suction and pressure side of the airfoil for the baseline geometry.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−4

−3

−2

−1

0

1

Cp

Adjoint

Suction Side
Pressure Side

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−4

−3

−2

−1

0

1

Cp

Standard

Suction Side
Pressure Side

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−5

−4

−3

−2

−1

0

1

Cp

Sobolev

Suction Side
Pressure Side

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−4

−3

−2

−1

0

1

Cp

Hermite

Suction Side
Pressure Side

Figure 7.22: Problem III: (Top) The CP distribution over the suction and pressure
side of the optimized airfoils resulting from the adjoint-based (red) and the standard-
trained DNN (blue) optimizations is presented. (Bottom) The CP distribution over the
suction and pressure side of the optimized airfoils resulting from the Sobolev -trained
DNN (green) and the Hermite-trained DNN (purple) optimizations is shown.

86

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Cf

Adjoint

Suction Side
Pressure Side

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Cf

Standard

Suction Side
Pressure Side

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Cf

Sobolev

Suction Side
Pressure Side

0.0 0.2 0.4 0.6 0.8 1.0
x/c

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

Cf

Hermite

Suction Side
Pressure Side

Figure 7.23: Problem III: (Top) The Cf distribution over the suction and pressure
side of the optimized airfoils resulting from the adjoint-based (red) and the standard-
trained DNN (blue) optimizations is presented. (Bottom) The Cf distribution over the
suction and pressure side of the optimized airfoils resulting from the Sobolev -trained
DNN (green) and the Hermite-trained DNN (purple) optimizations is shown.

87

Figure 7.24: Problem III: (Top) Mach Number field of the optimized airfoils re-
sulting from the adjoint-based (red) and the standard-trained (blue) DNN-driven op-
timizations. (Bottom) Mach Number field of the optimized airfoils resulting from the
Sobolev -trained (green) and the Hermite-trained (purple) DNN-driven optimizations.

88

Figure 7.25: Problem III: (Top) Turbulent viscocity field of the optimized airfoils
resulting from the adjoint-based (red) and the standard-trained (blue) DNN-driven op-
timizations. (Bottom) Turbulent viscocity field of the optimized airfoils resulting from
the Sobolev -trained (green) and the Hermite-trained (purple) DNN-driven optimiza-
tions.

89

90

Chapter 8

Conclusion

8.1 Overview

In this Diploma Thesis, the implementation of differentiated DNNs, within a gradient-
based optimization method in Computational Fluid Dynamics, for predicting the
objective function values and their gradients w.r.t the design variables, was demon-
strated and assessed. In the newly developed method, DNNs, after being trained
on a set of patterns for which the objective function values are available, were used
to replace both the code simulating the fluid flow and its adjoint solver computing
gradients in CFD problems. To form the training dataset, the baseline geometries
were parameterized using NURBS lattices, and the samples were generated using
the LHS technique. The size of the database was selected according to the number
of the design variables involved in each case, as well as the complexity of the used
flow model. Prior to successfully and efficiently supporting the optimization loop,
the DNNs’ gradients were verified against finite differences and the adjoint method.
The proposed DNN-driven shape optimization method was used to optimize the
shapes of two isolated airfoils (in inviscid and turbulent flow conditions), as well as
a curved duct (with laminar flow conditions). Both the efficiency and efficacy of the
programmed software were compared with an adjoint-based optimization.

For the first isolated airfoil case (NACA0012), the objective was to re-design the
airfoil’s shape, so as to match a target CL (CL,target = 0.6 · 10−2). The flow around
the airfoil was inviscid, with a free-stream Mach Number of 0.5 and flow angle of
2o. A database of 20 airfoil geometries was generated in order to train the DNN.
Its configuration resulted from a trial-and-error procedure on its hyperparameters,
and a parametric study regarding the accuracy in both its predicitons and gradient
was conducted, focusing mainly on the used activation functions. The proposed

91

optimization, driven by the trained DNN, resulted in a slightly better solution when
compared with the adjoint-based optimization, at 31% less computational cost.

For the S-Bend case, the objective was to miminize the total pressure losses be-
tween the inlet and outlet. The flow inside the duct was laminar with Reynolds
number Re = 1.84 · 104. A database of 50 training patterns was generated for train-
ing the DNN and its configuration resulted from a trial-and-error procedure on its
hyperparameters, the criterion being its accuracy (on both the predictions and the
gradient). In this case, the training samples were normalized in the range of (0, 1)
using a minimun value which was by 10% lower than the minimum encoutered in
the samples, due to the use of the sigmoid activation function on the output layer
of the model. In addition, the ’cross-validation’ technique was first introduced, that
due to its efficacy, was later used in the other isolated airfoil case, too. The pro-
posed optimization resulted in the same reduction in the objective function’s value
as with the adjoint method (4.6%), at the same computational cost. In addition, a
new capability of the proposed algorithm was demonstrated, by performing multiple
DNN-driven descents simultaneously, starting from different initialization points.

For the second airfoil case (S8052), the objective was to minimize the CD, while not
decreasing its CL below 10% of that of the baseline geometry. The flow around the
airfoil was turbulent, with Reynolds number Re = 5·105, a free steam Mach Number
of 0.5 and a flow angle of 10o. A database of 40 airfoils was generated. Herein, two
separate DNNs were trained to predict the airfoil’s CL and CD, respectively, and
their configurations were optimized using EASY. The two models were used to drive
the airfoil’s optimization, that resulted in a better solution than the adjoint-based
optimization at 20% less computational cost. The optimized geometry using the
proposed method had a by 4% lower CD value (while matching the target CL with
a 0.1% deviation), in comparison with the adjoint’s solution that had by 3% lower
CD value (while matching the target CL with a 0.01% deviation). In addition, a
parametric study regarding the size of the database used to train the models was
conducted, in order to study the models’ accuracy, in terms of both its response and
the gradient of the response.

Next, the use of DNNs that were trained in both the objective function values and its
gradient in the proposed optimization was studied. The gradient-assisted training of
DNNs was implemented in two variants, the so-named Sobolev and Hermite variants.
Both variants of the proposed algorithm were demontrated in the shape optimiza-
tion of the second isolated airfoil, with the same geometry parameterization, flow
conditions and the same objective function. A database of 25 airfoils was generated,
including both the objective function’s values and its gradients, computed using the
adjoint method. Again two separate DNNs were used for predicting the airfoil’s CL

and CD, respectively, and both models’ configurations were optimized using EASY.
The computed gradients of DNNs were verified against finite differences and the ad-
joint method. The proposed optimization when using the gradient-assisted trained

92

DNNs resulted in a better solution than the adjoint-based optimization. The com-
putational cost was the same as the adjoint, and, slightly higher than the cost of the
standard DNN-driven method. Specifically, the Sobolev variant’s solution had a 5%
lower CD value (while matching the target lift coefficient with a 0.01% deviation),
and the Hermite variant’s solution had a 4% lower CD value (while matching the
target lift coefficient with a 0.02% deviation).

8.2 Conclusions

By completing the code development and various studies in this Diploma Thesis,
the following conclusions are drawn:

� DNN Architecture and Activation Functions: The configuration of the
DNNs and, in particular, the activation functions play a key role in both
the accuracy of the DNN predictions and computed gradients, as well as the
efficacy of the proposed optimization algorithm. First, the gradients that
result from the DNNs’ differentiation highly depend on the continuity and
the saturation behavior of the activation functions. After parametric studies
conducted in this Diploma Thesis, it was concluded that the use of the GELU
activation (exclusively, in all the DNNs’ layers, or, only in their hidden layers
and then combined with the proper activation function on the output layer)
leads to the computation of more accurate gradients, without sploiling the
accuracy of the predictions. Next, the DNNs’ performance, when used in
optimizations, highly depends on the capability of the activations to output
negative values, in order to decrease the objective function’s value beyond the
minimum one encoutered in the samples. For this reason, the training data
must properly be normalized. A value that is by a percentage lower than the
minimum value in the DBDNN could be used, according to the used activations.
It was concluded that the GELU activation function outperforms, again, the
most commonly used activations in the literature.

� Size of the DBDNN: The size of the DBDNN is a trade-off between the DNNs’
accuracy (in both their predictions and gradients) and the total cost of the
optimization. At the demonstrated CFD problems, the DBDNN’s size was kept
as small as possible so as not to increase the computational cost. In some
cases, the small size of DBDNN lead to deviations in both the computed DNN
gradients from their reference (adjoint) values, and the DNN-driven descents’
outcomes from their re-evaluations on the CFD tool. However, this limitation
was overcomed by performing re-trainings of the DNNs on the new evaluated
’optimal’ solutions during the optimization. As concluded from the parametric
study regarding the DBDNN’s size of Chapter 3, the DNNs’ accuracy improves
when the DBDNN’s size increases until a specific number of samples. Above
that number, the difference in the DNNs accuracy is not that significant. As

93

a result, it is preferable to to keep a small DBDNN size for training the DNNs,
even though discrepancies might occur on their predicitons or gradients, and
then improve their accuracy during the optimization process, by performing
CFD re-evaluations of the ’optimal’ solutions and re-trainings (as many as
needed). At all demonstrated CFD problems, this pattern was proven succesful
in keeping the overall cost of the optimization small.

� DNN-driven optimization: Overall, it was proven that DNNs can sucess-
fully replace both the flow and adjoint solver in CFD-based optimizations and
therefore decrease their turnaround time. Both the efficacy and efficiency of
the proposed DNN-driven gradient-based optimization method was evidenced,
as it lead to better (with lower objective function value) solutions compared
to the widely-used adjoint method, at either the same computational cost
with the latter, or by a percentage lower than that. In addition, due to its
efficiency, the proposed optimization offers flexible capabilities, such as per-
forming multiple DNN-driven descents simultaneously, starting from different
initialization points. This capability is promising in overcoming the limita-
tions of the gradient-based optimization methods, that highly depend on the
initialization point, or, even exploitate multiple solutions in case of many local
minima. A key advantage of the proposed optimization is that, once the DNNs
are trained, they can be used in optimizations with different objective func-
tions (if the CFD mesh, geometry parameterization and flow conditions remain
the same). In comparison with other methods, including the adjoint, different
optimization runs must be carried out for different objective functions.

� Gradient-Assisted Training of DNNs: When the training of DNNs in-
corporates the targets’ derivatives in addition to the target values, it was
concluded that the accuracy of the computed DNN gradients increases, with-
out spoiling the accuracy of the predicitons. However, since the computation
of the gradients in CFD problems is computationaly expensive, the cost of
forming the DBDNN increases and, consequently, the overall cost of the opti-
mization. If an efficient method, such as the adjoint, is used to compute the
gradient of the DBDNN samples, as in the demonstrated cases of this Diploma
Thesis, the proposed optimization can lead to even better solutions, at the
same computational cost with the adjoint method, or slightly higher cost than
the DNN-driven optimization when using DNNs that are trained without gra-
dient information. As a result, if an adjoint solver is available, it would be
preferable to perform the proposed optimization with DNNs that are trained
on both the targets’ values and derivatives, still, with a small DBDNN size.

94

8.3 Future Work Proposals

Based on the implementation of DNNs in gradient-based optimization in CFD, the
following future works are proposed:

� First, alternative techniques for implementing the DNNs’ gradients in the
training process could be studied. Apart from new implementation ideas,
the capability of computing high order derivatives of DNNs would be an inter-
esting topic of research, in order to extend the proposed optimization method
to other fields, such as robust optimization or to allow the use of a Newton
method into the optimization loop.

� Next, the efficacy and capabilities of the proposed DNN-driven optimization
could be studied in cases where irregularities occur in the objective function
gradients, such as in high-speed aerodynamics (creation of shock waves and
boundary layers) or in geometries with discontinuities, as well as in cases
where computing the gradients has high memory requirements and/or calls
for computational resources, as in unsteady CFD problems.

� Finally, the proposed optimization method could be extended to Multi-Objective
Optimization (MOO) problems in CFD. A common objective function could
be used, containing as many terms as the number of the optimization’s objec-
tives, where each term is multiplied with the appropriate weight. Next, DNNs
could be trained to predict each term of the objective function (a common
model could be used for all terms, however this increases the possibility of
spoiling the models’ accuracy in both their predictions and gradients). Due
to the negligible cost of the gradient-based DNN-driven descent, many opti-
mization runs could be carried out, where in each run, the weights of each
term of the objective function change (according to the designer), in order to
prioritize different objectives at each optimization run. The collection of all
the DNN-driven descents’ solutions, after evaluated on the CFD code, could
form a ”Paretto Front” and therefore replace the costly evolutionary algorithm
softwares that are commonly used for MOO problems in CFD.

95

96

Bibliography

[1] Fávero, L., Belfiore, P., and de Freitas Souza, R.: Chapter 1 - overview of data
science, analytics, and machine learning. In Fávero, L., Belfiore, P., and de
Freitas Souza, R. (editors): Data Science, Analytics and Machine Learning
with R, pages 3–6. Academic Press, 2023, ISBN 978-0-12-824271-1. https:

//www.sciencedirect.com/science/article/pii/B9780128242711000342.

[2] Sarker, I.: Machine learning: Algorithms, real-world applications and research
directions. SN Computer Science, 2(3):2661–8907, 2021.

[3] Greiner, R., Berger, D., and Bock, M.: Artificial Intelligence, pages 67–108.
Springer Fachmedien Wiesbaden, Wiesbaden, 2022, ISBN 978-3-658-38159-2.
https://doi.org/10.1007/978-3-658-38159-2_3.

[4] Alsharif, M., Hilary, A., Yahya, K., and Chaudhry, S.: Machine learning algo-
rithms for smart data analysis in internet of things environment: Taxonomies
and research trends. Symmetry, 12:88, January 2020. 10.3390/sym12010088.

[5] Beck, A. and Kurz, M.: A perspective on machine learning methods in turbulence
modeling. GAMM-Mitteilungen, 44(1), mar 2021. https://doi.org/10.1002%
2Fgamm.202100002, 10.1002/gamm.202100002.

[6] Verikas, A., Gelzinis, A., and Bacauskiene, M.: Mining data with random
forests: A survey and results of new tests. Pattern Recognit., 44:330–349, 2011.
https://api.semanticscholar.org/CorpusID:39661348.

[7] Afzal, A., Aabid, A., Khan, A., Afghan Khan, S., Rajak, U., Nath
Verma, T., and Kumar, R.: Response surface analysis, clustering, and
random forest regression of pressure in suddenly expanded high-speed aero-
dynamic flows. Aerospace Science and Technology, 107:106318, 2020,
ISSN 1270-9638. https://www.sciencedirect.com/science/article/pii/

S1270963820310002, https://doi.org/10.1016/j.ast.2020.106318.

[8] Xing, J., Wang, H., Luo, K., Wang, S., Bai, Y., and Fan, J.: Pre-
dictive single-step kinetic model of biomass devolatilization for cfd applica-
tions: A comparison study of empirical correlations (ec), artificial neural net-
works (ann) and random forest (rf). Renewable Energy, 136:104–114, 2019,

97

https://www.sciencedirect.com/science/article/pii/B9780128242711000342
https://www.sciencedirect.com/science/article/pii/B9780128242711000342
https://doi.org/10.1007/978-3-658-38159-2_3
https://doi.org/10.1002%2Fgamm.202100002
https://doi.org/10.1002%2Fgamm.202100002
https://api.semanticscholar.org/CorpusID:39661348
https://www.sciencedirect.com/science/article/pii/S1270963820310002
https://www.sciencedirect.com/science/article/pii/S1270963820310002

ISSN 0960-1481. https://www.sciencedirect.com/science/article/pii/

S0960148118315350, https://doi.org/10.1016/j.renene.2018.12.088.

[9] Bandi, P., Manelil, N., Maiya, M., Tiwari, S., and Arunvel, T.: Cfd driven
prediction of mean radiant temperature inside an automobile cabin using ma-
chine learning. Thermal Science and Engineering Progress, 37:101619, 2023,
ISSN 2451-9049. https://www.sciencedirect.com/science/article/pii/

S2451904922004255, https://doi.org/10.1016/j.tsep.2022.101619.

[10] Cervantes, J., Garcia-Lamont, F., Rodŕıguez-Mazahua, L., and Lopez,
A.: A comprehensive survey on support vector machine classification: Ap-
plications, challenges and trends. Neurocomputing, 408:189–215, 2020,
ISSN 0925-2312. https://www.sciencedirect.com/science/article/pii/

S0925231220307153, https://doi.org/10.1016/j.neucom.2019.10.118.

[11] Moradzadeh, A., Mansour, S., Mohammadi-ivatloo, B., and Anvari-
Moghaddam, A.: Performance evaluation of two machine learning techniques in
heating and cooling loads forecasting of residential buildings. Applied Sciences,
10, May 2020. 10.3390/app10113829.

[12] CHEN, S., GAO, Z., ZHU, X., DU, Y., and PANG, C.: Unstable unsteady
aerodynamic modeling based on least squares support vector machines with
general excitation. Chinese Journal of Aeronautics, 33(10):2499–2509, 2020,
ISSN 1000-9361. https://www.sciencedirect.com/science/article/pii/

S1000936120301734, https://doi.org/10.1016/j.cja.2020.03.009.

[13] Yan, C., Yin, Z., Shen, X., Mi, D., Guo, F., and Long, D.: Surrogate-based
optimization with improved support vector regression for non-circular vent hole
on aero-engine turbine disk. Aerospace Science and Technology, 96:105332,
August 2019. 10.1016/j.ast.2019.105332.

[14] Abiodun, O., Jantan, A., Omolara, A., Dada, K., Mohamed, N.,
and Arshad, H.: State-of-the-art in artificial neural network applica-
tions: A survey. Heliyon, 4(11):e00938, 2018, ISSN 2405-8440. https:

//www.sciencedirect.com/science/article/pii/S2405844018332067,
https://doi.org/10.1016/j.heliyon.2018.e00938.

[15] Abueidda, D., Koric, S., Al-Rub, R., Parrott, C., James, K., and
Sobh, N.: A deep learning energy method for hyperelasticity and vis-
coelasticity. European Journal of Mechanics - A/Solids, 95:104639, 2022,
ISSN 0997-7538. https://www.sciencedirect.com/science/article/pii/

S0997753822001073, https://doi.org/10.1016/j.euromechsol.2022.104639.

[16] Biau, G. and Scornet, E.: A random forest guided tour. TEST, 25, 2016,
ISSN 1863-8260. https://doi.org/10.1007/s11749-016-0481-7.

[17] Liang, Z. and Zhang, L.: Support vector machines with the -insensitive pinball
loss function for uncertain data classification. Neurocomputing, 457:117–127,

98

https://www.sciencedirect.com/science/article/pii/S0960148118315350
https://www.sciencedirect.com/science/article/pii/S0960148118315350
https://www.sciencedirect.com/science/article/pii/S2451904922004255
https://www.sciencedirect.com/science/article/pii/S2451904922004255
https://www.sciencedirect.com/science/article/pii/S0925231220307153
https://www.sciencedirect.com/science/article/pii/S0925231220307153
https://www.sciencedirect.com/science/article/pii/S1000936120301734
https://www.sciencedirect.com/science/article/pii/S1000936120301734
https://www.sciencedirect.com/science/article/pii/S2405844018332067
https://www.sciencedirect.com/science/article/pii/S2405844018332067
https://www.sciencedirect.com/science/article/pii/S0997753822001073
https://www.sciencedirect.com/science/article/pii/S0997753822001073

2021, ISSN 0925-2312. https://www.sciencedirect.com/science/article/
pii/S0925231221009681, https://doi.org/10.1016/j.neucom.2021.06.044.

[18] Cheng, K., Lu, Z., Zhou, Y., Shi, Y., and Wei, Y.: Global sen-
sitivity analysis using support vector regression. Applied Math-
ematical Modelling, 49:587–598, 2017, ISSN 0307-904X. https:

//www.sciencedirect.com/science/article/pii/S0307904X1730344X,
https://doi.org/10.1016/j.apm.2017.05.026.

[19] Ratku, A. and Neumann, D.: Derivatives of feed-forward neural networks and
their application in real-time market risk management. OR Spectrum, 44,
September 2022. 10.1007/s00291-022-00672-1.

[20] Huge, B. and Savine, A.: Differential machine learning, 2020.

[21] Elliott, J. and Peraire, J.: Practical three-dimensional aerodynamic design and
optimization using unstructured meshes. AIAA Journal, 35(9):1479–1485, 1997.

[22] Jameson, A.: Aerodynamic design via control theory. Journal of Scientific Com-
puting, 3:233–260, 1988.

[23] Wang, J., Li, R., He, C., Chen, H., Cheng, R., Zhai, C., and Zhang, M.: An
inverse design method for supercritical airfoil based on conditional generative
models. Chinese Journal of Aeronautics, 35(3):62–74, 2022.

[24] Bezgin, D., Buhendwa, A., and Adams, N.: JAX-Fluids: A fully-differentiable
high-order computational fluid dynamics solver for compressible two-phase
flows. Computer Physics Communications, 282:108527, 2023, ISSN 0010-4655.

[25] Shen, S., Shao, T., Zhou, K., Jiang, C., Luo, F., and Yang, Y.: Hod-net: High-
order differentiable deep neural networks and applications. Proceedings of the
AAAI Conference on Artificial Intelligence, 36(8):8249–8258, 2022.

[26] Kontou, M., Asouti, V., and Giannakoglou, K.: DNN surrogates for turbulence
closure in CFD-based shape optimization. Applied Soft Computing, 134:110013,
2023.

[27] Renganathan, S., Maulik, R., and Ahuja, J.: Enhanced data efficiency using
deep neural networks and gaussian processes for aerodynamic design optimiza-
tion. Aerospace Science and Technology, 111:106522, 2021, ISSN 1270-9638.

[28] Li, J., Du, X., and Martins, J.: Machine learning in aerodynamic shape opti-
mization. Progress in Aerospace Sciences, 134:100849, 2022.

[29] Lui, H. and Wolf, W.: Construction of reduced-order models for fluid flows using
deep feedforward neural networks. Journal of Fluid Mechanics, 872:963–994,
2019.

99

https://www.sciencedirect.com/science/article/pii/S0925231221009681
https://www.sciencedirect.com/science/article/pii/S0925231221009681
https://www.sciencedirect.com/science/article/pii/S0307904X1730344X
https://www.sciencedirect.com/science/article/pii/S0307904X1730344X

[30] Xu, M., Song, S., Sun, X., Chen, W., and Zhang, W.: Machine learning for
adjoint vector in aerodynamic shape optimization. Acta Mechanica Sinica,
37(9):1416–1432, 2021.

[31] Kovani, K., Kontou, M., Asouti, V., and Giannakoglou, K.: Dnn-driven
gradient-based shape optimization in fluid mechanics. In Iliadis, L., Maglo-
giannis, I., Alonso, S., Jayne, C., and Pimenidis, E. (editors): Engineering
Applications of Neural Networks, pages 379–390, Cham, 2023. Springer Nature
Switzerland, ISBN 978-3-031-34204-2.

[32] Saleem, R., Yuan, B., Kurugollu, F., Anjum, A., and Liu, L.: Explain-
ing deep neural networks: A survey on the global interpretation meth-
ods. Neurocomputing, 513:165–180, 2022, ISSN 0925-2312. https:

//www.sciencedirect.com/science/article/pii/S0925231222012218,
https://doi.org/10.1016/j.neucom.2022.09.129.

[33] Santos, C. Gonçalves Dos and Papa, J.: Avoiding overfitting: A survey on
regularization methods for convolutional neural networks. ACM Comput-
ing Surveys, 54(10s):1–25, jan 2022. https://doi.org/10.1145%2F3510413,
10.1145/3510413.

[34] Jadon, A., Patil, A., and Jadon, S.: A comprehensive survey of regression based
loss functions for time series forecasting, 2022.

[35] Shaziya, H.: A study of the optimization algorithms in deep learning. March
2020. 10.1109/ICISC44355.2019.9036442.

[36] Jais, I., Ismail, A., and Qamrun, S.: Adam optimization algorithm for wide
and deep neural network. Knowledge Engineering and Data Science, 2:41, June
2019. 10.17977/um018v2i12019p41-46.

[37] Baydin, A., Pearlmutter, B., Radul, A., and Siskind, J.: Automatic differentia-
tion in machine learning: a survey, 2018.

[38] Lee, W., Park, S., and Aiken, A.: On the correctness of automatic differentiation
for neural networks with machine-representable parameters, 2023.

[39] Shu, H. and Zhu, H.: Sensitivity analysis of deep neural networks. January
2019. 10.1609/aaai.v33i01.33014943.

[40] Pizarroso, J., Portela, J., and Muñoz, A.: bNeuralSens/b: Sensitivity analysis
of neural networks. Journal of Statistical Software, 102(7), 2022. https://

doi.org/10.18637%2Fjss.v102.i07, 10.18637/jss.v102.i07.

[41] Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H.: Understanding
neural networks through deep visualization, 2015.

[42] Sun, Y., Sun, Q., and Qin, K.: Physics-based deep learning for flow problems.
Energies, 14:7760, November 2021. 10.3390/en14227760.

100

https://www.sciencedirect.com/science/article/pii/S0925231222012218
https://www.sciencedirect.com/science/article/pii/S0925231222012218
https://doi.org/10.1145%2F3510413
https://doi.org/10.18637%2Fjss.v102.i07
https://doi.org/10.18637%2Fjss.v102.i07

[43] Clevert, D., Unterthiner, T., and Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (elus), 2016.

[44] Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.: Self-normalizing
neural networks, 2017.

[45] Hendrycks, D. and Gimpel, K.: Gaussian error linear units (gelus), 2023.

[46] Ramachandran, P., Zoph, B., and Le, Q.: Searching for activation functions,
2017.

[47] Giannakoglou, K. and Papadimitriou, D.: Adjoint Methods for Shape Opti-
mization, pages 79–108. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008,
ISBN 978-3-540-72153-6. https://doi.org/10.1007/978-3-540-72153-6_4.

[48] Trompoukis, X., Tsiakas, K., Asouti, V., and Giannakoglou, K.: Continuous
adjoint-based shape optimization of a turbomachinery stage using a 3D volumet-
ric parameterization. International Journal for Numerical Methods in Fluids,
2023. 10.1002/fld.5187.

[49] Rakhimov, A., Visser, D., and Komen, E.: Uncertainty quantification
method for cfd applied to the turbulent mixing of two water layers. Nu-
clear Engineering and Design, 333:1–15, 2018, ISSN 0029-5493. https:

//www.sciencedirect.com/science/article/pii/S0029549318303959,
https://doi.org/10.1016/j.nucengdes.2018.04.004.

[50] TensorFlow: Large-Scale Machine Learning on heterogeneous systems, 2015.
https://www.tensorflow.org/, Software available from tensorflow.org.

[51] Giannakoglou, K. The EASY (Evolutionary Algorithms SYstem) software,
http://velos0.ltt.mech.ntua.gr/EASY, 2008.

[52] Asouti, V., Trompoukis, X., Kampolis, I., and Giannakoglou, K.: Unsteady
CFD computations using vertex-centered finite volumes for unstructured grids
on Graphics Processing Units. International Journal for Numerical Methods in
Fluids, 67(2):232–246, 2011.

[53] Piegl, L. and Tiller, W.: The NURBS Book (2nd Ed.). Springer-Verlag, Berlin,
Heidelberg, 1997, ISBN 3540615458.

[54] Czarnecki, W., Osindero, S., Jaderberg, M., Świrszcz, G., and Pascanu, R.:
Sobolev training for neural networks, 2017.

[55] Hornik, K.: Approximation capabilities of multilayer feedforward net-
works. Neural Networks, 4(2):251–257, 1991, ISSN 0893-6080. https:

//www.sciencedirect.com/science/article/pii/089360809190009T,
https://doi.org/10.1016/0893-6080(91)90009-T.

[56] Diening, L., Harjulehto, P., Hästö, P., and Ruzicka, M.: Introduction to sobolev
spaces. February 2011. 10.1007/978-3-642-18363-88.

101

https://doi.org/10.1007/978-3-540-72153-6_4
https://www.sciencedirect.com/science/article/pii/S0029549318303959
https://www.sciencedirect.com/science/article/pii/S0029549318303959
https://www.tensorflow.org/
https://www.sciencedirect.com/science/article/pii/089360809190009T
https://www.sciencedirect.com/science/article/pii/089360809190009T

[57] Cocola, J. and Hand, P.: Global convergence of sobolev training for overparam-
eterized neural networks, 2020.

[58] Vlassis, N. and Sun, W.: Sobolev training of thermodynamic-informed neural
networks for smoothed elasto-plasticity models with level set hardening, 2020.

[59] Tsay, C.: Sobolev trained neural network surrogate models for op-
timization. Computers Chemical Engineering, 153:107419, 2021,
ISSN 0098-1354. https://www.sciencedirect.com/science/article/pii/

S0098135421001976, https://doi.org/10.1016/j.compchemeng.2021.107419.

[60] Chollet, F. et al.: Keras, 2015. https://github.com/fchollet/keras.

[61] http://velos0.ltt.mech.ntua.gr/kgianna/analysis/distr/book_
numanal.pdf.

[62] Multivariate hermite interpolation by algebraic polynomials: A survey. Jour-
nal of Computational and Applied Mathematics, 122(1):167–201, 2000,
ISSN 0377-0427. https://www.sciencedirect.com/science/article/pii/

S0377042700003678, https://doi.org/10.1016/S0377-0427(00)00367-8, Numer-
ical Analysis in the 20th Century Vol. II: Interpolation and Extrapolation.

[63] Coxon, N.: Fast hermite interpolation and evaluation over finite fields of char-
acteristic two, 2018.

[64] Kechriniotis, A., Delibasis, K., Oikonomou, I., and Tsigaridas, G.: Classical
multivariate hermite coordinate interpolation on n-dimensional grids, 2023.

[65] Esmaeilbeigi, M., Chatrabgoun, O., and Cheraghi, M.: Fractional her-
mite interpolation using rbfs in high dimensions over irregular domains
with application. Journal of Computational Physics, 375:1091–1120, 2018,
ISSN 0021-9991. https://www.sciencedirect.com/science/article/pii/

S0021999118306077, https://doi.org/10.1016/j.jcp.2018.09.013.

[66] Kampolis, I., Karangelos, E., and Giannakoglou, K.: Gradient-assisted ra-
dial basis function networks: Theory and applications. Applied Mathe-
matical Modelling - APPL MATH MODEL, 28:197–209, February 2004.
10.1016/j.apm.2003.08.002.

[67] Hsu, C.: Intelligent control of chaotic systems via self-organizing hermite-
polynomial-based neural network. Neurocomputing, 123:197–206, 2014,
ISSN 0925-2312. https://www.sciencedirect.com/science/article/pii/

S092523121300742X, https://doi.org/10.1016/j.neucom.2013.07.008, Contains
Special issue articles: Advances in Pattern Recognition Applications and Meth-
ods.

102

https://www.sciencedirect.com/science/article/pii/S0098135421001976
https://www.sciencedirect.com/science/article/pii/S0098135421001976
https://github.com/fchollet/keras
http://velos0.ltt.mech.ntua.gr/kgianna/analysis/distr/book_numanal.pdf
http://velos0.ltt.mech.ntua.gr/kgianna/analysis/distr/book_numanal.pdf
https://www.sciencedirect.com/science/article/pii/S0377042700003678
https://www.sciencedirect.com/science/article/pii/S0377042700003678
https://www.sciencedirect.com/science/article/pii/S0021999118306077
https://www.sciencedirect.com/science/article/pii/S0021999118306077
https://www.sciencedirect.com/science/article/pii/S092523121300742X
https://www.sciencedirect.com/science/article/pii/S092523121300742X

i

ii

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Βαθιά Νευρωνικά Δίκτυα και η Διαφόρισή τους για

Χρήση στην Αιτιοκρατική Βελτιστοποίηση

Αεροδυναμικών Μορφών

Διπλωματική Εργασία - Εκτενής Περίληψη στην Ελληνική

Κωνσταντίνα Κοβάνη

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2023

Εισαγωγή

Στόχος της Διπλωματικής αυτής Εργασίας, είναι η υλοποίηση της διαφόρισης των Βα-

θιών Νευρωνικών Δικτύων (ΒΝΔ), και η πρόταση χρήσης τους σε μία αιτιοκρατική

μέθοδο βελτιστοποίησης στο πεδίο της μηχανικής ρευστών, τόσο για την πρόβλεψη

των τιμών της συνάρτησης-στόχου, όσο και των παραγώγων ευαισθησίας. Η προ-

τεινόμενη μέθοδος παρουσιάζεται με δύο παραλλαγές όσο αφορά την εκπαίδευση των

ΒΝΔ, η πρώτη χρησιμοποιώντας δίκτυα εκπαιδευόμενα μόνο στις τιμές της εκάστοτε

συνάρτησης-στόχου και η δεύτερη χρησιμοποιώντας δίκτυα εκπαιδευόμενα στις τιμές

της συνάρτησης-στόχου και των παραγώγων ευαισθησίας. Η τελευταία παραλλαγή πα-

ρουσιάζεται με δύο υλοποιήσεις, βασιζόμενες στη μέθοδο εκπαίδευσης ΒΝΔ Sobolev
και στην παρεμβολή Hermite, αντίστοιχα. Η προτεινόμενη μέθοδος οδηγούμενη από τα
ΒΝΔ εφαρμόστηκε για τη βελτιστοποίηση του σχήματος δύο μεμονωμένων αεροτομών

(με ατριβή και τυρβώδη ροή αντίστοιχα), καθώς και ενός αγωγού S-bend (με στρωτή
ροή). Η αποδοτικότητα και το υπολογιστικό κόστος της προτεινόμενης μεθόδου συ-

γκρίθηκαν με τη βελτιστοποίηση με τη συζυγή μέθοδο.

Τεχνητή Νοημοσύνη και Βαθιά Νευρωνικά Δίκτυα

Τα τελευταία χρόνια, η πρόοδος στην Τεχνητή Νοημοσύνη (ΤΝ) και τη Μηχανική

Μάθηση (ΜΜ) ήταν ραγδαία και μεταμορφωτική, με όλο και περισσότερα μοντέλα ΜΜ

να βρίσκουν εφαρμογή σε τομείς της καθημερινότητας, με ιδιαίτερη έμφαση στα ΒΝΔ.

Τα ΒΔΝ [1] είναι υπολογιστικά μοντέλα εμπνευσμένα από τη δομή και τη λειτουργία

του ανθρώπινου εγκεφάλου. Αποτελούνται από διασυνδεδεμένους κόμβους, γνωστούς

ως νευρώνες, διατεταγμένους σε επίπεδο εισόδου, κρυφά επίπεδα και επίπεδο εξόδου.

Το πιο αξιοσημείωτο χαρακτηριστικό τους είναι το βάθος τους, καθώς μπορούν να

διαθέτουν πολυάριθμα κρυφά επίπεδα, επιτρέποντάς τους να κατανοήσουν ιεραρχικά

χαρακτηριστικά και αναπαραστάσεις των δεδομένων. Οι νευρώνες επεξεργάζονται δε-

δομένα εισόδου χρησιμοποιώντας σταθμισμένες συνδέσεις (βάρη) και εφαρμόζουν συ-

ναρτήσεις ενεργοποίησης, δημιουργώντας μία έξοδο που στη συνέχεια, μεταδίδεται στο

επόμενο στρώμα. Κατά τη διάρκεια της εκπαιδευτικής διαδικασίας, τα ΒΝΔ προσαρ-

μόζουν τα βάρη για να ελαχιστοποιήσουν την απόκλιση μεταξύ των προβλέψεών τους

και των πραγματικών τιμών-στόχων, χρησιμοποιώντας αλγόριθμους βελτιστοποίησης.

Μέσω της επαναληπτικής βελτίωσης των βαρών σε πολλαπλές εποχές εκπαίδευσης, τα

ΒΝΔ μαθαίνουν περίπλοκα μοτίβα και σχέσεις μέσα στα δεδομένα, επιτρέποντας έτσι

ακριβείς προβλέψεις σε νέα, άγνωστα σε αυτά, δεδομένα. Η ενσωμάτωση των ΒΝΔ σε

προσομοιώσεις Υπολογιστικής Ρευστοδυναμικής (ΥΡΔ) είναι ιδιαίτερα διαδεδομένη,

λόγω της ικανότητάς τους να χειρίζονται μεγάλους όγκους δεδομένων με χαμηλό υπο-

λογιστικό κόστος και πόρους [2, 3]. Αφού εκπαιδευτούν, μπορούν να επιταχύνουν τη

διαδικασία προσομοίωσης αντικαθιστώντας μέρος, ή ολόκληρο, το εργαλείο ΥΡΔ.

Η Συζυγής Μέθοδος Βελτιστοποίησης

Η συζυγής μέθοδος [4] χρησιμοποιείται για τον υπολογισμό των παραγώγων ευαισθη-

σίας μιας συνάρτησης-στόχου ως προς τις μεταβλητές σχεδιασμού. Χρησιμοποιείται

2

ευρέως στην ΥΡΔ για την υποστήριξη αιτιοκρατικών αλγορίθμων, καθώς έχει το χα-

μηλότερο κόστος υπολογισμού παραγώγων συναρτήσεων σε προβλήματα που διέπονται

από μερικές διαφορικές εξισώσεις. Σε αυτήν την εργασία χρησιμοποιήθηκε η συνε-

χής συζυγής μέθοδος. Κάθε κύκλος βελτιστοποίησης περιλαμβάνει την αριθμητική

επίλυση των εξισώσεων Navier-Stokes, των συζυγών εξισώσεων και τον υπολογισμό
των παραγώγων ευαισθησίας που χρησιμοποιούνται για την ανανέωση του διανύσμα-

τος μεταβλητών σχεδιασμού. Οι ανανεώσεις υπολογίζονται με τη μέθοδο της απότομης

καθόδου και ο αριθμός των κύκλων βελτιστοποίησης ορίζεται από κριτήρια σύγκλι-

σης ή κόστους. Οι εξισώσεις Navier-Stokes επιλύονται με τον επιλύτη PUMA, [5],
του εργαστηρίου για την παραλλαγή της συμπιεστής ροής, και τόσο οι ροικές όσο

και συζυγείς εξισώσεις διακριτοποιούνται σε μη δομημένα/υβριδικά πλέγματα, χρησι-

μοποιώντας την τεχνική των πεπερασμένων όγκων. Οι εξισώσεις συνεκτικής ροής για

συμπιεστά ρευστά γράφονται στη μορφή

Rn =
∂f ινvnk
∂xk

− ∂f vιςnk
∂xk

= 0 (1)

όπου f inv
k =[ρvk ρvkv1+pδ1k ρvkv2+pδ2k ρvkv3+pδ3k ρvkht]

T
είναι οι ατριβείς και

f vis
k = [0 τ1k τ2k τ3k vℓτℓk + qk]

T
είναι οι συνεκτικές ροές. ρ, p, vk και ht είναι

οι όροι πυκνότητας, πίεσης, ταχύτητας, ολικής ενθαλπίας και δkm είναι το σύμβο-

λο του Kronecker αντίστοιχα. Ο πίνακας συνεκτικών τάσεων δίνεται από τkm =

µ
(

∂vk
∂xm

+ ∂vm
∂xk

− 2
3
δkm

∂vℓ
∂xℓ

)
όπου µ είναι ο συντελεστής συνεκτικότητας και qk η ροή

θερμότητας. ΄Ολοι οι υπολογισμοί γίνονται με ακρίβεια δεύτερης τάξης. Στον PUMA
περιλαμβάνονται τα μοντέλα προσομοίωσης ατριβούς (Euler), στρωτής και τυρβώδους
ροής, ενώ στην τελευταία περίπτωση, δίνεται η επιλογή πολυάριθμων μοντέλων τύρβης,

όπως το μοντέλο των Spalart-Allmaras, το τυπικό μοντέλο k-ε και, το βασικό και οι
SST παραλλαγές του μοντέλου k-ω.

Προτεινόμενος Αλγόριθμος Αιτιοκρατικής Βελτιστοποίησης με ΒΝΔ

Εναλλακτικά, προτείνεται να αντικατασταθούν τόσο ο επιλύτης ροής όσο και των συζυ-

γών εξισώσεων με εκπαιδευμένα ΒΝΔ που προβλέπουν τόσο την τιμή της συνάρτησης-

στόχου όσο και των παραγώγων ευαισθησίας. Το πρώτο βήμα είναι η δημιουργία της

βάσης δεδομένων με την οποία θα εκπαιδευτούν τα ΒΝΔ. Για τον σκοπό αυτό, οι

αρχικές γεωμετρίες του κάθε προβλήματος παραμετροποιούνται χρησιμοποιώντας ο-

γκομετρικές NURBS, [6], (Σχήμα 1) με σημεία ελέγχου (μεταβλητές σχεδιασμού) που
μπορούν να μετατοπιστούν, εδώ, κατά την κατακόρυφη διεύθυνση. Η τεχνική δειγματο-

ληψίας Latin Hypercube Sampling,[7], (αποτελεσματική όταν απαιτείται μικρός αριθμός
δειγμάτων) χρησιμοποιείται για τη δημιουργία των δειγμάτων, τα οποία στη συνέχεια

αξιολογούνται στον PUMA. Το μέγεθος της βάσης δεδομένων επιλέγεται ανάλογα με
τον αριθμό των μεταβλητών σχεδιασμού και την πολυπλοκότητα του εκάστοτε μοντέλου

ροής. Μετά τη δημιουργία της βάσης δεδομένων, κάθε γύρος (αυτός ο όρος χρησιμο-

ποιείται για να διακρίνει αυτόν τον βρόχο από τον βρόχο απότομης καθόδου σύμφωνα

με το βήμα 2 του προτεινόμενου αλγορίθμου) περιλαμβάνει τα ακόλουθα βήματα:

3

1. Εκπαίδευση του ΒΝΔ με τα δείγματα της βάσης δεδομένων (τα οποία, εδώ, α-

διαστατοποιούνται όλα στο (0, 1) σύμφωνα με τις ελάχιστες και μέγιστες τιμές

τους στα δείγματα). Η αρχιτεκτονική του μοντέλου πρέπει να επιλεχθεί προσε-

κτικά, με ιδιαίτερη έμφαση στην επιλογή των συναρτήσεων ενεργοποίησης [8],

οι οποίες επιδρούν σημαντικά τόσο στην ακρίβεια (προβλέψεων και παραγώγων)

των ΒΝΔ, όσο και στη αποδοτικότητα της προτεινόμενης μεθόδου. Η υλοποίηση

πραγματοποιήθηκε στο πλαίσιο του TensorFlow (v2.6.0),[9], με Python.

2. Επαναληπτική βελτιστοποίηση (μέχρι τη σύγκλιση) εφαρμόζοντας απότομη κάθο-

δο χρησιμοποιώντας, αποκλειστικά, τις παραγώγους που υπολογίζονται από τη

διαφόριση του ΒΝΔ, με αντίστροφη αυτόματη διαφόριση, [10]. Σε κάθε κύκλο

βελτιστοποίησης, οι μεταβλητές σχεδιασμού δεν επιτρέπεται να ξεπεράσουν τα

άνω και κάτω όριά τους τα οποία ορίστηκαν κατά τη δειγματοληψία. Ως ένα

‘ακραίο’ σενάριο, πολλαπλές καταχωρήσεις που επιλέγονται από τη βάση δεδο-

μένων μπορούν να χρησιμοποιηθούν ως σημεία εκκίνησης (αρχικοποίησης) και

να εκτελεστούν τόσες κάθοδοι, όσες και ο αριθμός των σημείων εκκίνησης.

3. Επαναξιολόγηση (όλων ή μέρικών) των ‘βελτιστοποιημένων’ λύσεων με τον κώδι-

κα ΥΡΔ. Η χρήση εισαγωγικών (‘βελτιστοποιημένων’) καθιστά σαφές ότι αυτή

είναι η καλύτερη λύση σύμφωνα με το ΒΝΔ.

4. Ενημέρωση της βάσης δεδομένων με όλες τις πρόσφατα αξιολογημένες λύσεις,

εάν είναι απαραίτητο, και επανάληψη των τεσσάρων βημάτων (από το βήμα 1).

Το κριτήριο τερματισμού σχετίζεται με την ακρίβεια πρόβλεψης του ΒΝΔ.

Στο βήμα 1, τα ΒΝΔ διαμορφώνονται διαφορετικά σε κάθε πρόβλημα. Εμπειρικά, η

χρήση ενός μόνο ΒΝΔ σε όλα τα προβλήματα δεν ενδείκνυται στην ανάλυση στην ΥΡΔ,

αφού διέπονται από διαφορετική φυσική. Οι αρχιτεκτονικές των ΒΝΔ προέκυψαν είτε

με μια διαδικασία δοκιμής-και-λάθους σχετικά με την ακρίβεια των μοντέλων τόσο στις

προβλέψεις, όσο και στις παραγώγους τους, είτε βελτιστοποιήθηκαν χρησιμοποιώντας

το λογισμικό εξελικτικών αλγορίθμων, EASY, [11]. Αφού οριστεί η αρχιτεκτονική
τους (και εκπαιδευτούν), τα ΒΝΔ μπορούν να χρησιμοποιηθούν για βελτιστοποιήσεις

με οποιαδήποτε συνάρτηση-στόχο που ορίζεται από τον σχεδιαστή (υποθέτοντας ότι

οι γεωμετρίες και συνθήκες ροής παραμένουν ίδιες), επομένως το κόστος εύρεσης της

αρχιτεκτονικής των ΒΝΔ δεν λαμβάνεται υπόψη.

Σχήμα 1: Πλέγμα παραμετροποίησης (μπλε) και σημεία ελέγχου (κόκκινα) των γεω-

μετριών της NACA0012 (Αριστερά), του S-bend (Μέση) και της S8052 (Δεξιά).

Βελτιστοποίηση μίας Μεμονωμένης Αεροτομής (Ατριβής Ροή)

4

Στο Πρόβλημα Ι, η προτεινόμενη μέθοδος χρησιμοποιήθηκε για τη βελτιστοποίηση του

σχήματος της αεροτομής NACA0012, ώστε το επανασχεδιασμένο σχήμα να ταιριάζει
με έναν στόχο-τιμή του συντελεστή άνωσης (CL,target = 0.6 · 10−2

). Η ροή γύρω από

την αεροτομή είναι ατριβής (Euler) με γωνία a = 2o και αριθμό Mach = 0.5 για την
επ΄ άπειρο ροή. Για την εκπαίδευση του ΒΝΔ, δημιουργήθηκε μια βάση δεδομένων

με 20 διαφορετικές γεωμετρίες. Η αρχιτεκτονική του μοντέλου προέκυψε από μια δια-
δικασία δοκιμής-και-σφάλματος σχετικά με τις (υπερ)παραμέτρους του, ενώ διεξήχθη

παραμετρική μελέτη σχετικά με την ακρίβεια τόσο των προβλέψεων του δικτύου και

των παραγώγων του, εστιάζοντας κυρίως στις χρησιμοποιούμενες συναρτήσεις ενεργο-

ποίησης (Σχήμα 2). Μεγαλύτερη ακρίβεια επιτυγχάνεται με τη χρήση της συνάρτησης

GELU. Η προτεινόμενη βελτιστοποίηση οδήγησε σε καλύτερη λύση (Σχήμα 3) σε
σύγκριση με αυτή της συζυγούς μεθόδου, έχοντας κατά 31% μικρότερο υπολογιστικό
κόστος. Για την επίτευξη του στόχου, χρειάστηκαν 3 επαν-εκπαιδεύσεις του ΒΝΔ.

1 3 5 7 9 11 13 15 17 19
Sample ID (Sorted)

0.25

0.50

0.75

1.00

1.25

1.50

C
L/
C
L,
b

CFD
DNN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−0.02

0.00

0.02

0.04

Se
ns
iti
vi
ty
 D
er
iv
at
iv
es

FDs
GELU
sigm id
tanh
ReLU

Σχήμα 2: Πρόβλημα Ι: (Αριστερά) Προβλέψεις του συντελεστή άνωσης των δειγμάτων

(ταξινομημένα) σε σύγκριση με τις αξιολογημένες τιμές στον κώδικα ΥΡΔ. (Δεξιά) Οι

παράγωγοι του ΒΝΔ όταν έχει εκπαιδευτεί με διαφορετικές συναρτήσεις ενεργοποίησης,

σε σύγκριση με τις παραγώγους αναφοράς των πεπερασμένων διαφορών.

Σχήμα 3: Πρόβλημα Ι: (Πάνω) Οι βελτιστοποιημένες γεωμετρίες με την προτεινόμενη

(μπλε) και τη συζυγή (πορτοκαλί) μέθοδο σε σύγκριση με την αρχική (μαύρη). (Κάτω)

Τα πεδία αριθμού Mach για την αρχική γεωμετρία (αριστερά), τη βελτιστοποιημένη με
τη χρήση του ΒΝΔ (μέση) και της συζυγούς μεθόδου (δεξιά).

Βελτιστοποίηση ενός S-bend Αγωγού (Στρωτή Ροή)

5

Στην περίπτωση του αγωγού (Πρόβλημα ΙΙ), ο στόχος είναι η ελαχιστοποίηση των ολι-

κών απωλειών πίεσης μεταξύ εισόδου και εξόδου. Η ροή μέσα στον αγωγό είναι στρωτή

με αριθμό Reynolds Re = 1.84 · 104. Για την εκπαίδευση του ΒΝΔ δημιουργήθηκαν
50 δείγματα αγωγών και η αρχιτεκτονική του δικτύου προέκυψε από μια διαδικασία
δοκιμής-και-σφάλματος με γνώμονα την ακρίβεια τόσο των προβλέψεων όσο και των

παραγώγων τους (Σχήμα 4). Εδώ, τα δεδομένα εκπαίδευσης αδιαστατοποιήθηκαν με

ελάχιστη τιμή κατά 10% μικρότερη από την ελάχιστη που υπολογίστηκε κατά την αξιο-
λόγηση των δειγμάτων, λόγω της χρήσης της σιγμοειδούς συνάρτησης ενεργοποίησης

στο στρώμα εξόδου του ΒΝΔ. Η σιγμοειδής δεν έχει αρνητικό σύνολο τιμών (επο-

μένως δεν επιτρέπει την πρόβλεψη μικρότερης τιμής από την ελάχιστη που υπάρχει στα

δείγματα εκπαίδευσης) και χαρακτηρίζεται από το φαινόμενο του ΄κορεσμού εξαφάνιση-

ς΄, κατά το οποίο οι παράγωγοι της συνάρτησης εκμηδενίζονται όταν η τιμή της είναι

κοντά στο 0 (επομένως αλλοιώνει τις παραγώγους που χρησιμοποιούνται στη βελτιστο-
ποίηση). Επιπλέον, εδώ εισάγεται η τεχνική ΄cross-validation΄ για την επικύρωση των
δεδομένων εκπαίδευσης, η οποία, λόγω της αποδοτικότητάς της, θα χρησιμοποιηθεί και

στα επόμενα προβλήματα. Η προτεινόμενη βελτιστοποίηση οδήγησε στην ίδια μείωση

της συνάρτησης-στόχου (Σχήμα 5) με τη συζυγή μέθοδο (4, 6%), έχοντας το ίδιο υπο-
λογιστικό κόστος. Για πλήρη σύγκλιση, χρειάστηκαν 3 επαν-εκπαιδεύδεις του ΒΝΔ.
Τέλος, λόγω του μηδενικού κόστους της καθόδου που οδηγείται από ΒΝΔ, αναδε-

ίχθηκε μία εναλλακτική ικανότητα του προτεινόμενου αλγορίθμου: η πραγματοποίηση

πολλαπλών καθόδων, ταυτόχρονα, ξεκινώντας από διαφορετικά σημεία αρχικοποίησης,

με προοπτικές βελτίωσης τον αιτιοκρατικών μεθόδων βελτιστοποίησης που εξαρτώνται

σημαντικά από τα σημεία εκκίνησης.

0 10 20 30 40 50
Sample ID (Sorted)

0.98

1.00

1.02

1.04

1.06

1.08

F/Fb

CFD
DNN (Fixed)
DNN (Shuffled)

1 2 3 4 5 6 7 8 9 1011121314151617181920

Design Variables

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Se
ns
iti
vi
ty
 D
er
iv
at
iv
es

Adj int
DNN (Fixed)
DNN (Shuffled)

Σχήμα 4: Πρόβλημα ΙΙ: (Αριστερά) Προβλέψεις των απωλειών ολικής πίεσης των δειγ-

μάτων (ταξινομημένα) σε σύγκριση με τις αξιολογημένες τιμές στον κώδικα ΥΡΔ. (Δε-

ξιά) Οι παράγωγοι του ΒΝΔ σε σύγκριση με τις παραγώγους αναφοράς της συζυγούς

μεθόδου.

Βελτιστοποίηση μίας Μεμονωμένης Αεροτομής (Τυρβώδης Ροή)

Στην περίπτωση αυτή (Πρόβλημα ΙΙΙ), στόχος είναι η ελαχιστοποίηση του συντελε-

στή οπισθέλκουσας της αρχικής αεροτομής (S8052), χωρίς να μειωθεί ο συντελεστής
άνωσης κάτω από το 10% της αρχικής γεωμετρίας. Η ροή γύρω από την αεροτομή
είναι τυρβώδης, με αριθμό Reynolds Re = 5 · 105, αριθμό Mach της επ΄ άπειρο ροής
0.021 και γωνία a = 10o. Στο συγκεκριμένο πρόβλημα εκπαιδεύτηκαν δύο ξεχωριστά

6

Σχήμα 5: Πρόβλημα ΙΙ: (Αριστερά) Τα πεδία ολικής πίεσης για την αρχική γεωμετρία

(πάνω), τη βελτιστοποιημένη με τη χρήση του ΒΝΔ (μέση) και της συζυγούς μεθόδου

(κάτω). (Δεξιά) Οι βελτιστοποιημένες γεωμετρίες με την προτεινόμενη (μπλε) και τη

συζυγή (κόκκινη) μέθοδο, σε σύγκριση με την αρχική (μαύρη).

ΒΝΔ για την πρόβλεψη των συντελεστών άνωσης και οπισθέλκουσας, αντίστοιχα,

σε βάση δεδομένων 40 αεροτομών. Οι αρχιτεκτονικές των δικτύων βελτιστοποιήθη-
καν χρησιμοποιώντας το λογισμικό EASY, με στόχο την ακρίβεια των υπολογισμένων
παραγώγων (Σχήμα 6). Η βελτιστοποίηση της S8052 με την προτεινόμενη μέθοδο
οδήγησε σε καλύτερη λύση (Σχήμα 7) από εκείνη της συζυγούς μεθόδου, έχοντας

κατά 20% μικρότερο υπολογιστικό κόστος. Εδώ δεν χρειάστηκαν επαν-εκπαιδεύσεις
των ΒΝΔ. Η βελτιστοποιημένη γεωμετρία είχε κατά 4% χαμηλότερη τιμή συντελεστή
οπισθέλκουσας από την αρχική (ενώ ταίριαζε στην τιμή στόχου συντελεστή άνωσης

με απόκλιση 0, 1%), σε σύγκριση με τη λύση της συζυγούς μεθόδου που είχε κατά
3% χαμηλότερη τιμή συντελεστή οπισθέλκουσας, αλλά με καλυτερη προσέγγιση του
στόχου (με απόκλιση 0,01 %). Επιπλέον, πραγματοποιήθηκε παραμετρική μελέτη σχε-
τικά με το μέγεθος της βάσης δεδομένων που χρησιμοποιείται για την εκπαίδευση των

ΒΝΔ, προκειμένου να μελετηθεί η επίδραση στην ακρίβεια τόσο των προβλέψεων, όσο

και των παραγώγων. Από τη μελέτη έγινε φανερό ότι η ακρίβεια των ΒΝΔ βελτιώνε-

ται όσο το μέγεθος της βάσης δεδομένων αυξάνεται μέχρι ένα συγκεκριμένο αριθμό

δειγμάτων, ενώ δεν παρατηρείται σημαντική βελτίωση πάνω από τον αριθμό αυτό.

0.9 1.0 1.1
CL/CL,b

0.95

1.00

1.05

1.10

1.15

1.20

1.25

C
D
/C

D
,b

CFD
DNNs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−0.5

0.0

0.5

1.0

1.5

Se
ns

i i
vi

 y
 D

er
iv

a
iv

es

CL/CL,b
FDs
Adjoin
DNNCL

1 2 3 4 5 6 7 8 9 10111213141516

Design Variables

−1

0

1

2

Se
ns

iti
 i
ty
 D
er
i
at
i
es

CD/CD,b
FDs
Adjoint
DNNCD

Σχήμα 6: Πρόβλημα ΙΙΙ: (Αριστερά) Προβλέψεις των συντελεστών άνωσης και οπι-

σθέλκουσας των δειγμάτων, σε σύγκριση με τις αξιολογημένες τιμές στον κώδικα ΥΡΔ.

Οι παράγωγοι των συντελεστών άνωσης (Μέση) και οπισθέλκουσας (Δεξιά) από τα ΒΝΔ

σε σύγκριση με τις πεπερασμένες διαφορές και της συζυγούς μεθόδου.

7

Σχήμα 7: Πρόβλημα ΙΙΙ: (Πάνω) Οι βελτιστοποιημένες γεωμετρίες με την προτεινόμε-

νη (μπλε) και τη συζυγή (κόκκινη) μέθοδο σε σύγκριση με την αρχική (μαύρη). (Κάτω)

Τα πεδία αριθμού Mach για την αρχική γεωμετρία (αριστερά), την βελτιστοποιημένη με
τη χρήση του ΒΝΔ (μέση) και της συζυγούς μεθόδου (δεξιά).

Βελτιστοποίηση μίας Μεμονωμένης Αεροτομής (Τυρβώδης Ροή), με

ΒΝΔ Εκπαιδευμένα με τις Υλοποιήσεις Sobolev και Hermite

Υλοποίηση Sobolev: Κατά την υλοποίηση Sobolev, [12], οι παράγωγοι του ΒΝΔ
ως προς τις εισόδους του υπολογίζονται κατά τη διάρκεια της εκπαίδευσης, και συ-

γκρίνονται (ταυτόχρονα με τη σύγκριση των προβλέψεων με τις τιμές-στόχους) με τις

παραγώγους αναφοράς υπολογισμένες με τη συζυγή μέθοδο. Η σύγκριση γίνεται προ-

σθέτοντας τόσους επιπλέον όρους στη συνάρτηση κόστους (με κατάλληλη στάθμιση),

όσοι και οι (μερικές) παράγωγοι ως προς τις μεταβλητές εισόδου.

Υλοποίηση Hermite: Η υλοποίηση Hermite, [13], βασίζεται στην ιδέα της αριθ-
μητικής παρεμβολής Hermite, κατά την οποία ορίζονται δύο οικογένειες ορθογωνίων
πολυωνύμων βάσης, έτσι ώστε μόνο η πρώτη να συνεισφέρει στην τελική συνάρτηση

παρεμβολής (για την παρεμβολή των τιμών-στόχων των δειγμάτων), ενώ όταν αυτή

παραγωγιστεί, να συνεισφέρει μόνο η δεύτερη οικογένεια (για την παρεμβολή των πα-

ραγώγων τους). Για την υλοποίηση με χρήση ΒΝΔ, ορίζονται δύο ξεχωριστοί κλάδοι

δικτύων, ώστε να μοντελοποιήσουν τις δύο αυτές οικογένειες πολυωνύμων βάσης. Οι

δύο κλάδοι αποτελούνται από ένα στρώμα εισόδου, έναν αριθμό κρυφών στρωμάτων (ο

αριθμός τους μπορεί να διαφέρει για κάθε κλάδο), ένα στρώμα ΄Βάσης΄ και ένα στρώμα

εξόδου. Στο στρώμα ΄Βάσης΄, ορίζονται τόσοι νευρώνες όσος και ο αριθμός των δειγ-

μάτων εκπαίδευσης, ώστε να προσομοιώσουν το αποτέλεσμα των πολυωνύμων βάσης.

Στη συνέχεια, τα (μη-εκπαιδεύσιμα) βάρη του στρώματος εξόδου εξισώνονται με τις

τιμές-στόχους των δειγμάτων, στον πρώτο κλάδο, και με τις τιμές των παραγώγων

τους, στον δεύτερο. Οι εξόδοι από τους δύο κλάδους προστίθενται, διαμορφώνοντας

έτσι την τελική συνάρτηση παρεμβολής κατά αναλογία με αυτή της αναλυτικής παρεμ-

βολής Hermite (Σχήμα 8). Η εκπαίδευση γίνεται κι εδώ με μία συνάρτηση κόστους
τύπου Sobolev, μόνο που οι τιμές-στόχοι των δειγμάτων συγκρίνονται με την τελική

8

έξοδο του προτεινόμενου ΒΔΝ (άθροισμα εξόδων των δύο κλάδων) και οι παράγωγοι

αναφοράς, συγκρίνονται με τις παραγώγους της συνάρτησης αυτής. Στην υλοποίηση

με χρήση ΒΝΔ, οι δύο κλάδοι συνεισφέρουν ισότιμα και συμπληρωματικά στην τελική

παρεμβολή (σε αντίθεση με την αναλυτική μέθοδο) και η κάθε συνεισφορά εξαρτάται

σημαντικά από την αρχιτεκτονική του κάθε κλάδου και κυρίως, από τις συναρτήσεις

ενεργοποίησης. ΄Ενα πλεονέκτημα της προτεινόμενης υλοποίησης με τα ΒΝΔ είναι ότι

μπορεί εύκολα να επεκταθεί για την παρεμβολή πολλών μεταβλητών εισόδου.

Σχήμα 8: Προτεινόμενη Αρχιτεκτονική ΒΝΔ για την υλοποίηση Hermite.

Ο προτεινόμενος αλγόριθμος με τις υλοποιήσεις Sobolev κσι Hermite εφαρμόστηκε
στη βελτιστοποίηση της αεροτομής S8052 (ίδιες συνθήκες ροής και ίδια συνάρτηση-
στόχου). Χρησιμοποιήθηκαν δύο ΒΝΔ για την πρόβλεψη των συντελεστών άνωσης

και οπισθέλκουσας αντίστοιχα,, τα οποία εκπαιδεύτηκαν σε βάση δεδομένων 25 αερο-
τομών, Οι παράγωγοι ευαισθησίας των δειγμάτων υπολογίστηκαν με τη συζυγή μέθοδο

και αρχιτεκτονικές των δικτύων βελτιστοποιήθηκαν χρησιμοποιώντας τον EASY, με
γνώμονα την ακρίβεια των προβλέψεων και παραγώγων τους (Σχήμα 9.) Η νέες υλο-

ποιήσεις της μεθόδου οδήγησαν σε καλύτερη λύση σε σύγκριση με τη συζυγή μέθοδο.

Ομοίως κι εδώ, δεν χρειάστηκαν επαν-εκπαιδεύσεις των ΒΝΔ. Το κόστος της βελ-

τιστοποίησης ήταν το ίδιο με της συζυγούς μεθόδου και ελαφρώς υψηλότερο από το

κόστος της αρχικής υλοποίησης. Η λύση της υλοποίησης Sobolev είχε 5% χαμηλότε-
ρη τιμή συντελεστή οπισθέλκουσας (με απόκλιση 0, 01% από τον στόχο συντελεστή
άνωσης) και η λύση της υλοποίησης Hermite είχε 4% χαμηλότερη τιμή συντελεστή
οπισθέλκουσας (με απόκλιση 0,02 % από τον στόχο).

Συμπεράσματα

Από τις μελέτες συμπεραίνεται ότι τα ΒΝΔ μπορούν αποτελεσματικά να αντικατα-

στήσουν τόσο τον επιλύτη ροής, όσο και των συζυγών εξισώσεων, προβλέποντας την

τιμή της συνάρτησης-στόχου και των παραγώγων ευαισθησίας, όταν χρησιμοποιηθούν

σε αιτιοκρατικές μεθόδους βελτιστοποίησης στο πεδίο της ΥΡΔ. Αφού εκπαιδευτο-

ύν, τα ΒΝΔ μπορούν να χρησιμοποιηθούν ευέλικτα σε πολλές βελτιστοποιήσεις (μίας

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Variables

−0.5

0.0

0.5

1.0

1.5

Se
ns
iti
vi
ty
 D
er
iv
at
iv
es

CL/CL,b

FDs
Adj int
DNNCL - Standard
DNNCL - Sobolev
DNNCL - Hermite

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Design Va iables

−1

0

1

2

Se
ns

iti
vi
ty

 D
e

iv
at

iv
es

CD/CD,b

FDs
Adjoint
DNNCD - Standard
DNNCD - Sobolev
DNNCD - Hermite

Σχήμα 9: Πρόβλημα ΙΙΙ: Οι παράγωγοι των συντελεστών άνωσης (Αριστερά) και οπι-

σθέλκουσας (Δεξιά) από τα ΒΝΔ εκπαιδευμένα κατά Sobolev και Hermite σε σύγκριση
με τις παραγώγους των αρχικών ΒΝΔ , των πεπερασμένων διαφορών και της συζυγούς

μεθόδου.

Σχήμα 10: Πρόβλημα ΙΙΙ: Οι βελτιστοποιημένες γεωμετρίες από κάθε υλοποίηση του

προτεινόμενου αλγορίθμου συγκρίνονται με την βελτιστοποιημένη γεωμετρία από τη συ-

ζυγή μέθοδο και την αρχική. Οι λύσεις τοποθετούνται στον χώρο των συντελεστών

άνωσης-οπισθέλκοθσας για σύγκριση.

συγκεκριμένης γεωμετρίας σε συγκεκριμένες συνθήκες), με διαφορετικές συναρτήσεις-

στόχους. Η ακρίβεια των παραγώγων των ΒΝΔ όσο και η αποτελεσματικότητα της

προτεινόμενης βελτιστοποίησης εξαρτώνται σημαντικά από τις συναρτήσεις ενεργοπο-

ίησης, όπου η GELU αναδείχθηκε η πιο κατάλληλη. Η αύξηση του μεγέθους της βάσης
δεδομένων βελτιώνει την ακρίβεια των δικτύων, αλλά αυξάνει ταυτόχρονα το υπολο-

γιστικό κόστος της βελτιστοποίησης. Συνεπώς, η εκπαίδευση των ΒΝΔ σε μικρές

βάσεις δεδομένων είναι πιο συμφέρουσα, αφού η ακρίβεια της τελικής λύσης μπορεί

να βελτιωθεί με επαν-εκπαιδεύσεις των δικτύων κατά τη βελτιστοποίηση. Τέλος, η

εισαγωγή των παραγώγων ευαισθησίας στην εκπαίδευση των ΒΝΔ βελτίωσε τόσο την

ακρίβεια των παραγώγων τους, όσο και την απόδοση της προτεινόμενης βελτιστοποίη-

σης. Η νέα υλοποίηση προτείνεται έναντι της αρχικής, αν βέβαια η συζυγής μέθοδος

για τον υπολογισμό των παραγώγων των δειγμάτων είναι διαθέσιμη.

10

Βιβλιογραφία

[1] State-of-the-art in artificial neural network applications: A survey. Heliyon,
4(11):e00938, 2018.

[2] M. Kontou, V. Asouti, and K. Giannakoglou. DNN surrogates for turbulence
closure in CFD-based shape optimization. Applied Soft Computing, 134:110013,
2023.

[3] K. Kovani, M. Kontou, V. Asouti, and K. Giannakoglou. Dnn-driven gradient-
based shape optimization in fluid mechanics. In L. Iliadis, I. Maglogiannis,
S. Alonso, C. Jayne, and E. Pimenidis, editors, Engineering Applications of
Neural Networks, pages 379–390, Cham, 2023. Springer Nature Switzerland.

[4] K. Giannakoglou and D. Papadimitriou. Adjoint Methods for Shape Optimiza-
tion, pages 79–108. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[5] X. Trompoukis, K. Tsiakas, V. Asouti, and K. Giannakoglou. Continuous
adjoint-based shape optimization of a turbomachinery stage using a 3D volu-
metric parameterization. International Journal for Numerical Methods in Flu-
ids, 2023.

[6] L. Piegl and W. Tiller. The NURBS Book (2nd Ed.). Springer-Verlag, Berlin,
Heidelberg, 1997.

[7] Uncertainty quantification method for cfd applied to the turbulent mixing of
two water layers. Nuclear Engineering and Design, 333:1–15, 2018.

[8] J. Pizarroso, J. Portela, and A. Muñoz. Neuralsens: Sensitivity analysis of
neural networks. Journal of Statistical Software, 102(7), 2022.

[9] TensorFlow: Large-Scale Machine Learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[10] A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind. Automatic differentiation
in machine learning: a survey, 2018.

[11] K. Giannakoglou. The EASY (Evolutionary Algorithms SYstem) software,
http://velos0.ltt.mech.ntua.gr/EASY, 2008.

11

[12] W. Czarnecki, S. Osindero, M. Jaderberg, G. Świrszcz, and R. Pascanu. Sobolev
training for neural networks, 2017.

[13] http://velos0.ltt.mech.ntua.gr/kgianna/analysis/distr/book-numanal.pdf.

12

	Contents
	Introduction
	Artificial Intelligence and Machine Learning
	Supervised ML Models for Regression in CFD Applications
	Random Forests
	Support Vector Regression
	Artificial Neural Networks
	An Overview on the Differentiability of the most Common ML Models used for Regression

	DNNs in CFD and Optimization
	Thesis Outline

	Deep Neural Networks
	Neuron Model and Network Architecture
	Training Process of DNNs
	The gradient-based optimization problem
	Loss Functions for Regression Tasks
	The Adam Optimizer

	Differentiation of DNNs
	Reverse Automatic Differentiation
	Parameters that Influence the Computed Gradients

	The Proposed DNN-Driven Gradient-Based Optimization
	Introduction
	The Adjoint-Based Optimization Algorithm
	DNNs as Surrogates of the Flow and Adjoint CFD Solver in Optimization
	In-House Software and Tools
	Demonstration of the proposed DNN-Driven Optimization Algorithm

	 Problem I: Gradient-Based Optimization of an Isolated Airfoil in Inviscid Flow
	Introduction
	Flow Conditions, Mesh and Shape Parameterization
	DNN Configuration and Training
	Parametric Study on the DNN's hyperparameters
	DNN Loss Convergence and Accuracy Metrics

	The DNN - Driven Optimization Run
	Comparison of the Optimized Geometries

	Problem II: Gradient-Based Optimization of an S-Bend Duct with Laminar Flow
	Introduction
	Flow Conditions, Mesh and Shape Parameterization
	DNN Configuration and Training
	The DNN - Driven Optimization Run
	Comparison of the Optimized Geometries

	 Problem III: Turbulent Flow Around an Airfoil
	Introduction
	Flow Conditions, Mesh and Shape Parameterization
	DNN Configuration and Training
	The DNN - Driven Optimization Run
	Comparison of the Optimized Geometries, Mach Number and Turbulent Viscosity Fields
	Proposals for Improving the DNN Predictions and Gradient Accuracy

	Gradient-Assisted Training of DNNs
	Introduction
	Implementation I: The Sobolev Method
	Sobolev Training for Deep Neural Networks
	Demonstration of the Sobolev Method on the Approximation of a Bi-Variate Function
	Demonstration of the Sobolev Method on Problem III

	Implementation II: The Hermite Method
	Hemite Interpolation
	DNNs as Surrogates of the Hermite Basis Polynomials
	Demonstrarion of the Hermite Method on the Approximation of Uni-Variate and Bi-Variate Functions
	Demonstration of the Hermite Method on Problem III

	S8052 Airfoil's Shape Optimization using the Sobolev-trained and Hermite-trained DNNs
	Comparison of the Adjoint-Based and the DNN-Driven Optimization Runs

	Conclusion
	Overview
	Conclusions
	Future Work Proposals

	Bibliography
	englishgreekΒιβλιογραφία

