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Abstract

This diploma thesis presents the application of the continuous adjoint method de-
veloped by the Parallel CFD & Optimization Unit (PCOpt/NTUA) of the School of
Mechanical Engineering of the National Technical University of Athens, integrated
in the OpenFOAM® environment, to the aerodynamic optimization of a Toyota
passenger car. Aerodynamic drag is one of the major energy loss sources in vehicles
today and its minimization is a primary target in the automotive industry. With
gas emission regulations becoming stricter, along with the emerging electric, hybrid
and hydrogen vehicles, the reduction of energy loss is of key significance for vehicle
development.

In order to go through with the aerodynamic optimization of the vehicle i.e. the
minimization of its drag coefficient, an analysis of the external flow development
and structure is necessary. This comes down to the use of Computational Fluid
Dynamics for the prediction of the velocity, pressure and turbulence fields around
the surface of the vehicle, also known as the primal or flow problem. For this study,
three different turbulence models are used; the k — ¢, k — w SST and the Spalart-
Allmaras one. The resulting flow fields from the three models are compared and
validated with wind tunnel measurements. The ability of each turbulence model
to correctly predict important features of the flow, such as flow separation and



reattachment is discussed.

The primal flow fields obtained from each model are used as an input for the solution
of the adjoint equations. This yields the adjoint flow field, i.e. the adjoint pressure
and velocity fields around the vehicle which are, in turn, used for the computation
of sensitivity derivatives. The ability of the adjoint method to correctly compute
the required sensitivities in a timely fashion is what makes it stand out. In drag
minimization problems, the sensitivity derivatives are the derivatives of the drag
force w.r.t. the surface normal displacement of the vehicle’s outer surface points.
Shape morphing of the geometry in the direction provided by the sensitivity deriva-
tives will lead to the optimization of the vehicle’s shape, according to the selected
objective function, in this case the drag coefficient. A colorful representation of the
surface sensitivities on the vehicle, also referred to as the sensitivity map, is pro-
vided. Also, the comparison of the three sensitivity maps resulting from the three
primal solutions from the k — €, the k —w SST and the Spalart-Allmaras models is
carried out.

Finally, the sensitivity derivatives are used as an input to the automatic shape
morphing and optimization software developed by the PCOpt/NTUA, which utilizes
volumetric B-Splines to perform the morphing of the geometry. Convergence and
stability issues of the primal and adjoint simulations are also addressed.

The major part of this diploma thesis was carried out in the premises of Toyota
Motor Europe (TME) in Brussels, Belgium, during an 8 month long internship
that took place from May until December 2017. On behalf of TME, the Industrial
Advisor was Mr A. Delacroix.
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Part 1

Thesis in English



Chapter 1

Introduction

1.1 Aerodynamic Drag

One of the main areas of focus of aerodynamic studies on cars is and always has been
the accurate prediction and, on second notice, the minimization of the aerodynamic
drag. Aerodynamic drag is one of the main forces applied to a body moving within a
fluid. As the body advances through the fluid, it is subject to a pressure distribution
applied normal to its surface, along with shear stresses applied tangentially to it, fig.
[I.1] These are the two main sources responsible for the aerodynamic forces acting
on the body, regardless of the complexity of its shape. Integration of the pressure
and shear stress distributions over the complete body surface yields the resulting
aerodynamic force ﬁ and moment ]\_4> , fig. .

Figure 1.1: Pressure and stress distribution applied on a body immersed in a fluid.
22
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Figure 1.2: Resulting Aerodynamic Force and Moment acting on the body. [3]

The resulting force ﬁ and moment ]\_4) can be split into three components each,
according to the_> chosen coordinate system. Taking into account the free stream
velocity vector V., in a 2D problem _t)wo main forces, lift and drag are defined. Lift
is the force acting perpendicular to V,, and drag is the force acting parallel to it.

%
Figure 1.3: Components of the aerodyn(ﬂic force acting on the body. L is the lift
i.e. the component of R perpendicular to Vo and D the drag force i.e. the component
of R parallel to Voo, [3].

According to the former definition, aerodynamic drag is one of the forces a car must
overcome in order to move forward. In other words, the higher the value of the drag
force acting on the vehicle, the more power and energy the latter requires in order to
move forward. It is therefore profound why the main target of aerodynamic studies
on vehicles is the minimization of the drag force acting on it or, equivalently, its
drag coefficient, Cp. When it comes to vehicle aerodynamics, the drag coefficient is
one of the most important quantities used to define the aerodynamic quality of the
vehicle. Let po., be the freestream air density and S a reference area, in this case
the frontal surface of the vehicle. The (freestream) dynamic pressure is then equal
t0 Qoo = %pOOVOQO. The drag coefficient is defined as the magnitude of the drag force
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divided by the product of the freestream dynamic pressure and the reference area
(eq. , which in this case is the frontal area of the car projected on the YZ plane.

Thus,
D
CpH=—r 1.1
P=3 (1.1)
is a normalized value of the drag force, usually varying from 0.2 to 0.4 for passenger

vehicles.

Normalized coefficients can be defined for all forces and moments acting on an
arbitrary body, the most commonly used of which are the following:

o Lift coefficient Cp = L5

e Normal force coefficient C'y = qLS

e Moment coefficient C; = % , whereby 1 is a reference length

In fact, the last decades, with the introduction of electric vehicles with a limited
power supply and the establishment of stricter waste gas emission regulations for
passenger cars, there has been a remarkable effort in order to minimize the drag
coefficient of vehicles. One can easily grasp the effort put into the reduction of the
drag force, if we consider the quadratic relation of speed and drag, as shown in

equation [7.2] [27].

1.2 CFD Techniques for Industrial Applications

Computational Fluid Dynamics (CFD)-based aerodynamic analysis is quickly gain-
ing ground and is becoming a common way of conducting studies and optimization
procedures in the industry. The radical increase in computational power together
with the high availability and decreasing cost of CPUs today has led the majority
of large industrial research and development units to adopt CFD and implement
it routinely. What is more, the computational algorithms are continuously being
improved, offering limitless potential to meet the need and requirements of the
varying applications in the different fields of the industry. A key advantage is their
competence to achieve an accurate prediction of the flow with a relatively low com-
putational cost. The ability to decompose large scale problems in terms of memory
and computational power into smaller, and to parallelize the solution process or
even to employ the use of Graphics Processing Units (GPUs), drastically decreases
the required time for the necessary procedures.

In order to perform an optimization process using CFD, certain prerequisites are
necessary. The generation of a CFD mesh is an important aspect and plays a major

3



role in the accuracy and the performance of the solution algorithms. A low quality
mesh can significantly hinder the process and vice versa. The partial differential
equations (PDEs) that model the physical problem are then discretized and nu-
merically solved on this mesh. Solution of these equations yields the corresponding
flow fields, which are used for the calculation of the target (or objective) function.
This target function quantifies the criterion according to which the optimization is
performed, for instance the drag force applied on a vehicle or the pressure losses of
an engine’s intake duct which needs to be minimized. For the optimization process
carried out in this diploma thesis, a gradient—based optimization will be used. This
method requires the computation of the derivatives of the objective function w.r.t
the design variables. This computation can —depending on the problem— become ex-
tremely costly, to a point that the procedure might not be able to run on the existing
computational platform. For example, this is the case when the number of design
variables increases significantly, as in most industrial applications. To overcome this,
the adjoint method [I3], [15], [I4] enables the aforementioned computation with a
minimal cost, which does not scale with the number of design variables. As it will
in detail be described and exhibited in the following chapters, the advantages of this
method deem it suitable for a wide range of optimization problems. Regarding the
continuous adjoint method [16], [19], [4], the mathematical formulation and software
programming used in this thesis has been performed by the PCOpt/NTUA, in the
OpenFOAM® environment.

This diploma thesis focuses on the application of the continuous adjoint method
for the shape optimization of a passenger car. The term aerodynamic shape opti-
mization implies the modification of the outer surface of the car in order to minimize
its drag coefficient (and in fact, finally, the drag force applied to it, since the refer-
ence area of the car remains practically constant throughout the optimization). In
order to do this, a flow analysis is initially performed, using three turbulence models.
Subsequently, the solution of the adjoint problem will enable the computation of the
required sensitivity derivatives based on which the sensitivity maps will be drawn.
These are, in turn, used for the optimization of the car shape.



Chapter 2

The CFD Analysis and
Optimization Process

The main features of the process followed to compute the drag coefficient, solve the
adjoint problem and obtain the sensitivity map and, finally, perform the morphing
and optimization are presented in this chapter.

2.1 The Primal Problem

2.1.1 Flow equations and discretization

The primal or state problem involves the solution of the governing equations of
the flow around the car written along the three Cartesian coordinates to numeri-
cally compute the corresponding flow fields, i.e. the three components of the ve-
locity, the pressure and the turbulent viscosity. In this case the state equations are
the Reynolds—Averaged Navier—Stokes (RANS) equations for incompressible, steady
flows coupled with the turbulence model equations which vary depending on the se-
lected turbulence model. In this study, three different turbulence models were used
for the closure of the mean-flow equations. The simulation was performed using
second—order discretization schemes in order to predict the drag coefficient with
acceptable accuracy. Given the fact that the ultimate target of this study is the
aerodynamic shape optimization of the vehicle, i.e. the minimization of its drag
coefficient, the accuracy and stability of the primal evaluation need to be adequate
and capable to predict the drag coefficient within a few Cd counts [ Although
a transient analysis would confidently result in a solution of higher accuracy, the

10One Cp count is equal to 0.001



computational burden is significantly increased and, therefore, steady-state analyses
are exclusively performed.

2.1.2 Turbulence Modeling

The flow around a car is highly turbulent and is, therefore, governed by random,
unsteady fluctuations of the pressure and velocity in a very small time scale. In
order to take into account all these fluctuations, an unbearably small cell size is
necessary, as well an infinitesimally small discretization of the time domain. Such a
computation is practically unfeasible with the computational resources available in
the industry today and a steady—state computation was carried out instead, whereby
the unsteady term in the Navier—Stokes equations is omitted. In order to properly
take the random fluctuations of the flow into account, starting from the instanta-
neous Navier-Stokes flow equations a decomposition in a mean and a fluctuating

part is performed. Time -or Reynolds- averaging the emerging equations gives rise
to the RANS equations [7.4

The system of the RANS equations for an incompressible fluid flow are shown below,

where repeated indices denote summation, according to the Einstein’s convention.

Conservation of Mass

R =--2L=0 (2.1)

Conservation of Momentum

v 81)1- 0 a'U,L' an 8p . .
R} = vjaxj " oz, |:(V—|- V) <83:j + 8951)] + or, 0 i =1,2,3 (2.2)

In equations and [7.4] v; are the components of the velocity in the three cartesian
coordinates and p the static pressure divided by the constant density of the fluid.
A new term is introduced in these equations, the Reynolds non-linear stress term
which according to the Boussinesq hypothesis [13] is equal to

’ 61}@- 81)]' 2

Tij = —PUUj = th(axj + 8%) — 3koi (2.3)




whereby

k= v} (2.4)

The Reynolds stress term essentially describes the turbulent vertical advection of
streamwise turbulent momentum or, in simple terms, the vertical flux of streamwise
momentum and plays a similar role to the viscous stresses, hence its name. v, is the
kinematic turbulent viscosity or kinematic eddy viscosity and has the same units
as the kinematic viscosity of the fluid, m?/s. The introduction of this new variable
into the averaged Navier-Stokes equations yields a new complication for the solu-
tion of the problem, since the necessity of more equations to close the system arises.
This issue, also referred to as the ’closure problem’, is overcome by the introduction
of the so-called turbulence models’, which attempt to model the turbulence using
different approximations, constants and variables. These are directly linked to the
turbulent properties of the flow and are the result of extensive experimental data
and analysis of the past decades. Finally, a new set of equations that describe the
turbulent behavior of the flow are introduced.

This results in a significant decrease in the computational time. Particularly, in
areas of high adverse pressure gradients where turbulent structures of very small
and large scales govern the flow, the ability of the different models to predict the
pressure and velocity fields accurately is challenged. As mentioned above, three
different turbulence models are used in the analysis performed within this diploma
thesis, the k — ¢ [10], [11], the k — w SST [@], [7], [8] and the Spalart-Allmaras [5].
Their PDEs and main features will be discussed below, [9].

The k-¢ Turbulence Model

The k-e [10], [11] is one of the most commonly used turbulence models, in a wide
range of applications today. This is mainly due to its relative simple implementation,
generally stable convergence and, on average, reasonable flow predictions in many
different flow conditions. It is a two-equation turbulence model, meaning that it
introduces two new transport PDEs in order to model turbulence via two quantities,
the turbulent kinetic energy k£ and the turbulent energy dissipation rate €. In the
standard High—Re k-¢ formulation for incompressible fluid, the equations are written
as follows [26]

d(kv;) 0 v Ok

8a:j N 8@ O'_kal’j

] + 2VtEiJEiJ — & (25)



d(ev;) 0 v Oe € e’
dr; Oz [U_e 30@'] 2By By = Coep (2:6)

whereby C, = 0.09,C. = 1.44,Cs. = 1.92,0;, = 1.0,0. = 1.3 are specific constants
of this turbulence model and Ej;, are the components of the rate of deformation

k?2
tensor. Finally, 14 is computed via the following equation v, = C,—.
€

Wall Treatment

Since the average distance of the first cell center from the wall boundaries is higher
than that required for a boundary layer resolution, wall functions are used to model
and approximate the value of the turbulent variables at this area [6]. With the use
of wall functions, the grid point adjacent to the wall can be placed well away from
the wall (y* = 40 —100) and the shear stress at the wall 7, can be inferred from the
velocity at that point. y* is the non-dimensional distance and is defined as y* = =¥
where v, = /7, is the friction velocity and y the distance of the cell center from
the wall. Another variable used for the formulation of the wall treatment is the

v

non-dimensional velocity v = - The computation of the velocity profile of the
flow varies depending on the area of the boundary layer in which it is performed.

The velocity profile in the characteristic areas of the boundary layer can be seen in

figure
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Figure 2.1: Velocity profile in the characteristic regions of a turbulent boundary
layer, [0].

In the viscous sublayer we have that

whereas in the logarithmic region, the following equation holds

1 v VY
+_ = + = — = ZIn(= C 2.8
v Iiln(y)—i—C’ >UT En(y)—l— (2.8)

where C' = 5.

If we neglect the buffer zone [1], exactly at the intersection of the two previously
mentioned regions, both equations 2.7 and [2.§ hold. We therefore get that at that
point

v = in(yf) +C (2.9

Equation can be solved using the Newton-Raphson method and the value of yF
can be extracted. Following this, we have to identify the region in which the point
where the computation is performed resides. To do this, an initial assumption that
it lies in the viscous sublayer is made. Using the velocity field computed at the
previous iteration, from equation we obtain the value of v, and we can then

9



compute the value of y*. If the computed y* is smaller than yI then our initial
assumption is was correct. Otherwise, the point lies in the logarithmic region and
equation [2.8 should be used to obtain the value of v;.

Following this, if the point adjacent to the wall lies within the logarithmic region
(which should be the case when using a High-Reynolds turbulence model) where the
production and dissipation of the turbulent kinetic energy are approximately equal

[6], the turbulence model-specific variables can be computed using the following

equations
2
o — 1 (2.10)
VCu
and
3
e= 1 (2.11)
KY

where x is the von-Karman constant and is equal to 0.41.

These equations are derived by taking into account the fact that in the logarithmic

region, the shear stress at the wall is equal to

ov;
Tw = (V + Vt)|a—;n]~] (2.12)
J

Wall Treatment in OpenFOAM®

In the OpenFOAM® environment, wall functions for k and e are applied using the
same equations, but with a manipulation that results in a slightly different formula-
tion [7], [§]. This is presented in short in what follows. It should be noted here, that
there is a major difference between the computation performed in OpenFOAM®
and the formulation described previously in section ”Wall Treatment” of for
the computation of v,. OpenFOAM® utilizes Finite Differences (FD) to compute
the gradient of the velocity at the wall which is used to compute the friction velocity

: ov;
Ur, Le. [57

on
direction from the fluid to the wall. v{ is the velocity at the center of the cell adja-

fn; =[] = ”—;UC whereby 7 is the normal to the wall vector with a

cent to the wall (which is considered to be parallel to the wall) and vif the parallel
to the wall velocity at the cell’s face (thus v/ is equal to zero). This method can
give erroneous results for the computed derivative when performed on a High-Re

is therefore used to

mesh as in this diploma thesis. Equation 7, = v2 = (v +1;)| 2%

10



ensure that the value obtained for 14 is such that the prediction of the wall stress is
correct.

Initially, a zero Neumann boundary condition is imposed to the turbulent kinetic
energy k. For the turbulent energy dissipation €, a weighting factor W is initially
computed, which depends on the number of the faces of the cell under consideration
to which the boundary condition will be applied. Then, the value at the center of
each cell which is adjacent to the wall is set equal to:

1 w 03/4k'3/2
e=—>_ (MHT) (2.13)

where k is the value of the turbulent kinetic energy at the same cell center.

The value of y* depends on the turbulent kinetic energy and is computed from

k
y* = 02'25@/\6 (2.14)

Finally, v; is computed depending on the cell’s distance from the wall. The value
of yI is first computed from equation If the adjacent to the wall cells’ center
resides in the viscous sublayer i.e. if yF > y™, then 1, is set to zero. Otherwise, the
following equation is used

Kyt

v = V(W - 1) (2.15)

where E=9.8.

Equation [2.15] is used to compute an artificial value for 14, which, when multiplied
with the gradient of the velocity at the wall computed with FD (equation [2.12) will
yield the correct value for the shear stress at the wall.

The £ — w SST Turbulence Model

The k — w SST turbulence model [6], [7], [§] is also a two equation model which
uses two variables to model the effect of turbulence on the mean flow. These are the
turbulent kinetic energy k, which is also used in the k£ — ¢ model, and the specific
dissipation rate w. As far as the specific dissipation rate is concerned, it describes the
rate at which turbulence kinetic energy is converted into thermal internal energy per
unit volume and time. The Shear Stress Transport - (SST) formulation is a variant
of the original Wilcox k — w turbulence model whereby a switch from k£ — w to
k — e is performed when solving for the free-stream flow, avoiding issues regarding

11



the sensitivity of the standard k-w model to the freestream value of w and the often
false prediction of separation in severe adverse pressure gradient flows. Moreover, the
limiting factor of the Shear Stress formulation helps to avoid a build-up of excessive
turbulent kinetic energy near stagnation points and other regions with large normal
stress.

The variables k and w are computed via the two following PDEs

d(kv,) 0 ok
=P, — 0k — — 2.16
al'j b 5 Wt (9.1'j [(V+0kyt)al'j] ( )
0(wvy) 5 , 0 Ow 1 0k Ow
= — — —|+2(1-F — 2.1
0z as” = fw + 0z [+ Uwyt>8a:j] + 2 1>me 0x; 0x; (2.17)
and, upon computation of these, v; can be computed as follows
061]{7
= 2.1
vt mazx(oyw, SFy) (2.18)
whereby
2vk 500v o Oup
Fy = tanh((ma:c(ﬁ*wy, s N2, P, = mm(Tija—%,lOﬁ kw),
, VE 5000, 4ok |, 10k 0w . 1
F = tanh((mm(max(ﬁ*wy, 7 )’CDkwy2)> ),C' Dy = mam(Zpawgza—ajim—i, 1077,
9
¢:¢1F1+¢2(1—F1)75*:m (2.19)

with «, 3, oy, 0, depending on whether the k-¢ or k-w formulation is used at the

point of the domain that the computation takes place.

Again, wall functions are used to approximate the values of k and w at the cell
adjacent to the wall [7], [§]. A zero Neumann boundary condition is imposed on the
turbulent kinetic energy as in the k-¢ model. The value imposed to the turbulent

specific dissipation w differs, depending on whether the cell center resides in the

viscous sublayer where w = wy;s = G—Vy or the logarithmic region where w = wr,, =

B
Ckojy. In the buffer zone (the area between the two) the blending function w =
I

\/Whis + Wi, is used. In the above equation, 8 = 0.075.
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The Spalart-Allmaras Turbulence Model

The Spalart-Allmaras [5] is a one equation mixing-length turbulence model for in-
compressible flows. It uses a single transport equation to model the kinematic eddy
viscosity by introducing a new viscosity-like variable, known as the Spalart-Allmaras

variable, or v,

Ve =Ufu1 (2.20)

where

X3
vl = e a s X:
fl X3+Cgl

AN

(2.21)

It is very popular among CFD applications of external aerodynamics, due to its
ability to accurately predict the flow developement is areas of high adverse pressure
gradients, which often occur in external aerodynamics applications. It is shown to
give good quality results for attached flows, or flows with mid-high separation and
recirculation. In order to obtain the Spalart-Allmaras variable v a single PDE is
iteratively solved, which is the following

0(vv; = Chi 0 _, O ov oV
$04) — (1= fn)7 = [Cun = S el 5+~ 7))+ Cuag o7
(2.22)

Quantities o = 2/3, Cy; = 0.1355, Cyy = 0.622,k = 0.41,C,; = 3.239,C,; = 7.1 are
turbulence model constants, d is the distance of the field point to the nearest wall,
while S, ft2, f,, are computed with the following equations

g: 2d2f1}27 Q= ZVVZ]VI/'U7
1, 0v; Ov;
Wi = - t_ 2 2.23

Also,
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X 1+c8,

v2 — 1-— 5 w — 1/67
fuz 1+ X[ f [QGJFCSJ?)]
_ 6 _ . v
g =7+ Cypa2(r’ —6), r= mm[S,.;?d?’ 10],
fio = ctge_mxz (2.24)

In the Spalart-Allmaras model, wall functions are also used to approximate the
value of v; at the cell closest to the wall. The formulation for the computation of
yT follows Spaldings Law [14], which models the inner sublayer and the logarithmic
region of the boundary layer with one equation

1 1 1
yt=ut + E[emﬁ —1—kut — 5(mﬁ)2 - 6(,<¢u+)3] (2.25)

v, is computed according to v, = % — v, where the previously computed y* value

. . . on
is taken into account in the computation of u,.

2.1.3 Boundary Conditions

In order to iteratively solve the flow and adjoint equations, boundary conditions
need to be imposed along all the boundaries of the domain for each variable of the
problem. The boundaries include the inlet, the outlet, the two sides and the top of
the simulated domain, the road, and, finally the car surface including the wheels,
which due to their different motion will be treated separately from the rest of the
vehicle. The proper specification of boundary conditions is a necessity to guarantee
the wellposedness of the problem, as well as accordance with the physics that govern

the flow in reality.

The variables for the primal problem are the static pressure and velocity as well as
the selected turbulence variables depending on the turbulence model. As far as the
turbulence models are concerned, in OpenFOAM® [7], [8], wall functions for the k,
€, w and 14 can be used to compute the near—wall values of the turbulent variables
in case the distance of the first cell center from the wall dictates so, as previously
described.

For the rest, the following boundary conditions are used.
e Inlet

At the inlet of the computational domain, a Dirichlet boundary condition is
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imposed on the freestream velocity and a zero Neumann boundary condition on
the static pressure. The Spalart-Allmaras variable  is defined using a Dirichlet
boundary condition depending on the value of the kinematic viscosity v of the
fluid. The variables k, w and € are approximated depending on the turbulence
intensity I and the freestream velocity magnitude U at the inlet. So, for k we
have

3

E=2
2

(UI)? (2.26)
and e and w are approximated depending on the user-defined eddy viscosity
ratio ;- [25] as follows

=G () w= (%) (2.27)

Outlet

Zero Neumann and zero Dirichlet boundary condition are imposed on the
velocity and pressure fields, respectively, at the outlet of the domain. Zero
Neumann boundary conditions imposed on all turbulent variables k, €, w and

.
‘Wall Boundaries

A no-slip condition is imposed on the velocity field at all the solid boundaries
of the vehicle with the exception of the wheels, for which in case ground
simulation is performed, a constant angular velocity is applied to the outer
area of the wheels that ensured no-slip condition at meeting point of the wheel
and the moving ground. Dirichlet boundary condition to the ground and zero
Neumann boundary condition is imposed on the static pressure field. Wall
functions are used for the turbulence variables at the wall.

Top and Sides of the Domain

The slip boundary condition is used for the velocity at the surrounding surfaces
of the domain (the normal to the surface component is zero -zero Dirichlet
condition-, whereas the parallel components are non-zero (i.e. zero Neumann
condition)] [16] [I5]. It, firstly, implies that no flow flux is able to pass through
the wall and that there is zero wall shear stress applied from the wall surface
to the fluid. This boundary condition is also used to model the symmetry of

the domain when the simulations using the half car model were performed.
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2.2 The Adjoint Problem

As previously stated, the main target of this diploma thesis is the minimization of the
drag coefficient of the vehicle by modifying its shape. The required tools to perform
this task are a CFD simulation software able to compute the velocity and pressure
fields around the vehicle as well as the required objective function (evaluation tool), a
space parameterization and shape morphing tool in order to optimize the geometry
without remeshing (the former in order to parameterize the surface and volume
mesh so that its points can be moved as required and the latter in order to move
the mesh points) and, finally, a software capable of computing the gradient of the
target function w.r.t. the design variables, according to which the shape change
will be performed. One of the major issues when dealing with gradient—based shape
optimization problems in industrial applications is the computational time required
to compute the gradient. Accurate prediction of the gradient in a timely fashion is
key to gradient-based optimization. The large number of design variables involved
in the majority of such problems, in combination with the huge meshes that usually
come, hand in hand with, real industrial applications render the use of gradient
computation methods such as the Finite Differences or the Direct Differentiation
[9] practically unfeasible. This applies to any gradient computation method whose
required simulation time scales with the number of design variables. Among the
possible ways to compute the derivative of the target function w.r.t. the design
variables in shape optimization problems, the adjoint method [13], [15], [14], [16]
has proven to be the optimal solution. It enables the computation of the sensitivity
derivatives at a cost that is not dependent on the number of design variables, but is
practically equal to one Equivalent Flow Solution (EFS). Note that a single EFS is
representing the time required to achieve convergence of the corresponding primal

problem.

2.2.1 Objective Function

The main concept of the adjoint problem is the following. The objective function is
defined by the engineer. It represents the physical quantity that is the aim of the
optimization problem. In our case, this is the drag force applied on the vehicle by
pressure and viscous stresses exerted upon it by the surrounding fluid. The drag
force in incompressible flow is the following:

r- (! = s (2.28)
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where n; is the surface normal vector, r; the direction vector of the force and &/ the
Kronecker symbol.

After the objective function has clearly been defined, as a next step it is augmented
by the volume integrals of the flow equations multiplied by the newly introduced
adjoint fields. These are the adjoint velocity u, pressure q and adjoint turbulence
variables Wy, k = 1, M, whereby M is the number of PDEs solved by the turbulence
model. The flow (or state) equations are in this case the continuity and momentum
conservation equations, which are -together with their boundary conditions- satis-
fied in each and every (internal or boundary) point of the computational domain
adding, therefore, no contribution to the original objective function. The augmented

objective function can be written as follows:

M
Faug = I + / ui I dSY + / qRPAQ + ) / Uy, R*dS (2.29)
Q Q =1 Y Q

where 2 is the computational domain. The adjoint formulation that takes into
account the contribution of the turbulence model has already been developed and
implemented by the PCOpt/NTUA. This includes the continuous adjoint equations
for the Spalart-Allmaras, the k — €, the k —w and the &k —w SST turbulence models
[12], [14], [16], [17], [18].

The resulting augmented objective function is, in turn, differentiated. This will give
the total (or material) derivative of the augmented objective function w.r.t. the flow
variables and the geometry variation i.e. how much is the influence on the objective
function from a) change of the car shape on the vehicles boundary surface b) change

in the flow fields which is, in turn, caused by this geometry variation

Differentiation of the objective function can be done in various ways one of which will
be presented here. All of them yield the same Field Adjoint Equations and Adjoint
Boundary Conditions but a different formulation of the sensitivity derivatives [12],
[13], [15]. In the following development, in order to keep the mathematics as simple
as possible, the adjoint method is presented by skipping the turbulence model PDEs.

Applying the delta operator on the augmented objective function we get:

0Fpy O6F 6 . ) .
5= At g | aRrde (2.30)

Then, the Leibniz theorem which is used for the differentiation of the volume inte-

grals with variable boundaries, is applied

O Fqug B oF 8Rf RP v » dxy
T T A L / 5, / (R} + gR?) g tmdS (2:31)
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where S is the boundary of the computational domain, S = S;USoUSw USw,. The
boundaries Sy, So, Sw and Sy, refer to the inlet, outlet, fixed and parameterized
boundaries of the domain, respectively. However, only the parameterized boundaries
may change (5’”’“ ny corresponds to the deformation velocity of the surface in the

normal direction) so we have

0Fwy _ OF 3R” ORP Sz
“6b,  0b, A2+ 14 P)—— 2.32

Since the state equations together with their boundary conditions are satisfied at
each and every point of the computational domain, F' = Fy,, and, consequently,

6F __ 6Faug
b, — b,
The total differentiation of the objective function 5—F yields a number of surface
integrals.
Sw Sw Sw

By applying the total derivative operator to the objective function we get

oF 0
5y~ oy, TS
— F Fom—’
/SW (5bn n;dS —l—/ SZ(Sb dS +/5W 5N 5b.

5[(p5] TZJ) ] / . éni
= n;dS + A — T )| —dS+

) 5(dS)
+ /SW[(P@ - Tz'j)fj]”iW (2.34)

and, if we take into account that [12],

5d 9D 0D by

08 _ 0%, 0% 0my .
5b. — 9b. " 9y o0, (2.35)

we get

18



I Vs I , ,
5_F :/ 8[(})51 TZ])TJ] nZdS ‘I’ / 8[(})51 Tl])rj] %n,ds + / [(pél] . Tij)?”j]%ds +

—n;dS+ n;dS + n
W avk abn Sw ap 6bn S aTk] 3bn

Ol(pd] = 7i5)rs] O / j on; / j 5(dS)
+/S o 8bnnzd5+ SW[(p(SZ- TZ])TJ](SbndS+ SW[(péi i )T 5

(2.36)

/ Ol(pd] — iy)r] dvn Ol(pd] — mij)ry) Op
S

The final expression of the material derivative of the augmented objective function
w.r.t. the design variables is formulated as follows

oF,, 0[(p5j — Tk )T5) ov; 6[(]9(5? — T )74] dp
&)ng :/SW<Uz‘anj+7'a,ijnj_qni+ kavi o ”k)@bn‘iSJ“/SW(“jnjjL Op ) gy S

ob,,
I Vs g
+/ (_uinj —+ a[(pék Tk])rj]nk)aTlJ dS+
S

W 8Tij 8bn
Ol(pd] — 75)r;] o, j on;
, o(dS 0
+ i =t 2 foy + ) S s+
Sw, oby, Sw, ob,,
an 8(vjui) 0 811/1 8uj (9q an
e — | Q
+/Q{“jaxi e, on, |V N o, P on )| o fan, S
Ou; ., Op
— =) =—dQ 2.
+/Q( 8xj)8bnd (2.37)

Considering the partial derivatives of the objective function w.r.t. the flow variables
and the stress tensor
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OFs, _ 8[(p(55 — 7ij)1;] -0
(%k ‘ 8vk ‘
Fs; 8 — 7,
8@;, = I[(pd; aij>rj] _ 5]T]nz = rjn;
OFs, 8[(])5% — Tigj )T k
> _ _5 .
(97'1']' 1tk 87'17 ! T]nk
(?FSi 8p aTij Gp (97'1-- 8p 873--
—Ny; illq a. i — 5 i & — J'i__z'(sj_ Ji'
oxy, &xkrn &z*krj ox Tino; 8xkr]n (%ckrnj ! axkrnj
(2.38)

the final expression of the total derivative of the augmented objective function is

derived

0F g

oby,

ov; 0
:/ (uivjnj—l—Ta,ijnj—qnz)a;) dS+/ (anj—F?’LjT])ag? dS+
SW SW

0T
+/S [—(umj +7’jni)] 8b dS+

+ flnr Gt Gl = g as + [0 = mprigeas

SWP a m ‘ n
+/[(p5] sz Tj nz / Rv + QRP —nkd5’+
Sw,
v, 8(vjuz) 8 ou; Ou;  0q | Oui
+/Q{uj o oz, oz, |V TN on, T aw )| Tom S ST
Ou; ., Op
Q 2.
+/Q( a%)(%d (2.39)

Field Adjoint Equations

The total differentiation of Fy,, gave rise to the partial derivatives of the primal

variables w.r.t. the design variables (namely

ov;

and ap 7). These terms are of very

high computational cost and shall not be computed, Wthh motivates their elimina-

tion by setting their multipliers to zero. As a result, the Field Adjoint Equations

and their boundary conditions are formulated. Their final form is as follows
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Rq:__::() (2.40)

w Ovj _ﬁ(vjui) B 0 8u, a’LLj 0q . .
R} =u; o, On, 0x, (v+1y) o, + oz, +8xi =0, i=1,2(,3) (2.41)

where the adjoint turbulence model PDEs are omitted, for the reason explained
previously.

A few notes on these equations are useful here, in order to give a better under-
standing of some procedures that took up a significant amount of time during this
diploma thesis. The Field Adjoint Equations (FAEs) are very similar to the primal
state equations. They both include a convective, a diffusive, and a pressure gra-
dient term. They pose, however, very crucial differences. The first one being that
these equations are linear, in contrast to the Navier—Stokes equations whose veloc-
ity convection term is non-linear. What is more, the adjoint velocity is convected
backwards from the outlet to the inlet of the computational space, in this case from
the wake towards the vehicle and the inlet. The most decisive difference, however, is
the extra term that appears in the FAEs, which is known as the Adjoint Transpose
Convection or ATC. This non-conservative source term has a great influence to the
stability and convergence of the adjoint equations and is, often, the term that leads
this linear system of equations to divergence.

In the formulation used in this thesis, the ATC term requires a vector-tensor mul-
tiplication which results in a cross coupling of the components of the adjoint ve-
locity. This leads to a weak coupling between the adjoint velocity components
within the system of equations, which, in combination with the unstable nature
of this source term can often drive the adjoint system of equations to a gradual
self-induced divergence[5]. Another term which has proven to be influential to the
stability of the adjoint is the convection term of the turbulence model equations
of the flow problem. When discretized with 2" order schemes, this term tends to
drive the turbulence variables to enter an intense oscillation whereby they may even
obtain unphysical values. This may, in turn, cause some of the eigenvalues of the
system’s left hand side matrix to become greater that unity, driving the system
to become unsteady or even to diverge. Since the flow and adjoint problem share
the same eigenvalues, the eigenvalues computed at the last iteration of the iterative
solution of the flow problem will be given as input to the adjoint problem. The non-
linearity of the primal system is protecting it against divergence, since its matrix
(and hence, its eigenvalues) is recomputed on every iteration of the primal solver
loop. This however does not hold for the adjoint system of equations which is lin-
ear and its eigenvalues are therefore constant throughout the iterative solution and

21



are computed during the last iteration of the primal solution. This means that the
existence of a single eigenvalue greater than 1 on the primal system will drive the
adjoint equations to divergence. Among the numerous ways to counter this issue,
a common practice is to reduce the discretization order of the turbulence equations
which will effectively reduce the oscillation of the turbulent variables. In order for
the convergence and stability of the problem to be ensured, a few measures were
employed including mainly averaging of the primal solution along with relatively
low relaxation factors —to reduce the fluctuation of the primal solution—, and the
use of specific limiters and schemes for the treatment of the more unstable numerical
terms. Under-relaxing the equations is essentially keeping part of the solution of the
previous iteration and part of the one currently solved. This is used to control the
stability and convergence rate of the iterative process. The under-relaxation factor

generally increases the stability of the system and reduces its fluctuation, as it can

be seen below, figure

Figure 2.2: Effect of lower relaxation factors on the oscillation of the drag coefficient.
Green = high relaxation factors, purple = low relaxation factors.

Adjoint Boundary Conditions

The adjoint boundary conditions are derived by setting the multipliers of the partial
derivatives of the primal state variables w.r.t. the design variables in the surface
integrals in equation to zero. As a result, we obtain the following [12]

o Inlet
0Fs, |
Ui = UjT; = — apl’ n; (2.42a)
0Fg 0Fg
I 1k 1 I,k I
Uy = ———nit; 1+ “ngting 2.42b
(t) aTij kUil aTij kY5 ( )
0Fs Fs
I Lk i Ik 1
= =ngty nj+———ngt; n; 2.42¢
) 07ij Mkt O7ij A ( )
whereby ¢!, ¢t/ are the components of the tangential to the surface vector and
[

Uy s Ugyy ATE the respective components of the adjoint velocity.
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e Outlet

du; | Ou, OF,
U uj) _qnz_|_ So’knk:07 7,:1’2(,3) (243)

uiving+(v + v (835 T )"
j i

e Parameterized Wall Boundaries

J0F%s,, .
Uy = = (2.44a)
aFS 8F5
I _ Wp,k I Wp,k T
Uiy = —871-; gt ng+ aﬂj” ngtin (2.44D)
aFS 8F5
II Wp,k I7 Wp,k 11
Uiy = 3%’; nt; ”ﬂ‘T;nkt n; (2.44c¢)

Sensitivity Derivatives

The Field Adjoint Equations are to be solved, along with their boundary conditions,
in order to yield the required fields which will, in turn, together with the primal fields
be used for the computation of the sensitivity derivarives. Having satisfied the FAEs
and the adjoint boundary conditions, the remaining terms of equation [7.22] are the
following

5Faug o a'UZ 5$k (Sll'k 8p j 87‘ij
o /5;‘;’””] ) G / 3T, B
A on; o(dS oxy,
+ /[(Ptsf - m)m]%ols +/[(p5§ — Tij)rilng ESb ) /( iR+ qu)éTn’“dS
Swy, n Swyp Swyp

(2.45)
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Chapter 3

Mesh Generation and Shape
Morphing

3.1 Mesh Generation

In order to iteratively solve the discretized aforementioned RANS equations, an
arbitrary space around the vehicle is created and broken into smaller sub-volumes
of arbitrary shape, which are referred to as cells. Each cell of the domain consists
of a number of points and edges depending on its geometrical shape, which all
together form the mesh of the computational space. The PDEs are, then, solved
at each point (or node) of the resulting discretized space using a variant of the
SIMPLE algorithm, which is implemented in the environment of OpenFOAM®.
Proper representation of the computational domain is crucial when it comes to
simulating specific problems which will be compared with real life measurements,
tests and experiments. Simulation of the flow around a car and estimation of its
drag coefficient is very much in this category of problems, and the specification of
the computational domain is not trivial. In every case, deviation of the simulated
domain from the one which will be used as a reference for comparison should be
known in order to estimate the expected error and to realize the validity of the
results. In the simulations that were run during this diploma thesis, the domain is
defined by an inlet, an outlet the sides and top of the domain and the ground. The
car is positioned 15 m from the inlet and 25 m for the outlet, in order to ensure
uniform distribution of the flow at the front of the vehicle and enough space for the
wake to develop and dissipate at the rear. The height of the domain is approximately
11.6 m and the width 11 m.
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Figure 3.1: Computational domain.

The surface mesh consists of 5 million triangular surface elements. The car model
features a detailed underbody and closed engine compartment. The volume mesh
consists of 36.5 million elements, the majority of which were polyhedral El

(a) Car geometry (b) Surface mesh

(¢) Underbody

Figure 3.2: Vehicle geometry and surface mesh.

After the computation of the drag coefficient with three different turbulence models
on the full car model was performed as it will in detail be described in the following
chapters, a half car model was created. This was done for many purposes the main of

!The surface mesh was kindly provided by BETA CAE and the software for the necessary
further manipulation of it was provided by TME.
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which being the symmetry of the solution. When a full model of the vehicle was used,
asymmetrical elements of it introduced intense asymmetries in the flow pattern,
which of course was later on translated to asymmetries on the sensitivity map.
Another issue when dealing with the full model of the vehicle was the simulation
time. Especially, when performing optimization loops, the necessary runtime of each
simulation deemed the use of a full car mesh almost prohibitive. The model featured
also a detailed underbody and closed engine bay, but a significant difference from
the original model was the exclusion of the front and read windscreen wipers.

(a)

Figure 3.3: Car front windscreen detail on full and half car model. Left - full car
with windscreen wipers, right - half car without windscreen wipers.

(b)

Figure 3.4: Car front windscreen detail on full and half car model. Left - full car
with windscreen wipers, right - half car without windscreen wipers.

The half car mesh featured 7 layers and a total of 50 million tetrahedral elements
and the simulation time per iteration was reduced by approximately 55%, compared
to the full car simulation, while the average y+ value on the surface of the vehicle
was roughly 25.
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(b)

()

Figure 3.5: Y+. Top Left - Front view, top right - top view, bottom left - left view,
bottom right - rear view.

Computation of the primal and adjoint problem were performed on this mesh as
well as a number of optimization loops. Following that, a conversion of this mesh
to polyhedral was performed in order to further reduce the required run-time. The
polyhedral version of the half car model consists of around 25 million elements and
the majority of the optimization loops were executed using this mesh. The mesh has
been refined in areas of high importance for the development of the flow, the flow
separation and reattachment and all the areas that are expected to have a significant
influence on the drag coefficient. These are mainly the area around the whole body
of the vehicle, the front and rear part where the wake is expected to appear, the
A-Pillar, the side view mirrors and the side windows, the underbody and the spoiler.

3.2 Shape Morphing

The usefulness of the previously calculated sensitivity derivatives in shape optimiza-
tion problems can be twofold. Firstly, they can be used to compute the sensitivity
map i.e. a colorful representation of the derivatives of the objective function w.r.t.
the surface-normal displacement of the surface points. This, in simple terms, visu-
ally identifies and pinpoints the areas of the body’s surface that need to be “pulled”
outwards (normal displacement from the solid surface towards the fluid) or “pushed”
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inwards, in order to minimize the objective function. The magnitude of the displace-
ment is a matter of the engineers judgement in order not to overshoot the local or
ultimate minima. Another efficient way to utilize the sensitivity derivatives is to
input them in an automated shape morphing tool. The tool needs to have the abil-
ity to morph the geometry according to the direction suggested by the sensitivities,
from which point the mesh can either be deformed and the nodes will be relocated
to their optimal coordinates, or the surface and volume mesh will be regenerated
according to the newly suggested shape. The latter highly increases the computa-
tional cost of each shape deformation. When the former strategy is applied, i.e.
displacement of the mesh nodes according to the direction provided by the sensitiv-
ity derivatives, a few important aspects need to be noted and dealt with carefully.
Such are the continuity and smoothness of the mesh after the node displacement or

even the possibility of mesh overlapping.

The optimization software is coupled with a shape morphing tool able to handle mesh
deformation without the need for remeshing the geometry. Both were provided by
the PCOpt/NTUA. To do this, a user defined domain confined by a rectangular
box is parameterized with volumetric B-Splines. The control points of the B-Splines
are also the control points for the mesh displacement, i.e. the Cartesian XY and
7 displacement of the control points are the design variables in the optimization
problem. The control points are then relocated according to the computed sensi-
tivity derivatives and the parameterized space is morphed accordingly, utilizing the
advantages of the B-Splines.

During the optimization cycle, the morphing is automatically applied to the geom-
etry and after the algorithm has been initiated, there is no need for any further
user input. The properties of the geometry morphing, the constraints for the move-
ment of the control nodes and the step of the objective function optimization are
all defined by the engineer prior to the calculation.

The theoretical background of the B-Spline representation and morphing of the
domain will be described in detail below.

3.2.1 The Morphing Tool

Mathematical background

The FFD tool as presented in [20] makes use of B-splines defined in 3D space,
the so—called volumetric B-splines. To understand its properties that give so many
advantages to the morpher, a few mathematical details are explained, [40], [47], [20].
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B—spline curves

A B-spline is a parameterized curve z(u) that is defined as a linear combination of
b; € [0,n] control points and B-spline basis functions U; ,(u) with a degree of p [40].
The curve is described as

z(u) = Z U; p(u)b; (3.1)

Equation can also be used to obtain the y(, z) coordinates of a monoparametric
curve in 2D(,3D). A B-spline is a piecewise polynomial function of degree p. In
order to define the basis function U;,, a set of knots which is a non decreasing
sequence, known as the knot vector, &;,i € [0,m|,m = n + p + 1 must first be
defined. The knots &p41,...,&n—p—1 are called internal knots. The uniform knot
vector is given as

N -1

1
=100,...,0, —=,...,——,1,...
6 Y 77N7 Y N e Y

p+1 p+1

1 (3.2)

where N = n — p+ 1. This knot vector results to closed curves, this means that
we get curves that pass through the first and last control points. The number of
control points has to exceed the curve degree by at least one, i.e. n > p. The basis

function is given by

Uio(u) = - (3.3)
0 elsewhere
U — g i — U
Unpl) = 25 0 () + 22 () (3.4
Sz—i-p Sz §z+p+1 §z+p

During the computation of the basis functions values, the quotient 8 may appear
and its value is defined to be 0. Two consecutive knots define a knot span.

The degree p determines the extent of the effect of control points. In other words,
each basis function (and consequently, each control point) is affecting only points
with a parametric coordinate residing in the p 4+ 1 knot spans defined by [€, &4 pi1)-
This gives B—splines curves the desirable property of local support, i.e. a certain
part of the curve can be altered by keeping the rest of the curve intact. The range
of locality can be controlled by changing the curve degree p, where smaller p values
correspond to more localized support. So, control points have a stronger attraction
to the curve corresponding to the lower degree basis functions, as it can also be seen
in fig. [3.6]

Knots can have a multiplicity greater than one [40], i.e. equation is therefore
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valid even if some of the knots occur several times. Since B-splines curves are
piecewise polynomial functions, they are continuously differentiable in the interior
of each knot span. The curve continuity is finite only at the knots. A curve is
p — k times differentiable at a point where k£ duplicate knot values occur. This
means that if the knots are all distinct, then a linear spline will be continuous, a
quadratic spline will also have a continuous first derivative, while for a cubic spline
even the second derivative will be continuous. Predetermining the curve (or surface
in 3D) continuity is a very desirable property for a mesh movement algorithm as
well, since the deformed shapes are guaranteed to have a user—defined level of surface

continuity, facilitating the manufacturing process.

Volumetric B—splines

The volumes in B—spline form based on B-spline basic functions are now analyzed
[20]. It is defined with all attributes as B—spline curve, however, here there are three
parameters u, v, w and the definition is similar to the case of curves. The properties

of B—spline volumes are similar to the properties of B—spline curves.

The cartesian coordinates x = [x1, To, ¥3]7 = [7,, 2|7 of a CFD mesh point that is
chosen to be parameterized, which means that it is residing inside the boundaries
defined by the control grid, are given by

(1, 0,0) = Y Y Y Ui (W) Vi (0) Wi (w) b3 (3:5)

i=0 j=0 k=0

where u = [uy, uy, uz]’ = [u, v, w]’ are the mesh point parametric coordinates,U, V, W
are the B-splines basis functions and pu, pv, pw their respective degrees. bk m €
[1,3],i € [0,1],7 € [0, J], k € [0, K], signifies the cartesian coordinates of the ijk-th
control point of the 3D structured control grid, where I, .J and K are the number

of control points per control grid direction.

As long as the parametric coordinates u of any parameterized point are known, the
computation of its cartesian coordinates is straightforward, at a negligible compu-
tational cost. Mesh parametric coordinates can be computed with accuracy, since
a mapping from R*(x,y, z) — R3(u,v,w) is required. This means that volumetric

B-splines can reproduce any geometry to machine accuracy.

Given the control points position, the knot vectors and the basis functions de-
grees, the parametric coordinates (u,v,w) of a point with cartesian coordinates
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(a) Basis functions values of degree p =4

(b) Basis functions values of degree p = 6

(c) B—splines curves generated by the top row basis functions for
the given set of control points

Figure 3.6: On the top row graphs, for each u, the sum of the basis functions values
equals unity. On the third graph, two B-splines curves generated by multiplying the
basis functions in the top graphs with the control points depicted by the control polyline.
The cartesian coordinates of the curve are given by eq. for b = [bi,bZ]T,QD
vector of control points. The curve corresponding to higher degree basis functions is
less strongly attracted by the control points, but a larger part of it is affected. Lower

degree functions influence a smaller part of the curve, though more intensively.
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r = [7,,¥y,, 2]7 can be computed by solving the system of equations

z(u,v,w) — z, =0
R(u,v,w) = |y(u,v,w) —y, =0 (3.6)

z(u,v,w) — 2z, =0

where z,,(u,v,w) are computed through eq based on the given b values. The
3 x 3 system of eq[3.6] can be solved independently for each parameterized mesh
point numerically, using the Newton—Raphson method, for which is necessary to
compute and invert the Jacobian %%";, m,j € [1,3]. The Jacobian matrix is com-
puted analytically through a closed form expression resulting by differentiating eq.
[3.5] with respect to the components of u. Since the evaluation of the parametric
coordinates of each point is independent from any other mesh point, this phase may

run in parallel.

The aforementioned process has to be done only once and can be seen as the “train-
ing phase” of the method. Then, after moving the control points, the cartesian
coordinates of each (internal of boundary) mesh point that resides within the con-
trol grid can easily be computed through eq. at a very low cost. In addition,
since z,, depends only on (u,v,w) (which remain unchanged whatever the change
in b might be) and b, the deformed meshes are step—independent. This means that,
for a given final control points position, the same mesh quality will be obtained
independent of the number of steps taken to reach that position. This is not, for

instance, the case for RBF-based or Laplacian—based mesh movement algorithms
[20].

3.3 Optimization Algorithm

To perform an automated CFD shape optimization loop for the car shape, as it is
mentioned before, the in—house adjoint solver coupled with the in—house morpher

are used [20]. The steps of the shape optimization algorithm are listed below:

1. Define the 3D space (box) to enclose the part of the geometry to be optimized.
Moreover, define the control points number and the basis functions degree

according the logic explained above. A structured control grid is created.

2. Find the CFD mesh points residing within the control grid. These points
are to be parameterized and then displaced, according to the control points

displacement.

3. Compute the parametric coordinates for each of the points found in step 2.
The computational cost of this step increases with the number of control points
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10.

11.

and the number of the mesh points to be parameterized.

Solve the flow equations.

Compute the objective function value and apply the termination criterion.
Solve the adjoint equations.

Compute the objective function gradient w.r.t. the boundary CFD mesh nodes

to be displaced, i.e. 2 (surface sensitivities).

. Project the surface sensitivities to control points in order to compute the

control points sensitivities,

oF 53&
Z Z 527 o (3.7)

where n,, is the number of boundary mesh points to be displaced. In the general
case, the control points are allowed to move along all the three directions,
however the user has the ability to confine the movement of specific points
in specific directions. One of the beneficial properties of B—splines is that
smoothing is included in the nature of the basis functions. Consequently,
no smoothing of the computed sensitivities is required. The quantity < 55"" is
computed analytically by differentiating the linear eq. 3.5 w.r.t. b;.

. Update the control point coordinates. In this thesis, the steepest descent

formula
is used where 7 is a positive number that defines the step of the descent and
[ is the current iteration.

Compute the new surface and volume mesh points positions through eq. [3.5
using the already computed parametric coordinates u associated with each one
of them.

Move to step 4.
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Chapter 4

Solution of the Flow Problem

In this chapter, the solution of the mean flow equations together with the turbulence
model equations, i.e. the primal problem will be presented. The different flow fields
obtained from the three different turbulence models (Spalarts-Allmaras, k —w SST
and k — ¢€) used for the closure of the RANS equations will be presented and their
ability to accurately predict the flow evolution around the car body will be discussed.

4.1 Comparison of the Three Turbulence Models

4.1.1 The Computed Drag Coefficient

As discussed in the previous chapters, each turbulence model is identifiable by a set of
characteristics that deem it appropriate or not for certain applications. As such, the
comparison of the obtained flow fields with experimental wind tunnel measurements
that were conducted during this thesis [[] showed that two of the three turbulence
models used in this study -the & — w SST and the Spalart-Allmaras- proved to
give results of good accuracy in this application. The k£ — € turbulence model on
the other hand appears to have some drawbacks when it comes to the accurate
prediction of the shear stresses on the wall and consequently the flow separation,
which is an important feature of the flow development around the car. In what
follows, a comparison between the computed drag coefficient and flow fields from
the three models will be made. With a quick glance at the comparison of the
results between the three turbulence models one can clearly notice the similarities
between the kK — w SST and the Spalart-Allmaras models, which is translated in a

very close prediction of the drag coefficient from the two. In contrast, the picture is

IMeasurements from the wind tunnel experiment conducted by TME are not included in this
thesis due to confidentiality reasons.
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much different with the k — e turbulence model, in which case the flow pattern and
consequently the predicted drag coefficient is notably different from the other two.
In figure [4.1 comparison between the drag coefficient obtained by the three models
is shown. The values have been normalized by the averaged C'p value obtained from
the k — € model.

Figure 4.1: Normalized drag coefficient of the three turbulence models over the last
5000 iterations of the solution. Averaging of the fluctuating value was done to obtain
the final mean Cp.

In what is shown in figure the comparison between the three models in made
on the prediction of the local drag coefficient along the length of the vehicle. The
contribution of each part of the vehicle along its longitudinal axis can be seen for each
of the three models. It appears that the k —w SST and the Spalart-Allmaras results
correlate very well along the whole length of the vehicle whereas the k& — € model,
when compared with the other two, seems to under-predict the drag force close to
bonnet, the cowl area and the A-Pillars of the vehicle, and to overshoot at the rear
part. The final drag value acquired by the k& — ¢ model is roughly 7% higher than
the two other models. The experimental results, which cannot be disclosed, show
that the £ —w SST and the Spalart-Allmaras models give quite accurate predictions
wheras the k& — € model lags behind.
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Figure 4.2: Local drag coefficient comparison among the three turbulence models.
Blue = k —¢, Red = k —w SST, Green = Spalart-Allmaras.

As mentioned previously, the drag coefficient obtained from the k —w SST model is
within a 1% difference from the Spalart-Allmaras model and a 7% difference from
the £ — e model. This was expected, since the k& — w SST model is a crossbreed of
the original & — w model established by Wilcox [6], [7], [8] and the standard k — ¢
model. The fact that the &k —w SST is able to compute a different flow pattern that
is closer to the experimental results confirms the advantages of this mixing between
the two models. The fluctuation of the converged drag coefficient value from this
model is, however, slightly more intense than the other two cases. The magnitude
of the Cp oscillation when calculated with the & —w SST model is roughly 2% of its

mean value, whereas the two other models converge with approximately a quarter

of this oscillation (figure [4.3)).
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Figure 4.3: Normalized drag coefficient over the iterations of the numerical solution
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The influence of this fluctuation to the adjoint calculation might prove to be impor-
tant and the side effect to the optimization process is twofold. Firstly, it is linked to
an analogous fluctuation of the turbulent variables which, as previously discussed
can have a negative impact to the stability of the adjoint calculation and hinder its
convergence. Secondly, the purpose of this study is the minimization of the drag
coefficient, which is achieved by apt shape morphing as indicated by the sensitivity
derivatives. In external aerodynamic optimization problems of cars and most other
similar applications where design and styling is involved, the freedom and allowance
for shape modification is extremely tight. This results in a small optimization mar-
gin from each cycle, around 1%. If the fluctuation of the computed drag coefficient
is 2%, this can make it hard to identify the actual magnitude of the reduction of the
objective function at each optimization cycle. A minimal fluctuation of the objec-
tive function is, therefore, desired. There are numerical techniques to minimize this
fluctuation -which can however sometimes influence the accuracy of the solution-,
but when it comes down to the comparison between two turbulence models with
similar quality and accuracy of results, it is sensible to opt for the one with the least
fluctuating solution.

4.1.2 The Computed Flow Fields

The computation of the drag force applied on the car is partly caused by the pressure
difference between the front and rear part of the car. Results from this study
indicate that the contribution of the pressure drag to the total drag of the car is
approximately 90% (around one order of magnitude higher than the friction drag).
The lower the value of the static pressure on the rear part of the car, the higher
the aforementioned pressure difference. Consequently the drag force applied on the
car increases. In figure the static pressure on the rear surface of the car can be
seen, whereby blue areas indicate high negative values of pressure.
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(c) k-€

Figure 4.4: Static pressure on the back side of the vehicle. It can be seen that the
pressure distribution in the rear part, as computed by the k — e model, (bottom figure),
is significantly lower, which explains the higher value of the computed Cp. Pressure
range [0:-300Pa]

In general, the flow field obtained from the Spalart-Allmaras model is in a relatively
good agreement with that of the & — w SST model and the wind tunnel results.
Both model predictions of the separation at the rear part of the vehicle are very
similar. In figures|4.5(a)l [4.5(b)|and [4.5(c)| the shear stress on the surface of the car
computed by the three models can be seen. This gives a good indication of where

the flow separation takes place, which is where the wall shear stress becomes zero
(the area where the transition from green to blue color occurs).
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(a) Spalart-Allmaras (b) k —w SST

Figure 4.5: Wall shear stress, rear side view. High to low values - Red to blue.

The same can be seen from the static pressure distribution on the rear part of the
vehicle, figure [4.4] in which the separation of the flow appears to occur around the
tail lights, from which point on the wake is formed.

From figures [4.6(a)), [4.6(b)| and |4.6(c)| the formation of two clear, contra-rotating

vortices on the YZ plane drawn 0.5m behind the vehicle can be observed. Further
away, towards the rear of the car, these vortices can be seen moving closer to the
ground. In figures 4.7(a)|, [4.7(b)| and [4.7(c), the Line Integral Convolution (LIC)
representation El of the streamlines of the flow field can be seen, in which the two

vortices appear having a lower velocity magnitude and being closer to the ground.

2The LIC representation is a way of visualizing the flow field by coloring the pixels of the image
that reside on the same streamline of the flow with similar levels of the greyscale palette [46].
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(a) Spalart-Allmaras

Figure 4.6: Transversal velocity vector field on the YZ plane 0.5m behind the rear
bumper.
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(a) Spalart-Allmaras (b) k —w SST

Figure 4.7: Transversal flow field on the YZ plane. LIC velocity stream 2.5m behind
the rear bumper.

On the ZX plane, the image of the dead air region immediately behind the tail of the
vehicle is again that of two contra-rotating vortices, this time one being significantly
larger than the other, as it can be seen in figures [4.8(a)| |4.8(b)| [4.9(a)| and 4.9(b)| of
the computed velocity field from the Spalart-Allmaras and the k£ — w SST models.
This is the typical image for the flow behind a bluff body like the one used for this
study, i.e. a hybrid between a notchback and a hatchback. For a vehicle of this

type, as reported in [3] the results of the CFD analysis with the Spalart-Allmaras
and k& —w SST turbulence models correlates very well with the theoretical expected
flow pattern and the experimental measurements which, unfortunately, cannot be
included in this thesis.
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Figure 4.8: Transversal velocity vector field on the ZX plane.
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(a) Spalart-Allmaras (b) k —w SST

(c) k—e

Figure 4.9: Transversal LIC velocity stream on the ZX plane.

The slant angle (¢ = 24°) of the vehicle is such [I] that the flow coming from
the roof is forced to separate relatively early, as it can be seen from figure [4.5]
avoiding low static pressure to appear at the rear, as it can be seen in figure [4.4]
This, in combination with the fact that the spoiler at the trailing edge of the roof
is partly hollow, forces the complete separation to occur at a lower point, after
the second spoiler located at the end of the trunk. As a result, the dead air region
behind the vehicle and, subsequently, the volume of the two vortices, is much smaller
and shorter, again as seen in the experimental measurements [2]. This fact has
an immediate effect on the shape morphing suggestions by the adjoint calculated
sensitivity derivatives, as it will be discussed later on.

In the case of the k — € turbulence model, the flow evolution at the rear part of
the vehicle is much different from the other two turbulence models and, also, from
the wind tunnel test results and other experimental data from the literature [I], [2],
[3]. The flow remains attached to the body of the vehicle along a significant part of
the trunk and rear bumper including the taillights, as it can be seen in figure
of the wall shear stress. This results in the appearance of lower static pressure at
these areas compared to the two other models, as it can be seen in figure which
partly explains the higher value of the drag coefficient obtained by the k — ¢ model.
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Figure [4.4] features the static pressure distribution at the rear part of the vehicle in
the pressure range of 300 Pascal. The intense blue areas are dominating a large part
of the rear surface of the vehicle indicating an attached flow.

Also, as computed by the k — € model, the wake appears much different in size and
shape. The iso-surfaces for Cp; = 0 from the three turbulence models, which are
shown in figures {4.10(a)} [4.10(b){ and [4.10(c)}, give an image of the wake behind the
car. It can be noticed that in the case of the k — e model, the yellow surface takes up

a smaller part of the domain, indicating a smaller area of pressure loss around the
vehicle. This can be attributed to the higher shear stresses and, therefore, velocity
computed close to the wall. The total pressure coefficient on the XZ plane in the
wake behind the car can be seen in figures 4.11(a), [4.11(b){and 4.11(c)}

(a) Spalart-Allmaras (b) Kk —w SST

(c) k—e

Figure 4.10: Iso-surface Cp; = 0.
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(c) k—e¢

Figure 4.11: Total pressure coefficient on the XZ plane.

In contrast to the & — w SST and the Spalart-Allmaras models, the & — ¢ model
computes a totally different vortex generation in the wake of the vehicle. On the
ZX plane, where typically for this type of vehicle a pair of vortices are expected to
appear, [1], [2], [3], this is not the case for the results obtained by the k — e model.

Figure 4.12: Transversal flow field on the ZX plane. Left - Velocity vector field 0.5m
behind the rear bumper. Right - LIC wvelocity stream 2.5m behind the rear bumper.
Spalart-Allmaras turbulence model.

The flow that remains attached for a larger part of the vehicle, figure comes
with a high velocity from the sides around the tail lights towards the center of
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the rear trunk. From this point, it is separated and one part of it moves upwards
whereas the other part forms a downwash all the way to the lowest part of the rear
bumper. A small, counter-clockwise vortex is, then, formed at the lower part of the
rear bumper when this stream meets the flow coming from the diffuser.

According to the k —e model, the flow remains partially attached to the rear bumper
and, in general, the picture of the flow given is not realistic for this type of vehicle.
This suggests that the & — ¢ model failed to accurately predict the separation and a

not that correct pressure and velocity distribution around the vehicle is produced.
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Chapter 5

Solution of the Adjoint Problem

5.1 Sensitivity Maps

The previously analyzed primal solutions from the three turbulence models were
used as input to the adjoint problem in order to compute the sensitivity derivatives.
The sensitivity map is a very useful way of utilizing of the surface sensitivities
(sensitivity derivatives of the objective function w.r.t. the normal displacement of
the surface mesh points) in optimization problems of external aerodynamics. It
pinpoints the areas of the vehicle that exhibit the highest optimization potential, as
well as the direction in which these areas need be morphed in order to minimize the
target function. This information is very valuable in industrial shape optimization
problems. In the implementation of OpenFOAM®, surface normal vectors of a
boundary face are always pointed in the direction from the fluid to the solid surface.
Taking this into account, a negative value of the derivative of the objective function
w.r.t the surface normal displacement of the vehicle’s surface indicates a decrease of
the objective function if this surface is pushed inwards, i.e. in the direction from the
fluid to the solid surface. The opposite applies if the sign of the sensitivity derivative
is positive, indicating a decrease of the Cp if the face is pulled outwards, from the
solid surface towards the fluid. The magnitude of the sensitivity derivative at each
point quantifies the impact of the displacement to the objective function.

The sensitivity maps obtained from the three turbulence models have of course a
significant variation, which is proportional to the variation of the three flow fields
from the k — ¢, the k —w SST and the Spalart-Allmaras models that were previously
discussed. Given, therefore, the fact that the k& — ¢ model gave, to some extent, a
different flow pattern around the vehicle compared to the other two, the sensitivity
maps are also expected to vary. In general, the most sensitive areas are expected to
be around the area of the separation and reattachment of the flow. The results are
presented in what follows.
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What is more, the influence of turbulence in such flow problems is decisive for the
quality and accuracy of the results and has an immediate impact on the sensitivity
derivatives. An investigation is, therefore, also carried out between the resulting
sensitivity map from a flow problem that was solved with 2"¢ order discretization of
the turbulence equations and one that was solved with 1%¢ order.

An aspect that will also be investigated using the three sensitivity maps is the impact
of the adjoint computation on the diversity of the three flow solutions obtained from
the different turbulence models. In other words, this will try to measure the extent
to which the adjoint solution amplifies -or not- the differences in the flow fields that
are used as input for its computation. Other influencing factors on the construction
of the sensitivity map such as the symmetry of the results will also be addressed.

5.1.1 Comparison of the Sensitivity Maps from the Three
Turbulence Models

A few observations can be made already by a glance at the back side view of the three
sensitivity maps which can be seen in figure [5.1], the most obvious being the major
differences between the one based on the k& — € model and the other two. In what
follows, the figures of the sensitivity maps are in accordance with the ”push/pull”
terminology, whereby blue colored areas shall be pushed inwards for decreasing the
drag and red areas shall be pulled outwards.
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Figure 5.1: Sensitivity map comparison of the three turbulence models - Back side
view. Blue colored areas should be pushed inwards for drag reduction.

Figure 5.2: Sensitivity map comparison of the three turbulence models - Top view.
Blue colored areas should be pushed inwards for drag reduction.
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In figures and it is clear that the differences between them are not only
quantitative but, also, qualitative. This means that in a significant portion of the
vehicles surface the sensitivity derivatives have opposite sign and, therefore, suggest
opposite directions for shape morphing. It is obvious that these differences emerge
from the different primal flow fields and, particularly, the correct or erroneous pre-
diction of flow attachment and separation, indicating the significance of the proper
modeling and computation of turbulence. In general, the most profound differences
appear on the sides and of course the rear part of the vehicle, where turbulent phe-
nomena of all the length scales govern the flow and the ability of each model to
accurately predict its evolution is challenged. On the front and top of the vehicle,

differences are not so intense and obvious.

Figure 5.3: Sensitivity map comparison of the three turbulence models - Front side
view. Blue colored areas should be pushed inwards for drag reduction.

Still the surface sensitivities in some areas with acute angles (such as minor portions
on the headlights and the mirrors) have opposite sign. In general, though, they are
in relative agreement.
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5.1.2 Comparison of Sensitivity Maps from 1* and 2"¢ Order
Discretization of the Primal Turbulence Equations

A robust and stable convergence of the primal and the adjoint problem can in many
cases prove to be arduous to achieve without specific handling of certain terms.
As it was described in chapter 2, one effective way to assist the adjoint system of
equations to reach a stable convergence is to reduce the discretization order of the
turbulence equations of the primal problem which is used as an input to it. This
comes with some trade-off in accuracy. For this purpose, a comparison is carried out
between the sensitivity maps obtained from a 2" versus a 1°¢ order discretization of
the convection term for the k and e PDEs during the solution of the primal problem.

As it can be observed from a glance at figures |5.4(a)| and [5.4(b)|, the general trend

of the sensitivity derivatives is similar in the two cases.

Figure 5.4: Sensitivity map side view, k—e tubulence model. Left - 15 order turbulent
equations discretization. Right - 2" order turbulent equations discretization. Blue
colored areas should be pushed inwards for drag reduction.

Quantitative differences are present in most part of the vehicles surface but the sign

generally remains the same. A few areas can be identified in figures|5.5(a)land [5.5(b)|

in which the color switches from one plot to another such as the mirrors and part
of the roof, which are however limited.
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Figure 5.5: Sensitivity map top view, k— e tubulence model. Left - 15 order turbulent
equations discretization. Right - 2" order turbulent equations discretization. Blue
colored areas should be pushed inwards for drag reduction.

In what can be seen in figures [5.6(a)| and [5.6(b)| on the rear of the car however, the

picture is very different in the two cases. The sensitivity derivatives calculated from
the two simulations bear few similarities on the back side of the car. Taking into con-
sideration the fact that in both cases the adjoint problem was solved with identical
discretization schemes, one can realize the significance of accurate computation of
turbulence in such optimization problems. Neglecting the turbulent phenomena can
lead to erroneous quantitative as well as qualitative computation of the sensitivities.

Figure 5.6: Sensitivity map back view, k—e tubulence model. Left - 15 order turbulent
equations discretization. Right - 2" order turbulent equations discretization. Blue
colored areas should be pushed inwards for drag reduction.

A distinction between the two cases that is also very profound is the varying asym-
metry of the two sensitivity maps. The 2"¢ order map is generally rather symmetrical
in the top but not in areas such as the sides of the front bumper and the rear part
of the car. The sensitivity map from the 1% order turbulence discretization on the
other hand appears to be asymmetrical in a much larger part excluding the rear,

52



in which, compared to the former, symmetry has increased. The fact that specific
areas of the vehicle are symmetrical on one map and asymmetrical on the other,
or even appear to have a totally different sensitivity distribution is mainly an in-
dication of different prediction of the flow separation resulting from the wall shear
stress computation during the primal solution. This difference could be caused by
the reduction of the discretization order and, hence, the accuracy of the turbulence
equations.

Particularly, in a vehicle with such a bluff shape as the one used in this study, the
conclusion is that the turbulent phenomena play a key part in the flow evolution
and need to be taken into account as accurately as possible. The accuracy of the
turbulence equations can be vital for the correct prediction of the sensitivities. The
differences between the 1°* and 2"? order discretization of the turbulence equations
are qualitative -i.e. the sensitivities have opposite sign- where turbulent phenomena
govern the flow, such as the rear part.

5.2 Effect of the Primal and Adjoint Solution on
the Symmetry of the Sensitivity Map

A remark that is quite evident is the fact the maps from the Spalart-Allmaras and
the kK — w SST have a higher degree of symmetry compared to the one from k& — e.
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Figure 5.7: Sensitivity map comparison of the three turbulence models - Rear view.
Blue colored areas should be pushed inwards for drag reduction.

This is an issue that needs to be taken into account and addressed when dealing
with vehicle shape morphing. Any modification applied to the vehicles surface needs
to be symmetrical about the YZ plane. The flow field obtained from the primal so-
lution is however not entirely symmetrical, given the highly unsteady nature of the
flow around the car and its geometrical features (detailed underbody, front and rear
windscreen wipers) and as a result this asymmetry will be transferred to the sensi-
tivity derivatives. As it was described in chapter 2, the adjoint problem is solved
backwards in space and time, in this case in a direction from the wake towards
the vehicle. As a result, the imbalance of the primal fields on the rear part of the
vehicle -which is the “inlet” of the adjoint calculation- was passed on to the adjoint
solution, and the adjoint fields ended up with an increased asymmetry compared to

the primal ones, not only at the rear but at the entire surface of the body.

Since the velocity and static pressure computation from the k£ — e model in the wake
is much less symmetrical compared to the other two models, this asymmetry is much
more profound on the sensitivity map from the k& — € model, as it can be noticed in

figures [5.1] and
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Figure 5.8: Rear part of the car, k — € tubulence model. Left: Sensitivity map, Right:
Static pressure.

As far as the k—w SST model is concerned, the results appear to be very symmetrical
in both the primal and the adjoint solution. This is demonstrated in figures [5.15]
and where the primal and adjoint pressure distribution is compared.

Moreover, comparing the primal static pressure distribution between the £ —e model
and the other two (fig. , the dissimilarities are mainly focused on the tail of the
vehicle, particularly the area of the trunk and rear lights. For the rest of the surface,
the variation of the primal fields between the models is not that intense (Figures
[5.11} |5.14]and [5.17). Looking at the adjoint pressure of the three turbulence models
on the other hand, the patterns are very different. The adjoint pressure distribution

all over the body is significantly more dissimilar among the three, especially on the
roof, the sides and the rear (figures [5.10} [5.13] and [5.16)). This could indicate that
a slight imbalance on the primal velocity and pressure is, in fact, amplified by the

adjoint calculation.

o k-¢

Figure 5.9: Static pressure on the sides of the vehicle - k — € turbulence model -
Pressure Range [0,-300Pa].
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Figure 5.10: Adjoint pressure on the sides of the vehicle - k — € turbulence model.

Figure 5.11: Static (left) and adjoint (right) pressure on the top of the vehicle -
k — € turbulence model.

e Spalart-Allmaras

Figure 5.12: Static pressure on the sides of the vehicle - Spalart-Allmaras turbulence
model - Pressure Range [0,-300Pa).

Figure 5.13: Adjoint pressure on the sides of the vehicle - Spalart-Allmaras turbu-
lence model.
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Figure 5.14: Static (left) and adjoint (right) pressure on the top of the vehicle -
Spalart-Allmaras turbulence model.

o k-w SST

Figure 5.15: Static pressure on the sides of the vehicle - k — w turbulence model -
Pressure Range [0,-300Pa.

Figure 5.17: Static (left) and adjoint (right) pressure on the top of the vehicle -
k — w turbulence model.

It is clear that the k—w SST and the Spalart-Allmaras models give -in general- much
more symmetrical fields than the & — € one. A reason for this can be that the two
former models predict the separation of the flow at a much earlier part of the rear
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of the car than the k —e. This means that the flow is detached for the major part of
the trunk where the flow is highly turbulent and eddies of all length-scales govern
the flow. In case of attached flow at this area, this leads to highly alternating values
of the shear stress at the wall along with intense fluctuation of the pressure field.
This will cause vast asymmetries in the primal flow field and will, in turn, cause
equally intense variation and asymmetry in the calculated sensitivity derivatives of
the drag force w.r.t. the surface-normal displacement of the nodes at this area, as
is the case in the k£ — € turbulence model.

5.3 Averaging of the Solution

A software that performs automatic shape morphing based on the sensitivity deriva-
tives of the objective function with respect to the symmetrical displacement of the
control points of the morphing box has been developed by the PCOpt/NTUA. This
tool was remarkably convenient for the morphing applied in this thesis.
Nevertheless, the attempt to further improve the symmetry of the results was made
in all cases, initially by averaging the solution. The averaging was performed using
the following formulation, whereby U stands for any arbitrary flow quantity,

t; —1 1
U]/\/[ean - t UMean + t_U (51)

)

where:

Ultean — Mean field calculated at current iteration
Unrean — Mean field calculated at the previous iteration
t; — Current iteration number

U — Instantaneous field calculated at current iteration

The averaging was initiated after the solution had reached a steady oscillation
around a mean value both for the primal and the adjoint calculation, a fact that
was ensured by monitoring the convergence of the drag coefficient and the primal
and adjoint velocity and pressure at specific points of the domain. For example, in
the case of the Spalart-Allmaras model, averaging of the pressure and velocity fields
started at iteration 10000 and was performed until the end of the iterative solution.
The convergence of the drag coefficient can be seen in figure [5.18]
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Figure 5.18: Convergence of the Drag Coefficient - Spalart-Allmaras turbulence
model.

On all three cases averaging was done for a significant number of iterations to ensure
maximum smoothness of the resulting fields. The effect of this to the solution is
demonstrated in figures [5.19(a)| and [5.19(b)| of the pressure at the rear part of the
car. The rear is a very important area of the vehicle and accurate prediction of the

static pressure there is integral for the validity of the calculated drag coefficient.
Most major differences between the three turbulence models occurred there, as did

the resulting sensitivity maps.

(a) Without averaging (b) With averaging

Figure 5.19: Static pressure on the back side of the vehicle - k — € tubulence model.
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(a) Without averaging (b) With averaging

Figure 5.20: Transversal LIC velocity stream 2.5m behind the rear bumper - k — €
turbulence model.

The pressure distribution shown in figures and is within a 110 Pa range
which is equivalent to a 2.5% of the total pressure range on the surface of the
vehicle. This means that the asymmetry is strongly magnified and, given the natural
asymmetry of the car due to its underbody and front and rear windscreen wipers,
may be neglected. It does, however, lead to strong asymmetries on the resulting
sensitivity map and is ideally eliminated. Furthermore, since a similar fluctuation is
observed on the convergence of the adjoint problem, this led to the implementation
of a similar process on the adjoint solution, i.e. averaging of the adjoint fields, which
also helped achieve a more symmetrical sensitivity map, as it is demonstrated below

on figures a and

Figure 5.21: Effect of averaging on the sensitivity derivatives, k — e tubulence model.
Front view.
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Figure 5.22: Effect of averaging on the sensitivity derivatives, k — e tubulence model.
Side view.

whereby the sensitivity map obtained from the k£ — € turbulence model is presented
with and without averaging of the adjoint fields. The asymmetries on the front
bumper, between the left and right side, have been significantly reduced, as has the
area on the sides of the rear part. In general the rear area of the vehicle remains
asymmetrical, but this is mainly due to the equally imbalanced flow field that was
“inherited” from the primal solution El, and cannot be balanced out by a simple
averaging of the solution. It should be mentioned here that averaging does not only
serve as a means to increase the symmetry of the results, but also to filter the natu-
ral unsteadiness of the flow. Especially around a bluff body, such as that of the car
used in this thesis, the flow field between consecutive time steps of simulation varies
a lot. Averaging contributes in this case to smooth the final picture of the flow.
Finally, in order to obtain an 100% symmetrical sensitivity map, a half car model
was used and the simulations were rerun. The windscreen wipers were removed from
the front and rear windscreen as previously mentioned, and the detailed underbody

was maintained as before.

Apart from obtaining a flow solution that better depicts the average flow around
the car and increasing the degree of symmetry of the computed fields, averaging of
the primal velocity and pressure fields was also an important parameter in assist-
ing the stability in the convergence of the adjoint solution. It is important to note
that, as described in chapter 2 , the flow and adjoint problems share the same
eigenvalues. The non-linear nature of the flow problem means that the eigenval-
ues of its left hand side matrix are recalculated during each iteration of the primal
solver loop. The adjoint system on the other hand is linear and its eigenvalues are
constant throughout the solution and depend on the solution of the primal problem

'Regardless of the measures that were used to increase the symmetry of the flow fields, a slight
imbalance was always present.
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provided to it. In a highly oscillating problem such as the one under question, the
possibility of the appearance of an eigenvalue greater than one in the primal system
of equations is high. Averaging the solution of the flow problem over a significant
number of iterations and using this as an input to the adjoint instead of just using
the solution obtained during the last iteration of the primal solver loop decreases
the possibility of the existence of an eigenvalue greater than unity in the left hand
side matrix of the discretized adjoint system of equations, thus helping the adjoint
system avoid divergence.
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Chapter 6

CFD-based Morphing and
Optimization of the Geometry

In order to morph the geometry of the car and, finally, to minimize the drag co-
efficient the automated morphing tool developed and integrated within the adjoint
software by the PCOpt/NTUA was used. The algorithm requires the setup of an
initial control box which will include the to-be-morphed part of the CFD mesh.
From that point, on it runs as many optimization cycles as it has been set to. One
optimization cycle consists of the solution of the flow problem, the adjoint problem

and a mesh deformation.

6.1 Introduction

When it comes to external aerodynamic optimization of vehicles where the limita-
tions and restrictions of the allowed geometry deformation are very high, the proper
and precise setup of a few important parameters of the morphing box are crucial.
The setup of the box requires a number of parameters which are listed below:

e Number of control points at each direction of the control box
e Degree of the B-Splines Basis Functions

e Optional confinement of the displacement of control points located at the
boundary of the control box in all directions or in specific user-defined direc-

tions

The last parameter comes in handy in many occasions as it allows the option of
freezing specific layers of control points towards any arbitrary direction or even to-
wards the positive or negative of a specific axis in order to maximize the freedom of
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morphing the geometry. This is a useful feature of the control box, both in external
and internal aerodynamics, since it allows achievement of the maximum possible
optimization margin while respecting specific important parameters. These can be,
for instance, that the outer boundaries of a given duct do not exceed the dimen-
sions of the fixed boundaries enclosing it, or to make sure that specific boundaries
of the car’s surface will not be pushed inwards when packaging constraints disallow
it. What is more, when dealing with a half-car geometry, points located on the
symmetry plane are of course required not to move about the Y axis for the sake of
continuity of the CFD mesh and the vehicle’s smoothness at this area.

Another important aspect when using volumetric B-Splines to parameterize and
morph the geometry is the number of control points used. By increasing the num-
ber of control points allowed to move in each direction (i.e. the number of design
variables), the optimization margin grows, alongside of which the freedom of local
deformation of the geometry scales. The latter can result in “bumps” appearing
on the morphed geometry which are, of course, not acceptable. A careful selection
of the control points needs to be, therefore, made in order to achieve the optimal
balance between acceptable geometry and maximal gain at each cycle.

In the extent of this thesis a number of optimization runs were carried out -mainly
focusing on the front bumper-some of which will be presented here. In what follows,
the term ”single-step optimization” indicates the optimization runs during which
a single shape change was performed, followed by an evaluation of the optimized
geometry. The Spalart-Allmaras turbulence model was used for all the optimization
runs that were carried out in this thesis, in its High-Re variation together with wall

functions.

6.2 Single-Step Optimization

In order to identify the suitable positioning and setup of the control boxes for the
optimization loops, several single-step optimization cases were run in numerous tar-
geted areas of the vehicle although, finally, due to time limitations the optimization
runs were focused only on the front bumper.

Initially, a number of shape morphing runs were carried out without any evaluation
of the resulting geometry in order to visually inspect the new geometry and decide
on the most suitable location and set-up of the morphing box for each area. As a
second step, the optimized geometries that were selected (based on design criteria)
were evaluated with one flow solution and the flow fields and drag coefficient were
obtained. These single-step optimization runs were performed on the rear bumper,
the rear spoiler, the second spoiler located between the tail lights and of course the
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front bumper of the car.

6.2.1 Front Bumper

The front bumper of the vehicle was the main focus of the optimization process
carried out during this diploma thesis. Because of this, a number of one-step opti-
mization test cases were run using different settings and positioning of the control
box, in order to identify the appropriate setup as well as the optimal step for the
steepest descent 7 coefficient El, which in turn sets the maximum node displacement
of the control grid points. One of these cases will be presented here. The resulting
geometry can be seen below, in figure [6.1

Figure 6.1: Baseline vs Optimized Front Bumper. Optimized geometry on the left
side of the figure.

The result was a 1% Cp reduction, after one shape change, as it can be seen below
in figure 6.2

IThe steepest descent algorithm multiplies the derivative of the objective function with a co-
efficient n that sets the magnitude of the step of the optimization, as follows. bnew, = boig — 773%
whereby byey is the design variable computed during the current step, b,q the design variable
computed during the previous step and gb—i the derivative of the objective function w.r.t. the
respective design variable b,. The selection of i shall be done with caution as it may lead to an

overshoot of the optimal solution [21].
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Figure 6.2: Baseline vs Optimized Front Bumper - Drag Coefficient. Spalart-
Allmaras turbulence model.

The control box consisted of 5x5x5 control points in the X, Y and Z coordinates.
ﬂ The maximum displacement of the control grid nodes was limited to 2.5cm. In
figures [6.3(a)| and [6.3(b)}, the magnitude of the displacement of each CFD mesh
point can be seen plotted on the surface of the vehicle, so as to identify the areas

that were morphed more intensely (the areas deformed most are colored in red, and

those that remained still are colored in blue).

Figure 6.3: Magnitude of the displacement of the surface CFD mesh nodes. Spalart-
Allmaras turbulence model. Left - Front view. Right - Side front view.

The resulting shape was very smooth and the difference from the baseline model is
hardly identifiable. Yet, 1% reduction of the Cp was achieved.

2The control boxes in all cases were aligned with the X, Y and Z Cartesian coordinates.
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6.2.2 Main Spoiler

The main spoiler of the vehicle located at the rear end of the roof serves multiple
purposes including reduction of the drag coefficient, reduction of the rear axle lift
coefficient and elimination of the dirt and debris that fall on the rear part of the
vehicle. Optimal design and positioning of the spoiler is crucial in order for the two
former purposes to be successfully fulfilled. In this case, the sensitivity map of all
turbulence models provided concrete and consistent measures for the optimization of
the spoiler which was carried out via the automated morphing tool of PCOpt/NTUA
through a one-step optimization cycle.

The general direction of the maps was to push the spoiler towards the ground and
extend it towards the rear. Minor differences were of course present in the maps, but
the general direction was similar as it can be seen in figure and the prediction
was correct, as it will be demonstrated below.

Figure 6.4: Sensitivity maps of the spoiler from the three turbulence models. From
left to right : k —e€, k —w SST, Spalart-Allmaras.

In figure[6.5] the morphed geometry is shown, which resulted in a 0.5% Cp improve-

ment.
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Figure 6.5: Baseline vs Optimized geometry. Optimized geometry on the right.

A picture of the magnitude of the displacement that was applied to each point of
the bumper plotted on the surface is shown in figure [6.6]

Figure 6.6: Magnitude of the displacement of the surface CFD mesh nodes - Side
view.

6.2.3 Secondary Spoiler

As mentioned in chapter 3, section [1.1.2] the shape of the car’s rear-end forces
the flow coming from the roof through the spoiler and the flow from the sides to
separate at the end of the rear windscreen after the second spoiler that connects the

two taillights shown in figures |6.7(a)[6.7(b)|
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Figure 6.7: Shear stress on the surface of the baseline model. Spalart-Allmaras
turbulence model. Flow is reattaching after the roof due to the hollow spoiler and
separating again at the end of the second spoiler. Left - Top view. Right - Rear view.

This immediately renders that ”second spoiler” to become extremely sensitive to
drag reduction and its shape is naturally crucial to the wake formation, shape and
volume as it was demonstrated by the sensitivity maps of all turbulence models. An
example of the sensitivity map can be seen in figure

Figure 6.8: Sensitivity map on the second spoiler.

The map suggests extending the spoiler towards the rear and lifting it upwards.

The drag force sensitivity derivatives at this area are intense and it was therefore
a canditate area for shape morphing. The result was a 0.5% Cp reduction and the

final shape can be seen in figures [6.9(a){ and [6.9(b)|
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(a) Baseline vs Optimized geometry. Opti- (b) Baseline vs Optimized geometry. Opti-
mized geometry on the right side of the figure. mized geometry on the right side of the figure.

Figure 6.9

The magnitude of the displacement that was applied to each point of the bumper
plotted on the surface is shown in figure [6.10}

Figure 6.10: Magnitude of the displacement of the surface CFD mesh nodes - Side
view.

6.2.4 Rear Bumper

A similar approach was followed for the rear bumper of the vehicle, which resulted
in a 1% Cp reduction.
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(a) Baseline vs Optimized rear bumper. Opti- (b) Magnitude of the displacement of the sur-
mized geometry on the right side of the figure. face CFD mesh nodes - Rear view.

Figure 6.11: Optimization of the rear bumper. Left - Baseline vs. optimized geome-
try. Right - Magnitude of the displacement of the surface CFD mesh nodes.
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Figure 6.12: Baseline vs Optimized Front Bumper - Drag Coefficient.

The lower part of the bumper was lifted upwards, and the common ”Boat Tailing”

drag reduction technique was applied by the automatic morphing tool.

6.3 Front Bumper Optimization — Run A

During the first optimization run, two control boxes where used to parameterize the
space around the front bumper. The resulting grid of the control points can be seen
in figures [6.13(a)}, [6.13(b)}, [6.13(c)}, [6.13(d)|
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Figure 6.13: Optimization run A. Volumetric B-Splines control grids. The control
points are not connected with lines for better visual inspection of the enclosed space.

whereby only the red control points are allowed to move. The rest (one outer layer)
of the control points are frozen to ensure non-corruption of the CFD mesh at the
boundary of parameterized and not parameterized points. In addition, one extra
layer of control points was frozen at the maximum Z direction (top of the box) in
order to conform with surface restrictions for the car’s body on the symmetry plane,
the headlights and the wheels, which should not be deformed. The control grid
comprises of 7x9x7 control points in total in the X, Y and Z directions respectively.
The basis functions’ degrees were P,=P,=P,=3. Two optimization cycles were
run with 27¢ order discretization schemes for all the PDE’s of the flow and adjoint
problems. The total drag coefficient reduction was approximately 2%, as can be
seen in figure [6.14]
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Figure 6.14: Drag coefficient reduction over the optimization loops. The points of
discontinuity in the graph indicate the iteration during which shape morphing was
performed. Spalart-Allmaras turbulence model.

The convergence of the primal and adjoint equations is shown in figures|6.15(a)| and
BED)

(a) (b)

Figure 6.15: Residuals of the flow and adjoint equations during the optimization run
A. Spalart-Allmaras turbulence model. Left - Primal. Right - Adjoint.

The final shape was relatively smooth without any discontinuities and bumps and the
maximum displacement of the CFD mesh nodes was approximately 2cm throughout
the optimization procedure. The comparison of the baseline and optimized geometry
can be seen in figure [6.16] whereby the optimized geometry is colored in dark grey.
Two significant modifications can be identified in the optimized geometry, compared
to the baseline, which can directly be linked to the flow evolution from the front
bumper towards the rest of the vehicle. Firstly, the lower part of the bumper (skirt)
was pushed downwards, in order to constrict and reduce the mass flow of air that is
forced towards the underbody of the vehicle, thus reducing the drag. Secondly, the
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sides of the bumper if front of the wheels were pulled outwards in the Y direction,
a modification which has a twofold impact on the drag force reduction.

1. The flow is driven away from the wheels and energy loss in the area in the

proximity of the wheels is reduced and

2. flow separation from the sides of the bumper is reduced.

Figure 6.16: Optimized vs Baseline geometry - Front view - Optimized geometry on
the right side of the figure.

In figures [6.17(a)| and [6.17(b)l the surface of the car is colored according to the
magnitude of the displacement that was applied to it during the last optimization

cycle.

(a) (b)

Figure 6.17: Magnitude of the displacement of the surface CFD mesh nodes. Left -
Front view. Right - Side front view.

Mesh quality checks are automatically performed after each deformation, as it was
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already implemented on the fully automated optimization algorithm of PCOpt/N-
TUA and was used for all the automated optimization cycles.

6.4 Front Bumper Optimization — Run B

In the second optimization run, a single box which wrapped the entire target space
was used. The box consists of 7x7x8 control points and again the basis function
were of degree p=3 in all directions. The control box can be seen in figures ,
(6.18(b)} 6.18(c)| and [6.18(d), where the red points are the ones that are allowed to

move.
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Figure 6.18: Optimization run B. Volumetric B-Splines control grid.
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Two layers of control points at the maximum X direction of the box and two at
the maximum Z direction were kept frozen, still for the accommodation of geometry
constraints. Furthermore, the final layer of control points on the minimum X, Y
and Z direction were movement—free for mesh continuity and quality purposes. In
total, three optimization cycles were performed and the optimization history of the
drag coefficient as well as the residuals of the equations can be seen in figures [6.19]
6.20(a)| and [6.20(b)|

Figure 6.19: Drag coefficient reduction over the optimization loops. Spalart-Allmaras
turbulence model.

whereby the total C'p reduction was 1.2%. In this case, it is clear from the oscillation
of the drag that the solution was much more unstable than run A, which is mainly
due to the way the CFD mesh was deformed. The shape of the last cycle of this
optimization run was however much smoother and compliant with the design criteria
as it can be seen in figures [6.21(a)] [6.21(b)] [6.21(c)| and [6.21(d)l Convergence for
this case can be observed in figures [6.20(a)| and [6.20(b)|
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(a) (b)

Figure 6.20: Residuals of the flow and adjoint equations during the optimization run
B. Spalart-Allmaras turbulence model. Left - Primal. Right - Adjoint.

(a) Baseline vs Optimized geometry. Opti- (b) Baseline vs Optimized geometry. Opti-
mized geometry on the left side of the figure. mized geometry on the left side of the figure.

(c) Baseline vs Optimized geometry. Opti- (d) Baseline vs Optimized geometry. Opti-
mized geometry on the right side of the figure. mized geometry on the left side of the figure.

Figure 6.21

In figures [6.22] [6.23(a )| and [6.23(b)} the morphed surface is colored according to the
magnitude of the displacement applied to it.
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Figure 6.22: Magnitude of the displacement of the surface CFD mesh nodes - Front
view.

(a) (b)

Figure 6.23: Magnitude of the displacement of the surface CFD mesh nodes. Side
VIews.

Figure shows the maximum magnitude of the adjoint velocity and pressure over
the iterations and optimization cycles. These provide a decisive indication of the
convergence of the adjoint simulation and the instability of the solution is clear from
this chart. Nevertheless, convergence is achieved in each cycle.
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Figure 6.24: Mazxzimum magnitude of the adjoint velocity magnitude and pressure
values obtained over the iterations of the solution. Monitoring them gives a good
indication of the stability of the solution.
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Chapter 7

Summary - Conclusions

In this diploma thesis, the application of the continuous adjoint method developed
by the PCOpt/NTUA to a Toyota passenger vehicle was investigated and the po-
tential of this method for external aerodynamic optimization of passenger cars was
examined and confirmed.

Initially, the flow problem was solved in the OpenFOAM® environment using the
RANS equations for steady-state, turbulent flows of an incompressible fluid. Three
turbulence models were used, namely the k — ¢, the £ — w SST and the Spalart-
Allmaras, all of them with wall-functions. Their ability to accurately predict the
drag coefficient and to compute the flow field around the car was tested and the
results were discussed. To do this, a CFD mesh of the full model of the car with
a detailed underbody and a closed engine compartment was used. Wind tunnel
experiments that were conducted during the composition of this thesis led to the
conclusion that the the £ — w SST and the Spalart-Allmaras models can give ac-
curate flow predictions. On the other hand, the & — ¢ model appeared to be less
satisfactory for this particular application. It computed high shear stresses on the
surface and a delayed flow separation at the rear part of the car compared to the two
other models, which resulted in a higher value of the drag coefficient (approximately
™%).

Following this, the adjoint problem was solved and the sensitivity derivatives were
computed. The latter were used to create the sensitivity maps. These gave concrete
and precise indications on the appropriate -inwards or outwards- morphing of the
surface of the car in order to minimize the drag coefficient. The diversity of the pat-
terns among the sensitivity maps computed from the three turbulence models was
discussed and the maps were compared, taking into account the different flow fields
that were used for their computation. What is more, the impact of the discretiza-
tion order of the turbulence equations during the primal solution on the resulting
sensitivity map was investigated. To do this, the flow problem was solved using
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the k — € model with 1% and 2"? order discretization schemes for the turbulence
PDEs and following that the sensitivity maps from the two cases were computed.
The results indicate that accuracy in the modeling of turbulence is crucial in areas
where the flow is governed by random, chaotic fluctuation and eddies, such as the
rear part of the car. There, the sign of the sensitivity derivatives might change if
the turbulence has not been properly modeled. Overall, the effect of turbulence in
such applications is vital and should not be neglected.

Furthermore, issues on the stability of the primal and adjoint simulations were ad-
dressed together with measures in which it can be assisted. The symmetry of the
solution was also discussed, and an effort to increase it in the primal and adjoint
fields was made. Averaging the solution proved to positively influence both the
symmetry of the solution and the convergence and stability of the adjoint solution.
Finally, the degree in which the diversity between the three flow fields obtained
from the k —¢, the k —w SST and the Spalart-Allmaras models was amplified by the
adjoint solution was also investigated. As far as the latter is concerned, it appears
that in this application, differences in the primal velocity and pressure fields were
more evident in the computed sensitivity derivatives.

Finally, the shape optimization of the car was performed using the automatic shape
morphing software provided by the PCOpt/NTUA. It shall be noted that, during
the composition of this thesis, additions to the shape morphing software were made.
These were focused on the freedom of the control points movement, the direction
in which the shape morphing can be performed and the spacial set-up, movement
and rotation of the control box. The areas on which the optimization was focused
were selected according to the previously computed sensitivity maps. Specifically,
these were areas that resided in parts of the car with high sensitivity w.r.t. shape
deformation and that could be changed (shape changes cannot be performed in
all parts of the car and priority was therefore given to areas of practical interest).
These included the front and rear bumper, the spoiler and the second spoiler of the
car located between the rear lamps. The decrease in the drag coefficient achieved
during one optimization cycle of the front bumper reached 2% with a maximum
displacement of the surface nodes of approximately 2cm.
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ITepiAndm

Yt Oudpxelar TNG SIMAWPATIXNG AUTHAS Epyaciog TeaypaToToINXE EQapUOYY| TNG CUVE-
yoUg ouluyolg pedodou 1 omolo avoartOy e and ) Movdda Hoapdiining Troloyt-
otxnc Peuotoduvauxrc & Behtiotonoinong (MIITP&B) tne Xyohic Mnyavoldywy
Mnyovixédv tou Edvixod Metodfou Tlohuteyveiov (EMII) oe nepiBdhhov avoixtod
AOYIOUIXOU OpenFOAM® vio TNV agpoduvouxt| BehtioTonolnon emBatiod auTtoxi-
vitou. H agpoduvouxr avtlotaon B omovehxovon ebvar pio and Tig xOPLEC TNYES
ATWAELOG EVEQYELNS TV AUTOXIVATWY X0k, CUVETKGE, 1) EAdyIoTOTOINOY| TN amoTelel
TEKTEVOVTH 6TOY0 TNE avtoxwvntoflounyaviog. Me tn Véomon auotnedtepng vouoe-
olog OYETIHG UE TIC EXTOUTES XAUCUEQIWY XAl TNV VATTUEN NAEXTEXWDY Xol BBV
QUTOXWVATLY XS Xl XVNTHEWY UBROYOGVOU, 1) avayXT) Yiol EAXYLO TOTOMOT TWV omew-
ALV evepYELag ebvar TAEoV adhpLTY.

H avédhuon tneg porc €yve ye apudunter enthuon towv eiowoewy Navier-Stokes yia
ACLUTIEGTO PEUCTO Xal YEOoVIXd woviT, TuElndn poY|. Kotd tnv mpoyupatonomieioa
MEAETN EYIVE YP1ON TELOY BLaPORETIXMY LOVTEAWY TOEPNE, Tou k-€, Tou k- SST xou Tou
Spalart-Allmaras. Ta anoteAéopota ouyxelinxay xo €ywve avdhuon Tng avoTnToC
TEOAEENE QUTWYV TWV HOVTEAWY TURBNG OE Teployéc Tou Topouctdlouy UeYdAes xhioelg
TEONE X0 0TS OTOlEC AVAEVETOL ATOXOAATON TNE POT|C. T'o EVdlapEpoY ETXEVTRMVETOUL
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OTNV AMOTEAEOUATIXOTNTA XddE povTEROL TUEBNC TNV oY) TEOAEEN TOU CUVTEAEGTN
AVTIOTUONG TOU O AUATOSC Xol TWV BlAPOpwY QuvOuEvewY Tou oyetiCovton ue oautov. Ta
ATOTEAEOUATO GLUYXEIIMXOY UE TELQUUATIXES UETEY|OELS.

Katomy mporypatonoridnxe eniluon tou ouluyolc TeoBAAUATOC YETCULOTOWMYTIS AO-
Y106 70 omolo druoupy e anéd tn MIITP&B/EMII 670 nepidirov Open FOAM®
X0 €YIVE UTOAOYIGUOC TV Toparywywy evatcUnoloc. Idiaitepo evolapépov mapovotdlet
0 X8pTNg evonoUnoiug Téve GTNV EMLPAVELNL TOU AUTOXIVATOU, O OTOI0¢ ATOTEAEL Ui Yo
PUY) ATOTUTWOT) TWV TURAY YWY TN OAVTIXEWEVIXTG CLVAPTNONG WS P0G TNV XAJeTn
HETUTOTILOT TOV XOUPBOV TOU ETUPAVELNXOU TAEYUATOS ETAVE OTO QUTOXIVITO XL UTO-
ONAMVEL TEog Tar oL TEETEL Vo UeTonvniel 1 e€wTERINY| ETLPAVELN TOU QUTOXIVYTOU
00twe MoTe va pewwdel 1 agpoduvouxt| avtiotaon autol. Ipoyuatonoeiton olyxpel-
o1 TV UTOAOYICVEVTLY YopToV cvacUnoiog amd ta tplo povtéda topPng. I[vetou
enlong avdhuon TNng empEonc TNE TAENG axpBetag TG BlaxpLtomoinong Twv eEI0MOENY
ToU Povtéhou TOEPNg xutd TNy enthucn Tou TEWTEVOVTOE TEOBAYUUTOS GTOUS UTOAO-
yilouevoug ydpteg euanoinoiog. Eetdlovtan xou dhha éuata, dmwe 1 obyxAion xou
n evotddeio TN aprdunTIXc ETAUOTC Tou TPWTEVOVTOS Xat oLLUYOUE TEOBANUATOC.

[o tn BeAtiotonolnon wop@ng Tou oyAUATOS, YENOWOTOLUNXE UOVTIEND Wo00 ou-
Toxwvitou. T Ty mapaueTponoinon g YEwUETplag TOU auTOXWVATOU EYLVE YeY|oN
Aoytouxol to onoio avortiydnxe aro t MIITP&B/EMII xou Booiletar otig oyxi-
xéc B-Splines. Xtn ouvéyela, diepeuvilnxe 1 BEATIOT peTofforn) Tng YewueTplac Tou
AUTOXWTOV, OUTWE WOTE TO AMOTEAECUN NG BeATioToToNoNG Vo amotehel Eva amo-
0exTo Yo TN Propnyavior oyfuo. o To oxond autd eQapudSTAXAY Xon EEETAC TNXAY
OLdpopeg TopoAAayES TwV pLIUicE®Y Tou YopgoTonTy| U 0TOYO To BEATIOTO EAEYYO
NG TEOC OYEdoS emipdvelnc. Me tov Tpdmo autd emitelydnxe 1 Yoppomoinor ou-
YHEXQUEVOY UEUOVOUEVWY TIERLOY MY TOU OYAATOS, IXAVOTIOLOVTOS TOUG TEQLOPLOUOUS
xou o 6pLar tou VETEL 1) Brounyavion -yl oyedlao TiXoUS xuplwg AoYoug- OYETIXG UE Ta
Teprimpta ueTaBoArc TN YewUETElOG.



Axpwviopia

EMII Edvix6 Metoofo [loiuteyveio
MIITP&B Movédo [opdrinine TroloyoTxhc

Peuotoduvauurc & Beltiotonoinorng
TPA Troloyiotixr Peuotoduvouxy
MAE Mepuéc Atagpopinéc Eiotoeic
NTUA National Technical University of Athens
PCopt Parallel CFD & Optimization Unit
TME Toyota Motor Europe
CFD Computational Fluid Dynamics

OpenFOAM Open Field Operation And Manipulation

CPU Central Processing Unit
GPU Graphics Processing Unit
FAE Field Adjoint Equation

RANS Reynolds-Averaged Navier-Stokes



ITepieyopeva

7.1 Ewoaywyn

7.1.1 Aecpoduvopixry Avtictaon

H aepoduvapuiny| avtiotaon 1 omiodéhxouca arotehel pLor omd Tig XUPIEC TOGOTNTES Yo
COUXTNELOUOY TNG AEPOBLVOULXAG TWV ETIYELWY Xl EVAUEQLWY UETAPORXOY HECWY. LTOYO
NG €pEUVOC GTOV Touéa auTd amoTelel 1 oxEBric TEOREEN xat, XoT' EMEXTACT), 1) EAO-
yotonoinof tne. H agpoduvauiny| avtiotaon eivon o and Tic x0plEC BUVANELS TTOU
AoKOLVTOL OE EVoL OWUA To ontolo uetaxve{tan uéoa o peucto. Kaldng to oodua xive-
fron Y€oo 070 eV T, aoxeiton ot auTéd Tieon (VT OTNV ETUPAVELXL TOU XAk BLUTUNTLXA
Tdon eQanTOPEVIXT) GTNY ETLPAVELX LTOV. O 800 AUTEC XATAVOUES BUVAUEWY Elvon UTte-
OUYUVES Yior TN GUVOALXT) BUVAUY) TOU AOXEITOL GTO GOUO ATO TO PEVCTO, AVEEAQTNTO OO
TNV TOAUTAOXOTNTA TOU OYuatdHC Tou. Me TNV OhOXARPOGT TV TOCOTATOY AUTOY
YUpW amd TNV ETPAVELN TOU GOUATOS TEOXVTTEL 1) CUVOMXT| DUV ﬁ xa porh M

TOU QOXELTOL GTO GOUOL.

Yxue 7.1: Katavoun mieons kai datunuiknig tdong o€ ooua KivoUuevo pHéoa o€
pevotd. [22]
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YyAue 7.2: Advaun R xa porny M mov aokeitar o€ owpa Kivolpevo péoa oe pevoto.
13/

H mpoxdntouca dOvoyr R poTH M uropel vor avahuidel oTic Teelc ouvloTWoES Tou
CUC TAUNTOS GUVTETAYUEVQDY. AauBdvovtac unddrn tn dieduver tou ekedicpou pelduo-
10¢ Voo, opilovton duo Poacinés BUVAUELS TOU 0oX0UYTOL GTO GWUA, 1) BUVOUT BvKong
xou 1 omovEAxovoa. o Evar BLoLdo Toto TEOBANUA, 1 dvwor efvar 1 BUVaUY TOU KoXE-
fron xdetar otn Breduvor tou ehedicpou peuatog xan omo¥EAxoUT 1) BUVUUT TOU
aoxelTon TOURIAANAL O aUTHY, OTWS PAiVETOL GTO Oy A .

Bxpe 7.3: Yuniotdoeg tng 60vapng mov aokeltal o€ owua KIVoUUEVO 1100 0€ PEVTTO.

Me L ovuBodiletar n dvwon, 6nkadn n ouvnotdoa tns R xkdletn otn Vo, ue D n
/ z / 4 % K

omoUékovoa dnladr) n owiotdoa tns R napdAAnAn oty Va,[3].

LOUQOVA UE TOV TORITAVL 0PLOHO, 1) OTUGVEAXOUCH AmOTEAEL Uiot OO TIG BUVAUELS TIC
oTolEC €VoL OWUA TEETEL VO UTEPVIXHOEL TROXEWEVOL VoL xvUel uéoa 6TO PEVGTO. LNV
TEPIMTWOT OYAUATOCE, 1) DUVOUT AUTH aoxelToL OO TOV A€ Xat EValL Lo oo TIg DUVBELS
NV omola 1 Loy Ug Tou VT TEETEL VoL xahOeL WoTe To Oy nua va xvndel. Emouévec,
660 peyahiTep vl 1) AEOBLVAULXY| AVTIGTUGT TOU OYAUATOS, TOCO UEYOAVTEQT] oL 1)
evépyela Tou BumovdTan Yo TNy xvnot| Tou xou, ded, 1 xatavdAnor| Tou. Eite mpdxel-
ToL YLl NAEXTEOXIVITO Oyt 1 Yiar Oy Nua Ue oupPBatind xvntipa cwTepic xadomng,
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elvon emduunTo 1 ®UTAVIAWGT) EVERYELAS x0T TO BuVaTOV Vo eharytoTomtotniel. ['iveton
epavric hotmdv o héyog Yo Tov omolo yiveton 1 mpoondieio ehayioTonolnong Tne o-
gpoduVoIXAC avTioTaong, 1 omolo umopel vor ex@pacTel xon adtdoTaTa OTN HOPYT) TOU
ouvteheo 1| avtiotaong Cp. O cuvteheothg avtioTaong amotehel eva and o Pocixd
XELTAPLYL TOU ETUTUYNUEVOU 1) U] UEQOBUVOUIXOU GYEDBLAOUOU EVOG %ﬁparog. [o éva
owyua To onolo xwvelton yéoa o eheliepo pedua agpa TaydTNTaS Vo ot TUXVOTNTOC
Poo O CLVTEAECTHC avTioTaong oplleTon v¢

D
Cp=—— 7.1
P=5 (7.1)
omou D to uétpo Tng 60voung avtiotaong, S nﬂnpéoﬂta ETULPAVELNL TOU COUATOS
TeoBeBANUEVN 0T eTinedo Ad¥eTo oTNY Ty OTNTA Vig XL oo 1) DUVOIXT| THEST) YLOL TNV
omoia oy Vel To &NC:

1

oo = §poono (7.2)

H tun tou ouvteheoth avtiotaong Cp xupaiveton yio emiPotind autoxivnta uetalt 0.2
wxou 0.4.

Addotatol cuvteheoTéc opllovTal UE TOPOUOLO TEOTO Yo OAEC TIC UEPOBUVOHIXES BU-

VOUELS Xou POTEC TTOU aoxoLVTAL OE éva onua. Mepixol tétolol cuvteleo e elvon oL

axdhoudoL:
e Yuvteheothc dvwone Cf = qLS
e Yuvteheothic xdetng d0voung Cn = qLS

e Yuvteheotrc pontfic Oy = % , 6T0L [ uix0g avapopdc

[Switepa o TeheuTaior ypovia, Ye T porydolar eEEAET TV NAEXTEOXIVITOVY OYNUATOY UE
TEQLOPLOUEVT] THEOY T} EVEQYELAS XM X0 TNV ELOAYWYT) AUGTNEOTERMY XAVOVIOUWY X0l
TEPLOPLOUMY OYETXE UE TOV EAEY YO TNG EXAUCTIC XUVOUERIWY, 1) UEltOT) TOL GUVTEAEGTN
avtioTaong €yel ABet UPNAT TEOTEPUOTNTA GTOV TOUEN TNG EQEUVIC XAl OVATTUENG TOV

QUTOXWVNTOBLOUT Y OV,

7.1.2 BeAtiotonoinon pe tn Xenorn Yroloyiotixrg Peu-

CTOBLUVUULKNG

H yerion uedodwy umoloyio Tixn|c pEUc TOBUVAULXY| Yia TNV avdAucT) xou BeEATIo ToTolno
OEQOBUVILXOY HORYOY amoTEREL TAEOV TOV XxUPl0EY O TEOTO UAOTOINGNC OEQOBUVOUXODY
ueheTov oxoua xan otr Brounyavio. H poydaio yelwon tou ypdvou umohoyiouol xou
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TOU XOGTOUS EQUPUOYNG TOUG, GE GUYOUAOUOS UE TN CLVEYT UElwon Tou xbGTOUG UTo-
AOYIOTIXAC Loy VoS xou TNV €CENETN TV UTOAOYIO TIXWY ohyoplduwy xoho Téd Tov XxAddo
TNC UTOAOYLO TIXAC PEUG TOBUVOUIXAC EEEETIXG Yoo xat amodoTixd. H duvatétnta
TOEUAANAOTIOMONG TV TEOPANUATWY ETTEENEL TN DEaUoTiX? Uelwor Tou LTOAOYLOTI-
%00 YPOVOU UE TN YPNOT TOMGOY ENEEEPYATTOVY YL TNV ENIAUCT) TV TEOBANUATOY, N
oeopo ot XtV Yoy (GPUs) yio tny ehayto tonolnom tou ypdvou avopovic Tou
oyedooth). H wavotnta téhoc v alyoplduny UTOAOYIOTIXC PEUCTOBUVOLXNAC Vol
eMTUYYAvoLY LPNAAC oxpiBelag TEOAEEN TNG POTC UE ATOBEXTO UTOAOYIOTIXG XOOTOG
xohotd Tig pedodoug CED uovédpouo yio ) Blounyavio ohucpa.

Ou pyédodot Bertiotonoinong doplvovtar oTic e€AC 000 xaTNYORlE, TIC UTIOXPATIXES
xou TI¢ oToYao TIXéC uevddoue. Ou attoxpotixéc uédodot axoroudolv tny xatediuvon
ToL UTOAOYICETOL UE TNV TN (n ol BEOTEpn) TOEAY YO TNG AVTIXEWEVIXAS CUVEETN-
omNg, UE oToY0 TNV chayloTomoinon tne. H ouvdptnon auty ovoudleton xon cuvdptnon
otoyoc. H mpoavagepieica napdywyog yenowonoieiton oe yedodoug 6mwe autrh tng
am6Topng xadodou 1| 1 uédodog Newton.

Ot ctoyootixée pédodor [21], and tnv dAAn, Booilovton otny tuyaior i TuynuoTixy
avalrtnon tng PérTiotng Abong oto medio Twv Aicewy. O 6pog TUYNUUTIX YENoYLo-
TOLELTAL €0 PE TNY EVVOLA TNG OTOYEUPEVNS 1) ECUTtyNG avallATNnong Tne AUong UE yefon
HEVOOWVY IXaVY VoL TERLOPICOUV ToyUTATO Yot ATOTEAECUTIXG TO Tovd £0pog ADoe-
OV X0 VoL EVTOTooLY TEAXE TO xardohxd eAdyLoTo 1) YéyioTo onueio Tng cuvdpTnong
otéyou. Anoutoldy Suwe peyohUtepo aptdud alioroyfoewy (tpedipdtov CFD) and g
UTLOXQATIXES UEVHBOUC.

Kdmowo onpovtind yopoxtneto txd twv dVo uedddwmy to onola Ti¢ xahotody xotdh-
Anhec ) Oyt Yoo TNV exdoTote egopuoyr ebvon ta €€ Xe avtideon ye Tic oToyo-
oTéC PEYOBOUC, Ol JUTIOXPATIXES OmoUTOUV TOV UTONOYIOHO TNG Te®TNG 1| BelTERNC
TOEAY YO TNG UVTIXEWEVIXTC CUVERTNONG WG TPOS TIC METUPANTES oyedlacuol. Autd
ewodyel x60T0¢ GTNV LAOTONGY| TOUG, TO OTOlO GE OPLOUEVEG TEQLTTWOELS OTWSG A Y.
OTOV UTOAOYLOUO TG BEUTEPNG TPy @You 1) TNy TERInT®oT peydhou apriuol ueto-
BANToV oyedlaouo, umopel avdhoyo ue To TEOBANUA Vo xatao Tel amoryopeuTind. Eva
GANO PELOVEXTNA TV PEVOOWY auToY elvon 0 xivouvog "eyxhwPiogol” Toug ot xdmoto
ToTIXG EAGLoTO TNG ouvdptnong. Elvor duwg BEfoo 6Tl pue cwoTd unoloyioud TNng
Topoywyou 1 uEvodog Yo odnyoel TayiTato o xdmota BEATILUEVT AOOT) OE OyEoT) Ue
Vv teEyouca. Ot otoyactixéc Yédodol amd TV GAAN OEV OMAUTOUY TOV UTOAOYIGUO
xdmotag mopary@you xou etvon BEoto ot pe TNy Tépodo etupxols Yedvou Yo evioricouy
10 xoohxd eNdytoTo g ouvdptnong. O ypedvog ouwe mou unopel vo amontniel ev-
OEyeTon Vo efval HEYSAOG %o O OPIOUEVES TEQITTAOOELS UN-BLOOIOC Yiar Blopnyovixég
EQOQUOYEC.

o Ty viomoinom evog alyopituou Bedtiotoroinong pe t yefon CFD anoutelton ap-
YXE 1) BLOXELTOTIOMNGY TOU UTOAOYLOTIXOU YwElou PE TN YEVEST €VOC UTOAOYLOTIXOU
TAEYHATOC. XTO UTOMOYIOTIXO QUTO TAEYUO YIVETAL DLoLtd 1) eTiAUCT) TV POXOY €-



EIoWoEWY antd T0 AoYlouxd alloAdynong. And tny enfAuor auty| TeoxdnToUY Tal TEdlaL
()x.)(. Tary OTNTOC X Tciecmg) ¢ oN¢ To omolor elvon amaEAlTNTA Yo TOV UTOAOYLOUO
NG AVTIXEWEVIXHC CUVEOTNOTC.

21 dumhwpotind| auth| epyaotio yivetow uhonoinon tng pedodou g amdToung xododou
ue yenon e ovveyolc ouluyoic uedodou [13], [14], [15] v tov utoroyioud Twv
omontolpevey apoydywy. H ouveyrc ouluyrc pédodoc [16], [19], 4], tnc onolog
avoAuTixy) Tapoucioot xou Yeyerinon axoloudel oto xepdhaio 2, drardéTel To LoYLEO
TAEOVEXTNHO OTL TO XOGTOG UTOAOYIGUOU TGV TRy (YWY 0EV aLEAVETAL YE aENaT) ToU
aprdpol Twv YeTaBAnTov oyediacuon. H epapuoyt tng Yo mporypotonomiel ye Aoyiout-
%6 70 omoto éyel avamtuydel amd tn MITTP&B/EMII o7o mepiBddhov OpenFOAM®.

7.1.3 Xtoyog xow Aopn tne AwmAwpatixns Epyaociag

H Simhopoting epyoacia otoyeler oty egopuoyy| tne ouveyols culuyolc uedodou
yioe TNV agpoduvaulxy Bektictonolnom uoppng evog emBatinol oyruatos. Me tov dpo
Behtiotomoinon wop@ric voelton 1 xatdhAnhn UETHBOAY TNG YEWUETPlUG TNG eEWTERL-
XAG ETPAVELNG TOU OYNUUTOS UE OXOTO TNV EAXYIOTOTOMNOY TNG UEQOBUVIUUIXTG TOU
avtiotaong. Iponyelton enfAuom tou poixol TEOlAAUNTOC X GUYXELOY TWV ATOTEAE-
oudTLY TV HovTéhwy TieBne (tou k-g, tou k- SST xou tou Spalart-Allmaras) e
OTOY0 TNV EVPECT] TOU XATAAANAOU Yol EQUEUOYES avdAUOTG TNG poNg o fehTioToToln-
ong oe ouvaPy| TEOPAA AT, XTN cUVEYEL, YiveTal EQappoYY| TNg cuveyolg culuyoic
HEVOBOU YIaL TOV UTOAOYIOUO TWV TOEAY®Yw®Y oL ontoleg Yo odnyroouv oe i Peh-
TIWUEVT YEWUETPlOL LOUQVOL UE TIC TUEAYYOUS oUTEC PETUBdANOVTOL O uETOBANTES
oYEdIoNO0U, UE TIC OTOIES TO epyaheio TapaNETEOTOMONG UETABAAAEL TO UTOAOYLOTIXO
mAéypa. To hoyouxd mapauetporoinong tou CFD mhéyuatog €yel avamtuydel and
MIITP&B/EMII xou efvow GUVOEBEUEVO UE TOV XMOIXA UTOAOYIGHOU TOROY YWY 0E E-
viodo autouatonotnuévo Aoylouxd Bedtiotomoinong. (¢ amotéheoua autod AopBdveto
TO VEO OGN TOU QUTOXWVATOU TO OO0 OONYEL OE UELWUEVO GUVTEAECTY avTioTAUONG
amod to apyix6. H mapamdve dwdwacio egopudleTon 68 GUYXEXQWEVES, OTOYEUUEVES
TEPLOYES TOU Oy AUTOC oL omtoleg evtomilovTon Ue yeNon Twv yoeToy cvacinotoc.

H Soun tne dimhwpatixhc epyaociog €yel og e€rc:

e Y70 xe@dhato 2 TopouctdlovTal oL eELCMOELS TNE POTC VLol ACUUTIEGTO PEVGTO XAl
YOG LoV, TupB®oT por) wall pe Tic eEICMOEIC TWV TELWOY LOVTEAWY TUEBNC
Tou Yo yenowonondoiy yio Ty enthucn Tou powod Teofifuatog. Ileprypdipe-
Tou entiong To umohoylo TG Ywelo xou o poponontrhg Tou. I'iveton avoAuTixA
Topoucioon e cuveyolg cLLUYoUS YETOBOU xon EXPEACETAL 1) AVTIXEWEVIXT| CU-
vdpTno, oL culuyelc e€lowoelg pall pe TIC oploxéc Toug cUVINXES XL, TENOG, O

TUTOC UTOAOYIGUOU TV TRy YKV Euonodnciog.



e Y70 xe@dhono 3 yiveton apriunTins) TEOAEEN NS POYIC oL OVIAUCY) TWYV ATOTEAE-

OUBTOV.

e Y10 xe@dhao 4 mopouctdleTon N enthuon g cuveyols ouluyolc uedddou xau

TOL UMOTEAEOUATA TIOU TEOXUTITOLY OO QUTAV.
e Y10 xedlono 5 mopouctdlovta Ta anoteréouata BeATioToToiNoNS.

o Y10 xepdhono 6, Téhog, yiveTon avaxeaAainon xon ToEoUcLdlovVToL TA CUUTE-

eAoUOTA.

7.2  Awodwxocia Troloyiwotixric Peuotodouvout-

xNg v TNy Ilpdheén tnc Porg

Y10 xe@dhano autéd yiveTon cuvoTTIXY TEPLYPAPT) TNE SLadtxaciog Tou axohovdeltar yio
NV emlAuon Tou TEWTEVOVTOC X0t ToU GLLUYOUC TEOPAAUATOC XoME Kl TWV BACIUOY
yopoxtneloTixmy autov. [apovoidlovto ot e€lonoelg Tou Biénouy Ta 800 TEOBAAUTY
xou T Bripota yior TV VAomoinor tng BeAtiotonoinong. Axoun, yiveto napouciact Tou
HOPQOTONTY| ETLPAVELNG OAAS Xat TERIBGAAOVTOC TAEYHATOC.

7.2.1 To Ilpwrebov IlpoBAnua

Aaxpitonoinoy xaw Enidvon twv Egiockoewy Povg

To mpwteov TEdBANua cuvicTatar oty apriunTixy enthucT Twv eELIOMOEWY TN POTC
Y10l AOUUTEEGTO PEUGTO Ol YEOVIXE LOVIUT), TUEPBWOY pot, ot omolec eivar ot e€loMoElC
olatenong udlag xon opung, 1 adluwe elowoelc Reynolds Averaged Navier-Stokes
(RANS) xau ypdpovtar o e€hc:

Awthipnon tne Macoc

9v;

RP = —
a$j

—0 (7.3)

Awrripnon e Oppnic

v (%i 8 81]2' 81)]' (9p . -
R) = v, Dz, o, [(V—i— V) <8xj + a@)] + 0z, 0 i=1,2,3 (7.4)

OTOL V; EVOL OL CUVIGTWOES TNG TayUTNTAS, P 1) TEOT OLoUEEUEVT UE TN oTolept| Tu-

XVOTNTOL P, V1) XWNUOTIXY CUVEXTIXOTNTA XU V4 1) TUPBMONG CUVEXTIXOTNTO 1) OTtolal
TEOXUTTEL amd TNV emnAéov eniluon twv MAE tou povtéiou tiglng. H ypagr toug
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axohovlel T cVuPaot Tou Einstein cOugova pe tny onola enavohauBavouevog deixtng
uTOONAGVEL dipolo.

Movzteloroinon tng TOpPng

H pon} yOpw améd 1o oynua ebvon tupBwdng. Xapoxtneileton Snhadh amd Ttuyaieg xou
YAUOTHES PETUPOAES TV YeYeDVY Tng Tleomng xat TNe TaydTNTAC 0To TEDO Tou YPOVOoUL.
Autéc ou petaforéc ebvon amapaitnto va Angdolv umodn xotd tnv enthuon tng po-
fc. H ypovinr| xhipoxa otny omolor hau3dver dume ywpeo 1 TASLOVOTNTA TV TURBLOKY
QAUVOUEVWY %ol 1 VYNAOCUY VY TARVTOOT TwV PUEYEDOY TS porig anoutoly uedddoug
eniAuong TV eELI0WoENMY ToU aLEAVOLY BEACTIXG TO UTOAOYLOTIXG x6GToC. T TNV o-
TOPLYY| TOD YENOLOTOLE(TOL LOVTEAOTIOINGT) X0l EUTELPIXES OYETCELS YLOL TNV TIEQLY QUPT)
Toug. Eyouv avamtuydel didpopa povtéra thpPng, xadéva amd to omola yapoxtnelleTon
ATO CUYEXPWEVES WOLOTNTESG 0L 0Toleg TO xAMGTOOY XUTIAANAO 1) Oyt Yial DLUPORETIXES
EQUQUOYES.  1TN OmAwUoTi auTY| epyacio €yve ypron o oUYXELoN TEWOY dLago-
PETXWV HOVTENWY TUEPNG, Ttou k — e [10], [II], touv & — w SST [6], [7], [8] »a tou
Spalart-Allmaras [5], oe cuvSuooué pe cuvapthoels Tolyou [9].

To Movtého TOpBNg k-

To povtého t0ePne k-e [10], [11] etvon évor and ta mhéov Sradedopévo povtéra TopPng
X0l YENOWOTOLETON G PEYSAO EVPOC EQUOUOYWY GTNY UTOAOYIC TIXT) PEUC TOOLVAULXT).
Eivaw povtého 600 MAE, eiodyer dnhadr 600 PeTABANTES Yior TNV EXPEACT) XoL TEQL-
Yeupn e ToEPNg, TNV TuEBWoN vy evépyela k xan to pudud xatacTEOPrC TNG
xwvntnc evépyelog €. Ot e€lodaoeic Tou elvon ol e€hc:

O(kv;) 0 v Ok

— - 2v, B, FE;, — .
ax] ax] o axj] + Vi iy L4 13 (7 5)
dlevy) 0 vy Oe € e?
Oor;  Ox; [0_5 0xj] * CIEQE%E”E” 028? (7.6)

ormouv C, = 0.09,C1. = 1.44,C5. = 192,04, = 1.0,0. = 1.3 elvon otodepeg evar 1
TUEPROBNC CLVEXTIXOTNTA 1 LTohOYILETaL GUUPLVA UE TNV e&iowon

n=C— (7.7)

To Movtého TOpBng k —w SST



To povtého k —w SST [6], [7], [8] elvou enione poviého topfne 8o MAE. Xen-
owotnotel xou awtéd W MAE v v TupBom xvntixr evépyela k, oc cuvduooud ue
war DeVTEPY Yo TV TEPLYeapr) Tou puiHo) xaTacTEoPHS TNG TUEPRNE w. Ol edlototlg
TOU SLETOUV TO HOVTELD aUTO £lval ot EENG:

o(kv;) ) Ok

=P, — Bk — —_— 7.8
Oz, b= ke £ Oz, [+ Ukyt)&vj] (78)
O(wvy) 5 , 0 Ow 1 0k Ow
— aS? — = )] 421 — FY) o — 7.9
oz, “ pum+ oz, (v+o Vt)@xj] +2( 1)o 20 Ox; Ox; (7.9)
H tupBoone ocuvextixdtnta utohoyileton amd Tn oyéon
Oélk
= 1
vt mazx(ow, SFy) (7.10)
Ioyber ot
2vk 500w o Ouy
F, = tanh((max(ﬂ*wy, s N3, P, = mm(nja—%,lOﬁ kw),
, VE 5000, 4ok 1 0k Ow
F = tanh((mm(mam(ﬁ*wy, 7 ’C’Dkiy2>>4)’ CDy,, = max(2paw2;a—xix—i, 10719,
9
= F 1-F e A1
¢ = 01 F1 + ¢of 1), 8 100 (7.11)

To peyédn «, B, ok, 0, amotelolv otadepéc Tou HOVTEAOU Xon ECUQTOVIAL OmO TNV
TEPLOY T} TNG eoTg 1 omolo emAETOL.

To Movtého TOpPBng Spalart-Allmaras

To Spalart-Allmaras [5] etvou povtého topPne woc MAE xou évo ané ta o Stodedo-
MEVOL LOVTEND Yol EQUOUOYES EEWTERIXNG AEQOBUVIUIXAC. XENOWIOTOLEL Lol UETABANTA
Yo TN povtehonoinon tng tOpPne 1 omolo wotdlel ue TNV TUPBMOY CUVEXTIXOTNTO ol
xohelton petofBAnty| Spalart-Allmaras, 1| v.

Ioybouv to e€nic:
Vi =Ufpn (7.12)



6Tou

3

v
Jor = m xou, X = - (7.13)
H povadiny MAE mou emletan efvar 1 oxdhoudn:
a(ﬂ’lﬁ) ~ Cbl 1 2 1.0 - ov ov ov
— 1— _ M e (D)2 D el -
o = On(1= J) S0~ Cur =5 Fel (1 + L (04 90500+ Cong 5]
(7.14)

To peyédn o = 2/3,Cyy = 0.1355, Ce = 0.622, k = 0.41, Cyy = 3.239,C,y = 7.1 omo-
Teho0V oTolepEC Tou povTéLou, Ve d elvan 1) ando oot amd Tov Tolyo. Ol TocodTNnTES
S , [12, fup umohoyllovton oUWV PE TI ToROX AT EELOMOELS

~ v

S:Q—l-wfvz, O =/ 2W;; Wy,
Wy = %(SZ - gZi) (7.15)
Enlong woyler ot
X 1+c
Jro=1- 1+—va17 fw = [ﬁ]l/ﬂ
g =1+ cu(r® — 6), r= min[S;CP, 10],
fro = cige™ (7.16)

Opraxég Xuvinxeg

[ v ebvon eqgueti 1) emiAuor Tou TpoPAfuatog elvar amapaitnTog 0 0plou6S GUVITXKDY
YLt OAEC TIC HETUPBANTES TOU GUGTAUATOS GE OAX TaL GpLal ToL Ywelou. Ot yetaBAnTéc Tou
powol TeofAfuatog elvar To Bidvucua TNg ToyOTNTAS V5, 1) TEOT P xou ot PETOBANTES
ToU EXdoTOTE Hovtélou TopPne (7, k, w, €).

Yty eloodo Tou ywelou opiletar cuvixn tomou Dirichlet yio v toybTrTar xon un-
oevixt) cuvirxn Neumann yio tnyv niieon. Xe 0Tt a@opd Ti¢ UETUBANTES TV HOVTEAWY
TOpPBNg 01N eloodo, N ueTaAnTr U utoloyileton amd TNV TYWY| TNG XKWVNUATIXAG CUVE-
XTXOTNTOC TOU PEUGTOU EVE OL TWES TWV UETABANTOV K, w ot € TROXUTTOLY ond TNV
évtaon ™ TopPBng I xou Ty tay T Tou peucTOL oTNY £loodo Tou Ywpelov.



Yy €€060 Tou ywpelou €youue undevixr cuvinxn Dirichlet yio v mleomn xon undevix
ouvirxn Neumann yior Ty toyOtnTo xou OAeC TiC YeTaBAnTéc tng topfne.

1o otepEd Gplar Tou Ywpeiou (TN EMPEVELD TOU AUTOXIVATOU Xou Tov Bpduo) optleto
oLV un ohlotnong yio Ty ToyOTNTa, undevixr) cuvixn Neumann yio tnv nieon
XU XATIAANAES GUVOPTATELS TOlyOUL Yot OAEC TIC UETAPBANTES TWV LOVTEAWY TURBTC.

7.2.2 To Yuluyvég IIpbBAnua

Y ouvéyela Yo yiver mapousioon tou ouluyolc TeoPfAfuatoc. H ouveyric ouluyrc
uétodoc [13], [15], [14], [16] amotelel po pordnuotinr| pédodo UTOAOYIOULOD TWV TaEO-
YOYOV Yo cLVAETNOTS WS RS Evay aptdud uetoBantoyv. H podnuotind tne Yepehionon
Eexvd amb TOV OPLOUO LG AVTIXEWEVIXTC CLVAETNOTNG, 1 oTtola ex@EdlEL TNV TEOg €-
Aoyotonoinon moootnto. H avtixeyevinn autr cuvdptnor eaptdton apevog and Tic
HETOPBANTES XAUTAO TAUOTS TOU TROPBAAUATOS Yol APETEPOL ATO TIC HETUBANTES GYEDLAGUOD
oL omoleg TpomomolVTUL and Tov ahyopriuo Bedtiotomoinong oe xdie PBrua. Ou ye-
TUBANTES XATACTAOTG OGS EEUPTWVTAL OO TIC UETUBANTES OYEDIAOUOV %o, ETOUEVKCS,
uetaBdhhovton xon autég oe xde xOxho BedtioTomoinong. Amo Ta mapamdve yiveTon
OUPES OTL 1) OVTIXEWUEVIXT] CUVERTNOT) UETAUBUAAETAL APEVOS GUECH UE T1) METUBOAT) TLV
HETOPBANTOV OYEBIAOHOV Xl APETEPOL EUUECI ATO TNV AVOVEWOT| TWV UETABANTOV Ko
TAOTAONG TOU TEOXUTTEL WC CUVETELN TG Te®TNG oAloyic. Ac elvor, howmodv, F'

AVTIXEWEVIXT) CUVERTNOT, Yol TNV OTOLd, CUUPWVOL UE TU OVWTEQE

- =

F=FU (), 7) (7.17)

_>
6ToL 7 elvor To OLEYUOUA TV UETABANTOVY TG PONC (pswﬁ)\md)v xotdotaong) xou b

TO BLAVUOUN TOVY UETABANTOV OYEBLICUOU.

%
Yuvenwg, N petoforr Tng F wg mpog to b ebvan

aF _ 9F  9FdU
iv  ob oUdb

Yy nepintwon e agpoduvouixic BeAtio tomolinong Hop@pnc eVOg Oy AUATOS Uil TETOL

(7.18)

ouvdptnom unopel va ebvon 1 omo€Rxouca SOvaUN 1 1 AVwoT) ToU TUEAYEL TO AuTOXIVY-
10. MetafSintéc xatdotaong eivon ol PETOUBANTES TOL TEWTEVOVTOS TEOBAAUNTOS ONAAON
7 Ty TNTA Xa 1) Tieon 6e OhO TO UTOAOYLOTIXG YWElo, VK UETABANTEG OYEDBLACUOD
elvon o1 HETUBANTES TOL TERLYPAPOLY T YEWUETE(O TOU OYAUUTOS. D€ xdUe aAhoryT| TKV
HETOPBANTGY oyedlaouo) xatd T Bedtiotomoinom Yo petoBAndel To oyrfua Tou auTtoxi-
VATOUL xai PE TN oetpd Toug Yo mopary Yol véa medlor ToybTnTag xou Tieong Yopw omd
aUTO. TN OLTAGUTIX oUTH EpYacia, 0TOYOC HToy 1) EAAYLOTOTOMNGCT] TNG AEPODLVIL-
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xfc avtioTaong, ETopEVLe auTh efval 1) AVTIXELEVIXT CUVEETNOT) TOU TEOBAAUATOS, Xot
optleTon amd N oyéon

F:/ [(pd? — 7:;)ri)n;dS (7.19)

§tar

YN ouvéyela Tpoo TheTon 1) CUVEETNCT AUTY| OTA Y WELXA OAOXANEWUATA TKY EELOOOEWY
XOTAG TOOTC TOU TEOBAAUTOC OL OTOLEC GTNY MERITTWOT| Hag €lvat oL EELOWOELS TNG POTC,
TOMNATAAGCLUOUEVES PE TIC AeYOueveS ouluyelc petoBAnTéc. Ol edlomoelg auTég xavo-
TOLOVTOL OE OAOXATPO TO UTOAOYLOTIXO YWEL0 X0, ETOUEVKC, 1) CUVELGPORE TOUC GTNV
aVTIXEWEVIXT) oLVEETNoT efvan undevixt|. Exgpdlovtdc teg wg = R(U, b) wyle
ott R = 0 og 6Ao 1o unohoyloTnd ywelo. AauBdvetar €ToL 1) ETALENUEVY AV TIXEYEVIXN
owvdptnon. Yty eliowon Fouy = F + [ uRYdQ + [, qRPdQ + Zkle Jo, UpRFAQ,
Q2 ebvan T0 UTOhOYIGTXO Ywpelo eV u; elvon o culuyeic cuVeTOoES TN ToyLTNTOL,
q v 1 ouCuyrg meomn xan Uy, ot ouluyels TuEBwdelg uetaPAntée, émou k = 1, M o
aprduog TV eEIOMoEWY NG TUPRNE oL emAUOVTAL and To EXJOTOTE Yoviého TOpPNC.
H MIIYP&B/EMII éyer avontidiel ) cuveyy| ouluyn uédodo otny omola meayUato-
Tote{ton BlapoELoT TWYV EELOMOEWY TN TUEENCE Yo To wovTéha TUEBNe Spalart-Allmaras,
k—e k—wxuk—wSST [12], [14], [16], [17], [1§].

Awagopllovtag Ty enauEnuévn avTIXEYEVIXT) CUVEETNOT (a6 ™V omola, yia Adyoug
ouvToulac, auehelton o ‘cs)\surogog 6pOC) S PO TIC HETOPBANTES Oy EdLlaoUol hauBdveTo
1 ONXT TOEAYWYOC S TPOG b %o TeoxUTTeL €ToL OTL

0Fwg _ OF 0
by 0b, | oby Jo

5
wRYdQ + — [ qRPdQ (7.20)
3bn Jo

Yy mopamdve eZlowor, o tehectic 0()/0b, avagépeton aTny oY) ahhory| TG -
%30 TOTE TOGOTNTAC AOYW UETOBOAC ToU by, Avtideta, 1 pepind topdywyoc A()/db,
TOELOTE T UETOPOAY TNE EXACTOTE TOGOTNTAC TOU ogelletan o UETABONY| NG PO,
AOY® UETABOMC TNS YewpeTplag, Ywelc va cuvurohoy(leton 1 uetoBolt| Tne Yéong Tou
ornuelou oto omolo avagépovtal ol TocoTnTeg auteg. H oyéon mou cuvdéel ta dvo

ueyéon etvon 1 axdhoudn [12]:

IO 9D DD duy

5, = 00, 9y (7.21)

‘Eneito and xatdAAnhoug padnuatinoic yeelolols TeoxOnTEL:
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6 F o, v Ip
6bn9 /Sw(uivjnj—i-Tmnj—qn,)ab ds+/gW(anj+anj)ab dS+

o,
+/ [—(umj + rjm)]idS—i—
. ob,

oz, Op o  Omy / on,;
+ /[nm o G0t~ g has + [0 = mnlpds+

: §5(ds Sz
+ / [(pd] — 7ij)rsln gb ) /( RV + R”)Eknkd8+
SWp n SWp

8vj 8(vjui) 0 8Uz 8Uj | 8q 01)7;
+/Q{“J e o, o |V TN on T am )| Taw an M
Ou; ., Op
+/Q(_axj)ab ds2 (7.22)

omou Sy xaL Sy, TO GTERES X0 TUPUUETEOTOLNUEVAL bGPt ToU Ywelou avtioTotya.

Yuluyeic Ilediaxéc ESiowoelg

[oe TNV amo@uY? UTOAOYIOHOU TOV PEPIXMY TUQUYWYWY TWV P X U; W TEOS TIC
UETABANTEC OYEBLOOUOU O0TO ECKTERXO TOL Ywplou AoY® Tou UdmAiol Toug xdoTouC,
undeviCovtar ot avtioToryol cUVTEAEOTEC xaL TEoXOTTOLY, £€Tot, ol culuyeic eElGMOOELC
TIC POTIC:

ou;
Ri—_—" _ 7.23
" (7.23)
dv;  O(vju;) 0 Oou; Ou; Jq .
U_—qp—t T — = =1,2 .24
ki “Jaxi ox;  Ox;j (v+w) ascj+8 - +8xi 0, i=1,2(,3) (7.24)

Yuluyeic Opraxég Juvinxeg

H e&iowon (7.22)) yivetou
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oF an 81}1 ani 8p
5 /éxlvjn]—i-mwn] qn;+ a0, En >8b dS+/(anj+a_p )= dS

87’1 j

8FS

S
(9Fg 5xk / on; / 6(dS) / 0xy
— Ny dS+ [ Fs,—dS + | Fg,n; + [(uw; R} + qRP)—ndS
SW "0y " Oby s Obn o 5 sb,, S<Wp )5bn g

Wp

(7.25)

21N oyéon utdpyouv oL 6pot TN xhiong mleong xaL Ty UTNTAS OTO GPLO TOU
UTOAOYIG TOU Y WElOU WG TEOC TG UETABANTEG OYEBLUOUOY TWY 0TolwY TO XOGTOG &-
tvou eniong vdmMAS. Emdidxeton ETOPEVOS 0 UNOEVIOUOS TWV GUVTEAECTOV TOUC o
Tov omolo mpoxUnTouv oL GLLUYEC oplaxés cUVITXES, Ol OTolEC TaEOLGLALOVTOL TTHEO-
xdtw. Edo dugpaiveton To ueydho mAcovéxTnua Tne cuveyoUs ouluyols uedddou, UEcw
TNC omolag YIvETaL BUVATOC 0 UTOAOYIOUOC TV {NTOUUEVLY ToROYOY®Y Ywelc va elvor
amopaiTnTn N ETIAVOY TOOWY GUOTNUATOY EEIOMOEWY OCES XAl Ol HETUBANTES OYEDLO-
OUoU TOU TPOBANUATOS, EPOCOV Ol GUVTEAECTEC TV avTioTolywv dpwv undevilovto
X0l TPOXGUTITETOL O UTOAOYIGUOS TOUC.

e Juluyeic Oplaxéc Xuvirxeg oto En’Ancipo ‘Opro

Xy eloodo tou ywelou (Sp) woyver dv;/ob, = 0v;/0b, =0, ool dxy/db, =0,
omote undeviletar o MpKTO oAoxAfpwue oto 8eZl uéhog tne edlowone ((7.25).
Mo var undeviotoly o 8eltepo xan To Tpito ohoxAfpwua Tne eicwong tidevtou:

0Fg,
Ufn) = UjT = ——315;” n; (7.260)
0Fy 0Fs, ,
I _ [ I ,
Uiy = or, nyt;n;+ 3m nkt 1 (7.2603")
0Fy O0Fs
o _ Lk LI Lk T ,
U<t> = aTij ngt; nj—l—Tijnktj n; (726Y)

6TOL T tf, 7 efvor oL GUVICTAOOES TOU EQATTOUEVOU OTNY ETLPEVELDL DLOVIOUATOC

O u{ﬂ, ) elvan ot avtioTolyeg oUVIGTOOES TN oLLLYOUE TayUTNTAS.

Y10 6plo €€6dou e pong (So), woylel op/db, =0p/db, =0, ondte to deltepo
ohoxhfpwua tne e&iowong ((7.25) undeviletar. To tpito ohoxhfpwpo uropel vo
apeindet av utotedel pla oY EBOY OUOLOUOEPTN XAUTAVOUT| TaY UTNTAC GTNY ETLPAVELL
e€odou. Télog, T0 TMEKOTO oAoxApwua uropel vo amakewpiel, undeviCovtoag v
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ONOXANEWTEN TOCHTNTA, UE ATOTEAECUA VO TROXVUTITOLY Ol £EHC OPLAXEC CUVITXEC:

ou;  Ou, OF
- uﬂ>nj—qni+ S0k, =0, i=1,2(,3) (7.27)

wivin;+ (v + 1) (83& + I, .
J g %

e Juluyeic Oplaxég Xuvinxeg ota Xtadepd xou Ilapapetponown-
wéva Towyopata Touv Xwelov

Mo tar otadepd oty @pota Sy, 6Twe ot yior Ty empdveta St oy Vet dzy/db, =0,
om6te ol culuyelc cuvirxeg Tou oploTxay GTo Gplo ElW6doL TN porc (|7.20))
ouveyiCouv va toybouy apxel, dmou avapépeton 1 Fg,, va yenowomounel 1 Fyg,, .

o tor napaueTpomotuéva Totyduata (S, ), xaddg éyel emPandel v; =0, Wy el
dv; /b, =0. Qotéo0, xadne dxy /b, #0, and v e&iowon ([7.21)) tpoxintel 1

ov; ov;  0xyy,
v, ZTm 92
b xknk 5. N (7.28)

Avtixadiotdviag v eZlowon ([7.28) oto mpdhto ohoxhipwua Tou de€lol uéhoug
¢ e&iowong ((7.25)), autd ypdpeTton we

oF ov;
/S (uivjnj—l—Ta,ijnj—qni—i— aUSk nk)a%dS: (729)
Wp 7 n
0Fs ov; O0xy,
_/S (wivn;+Taimj—qni+ 3viknk)8$knk 5, Ny dS

Wp

6pOC 0 OTOlOG TEPLEYETAL OTNY EXPEACT] TNG XAONG TNG AVTIXEWEVIXAC CUVAPTT-
ong. To 8edtepo xan TpiTo OAOXAPWHN ATAAELPOVTUL LXAVOTOLOVTAS TIC EELOWOELS

OFs,, .
Ufn) = — @;V = (7.300/)
aFS FS
I _ Wp,k I W,k I ,
U= gy, bt g, (7.308)
0 S 8FS
I __ Wp,k 7 W,k I ,
Uy = an; ngt; nj‘i_T;nktj n; (7.30Y")
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7.2.3 TI'éveon IIhéyupatoc xaw EnitAvon twv ESicwoswy

Egdbcov ot mpoavagepieioec MAE mou dienouv 1o mpdfBinua dev pumopolv va Audoly
avoAuTIxd, ebvon amapaltnTo va yivel emlAuor Toug oe Bdlaxelth wopgy. Lo o oxomd
QUTO, 0 YWEOC ToL 0PILETOL UG TN YEWUETEIO TOU AUTOXIVATOU X0l TIC VOTTEC EMLPAVELS
Tou TNV TEpBdAhouy xataxepuatileTal O UXEOTEPOUS OYXOUS oL oTolol ovoudlovTo
xehd 1 xupéhec. Kdde xehl optletan amd tor onueia, Tig axués xou Tig TAEURES Tou, Ta
oTola YoEAXTNELO TIXE TOU TEOGOIBOUY EVOL CUYHEXQPUIEVO YEWUETEXO oy Tuo. To clvo-
MO TV XEMWY amoTeAEl TO UTOAOYIOTIXG TAEYUA. AVaAhoyo Ue Tov TOTO o T1) SLdTod
TV XEALDY TOU TAEYUOTOS UTO UTOPEL VoL YR TNELO TEL (1OC TOAUEDEIXO, TETPAUEDELXO,
AUPTECLAVO X0 X EYEL AVTIO TOLYES IOLOTNTES, TPOTEPYUUTA XL UELOVEXTY LT TO OTO-
for To oo TOUY XUTEAANAO 1) Oyt Yol CUYXEXPWEVES EQapuoYEC. O BloxpltoTolnuéveg
MAE emhbovton oe xéde onueio (1) x6ufo) tou unohoyiotixol mAéyuatoc. H enthuon
yiveTon pe war Togodhoryr| Tou akyoptduouv SIMPLE.

[oe v enfhuorn Tou mopdvtoc mpoflriuatoc yenowonotinxay duo TaUEUAAAYES TOU
TAEYHATOC, ot OAOXANEOU X0l [LOL ILOOU AUTOXVATOU . El

YyApe 7.4: Ymodoyotiké Xwpio.

1To emupavetond mAéyua xataoxeudotnxe and tnv BETA CAE.
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(o) Tewpetpio T0U O)fpoTOC

(B") Empavelaxd mhéypa (v) Kéto pépoc tou oyfipotos

Yynue 7.5: H yewpetpia tov avutokivnTtov Kal To €mipavelako mAéyua.

()

Yyxnue 7.6: Aentopépea oto eunpéotho tldu oto povtélo oAdkAnpns Kkar puoms ye-
wuetpias. Apiotepd - oAdkAnpo to avtokivnto pe tous valokabapiotripes, deiid - 06
avtokivnto petd tny agaipeon twy vadokabapiotipwy.

H i tou y™ tov Bapuxévipwy tov xupehdv tou elvar oe enogn ye ta oTEPES ToL-
Y@poTe 070 TEOBANU ftay xatd péco 6po (or ue 25.
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()

SyAna 7.7 yT. Hdvo apiotepd - epumpdodha dhn, ndve de&id - kdroyn, kitw apiotepd
- ap1oTepn) oY, kdtw Oe&id - Tiow Y.

Ov MAE emdOdnxay o€ Slaxplth) popen ue Wi topahhayt) tou ahyopituou SIMPLE,
£V 0 XWOLXAS UTOAOYLoUOL uTteye NoN tpoyeoppatiopévos. O SIMPLE arotehel évay
emavohnTTIXG ahyopriuo eniluone Tng poric, o omolog oTo OpenFOAM® XAVEL YpNoN
NG XEVTPO-XUPEAXNG UEVOBOU TETEQUOUEVLV OYXWY, CUUPWVIL UE TNV OTolal ¢ OYXOG
ehéyyou AauPdvetar o dyxog xdie xehol tou mAgyuotog. H enthuorn tng por|c yiveton
VewpnvTag apyd YVeno16 To tedio tng tieong To omolo elte TpoxOTTEL 6T0 TEWTO Briua
amb xdmola apytxomoinon, ¥ oTr GUVEYEL and To TEd{o ToU UToAoYIoTNXE XATE TNV
mponyoUuevn emavdAndm. Me autéd yiveton enthuon tng edicwong Tng opung oTIG TEELC
Ol TAOELS Ywpic OUmS Vo xavoroteiton 1 e€lowoTn TG ouvEYElag xou AopfdveTton To
medio tng TayvTNTac. Axololtng, To medlo Tng meong urohoyileton and TNV e&lowon
NG OLVEYELG XaL UE oTO Tparypatomole{ton 1 Stopmaon tou medlou g ToyLTNToC
XOTE TNV ETMOUEVT ETOVIANPT), XATUARYOVTAUC TEAMXE OTN GUYXALOY TOU GUCTAUATOC

TWV ELIONOEWY.

7.2.4 Mopgornoinon tng I'ewuetplacg

H yenowotnta twv utohoyiloyéveny mapayoyny evacdnociog eivor STty
Agevog, ue N YRapInY| aTELXOVIOT] TWV THRUYWOY WY TNG AVTIXEWEVIXTS CUVAETNONG WC
TEOC TNV XAVETY UETATOTULON TWV ETUPAVELNXGY XOUBWY TOU TAEYUUTOS ETEVGD GTNY

ETLPAVELX TOU OUTOXWVATOU XATAoXEVALETAL 0 YdpTNg cvatoinciog Tou auToXwvTOoL.
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Agetépou, ol tapdywyol evonoinciog autéc umopolv va npoindoly ota ornuelo eréy-
you oyxixwyv B-Splines ye Tic onoleg €yel nopapetpomoindel To 0yxixd %o ETLPAVELINO
unohoytotx6 mAéypa [20]. Etnv nepintwon aut, ot yetaBintéc oyedioouod Tou ou-
CuyoUg TEOPAAUATOS Elval 1) HETUTOTILOT) TWV ONUElWY EAEYYOL TwV oyxxwy B-Splines
0T TeE Owotdoelc. O popgornounthc TAéypatog o onofog extelel TNV auToudTo-
TOUNUEVT) BLodLxaG{ol THPUUETEOTOIMONE Xl UETATOTUONG TWV ONUEIY TOU TAEYHATOC
Ywele TNV avdyxn emavamieylatonolnong €yet avantuydel and MIITP&B/EMII.
H yperion awto yio 0 gopgomoinom tng yewuetplag cuvicTatan oTo Topaxdte Bruota:

o O mpog Behtiotonoinon yweog TepBGAAETOL amd €Vol GOUNUEVO TAEYUN TWY OT
uetwyv eAéyyou Twv oyxxwyv B-Splines.

o IlopoueTponolotvToL oL XOUBOoL TOU ETLPAVELNXOU XAl 0YXIX0) UTOAOYIG TIXOU TAEY-

HOTOG TIOU TERLAAUPBEVOVTOL GTOV TORATIEVE Y MEO GUUPWVAL UE ToL oNuela eEREY Y ou.

o To onueia ehéyyou tTwv oyxxokv B-Splines petatonilovton olugpomva ue Tig uto-
hoyioleloeg mapoywyoug evatcdnolag.

o O cmgavetaxol xou oyxixol xoufol tou CFD miéypatog uetatoniCoviar olugpomva
UE T LETATOTLON TWV ONUEIWY EAEYYOU, UETABHAAOVTOS TO UTOAOYIOTIXO TAEY M.

7.2.5 A\yopwduog BeAtiotonoinong

[ty extéheon plog autopatomonuévng dwdixaotug fehtictonolnong popgns, yenot-
pomoLe(ton 0 eMAUTNG ToL TEWTEVOVTOS Xou GLLLYOUC TEOBAAUNTOS Hall UE TO AOYIoULXO
nopgonoinong [20]. H Swdiaocia et we eghc:

1. Opileton 0 yopog mou eumepleyel Ty Lo Behtiotomolnon yewpetpla. Opileton
10 TA0OC TV onuelwy EAEYY oL xou 0 Badudc Twv cuvapThoewy Bdong ue Bdon
To MooV, ‘Etol dnuloupyelton To BounuEVo TAEYUN TV ONUEiwY EAEYYOU.

2. IpootiopiCovton Tor onuelar TOL LUTOAOYLOTXO) TAEYUATOC TTOU EUTEPLEYOVTOL GTO
TAEYUO TwV onueiny eréyyou. o autd ta onueio utoioyllovton oL ToEaUETEIXES
CUVTETAYMEVEC.

3. Trohoyilovton oL TUPUUETEIXEG CUVTETAYUEVES TwV oNUElwY TTou Peédnxay xotd
T0 Prina 2.

4. Ernilbovton ot e€lowoelg porc.
5. Trohoyileton 1 Ty TNG AVTIXEWEVIXAS CUVERTNOTC.
6. Emnibovton or oculuyeic e€lodoelg.

7. Troloy{Ceton 1 ¥Alom TNE AVTIXEWEVIXHC CUVEQTNOTS WC TEOS TOUG ETLPAVELAXOUG
x6ufoug Toug TAEYPOTOC fx—F (surface sensitivities).
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8. O mopdywyot autéc mpofBdhhovton ota onueia ehéyyou Twv oyxwxov B-Splines
UE OXOTO TOV UTOAOYIOUO TOV TORAYMYwY EvotcUnciog »¢ Teog auTd.

9. Avavewvovton ot Y€oelc Twv onuelnv eAéyyou e TN Yédodo Tng amdToung xa-
BY600u.

10. TrolroylCovrton ot véeg VECEIC TV ETUPAVELAXWY Ko OY XXV XOUBWY Tou UTOLO-
YIOTIXOU TAEYUOTOS YPNOWOTOWWVTAS TIG 0T UTOAOYIOUEVES TURUUETEIXES TOUG
CUVTETAYMEVEC.

11. Emotpogt| oto Briua 4.

7.3 Amnoteiécpata tng Eniivong tng Porc

Y10 xe@dharo autd Yo yivel mapouciooT) Twy aroTeEAEoUdTOY TN eniAuong TN potc, N
OAMOE TV TpwTELOVTOC TEOPBAuaToc. O yivel clyxplon xau cOVIONOS Gy oMacUoS
TV TEdlwY Tou Tpoéxuday and TV ETAUCT) TV TELOY HOVTEAWY TORPNC.

7.3.1 X0yxeion twv Tewwv Moviéhwy TOpBng

To xdie povtého tOEBne yoapoxtneiletan and oplouéva Pacixd ctovyeio T omola To
®ooTOOY XATIAANRO 1 Ot VLol CUYXEXPWEVES EQUOUOYES, CUVITXES Xt TEOBAAUTA.
Ané v epyacia auth @avnE 0Tl oL AMIGES oL TEOEXLPAY ATtd Tar HVO EX TWV TELOV
HOVTEAWY TOU yenotuonotinxay Atay apxeTd oxEiBelc ol XOVTd OTIC TELQUUATIXEG
ueterioes. Autd ftav o K — w SST xauw 1o Spalart-Allmaras. To povtého k — €, amd
TNV GAAT), QoEVETOL VO UGTEREL £VOVTL TV GAAwY BU0 ot OTL apopd TNV axel3) TEOAEEN
NG ATOXOAANONG %o ANV CTUAVTIXGY QUVOUEVWY TIoU GUUBAAAOLY oty e€ENEN
¢ eoric. H opodtnta tov mediwy mou mpoéxuday and tnv eniAucn tou mpolAiruatog
ue yenon v wovtéwy k —w SST xou Spalart-Allmaras etvor epgavic xat, émewe elvor
OVOUEVOUEVO, avTIXATOTTRI(ETOL X0 GTO GUVTEAEGTH avTIoTAOTE TOU UTOAOYI{GUNXE 0o

autd. Pl

Ohat 1o amotehéopata €youv xovovixomotndel xoTdNha Yl AOYOUS EUTIOTEUTIXGTNTOC.
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Yy 7.8: Xlykpion twr KavovikoTomnuévwy TUVTEAETTOY avTIoTaons Twy TPy
povtélwv tppns. Ta anoteAéouata éxovy kavovikomonDel ws mpog TN uéon Tun tov
Cp mou vrodoyioUnke ané to povvédo k — €.

k-g
k-w S5T .
Spalart-Allmaras

YyxApe 7.9: XUykpion tou tomikol ourTeAEOTI) avTioTaons Ttwy TPidy UovTédwy Tlp-
pns. O tomikds ovvtedeotn§ avtiotaons detyvel Ttn ovvelopopd tou kdle TUNUatog Tov
avtokivitou katd tov daunkn tov déova, otny omoUédkovod tov.

10 oy QofVETOL O TOTUXOG CUVTEAEGTAC AVTIOTUONG XOTd U0 TOU AUTOXI-
VITOU, 0 OTOl0G TTEOXUTTEL €AV 1] OAOXANPMOT TV TUCEWY TOU AOXOUVTOL OTNV ETi-
@éveta Oev Yivel YUpw amd TN GUVORLXY ETLPAVELL TOU QUTOXIVATOU OAA GE LOOUNHXN
UEd TAGTOUG BLUo TAUATO XoTd To Oloprixn Tou dfova. Amd TOV CUVTEAESTY| aUTO,
UTOPOLY Vo EVTOTGTOUY Ol TEQLOYES XATA UHXOG TOU AUTOXWVTOL Tou GUUBAANOLY Te-
ELOC6TERO OTNY AWENON TNG OTOVEAXOUGHS TOU. XTO OYNUd QUTO, TO UovVTéLD k — €
qabveTon Vo UTOAOYILEL YOUNAOTERES ATWAEIEC AOYW OVTICTUONG OTNY TEPLOYT| TOU TO
Xomd EVOVETOL UE To euntpdoto Tt (aveuoddpoxa) xat ToUC TUADVES TTIOU EVHVOUY

TO XAT6 PE TNV 0p0PY|, €VK UTohoYi(el ueyoAlTEPO GUVTEAESTH avioTaong 670 Tiow
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HEQPOC TOL QUTOXWATOU, Ot GYéom Ue To dAAa 600 wovtéha. To yeyovde autd odnyet
OTO CUUTEQUOUA OTL TO HOVTEAO aUTO UTOAOYICEL UE XEOTERT) oxpBELa TNV ATOXOMKT
OY) TNG PONC X0 CUYXEXPWEV UELWHUEVA OE OYECT| UE TOL GAAS BUO— G CUYXEXQWEV
egappoy”. To tehxd Cp nov unohoyiotnxe and 1o k — € eivar nepinov 7% ueyohitepo
and To GhAa 600 HOVTERAL.

H uvdmhoteen tiun tou cuvteheoth aviiotaong Onwe UTohoyicGUnxe and To UOVIELO
k — e e&nyeltan xou and o oxf]pawm ol oTo ool OUVETAL 1) OLUTUNTLXY TAOT
OTNV EMPAVELNL TOU AUTOXVATOU X0 1) GTUTIXY TEST 0TO Tiow PEPOS TOL avTioTOLYAL.
Xapoxtneiotixd Eeywpeilel To povtéro k — € olugpomva Ue To omolo 1 BlaTunTX Tdom
oTov Tolyo AouBdver apxetd upniotepee Twés. H ouvelogopd duwe tne téong Aoy
CUVEXTIXOTNTOC OTOV UTOAOYIOUO TNE omovérxoucag etvar tepinou pa téln ueyédoug
updTEEY amo auThY Tng oTutixng Teong. Erot, mapdti 1) dwotunTie] téon otov Tolyo
elvor apxeTd LPNAOTEET, VT eV avTixatonTeiletan TAewS oTo Ltoloywlouevo Cp.
H youniotepn nieon, duwe, oto mlow uépog oe oyéor Ye to 000 dhhar HOVTEND, OTwS
QofveTon omd TO PTAE YPOUO 0T THOW QoUVIELOL TOU QUTOXIVTOU GTO Oy ,

CUUPEAAEL onuoavTixd oTny adénon tng omo¥EAXOVoIC.

(o) Spalart-Allmaras (B) k—w SST

YyAne 7.10: Awtunuikn tdon otny emigpdrea Tov avuToKIVITOU.
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(o) Spalart-Allmaras (B) k—w SST

YyxAue 7.11: Yraukn nieon oto wiow pépog touv avtokivitov. Patvetar n yaunAdtepn
otatikn mieon 6nws vnodoyioUnike amd to povtédo k — € mou dikaiodoyel Tn xaunAotepn
Tiun tov Cp amd avts to povTédo.

7.3.2 Extéleon lleipdpoatogc o Aspoorpayya

Metd v extéleon twv mpocopowmoewy g porg pe CED xau tn obyxpelon tov aro-
TEAEOUATOY TOGO UETAEY TOUS 600 o PE ToL VEWENTIXG avoevOUEVa Tedla Y0pe amod
0 autoxivnto and ) PiBhoypapio [1, [2], [3], enduevo otédlo tne emPePuivone twy
ATOTEAEOUATOV ATaY 1) GUYXELOT) TOUG UE TEpauaTXéS UeTproelc. ['a To oxond autod
TpoyUatomot\dnxay mElpduata o agpochipayyd. Acdouévou Tou 6TL 1) TEAeuTAlA OEV
owdete wovtelomoinon Tou xwvoluevou eddgoug, To CFD tpedipata emavoriginoay
ue axivnto €dopog auTH TN Popd xon LPNAGTEET TayOTNTAL EI0OBOL, oM UE aUTH TOU
mewpdpatoc. To cupmepdopota e oUyxEoNg XaTéAngay 6To oTL To HovTéda k — w
SST xou Spalart-Allmaras tinctdlouv pe opxetd txavomoumnTixr axpiBelo Tar TeLeaUaTL-
%8 ATOTEAEOUATOL.
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7.4 Entiuvorn tou Yuluyolg IlgoBAAuartog

7.4.1 Xdetec Evawcinoiog

Me Bdorn o medla mov mpoéxuday and TNy TAUCT TOU TEWTEVOVTOS TEOBAAUATOS UE
YeNoN TV TELOY HOVTEAWY TUEBNC €ytve emliuct Tou culuyolc TeofBiruatoc. Axolou-
Yovtog T dtadacia Tou TEPLYRAPNXE 0TO XEPIANO 2 efvar duVITOV Vo uTOhOYIGUEL 1)
xAoM TN AVTIXEWEVIXTIG CUVERTNOTS WS TTEOS TNV XAVETH UETATOTLON TWV ETUPAVELO-
%OV xOUPeV Tou TAEYPOTOC. T'pagux amedVIon TV TUEATEVE TOEAYWYWY ETEVE
OTNV EMPAVELN TOU OYAUATOC CUVIETEL ToV YdpTn euanoinoiag Tou mpofAfuatoc. E-
fvou TEoQAVES OTL, WG ATOPEOLY TELWY BLAPORETIXGY PETAC) TOUG TEDIMY TayUTNTOG Xal
mleong amd Ta Telo povtéda ToEPng, mpoxUTTouy avticTolya Telo dloupopETIXE TEdla

oLLUYOV TAYUTHTWVY Xal TECEWY X, dpa, Teelc SapopeTixol ydpTee evoncdnoiag.

YOyxpon tov Tewov Xaptonv Evacdnoiog

Opolwg pe 10 mpwtedov TEOBANUAL, OPLOUEVES BACIXES TURUTNENCEL UTOROVY Vo YivouY
UE €VOL TEWTO EAEYYO TWV TELWV YOOTOV, 1) Baox ex TV onolwy eivan 1 dlopopd Tou
Y ST evanoinoiog mtou tpoéxule and To povtého THEPRNg k—€ oe oyéon e Toug dAAoUg
800. Xto oyfua(7. 12 gaiveton ) TAdyta tiow 6N TV TELdY YapT®Y euacinciog, 6Tou
UE UTAE efval YowUATIONEVES OL TEQLOYES o TEETEL Vo JeTantvndoly mpog Tor Héca o
XOYNVES OL TEPLOYEC oL TEETEL VoL “Tpaf3ny Yoy’ mpog ta é€w. llpog ta péoa optleton

n xatebuvon and 10 PEVCTO TPOC TO GTERES OPLO.
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Yo 7.12: Yiykpion twv yeptoy evawoinoias ané ta tpia povtéda tippPns - Hiow
mAdyra 6.

Hocotixég Blapopéc 0To YETEO TNG UTOAOYLLOUEVNG Tapay®You efvan UTaEXTEC GTO
o0OVOAO TNG ETPAVELNG TOU OYAUATOS Xl PETUE) TOU GUVOAOL TWV YOETMOV VAo
olag Twv TeLY wovTédny. Ot molotixég dung dlapopés, —oL onoleg eupaviovtal uévo
ueTagd Tou povTéAoU k-€ xou TwV dAAwY U0~ Elvol CUYXEVTPWUEVES OTA Thouvd e
TOU OYAUATOC Xa, xUplne, oTo Tiow Pépog Tou, exel BnAadY| Tou eugaviCovTon Eviova
TUEPRAOOY CUVEXTIXG PUVOUEVA X0 ATOXOAANOT TNG POTC.
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Eyuna 7.13: Ydykpion twr yaptdv evaioinoias ané ta tpia povvéda tippng - E-
urpootha mAdyra on.

Mot dAAn mapathipnon mou unopel vo yivel mévew otoug ydeTeg avatodnolag ebva ot ot
ToEdYwYOoL ToU LOVTEAOU k — € elvar o) To évtoveg (howBdvouv ubnidtepes Tiuéc)
070 Tlow PEPOC TOU AUTOXIVATOU GE GYEom UE Tol GAAX BUO, Tou OTUaiveL OTL OTtola
aAAoryT) 0TO Oy Tou auTOXWVY|TOU TparyaToTtoinUel ot excivn Ty Teploy Y, Vo emLpEpet
HEYSAN LeTOBOMT 0T0 cuvTEeoTH avtioTaong. Autéd aupfaiver Bttt 1 poY| (6mwe yiveton
eugavéc omd o oy fue[7.10]) amoxolhdTon xon enavampooxolhdtan 6 UEYEAo £0pOC TOU
o YEEOUC TOL AVTOXVATOU GUUPWVIL UE TO HOVTELO TUEBNG awtd. Exel mou haufdver
Y WAL 1) AmOXOMANOT) €lvol 1ot EXEL TOU ovaEVETAL VoL EEVOL YO TLO UEYAAES OL TYES TOV
TOEOLY Y WV.
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k-w 55T

Spalart -
Allmaras

Yo 7.14: Yiykpion twv yeptor evawoinoias ané ta tpia povtéda tippng - Hiow
oyYn.

Kartoifyovtag, a&ilel vo avagepldet 1 éviovn acuuuetpla Tou ydptrn evatoinoiog and to
novtéro tOplne k — ¢, 1 omola axoroudel To potiBo Tou TpwTeloVTOC TEOBAAUAUTOS TOU
ormolou T media ebvan emtione un-cupueted we meog To X7 eninedo. Mnopel ydhiota
var Ylvel o toyuptoddg ott Tor ouluyY| medio 0o€0vouv TNV OTold acUUUETEl UTopel va
uTdpyel ota Tedla TOL TEOXUTTOUY amd TNV EMLALUCT] TOU TEMTELOVTOS TEOBAAUATOC.
Auté BagolveTon xon 6TO Oy OTOL OTO TAVW PEPOC QaiveTal, GE xdTodT), 1
oToTIXY TlECT) OTNY EMUPAVELXL TOU AUTOXIVTOV EVW, GTO XATw PEPOC, 1 cLLLYNE TEDT),
peTalld Twv onolwy mapatneeltar adEnom TG acUUUETElOC.
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(o) Evotind| nieon

(B") Luluyrhc mieon

YyxAue 7.15: XUykpion twy katavouwy otatikng kar ovlvyols mieons - Kdtoyn -
Hovtédo tippns Spalart Allmaras.

7.5 BeAtioTtonoinon Mopgng tou AutoxivrTou
wéow CFD

Katomy tne onuovpylog xon avdAuong twv yoeTtov euoncunolaug and to tplio yoviéha
TUEPBNG €YIVE EVIOTIONOC TWV TEPLOY WY TOU PAUiVETOL VoL €Y 0UV T1) UEYUADTERT entidpao
ot Uelwon Tou cuvteAes T avtioTaone. Autd 081y Noe 6NV EMAOYY| OPIGUEVLY TEQLO-
Y@V oL onoleg popomouinxoy xou BeATIo TOTOLUNXOY PUE TOV UORQPOTOLNTY TAEYHATOC
e MIITP&B/EMIIL. To anoteéoyata plog Bektiotonoinong da napovotactodv ot
CUVEYELL.

‘Onwe €yl Hom YiVEL oY ETINT ovapopd, 0 LOPGPOTOLNTHS TOU TAEYUOTOS 0 0Tolog AElToVE-
Yel quToUTOTOINUEVD GE GUVBLOOUS PE TOV ETADTN Tou TpwTEvOoVTOg Xat culuyolg
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TeoPAfuatog amantel oplouévee Pooixés puduloelc and TV Theupd Tou yenotn. Axo-
hovdwe, émerta and xdie YETABOAY| TOU TAEYUUTOC EXTEAE(TOL XUTIAANAOC EAEYYOC Yl
TNV TOLOTNTAU TOU TUPAYOUEVOU TAEYUATOG.

Ou pudioceic mou amoutodvTon amd TNV TAEURA TOL YEHOTH apopoly Ta eENG:

o Aptdudc Tov onueiny eAéyyou Tov oyxxky B-Splines oe xdde xateduvon,.
e Boaduog twv cuvaptAoewy Bdorng

o IlpoanpeTindg TEPLOPLOUOS TN HETOXIVIONG CUYKEXPWEVLY CNUEY EAEY Y OU PO
oLUYXEXPYEVES XaTELYOVOELS.

H tehevtala mopduetpog elvon wiaitepa ypriown yio epapuoyes Bedtiotomoinong pop-
¢c, T600 Yo TpoBAAuaTa eEWTEPHC 600 XoL E0KTERINY|S acpoduvauxc. [leplopioyot
oY EBOUO) OE EEMTEQIXY| AEPOBUVOULXY| 1] YEWUETEIXWY TEODLOYRUPWY O ECWTEQLXTY] O-
€POBUVOXT) APTVOUY TTOAAESG PORES ENGy Lo T TiEprlwptar uETABOAAS TG YewueTplog. E-
EunaxoUETAL OTL, OTIC TEPLTTWOELS AUTES, EMPBAANOVTOL GUYXEXQHIEVOL TEQLOPLOUOL TNV
xbvnomn twv onueiwy ehéyyou yio Tov BEATIOTO EAeY Y0 TNE TEAXC YEWUETPLAC.

Yt Bektiotonoinom mou Ya axohoudel yenoyromor|inxay 500 xouTtid eAéyyou —OnhadH
dounuéva TAyuata onueiny eréyyou twv oyxixov B-Splines— mou napaustpomoloty
TNV ETUQPAVELN TOU OYUATOS GTNY TEPLOYT TOU eUNPOCHIOU TEOPUAUXTHEA.  LUVOAL-
%4 amotehovtay and TXIXT onuelo eAEyyou vy ol cuvopthoels Bdong ftay Teitou
Borduol xou otig Teelg dieutivoelg. To mhéypa ehéyyou Twv onueiny eréyyou qaifveto

Toipaxdte ot oyfata[7.16(a)| xan [7.16(8")l To povtého thelng mou yenowwomoiinxe

Aty o Spalart-Allmaras.

[ o r

SN

B e S L

(o) Mrpootd 6 (") Kérogn

ExAna 7.16: Aounuévo mAéyua onueiwy eAéyyov twr oykikdv B-Splines.

Hporypatomoinxay 500 xixAol Behtictonoinong ue oy fuata dlaxpltonoinong dedTe-
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eNne TEENS 600 Yl TIC EELOMOELC TOL TEWTEVOVTOC 6CO XL Yot AUTEC Tou culuyolc
meoPBifuatoc. H cuvolut| yelworn tou cuvieheo T aviioTaong fray Tne Tddng Tou 2%,

OTWS QolveT TaPUXATE 6TO oy [7.17}

Bxue 7.17: Aidypaupa olykAions tov ovvtedeotn avtiotaons katd TS emavaApers
Tou emavaAnmuikol akyopiiuov emidvong.

Axoéun, n oOyxhion TV €€lI0MOEWY TOL TEKOTEVOVTOS Xa GLLUYOUS TEOPAAUATOS (o-
xou [7.18(a)

TOU axohoUJoUV.

tveton ot oyAuota [7.18(3")

() (®)

YyAuo 7.18: Awdypaupa olyrklions twv efiodoewr tns pons (apwotepd) kar twy
ovluydv eiiodoewr (6eiid) katd tn PeAtiotomoinon.

H teluef yeouetpio gaiveton mopaxdte oto oyfua [7.19] evéd oto oyfua pofveTou
YEWHATICUEVT) XATUAANAL 1) ETUPAVELXL TOU OYAUATOG OVAAOYU UE TO HETEO TNG PETUTOTI-
O™NG TWV EMLPAVELUXWDY OTUEIWY TOU TAEYUUTOS. 1TO OY AU AUTO, UE XOXXIVO QulvovTol
YEWHATICUEVES OL TIEQLOYES Ol OTOLEC TUEUUOPPOUNUIY TEQIGGOTERD EVE) UE UTAE QUTEC

TOU TPEPUELVAY TIEOX TS oxivnTeg.
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Yo 7.19: Yiykpion apxikng kar BeAtiopérng yewuetpias - Mnpootd 6pn - BeA-

TIwpéVn yewpetpia ota 0e&id Tov oxIMATOS.

(o) ®)

Yo 7.20: Evtaon tng kivnons twy onueiwy tng emgdrelas Tov autokvitov katd
) PeAtiotonoinon. Apiotepd - eumnpooctha opn. Ae&id - tAdyra eumpéotha .

To tehxd oyfua etvon apxeTd oA YwpElC ATEAELES 1) ACUVEYEIEC EVE) 1) MEYLO T UETA-

TOTUOT| TOU TAEYUATOS ATay Tepinou 2 exaTooTd.

7.6 Avaxepahalwon-2uUNERACUATA

Y1 Simhwpotin outy| epyaoia tpayuatonotinxe Behtiotonolnom popgrc evog emBo-
TIX00 QUTOXWVATOU UE YeNoT TNg oLvey0Ug culuyolg uedodou, 1 omtola Eyel avamTuy Vel
ond T MITTP&B/EMII, e ot6y0 v ehoyloTomoinoy Tou GUVTEAEG T avTio Taorg
Tou.

Apywd mporypotonowinxe avdhuon tng eofc yUew omd To UTO €EETAOT) aUTOXIVNTO
070 TEPY3AAROY avoLy TOO AOYIGUIXOU OpenFOAM®. To mpoBhnua Siémetar amd Tig
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ellonoeic RANS yia acuunicoto peuotd xon ypovind uoévydr, Tupfaon poY|, eve 1) e-
mAuom Toug €ytve e yprom ulag mopariayic Tou enavaknmTixo) okyoplduouv SIMPLE.
‘Eywe yerion teuwv poviédwy tielng, tou k — €, tou k —w SST xou tou Spalart-
Allmaras xou oUyxplon Twv anoteheoudtowy pe Bdorn tnv oxpeifeo Tou xadevog otny
oeetf3n) TEOAEET TOU GUVTEAEC T AVTIoTAONE X0 TwV TEdiwY TayUTNTuC, TlEoNE XA Tup-
Bdoug xvnuotinric ouvexTixotnTag. [oupdhinia, €ytve cOYXEION TWV ATOTEAECUSTGLY
TWYV TEOGOUOIWOEWY UE HETENOELS amd TELpduaTo Tor omolo diedhyUnoay ot acpocrpay-
yo. Amotéheopa Tng olyxEoNg ATay 0Tl To YovTého k — € uoTepel TwV dAAKS BUo ot
OTL 0POPAL TOL TOEATAVE OE TEOBANUATY EEWTEQINNG AECOOLVOLXNC, EVE) O CUVTEAEGTAC
avtiotaong and 1o poviého autd Hrav 7% udmhotepoc amd tar dAka So.

Y1 ouvéyela, pe Bdon Tic AoELC TV TELOV HoVTEA®Y axololinoce enthuon Tou culu-
YoUg mpoPAfjuatog. ‘Eyive unohoyioudg twv mapaydywy evaodnciog, Twy Topay kY ey
ONADY| TNG OTLOVEAXOUGUS TOU QUTOXIVTOU WG TROG TNV XAUETY YETUTOTION TV &-
TLPAVELIXWY XOUPBWY TOU TAEYUATOS %ok, 0TI CUVEYELY, Onuioupyio Twv avtioToywmy
yoptov evacdnoloc. Eywve obyxplon twv yoptdv cvacinoioc and ta tela oviéha
TOPBNG XU OTN GUVEYELXL, GUUPOVA UE AUTOVE, ETAEY VXY Xou BEATIO TOTOLAUXAY UE-
HOWVOUEVES TERLOYES Tou auwToxviTou. TI€pav autol, oto Thfpeg xeluevo g epyaciog
auThg oyohdoTnxay Véuata mou oyetilovton Pe TN oUYXAOT xou TNV EVoTAVEL XoTd
™V aprdunTx eniivon Tou culuYoUC TEOBAAUNTOS, T1 CUUUETEIN TWV ATOTEAEGUATCVY
xou TNV ox@(BEla TV UTOAOYIGU®OY. M0OYXELoT TwV YopT®y euctoinciog ol omolol xo-
TaoXEVAC TNXAY ETELTAL amd €TMAUGY TOU TEOPBAAUATOS PONG UE TEMTNG Xl OEVTEPNC
T8ENG oxpiPBetag oyrdato Sloxpttonoinomng €delle 6Tl 1) TeheuTtaio TaUlEL oNUAVTIXG POXO
OTOV oXEU3T| UTOAOYIGUO TOV TORAYWYWY XAl UTOREL Var 00Ny NoEL axdua xan o Aavio-
ouévo mpdomnuo auteyv. H Abn péowy oy méve oe onuavtind aprdud enavokipewny
¢ AoNg Tou TEETELOVTOS TEOBAAUATOC -0POTOV O ERAVUANTTINOS OAYOELIUOC EYEL
ouyxhivel- anodelydnxe vo cuufdhher oty adlnon tng cuupeTteiog g Abong xadog
enlong xou ot oUyxAon Tou culuyolc mpofifuatoc. Télog, to ouluyéc mEOBANuUA
PavIXE VO EVIGYVEL TNV OToLo aoUUPETEN UTdPYEL 6T0 TEMTEVOY TEOBATU xolKS €-
mlong xou Tig Blapopéc UETAED TV amoTEAEOUdTWY amd To Tplo LovTéha TURBNC.
Téhog, pe Bdon tig evoelelg amd Toug ydpteg evanoinoiag emA€ydnxay anooTacuoTL-
%3 TEPLOYES TOU UTOXIVATOU UE UPNAT| euoncinola wg TEOg TN UEWOT TOU GUVTEAECTH
avtioTaong xa BeATioTonowinxay Ye Yprion Tou auTONATOU AOYLoUX0U popgoToln-
ong, 1o omolo €yet avortuydel and ty MIITP&B/EMII. To anotedéopata €0et&ov
OTL oXOUT ol IXEOC aELIIOC XOXAWY XOU TEQLOPLOUEVT) UETOXIVIOT] TWV ETLPUVELUXODY
xouBwv odnyel oe alloonueinTn peiwon Tou cuvtekeoth avtiotaone. Bedtiotonoinon
TOU EUTPOCVIOU TTROPUAIXTH PN XATENNEE OF 2% uelwon tou Cp Ue PEYIOTN UETATOTION
v onueinv Tou CFD mAéyuatog uixpdtepn tov 2cm. Emonualvetar 61, oTo mAaioto
NG OIMAWUATIXAC AUTHS EpYaoiog EYVE EMEXTUOT TOU AOYLoUX0) Lop@oToinong o€ 6T
agopd TNV eheudepia xvnone TV onuelwy eAéyyou Twv oyxxwy B-Splines.
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