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Abstract

Aerodynamic shape optimization (ShpO) plays a pivotal role in aerospace en-
gineering design, enabling enhancements in performance metrics and the at-
tainment of desired aerodynamic distributions. The objective of this diploma
thesis is the development of a computational framework for the geometric pa-
rameterization and aerodynamic optimization of blade airfoil profiles. The
blade geometry is parameterized using Bézier curves, constructed from de-
sign variables that represent physically meaningful blade characteristics such
as chord length, stagger angle, metal inlet and outlet angles, leading and
trailing edge radius and others. The blade is divided into four segments,
allowing for localized geometric control. The suction and pressure sides are
constructed based on a mean camber line, while leading and trailing edge
segments are added at the front and rear, respectively. To ensure smooth
and seamless transitions between the segments, C? continuity is enforced
at the connections. Initially, an optimal fitting algorithm was developed
in C++ using the steepest descent method to adjust the Bézier-based pa-
rameterization such that the generated geometry reproduces a given airfoil
shape—performing inverse design. The fitting procedure is based on a least
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squares error metric between the target and generated geometries. Following
this stage, the Bezier parameterization was interfaced with the adjoint solver
of the PUMA software, developed by the PCOpt/NTUA research unit, with
the aim of solving shape optimization problems. Multiple studies have been
conducted on the geometry of the two-dimensional rotor blade of a single-
stage axial turbine, targeting aerodynamic performance objectives under a
set of constraints. All aerodynamic optimizations were carried out using the
continuous adjoint method, while in the case of the propoed parameteriza-
tion, the chain rule was applied for the computation of sensitivity derivatives.
Specifically, a C++ code was developed to compute the geometrical deriva-
tives of each airfoil node with respect to the design variables. Then, using
the chain rule, these derivatives were passed to the PUMA software to eval-
uate the sensitivities of the objective function. The aerodynamic ShpO was
applied to minimize the total pressure losses of the airfoil representing the
rotor of the single-stage turbine, subject to the constraints of prescribed flow
turning angle, inlet capacity, and additional geometric limitations.
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Hepiingn

H agpoduvauinn Behtiotonoinom wopgrg (BM) Swdpopariler xadoptotind péro
OTOV OYEOWOUS UEQODIIC TNUIXWY EQPAQUOYOY, Xxad®¢ emTEETEL T BeAtiwon
NG OLVOAXAC AmOBOCNE XL TNV EMETELEY EMVUUNTHOV AEPOBUVAULXDY Y oOUX-
TNEWOTIX®Y.  1UTOY0g TNG DmAwUaTxrc epyaoiug elvon 1 avdmtuln evog ho-
YIOUIXOU YL T YEWUETEXT TopoETEOTOINGT Xou TNV acpoduvouxry BM aee-
TopGY (xupite ttepuydoeny). H yewuetpio Tou mtepuyiov napoyetponoteito
uéow xoumuioy Bézier, o omoleg xataoxeudlovton and PETOBANTEG OYEDIAGUOY
TIOU AVTIOTOLYOUY GE (PUOLXSL YEWUETEIXY YUPAXTNEIO T Tou TTTepUYio, OTLC,
LETOEL GARWY, TO Ufixog Yoedhc, N Ywvia xAiong (stagger angle), ot ywvieg eloo-
00U xat €€600U UETAANOU, Ol UXTIVEC XOUTUAOTNTAS TNG UXMUNC TEOCTTWGONE Yol
expuync. To mteplyto ywplleton oc Téocepa TUNUOTA, YEYOVOS TOU EMITEETEL
TOTUXO YEWUETEIXO EAeYYO. Ol TAEUREC UTOTEDTC o UTERTEGT|C XUTUOHEVS-
Covtan e Bdomn 0 UEoT YUY XOUTUAOTNTAS, EVK TEOo ThevTal TU AT Hop-
P xLXAXOU TOZOUL TNV TEPLOY Y] YVPM A6 TNV AXUY| TEOCTITOONG X0l EXPUYTC.
[at T Blo@dMoT OUAAGY Kol GUVEYOY UETABACEWY UETUED TOV TUNUATWY,
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emPBdAleTon CLUVEYELXL TOTOU C? 5ta onueto ovvdEoTC.

Apynd, avartOydnxe oe yiohooo mpoypoappationol C++ évag ahydprduog
BEATIOTNG TPOCUPUOYTC UE XPHoT TNS UEVOOOU TNE amdToUNg xodddou, WOTE 1|
TOEUYOUEVY) AT TNV TUPUUETEOTOMOT), YEWUETEIA VO ATOTUTWVEL T DOCUEVT
UEPOTOUY|—UAOTIOLOVTUC XAT  oUTOV TOV TEOTO TNV avTloTeoYr oYEdlNoN (in-
verse design). H Bwdwooio mpocapuoyfc Poacileton otn pédodo ehayiotwv
TETPUYWVLY, haufdvovTag unddn Tn dapopd petadd TG SOOHEVNC Xon TNG
TOEUYOUEVNG YEWUETEIAG. 2T1) GUVEYELY, 1) TURUUETEOTOMNOT) DUGUVOEUNXE e
tov ouluyY| emAuTH Tou hoytouxob PUMA, tne MIITPB/EMII, pe oxond tnv
eniAuon mpofBAnudTewy acpoduvouxrc BM.

Hporypotomouinxoy ToAES UEAETESC OTN YEWUETPIA TOU OLOLEC TATOL TTEPLYIOU
xvnTig TTepLYwong wovofBdiutou a&ovixol atpolihou, Ue otéyo TNV emiteudn
XAAVTEQMV AEQODUVOULXMY ETOOCEMY UTO CUYXEXQIIEVOUC TiepLoptopols. ‘Oleg
ol agpoduvauxéc BM exteréotnxay pe yerion tng ouveyols culuyoic pedo-
00U, EVK OTNV TEPITTWOT] TNE TPOTEWOUEVYC TUPUUETEOTOINONE EQUAOUOCTNXE O
XAVOVOG TNG AAUGEDOC Yol TOV UTIOAOYLOUG TV Tapaywywy suucinoiag. 1o
CUYXEXQUIEVQL, oVUTTUYINUE XWOWOG OE YAWOoW TRoYeauuaTionol C++ yio
TOV UTIOAOYLOUO TOV YEWUETPXOY TURAYOYWY xdle xoufou tou mpogih ©¢
TEO¢ TS UETAPBANTES oyedlaouol. ‘Eneita, ye yprion Tou xavéva tng alvcidog,
oL Topdywyot autol YeTaPBiBdotnxay oto Aoyiouixd PUMA yio tov unohoylouo
TWV TURAYOYWY TNG AVTIXEWEVIXNG cuvdptnong. H agpoduvauinr) BM egop-
HOCTNXE YL TNV EAAYICTOTOMON TWV OAXWY UTWAELOY TEOTC TNG AEPOTOUTNG
Tou TTEPLYloU NG xvNTAC TTEPUYWONG Tou povofdiuou otpofilou, und Tov
Teploplold Teoxadoplouévne Ywviag e£6d0u TNg pong, Topoy g oty elcodo xaL
TEOGVETWY YEWUETPIXWY TEQLOPLOUMY.



vil

Abbreviations

CFD Computational Fluid Dynamics

GPU Graphics Processing Unit

NTUA National Technical University of Athens

PCOpt Parallel CFD and Optimization Unit

PUMA Parallel Unstructured Multirow and Ad-
joint

MCL Mean Camber Line

LE Leading Edge

TE Trailing Edge

SS Suction Side

PS Pressure Side

ShpO Shape Optimization

w.r.t. with respect to

EMII Edvix6 Metoéfio Iloauvteyveio

MIITPB Movdéoa ITopdhhning Troloyiotnhc
Peuctoduvauinric & Behtiotonolnong

TPA Troloyotxs) Peuoctoduvapixy
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Chapter 1

Introduction

The design of turbine blades plays a pivotal role in determining the overall ef-
ficiency, reliability, and performance of turbomachinery. In gas turbines and
steam turbines, aerodynamic optimization directly influences fuel consump-
tion, power output, and operational lifespan. Traditionally, blade shapes
have been derived from empirical correlations, iterative testing, and designer
experience. However, the increasing demand for higher efficiency combined
with the exponential growth of computational power of computers has led to
the evolution of methods for blade design.

Among the various computational strategies, inverse design offers an effective
approach in which the desired aerodynamic performance — such as pressure
distribution or flow turning — is specified first, and the blade geometry is
then determined to achieve it. This contrasts with the conventional trial-and-
error forward design process and can significantly accelerate the development
cycle [25], [35]. Complementary to this, adjoint-based aerodynamic shape
optimization provides an efficient way to compute sensitivities of performance
objectives with respect to numerous geometric parameters, enabling gradient-
based optimization with a computational cost largely independent of the
number of design variables [§], [13].

In this context, Bézier curve parameterization has emerged as a versatile
tool for representing airfoil shapes ensuring smooth curvature and geomet-
ric flexibility. Its mathematical properties allow shape modifications while
maintaining global smoothness, which is essential for capturing subtle aero-
dynamic effects in turbine cascades [11], [26].



The integration of inverse design and adjoint-based optimization, coupled
with Bézier parameterization, offers a powerful framework for systematically
improving 2D turbine blade performance. This diploma thesis applies such
a framework to develop blade airfoil geometries that meet prescribed aero-
dynamic constraints while enhancing efficiency, thereby addressing modern
challenges in turbomachinery design.

1.1 Blade Airfoil Parameterization Methods

The choice of parameterization technique significantly influences the opti-
mization outcome, as it is involved both in the problem formulation and
in the execution of the algorithm. Thus, it determines the discrepancy be-
tween the optimal and the computed shape, as well as the convergence rate.
A geometry parameterization technique is suitable for integration within an
aerodynamic optimization framework when it possesses some of the following
characteristics [24]:

e The parameterization variables can be directly correlated with indus-
trial design variables, e.g., thickness, twist of a wing or blade, or the
mean camber line curvature of an airfoil, over which the designer main-
tains control.

e Updating parameters during each optimization cycle produces smooth
geometric shapes. This is a critical factor when selecting parameteri-
zation techniques for gradient-based optimization methods, which re-
quire continuity of derivatives of surface nodes (design velocities) with
respect to design variables.

e The analytical computation of these derivatives is feasible.

e The designer is afforded local control of the geometry, ensuring better
handling and manipulation.

e The geometric deformation can be reconciled with the deformation im-
posed on the flow solution mesh.

e The time required for the accurate representation and parameterization
of a given geometry is acceptable.

e The parameterization can employ variables introduced for geometry
creation within CAD software.



Regarding airfoil parameterization, several methods have been developed.
Below is a concise overview of the most common parameterization techniques:

1. Parameterization using CAD software

Parameterization is based on geometric quantities imported from CAD
software. In this approach, the sensitivity of the geometry to changes in
design variables (design velocity) is computed using finite differences
between the initial and deformed geometry nodes. This method has
gained adoption in recent years because design velocity calculation via
finite differences is independent of the parameterized geometry, with
the direct advantage of no requirement for code reprogramming [33].
The implementation difficulty lies in the correspondence mapping be-
tween initial and final nodes, achieved under the assumption that ge-
ometry changes between iterations are small enough to allow projection
of the new surface mesh onto the old one. This assumption imposes a
small correction step size and consequently computational cost.

2. CST Parameterization

The Class—Shape Transformation (CST) parameterization was proposed
in and constitutes a method for representing 2D and 3D geometric
shapes [16]. It expresses the geometry as the product of a class func-
tion, which defines the general geometric characteristics such as leading-
and trailing-edge behavior, and a shape function, which provides flex-
ibility to capture the detailed curvature of the side or surface. This
method has also been applied within the context of the PCOpt/NTUA
unit, as demonstrated in diploma thesis [20], where CST was employed
for the parameterization and aerodynamic shape optimization of airfoil
geometries.

3. PARSEC Parameterization

The PARSEC parameterization specifically targets airfoil cases and
uses a set of geometric parameters to describe fundamental airfoil char-
acteristics, offering an approach with relatively few design variables.
Various versions of PARSEC exist, with the most common one con-
sisting of 11 design variables. The mathematical formulation of this
method is detailed in [7], [18]. Furthermore, this parameterization has
been utilized within the PCOpt/NTUA unit, as illustrated in diploma
thesis [15], where it was applied for the parameterization and aerody-



namic optimization of two-element airfoils.

. Volumetric NURBS

Volumetric B-Splines constitute an indirect technique for parameter-
izing curves and surfaces, with the additional capability to simultane-
ously morph both the geometry under study and the computational
mesh nodes, which are also parameterized [32]. Control points are de-
fined initially, which are subsequently displaced based on sensitivity
derivatives to accordingly deform the geometry controlled by them.
This technique is known as Free Form Deformation or Morphing Box
Approach.

. NURBS - Bézier Parameterization

The NURBS parameterization is a widely used technique that offers a
flexible way to define complex shapes [24]. Based on B-Spline curve the-
ory, enables the user to manage the body directly. Moreover, NURBS
provides smooth transitions between different shape regions and high
accuracy in representation, which is why it has been widely adopted in
many CAD packages.

A special category within the NURBS family is the Bézier curve which
are constructed using Bernstein polynomials. They consist of a set
of control points that define the shape of the curve, with the curve
smoothly interpolating between these points [12]. Unlike general NURBS,
Bézier curves use uniform weights and a simpler knot structure, which
makes them easier to implement and understand. They are well-suited
for aerodynamic parameterization when the geometry is relatively sim-
ple or when a smooth, continuous curve needs to be constructed with
relatively few parameters. One of the main advantages of Bézier curves
in parameterization is their intuitive control: moving a control point
reshapes the entire curve in a predictable way. This global influence
simplifies shape design and optimization tasks by reducing complexity
while still producing smooth curves. However, this same global effect
can also be a drawback in some cases, as adjusting a single control point
affects the entire curve, potentially limiting local control and making
it difficult to accurately represent complex geometries. Whether this
characteristic is advantageous or restrictive depends on how the pa-
rameterization is managed and applied. Additionally, Bézier curves
are computationally efficient to evaluate and direct differentiatable,



making them ideal for gradient-based optimization methods commonly
used in aerodynamic shape design.

One of the objectives of this thesis is to present a custom Bézier-based pa-
rameterization method that achieves a balance between global and local con-
trol by generating the blade airfoil in distinct segments: camber line, leading
edge region, trailing edge region, suction side, and pressure side. To this end,
an inverse design code for airfoil shapes was developed in C++. The pro-
posed parameterization is general and applicable to a wide range of airfoils,
while being particularly well-suited for 2D turbine blades, where the design
variables are directly correlated with industrial design parameters. Further
details regarding the mathematical expression of the method, the role of the
design variables and their contribution to the final airfoil geometry will be
presented subsequently.

1.2 Aerodynamic Shape Optimization

The term aerodynamic shape optimization refers to the appropriate modi-
fication of the geometry of a solid body exposed to a fluid flow, such that
a quantity called the Objective Function, F, be minimized or maximized.
An example of an objective function is the force exerted by the fluid on the
solid body in a specific direction, such as lift or drag. The geometry of the
body under optimization is described by a set of variables 5, which are called
design variables. The values of the design variables determine the geometry
of the solid body. Therefore, the goal of the optimization is to find the values
of the design variables b that minimize function F.

Aerodynamic shape optimization is typically performed by integrating com-
putational fluid dynamics (CFD) with advanced optimization algorithms to
identify the best geometric configuration for a given design problem. This
process involves handling numerous design variables alongside predefined ob-
jectives and constraints, aiming to achieve improvements in aerodynamic per-
formance metrics compared to an initial baseline. The scope of this research
spans various industries, including aerospace, automotive, and wind energy.

Recent advancements in high-performance computing have significantly pro-
pelled aerodynamic optimization efforts, as CFD analyses are computation-
ally intensive and can require extensive runtime, even when parallel pro-
cessing techniques on cutting-edge hardware are employed. Additional diffi-
culties arise from mesh dependency and the inherently nonlinear behavior of



fluid flows. During iterative optimization, geometry modifications necessitate
mesh regeneration or deformation, which can lead to inconsistent gradient
calculations degrading solution accuracy. Moreover, the complex nonlinear
dynamics of fluid phenomena—such as boundary layers and shock interac-
tions—pose substantial challenges, as minor geometric alterations may cause
sudden, large fluctuations in aerodynamic characteristics. This results in a
design space with multiple local optima, complicating the search for a glob-
ally optimal solution.

1.3 Optimization Methods

Optimization problems can be classified according to various criteria, in-
cluding the optimization methodology employed, the number of objective
functions, and the presence or absence of constraints.

With respect to the number of objective functions, optimization problems are
divided into Single Objective Optimization (SOO) problems, where a single
performance metric is optimized, and Multi-Objective Optimization (MOO)
problems, where two or more competing objectives must be simultaneously
optimized [7].

Based on the optimization methodology, two primary categories are distin-
guished: stochastic methods and deterministic methods.

e Stochastic or Gradient-Free Methods

Stochastic, population-based optimization methods [7] constitute versatile
algorithms applicable to a wide range of engineering problems. A repre-
sentative class of stochastic methods is the Evolutionary Algorithms (EA).
Their defining feature is the manipulation and evaluation of a population
(population-based) of candidate solutions within each generation (iteration)
mimicing the mechanisms of natural evolution [4]. These solutions are ran-
domly generated and assessed according to the value of the objective function.
A subset of solutions, termed parents, is promoted through a selection mech-
anism inspired by the principle of “survival of the fittest” (elitist tendency),
wherein the best-performing individuals are preserved. Offspring solutions
are subsequently produced through crossover operators, emulating heredity,
and mutation operators, enabling the introduction of new traits. These off-
spring are evaluated in turn, and the process is iterated until convergence
criteria are met the initialization, provided a sufficiently large number of
evaluations is performed. As a result, they are inherently less prone to en-



trapment in local optima. However, their convergence generally requires a
substantial number of objective function evaluations, which can lead to high
computational cost. Moreover, the computational expense increases with the
dimensionality of the design space, i.e. the number of design variables.

e Deterministic or Gradient-Based Methods

Conversely, deterministic optimization methods [19] rely on the computation
or approximation of first (sensitivities or gradients) and ,sometimes, second-
order derivatives (Hessian matrix) of the objective function, evaluated at the
current design point. These derivatives are used to determine the search
direction for subsequent iterations. Through an iterative procedure, deter-
ministic methods progressively guide the solution by reducing the magnitude
of these sensitivity derivatives at each cycle, with the ultimate goal of driving
them to zero, thereby identifying an optimal solution.

Deterministic methods are more prone to becoming trapped in local extrema,
and their convergence behavior is strongly dependent on the quality of the
initial guess. Typically, they are employed primarily in single-objective op-
timization problems, where the objective function is scalar-valued. In multi-
objective cases, the various objectives are commonly aggregated into a single
scalar objective function through the application of user-defined weighting
coefficients. Furthermore, deterministic approaches generally exhibit limited
adaptability to arbitrary problem formulations in comparison to the stochas-
tic ones, often requiring tailored implementation and increased programming
effort to accommodate specific problem structures.

Despite these limitations, deterministic methods generally converge in sig-
nificantly fewer function evaluations, which translates to considerably re-
duced computational cost. Additionally, their computational expense is often
largely independent of the dimensionality of the design space, enabling ef-
ficient optimization of high-dimensional problems even when computational
resources are limited. This characteristic makes deterministic methods par-
ticularly suitable for optimizing complex geometries described parametrically
using analytic parametric representations.

Among the most commonly employed deterministic methods are the Steepest
Descent method, which involves exact or approximate calculation of the first
derivative, the Quasi-Newton method, which calculates the first derivative
exactly while approximating the second derivative to reduce computational
cost yet maintain rapid convergence and the Newton method, which relies
on precise evaluations of both first and second derivatives.

Common derivative computation techniques include the Direct Differenti-



ation Method (DDM), the Finite Difference Method, the Complex Step
Method and both the Continuous and Discrete Adjoint Methods [7]. Ex-
cept for the adjoint methods, the computational cost of these techniques
typically scales linearly with the number of design variables. The adjoint
method, however, is notably efficient: the computational cost of calculating
the first derivative of the objective function is roughly equivalent to solv-
ing the primal problem twice. The selection of an appropriate optimization
method and derivative computation technique depends on the specific char-
acteristics of the problem at hand, and the engineer must carefully evaluate
these factors to make informed decisions regarding the optimization strategy.

Lastly, optimization problems are broadly divided into constrained and un-
constrained categories. In unconstrained optimization, no explicit restric-
tions are placed on the decision variables, which makes the problem simpler.
These problems often arise directly in certain applications or as reformu-
lations of constrained problems using penalty methods.. In contrast, con-
strained optimization involves explicit restrictions on variables, which can
range from simple bounds to complex nonlinear inequalities that reflect real-
world limitations or relationships. Properly handling these constraints is
crucial since they define the feasible region where the optimal solution must
lie.

1.4 The GPU-enabled CFD Solver PUMA

In order to predict the compressible flow field around the airfoils, the GPU-
enabled flow solver PUMA, developed by the PCOpt/NTUA [29], will be em-
ployed in this thesis. PUMA numerically solves the Navier—Stokes equations,
coupled with turbulence model equations, over a computational domain em-
ploying a vertex-centered finite volume formulation on unstructured meshes
consisting of tetrahedra, pyramids, prisms, and hexahedra. Structured or
matching block-structured grids, such as those generated in the present work,
are treated internally as unstructured. The governing equations are pre-
dominantly hyperbolic in character, with elliptic terms playing a secondary
role. Consequently, PUMA employs a time-marching technique, introducing
a pseudo-time variable to iterate toward a steady-state solution. The spa-
tial discretization is performed on finite volumes defined around each mesh
vertex by connecting edge midpoints, face centers, and element centroids of
the adjacent cells. Inviscid fluxes are computed using Roe’s approximate
Riemann solver [23], while viscous terms are discretized using a second-order



central difference scheme involving all neighboring nodes.

The flow equations are numerically solved in a decoupled manner within
each pseudo-time iteration at first, an iteration of the mean flow equations
is performed, followed by one of the Spalart-Allmaras model. The adjoint
equations are solved using a similar procedure [31]. PUMA incorporates
steepest descent, BFGS, and damped BFGS optimization algorithms [14]. If
optimization is disabled, the adjoint solver is launched only once to compute
the sensitivity derivatives of the selected objective function for the baseline
configuration, with no update to the design variables. The adjoint based sen-
sitivity derivatives can be computed based on SI, FI or E-SI formulations [IJ.
SI formulation includes only surface integrals which makes derivative compu-
tation fast but less accurate compared to FI which includes domain-wide field
integrals (both surface and volume integrals) that account for grid sensitivity
terms such as, which describe how the grid adjusts when the design param-
eters change. These integrals demand a grid displacement model (GDM)
solved via finite differences or analytic differentiation to properly capture
those effects. As a result, FI is accurate, but scales poorly with mesh size
because of the computational cost. E-SI combines the accuracy of FI with
the efficiency of SI. By incorporating a Laplacian type GDM into the primal
equations, and introducing additional adjoint fields, the method cancels out
grid sensitivities within the domain. This reformulation results in sensitiv-
ity derivatives expressed strictly through surface integrals a reduced adjoint.
It matches the accuracy of FI but at a significantly reduced computational
cost. Mesh adaptation in PUMA can be performed as a standalone opera-
tion or during optimization or unsteady simulations with moving boundaries.
Available morphing techniques include [31]

1. External (variant of the Inverse Distance Weighting) - each mesh node
is linked with the closest wall node and a smoothing function (whose
value is 1.0 on the wall and 0.0 far from it) is applied for computing
the deformation field around the deformed surface

Volumetric NURBS
Laplace PDE morphing
Linear Spring Analogy
Torsional Spring Analogy

Elastic Medium (solid-mechanics-based deformation)

N ot

Inverse Distance Weighting (IDW)
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8. Adjoint Laplace — Used in the E-SI formulation; solves the adjoint to
Laplace’s equation for the deformation after convergence of primal and
adjoint fields, yielding purely surface-integral sensitivities.

The spring analogy treats mesh edges as linear springs with stiffness inversely
proportional to their length. The elastic medium method models the mesh as
a continuum elastic body, with material properties depending on geometric
quantities such as cell volumes. PDE-based methods, including Laplace and
elastic-medium morphers, are solved iteratively using Jacobi, Gauss—Seidel,
GMRES, or QMRCGStab linear solvers.

The implementation of PUMA on GPUs provides a remarkable speed-up in
comparison with CPU implemented software, reducing the time of a CFD
analysis. The GPUs that were used are NVIDIA Tesla K40m for the CFD
analysis and validation of the turbine stage and the NVIDIA Tesla V100 for
the aerodynamic ShpO cases.

1.5 Thesis Outline

The outline of this diploma thesis is structured as follows

e Chapter 2: Describes the mathematical framework of the custom
Bézier-based parameterization, including its structural components, an
explanation of the design variables, and the formulation adopted, as
well as their influence on the final airfoil geometry.

e Chapter 3: Analyzes the airfoil shape-fitting algorithm developed for
the inverse design of airfoils in this work and presents its application
to two-dimensional turbine blade cases.

e Chapter 4: Refers to the CFD simulations performed using PUMA
and their validation against experimental data.

e Chapter 5: Details the modifications implemented in the PUMA soft-
ware to communicate the Bézier parameterization into the optimization
loop.

e Chapter 6: It illustrates the results of the aerodynamic ShpO of the
airfoil geometry representing the rotor blade of a single-stage turbine
for multiple cases, each subject to different geometric constraints but
sharing the same objective and flow conditions.
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e Chapter 7: An overview of the present diploma thesis, followed by
conclusions drawn from the studies and suggestions for future work



Chapter 2

The Proposed Parameterization

In this work, the airfoil parameterization is based on a conceptual approach,
wherein the aifoil geometry was represented through five distinct segments:
the suction and pressure sides, defined relative to the mean camber line, and
the leading and trailing edge regions, modeled as circular arcs. All segments
were constructed using Bézier curves. This chapter presents the mathemat-
ical formulation of these curves and details the methodology employed for
the construction of each airfoil segment, providing the foundation for the
implementation of the corresponding C++ code.

2.1 Mathematical Formulation

Bézier curves were originally introduced by Paul de Casteljau in 1959 while
working at Citroén, and later popularized by Pierre Bézier at Renault during
the 1960s [22]. They provide a convenient and efficient means of representing
smooth, arbitrary curves using a relatively small number of control points.
This property makes them particularly valuable in computer-aided design
and vector graphics, where they enable compact storage and scalable repre-
sentation of curved paths [2].

A Bézier curve of degree n is defined as a parametric curve expressed as a
linear combination of n + 1 control points, denoted as Py, P;,...,P,. The
mathematical formulation is based on the Bernstein polynomials, which serve
as blending functions that guarantee smooth interpolation between the con-

12



13

trol points. The first and last points, ) and P,, are referred to as anchor
points, as they coincide with the endpoints of the curve. The intermediate
points do not generally lie on the curve but instead define its overall shape.
Together, the control points form a convex hull that encloses the curve.

The parametric form of a Bézier curve is expressed as a weighted sum of the
control points:

B(t) = z": B;n(t) P, te]0,1] (2.1)
where

]

Ba(t) = (n> (1—t)"ig (2.2)

are the Bernstein basis polynomials of degree n.

Figure 2.1: Generation of the Bézier curve and the control polygon formed
by the control points.

Bézier curves possess several fundamental properties. Some of them are:

e Endpoint interpolation: the curve always passes through the first
and last control points, i.e., B(0) = Py and B(1) = P,.

e Endpoint tangents: the tangent direction at the beginning of the
curve is determined by the line segment (Fp, P;), while the tangent
direction at the end of the curve is determined by the line segment
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(P,—1, P,) [6]. Mathematically,

B(0) = n(P, — R), B'(1)=n(P, — P,_,).

e Convex hull property: the curve lies entirely within the convex hull
of its control points, ensuring geometric stability.

e Variation-diminishing property: the curve oscillates no more than
the polygon formed by its control points.

e Affine invariance: the curve preserves its shape under affine trans-
formations such as translation, rotation, and scaling.

e Continuity and smoothness: the smoothness of the curve can be
adjusted by modifying the positions of the control points.

Owing to these properties, Bézier curves offer an intuitive yet mathematically
precise way to define smooth geometries. In aerodynamic design, they enable
accurate control over the curvature of airfoils while maintaining a relatively
low number of design parameters, making them well-suited for gradient-based
aerodynamic optimization.

2.2 Camber Line Generation

The mean camber line MCL(u) is generated using a cubic Bézier curve.
Its four control points are determined from six design variables and two
constants. The design variables correspond to typical blade airfoil design
parameters, while the constants are the coordinates of the leading edge tip
(Zin, Yin). The control points are defined as:
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P: = {xin} : (2.3)

Yin
¢ be ccos(af))
P{ =P§ + di, [Csin(a,ll)] : (2.4)
¢ be ccos(ad)
PS = PS Lsm (a,;] | (2.5)
PS — Pt 4 [Z ggjgg] (2.6)

where ( is the stagger angle, c,x = ccos(() is the axial chord length, o/ and
oy are the inlet and outlet metal angles, and d;, and d,, are the inlet and
outlet tangent proportions.

Table summarizes the user-defined the design variables employed for the
generation of the mean camber line, along with their corresponding symbols
and definitions.

Variable name Symbol
Chord length c
Stagger angle ¢
Inlet metal angle o
Exit metal angle o
Inlet tangent proportion din

Outlet tangent proportion out

Table 2.1: Camber line design variables.

This construction, as shown in Figure [la, ensures that the blade airfoil
achieves the specified axial chord length and that the slopes at the lead-
ing and trailing edges exactly match the prescribed metal angles, thanks to
the endpoint tangency property of Bézier curves. Using physical design vari-
ables such as metal angles, stagger angle, and chord proportions provides the
engineer with direct control over geometrically and aerodynamically mean-
ingful parameters, enhancing both the intuitive understanding of the design
and the ability to make informed trade-offs during optimization.
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Figure 2.2: Construction of the Mean Camber Line using a cubic Bézier
curve with intuitive design variables.

2.3 Suction and Pressure Side Generation

Given that the camber line has already been defined, the suction side (SS)
and pressure side (PS) of the blade airfoil are defined as Bézier curves, with
the number of control points specified by the user. The main idea is that
the inner control points are generated by projecting a thickness distribution
function (potentially different for the pressure and suction side) along the
normal direction of the mean camber line. To ensure C? continuity at the
junctions with the leading edge (LE) and trailing edge (TE), the first three
and last three control points of each side are constrained accordingly. This
feature is important for the aerodynamic design of turbomachinery blades
because a sudden change in curvature could cause a spike in the surface
pressure distribution or even a local separation bubble.

This thickness distribution is expressed as a fourth-degree polynomial in the
parametric variable ¢ € [0,1]. The use of ¢ rather than the = coordinate is
motivated by the fact that thickness is naturally defined along the camber
line rather than in Cartesian space. Importantly, the suction and pressure
sides are not required to share the same thickness distribution polynomial.
This distinction is crucial in the case of turbine blade airfoils, where the
pressure side is typically shorter and less curved than the suction side. The
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polynomial coefficients thus serve as design variables, enabling control over
both the maximum thickness and its spatial distribution along the camber
line.

The coordinates of the control points {P7%} and {PF®} are computed as
follows:

PTTEE —1 Z - 07
—PT{?E LW+ DPIE
¥ , 1=1,
PTIEE — QPTTEE + PTE nT®
-1 N2 -2 -3 + QPfS _ Pb%‘, i=2,
PSS = { MCL(u;) £ L #(k) i(u:), =3, m —d,
PLE — 2PLE + PEE :
2 -Ntl 0 + QPSss _9 PSSS D 1= nfS -3,
—P1" 4+ (Ns + 1) Pg” SS9
N, ’ T
(2.7)
'PTI;le,‘Eilp 2 - O’
—PﬁfE_2 + (N5 + 1)P§§E_1 .
1 =
N; ’ ’
PLLE — 2PLLE PLLE
! A =3 = 1 9pPS _PIS =2
Pf)S: MCL(UJ):E ty(k;) (uj) i:3,...,n55 4,
PIE _ opTE 4 PTE
—P{F + (N; +1)P[F i=n%—2
N, ’ v
P17, i=nf%—1
(2.8)

where the + symbol is included to indicate for whether the suction side lies
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above or below the mean camber line (the same convention applies for the
pressure side). The k; and w; are the sampling indices expressed by the
formulas:

ki= ——, u; = round (k; - iSk) (2.9)
Npss — 1
41
k; = 53;_ T u; = round (k; zggx) (2.10)
nb -

The thickness 4th-degree polynomial :

t(k)z) = Qo + alki + (12]{?3 + agl{?? + CL4]{3z4 (211)

The scaling factors for C? continuity:

N - Twre — 1 N, = (npre — 1) (nere — 2)

, 9.12
npss — 1 (npss — 1) (npss — 2) (2.12)
N, = NyLE — 1, N, = (npre — 1) (npre — 2) (2.13)
npss — 1 (npss — 1)(ness — 2)
AL St SV E"i — 132"’52 — 2% (2.14)
ny” —1 ny” —1)(ny™ — 2
SRR S S VA G Al [ k) (2.15)
ngt -1 (nf? = 1)(n[? —2)

The unit vectors normal to the camber line n(u) are computed from the unit
tangent vector t(u) according to

n(u) = {Zj = [_tzy} . with #(u) = % (2.16)

where MCL(u) is computed using analytical derivative formulas for Bézier
curves. Further details are provided in Appendix A.

The required design variables for the generation of the pressure and suction
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side are presented in Table [2.2]

Variable name Symbol
Suction-side

thickness coefficients  ags, a1, Gos, A3s, Q4s
Pressure-side

thickness coefficients  agp, a1, 2p, a3p, ap

Table 2.2: Suction and pressure side design variables.

Another user-defined factor that plays a crucial role in the thickness distri-
bution along each side is the index sampling of the camber line. Since the
generated camber line contains more actual points than the control points of
the suction side (SS), an appropriate sampling technique must be selected.
The simplest approach is uniform (equal) distribution. Equations and
present an adjusted version of this method for the SS and PS respec-
tivly (SS usually needs more support in the front while PS requirs the exact
opposite). The adjustment arises from the fact that the first three and last
three control points of each side are determined by the corresponding control
points of the leading edge (LE) and trailing edge (TE), respectively, thereby
enforcing C? continuity at these points. As a consequence, there is a con-
centration of control points near the LE and TE, leaving a relatively large
gap among the inner control points. This not only limits the influence of the
first and last control points—which primarily enforce continuity rather than
actively shape the geometry but also places a greater burden on the inner
control points to capture the most complex portions of the sides, such as the
regions near maximum camber. To address this issue, the aforementioned
distribution of sampling points is employed.
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Figure 2.3: Construction of the Suction and Pressure Side of the airfoil using
normal projection of the thickness distribution to the mean camber line.

2.4 Leading and Trailing Edge Modelling

To complete the airfoil, the final step is the generation of the leading and
trailing edge segments. It should be noted, in order to avoid confusion that,
while the leading and trailing edges are typically considered as points, in this
thesis the term will refer to a broader region that inlcudes these points.

Typically, these segments are constructed as curves—including only portions
of the SS and PS—and are defined via a radius that implicitly controls the
local curvature, ensuring G? continuity between the SS and PS. In this the-
sis, a different approach is adopted. Given that the leading and trailing
edge shapes of airfoils (especially 2D turbine blades) are often elliptical and
sometimes circular, the osculating circle method is employed.

The osculating circle of a curve C' at a point P is the circle that shares both
the tangent and the curvature of C' at P. Just as the tangent line provides
the best linear approximation of a curve at a point, the osculating circle
provides the best circular approximation at that point [9].

To define this circular arc, a cubic Bézier curve is utilized. Its four control
points are determined from five design variables, which correspond directly
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to physical parameters such as the arc radius, the center coordinates, and its
angular span. The control points are then defined as follows:

pLE _ {xcw +re 008(90)] (2.17)
0 Yerr + rrpsin(fp) |’ .
4 0 Sin(QO)
PLE = PLE _ 2y tan [ 22 2.18
! 0 T ghEran 7y —cos(bp) ]’ (2.18)
cLE T+ 0
pLE — [x L+ 7 COS( 3)] : (2.19)
Yere + rrpsin(fs)
4 0 sin(6s3)
PLE — PLE { Zp tan [ 22 2.20
2 3 R —cos(63) (2.20)

where (z.LE, YcLg) are the coordinates of the center of the leading edge circular
arc, rpg is the leading edge radius, Og g and 631 are the starting and ending
angles of the leading edge arc, and 615 = 031 — Oog denotes the angular
span of the arc. The same set of formulas is also associated with the trailing
edge arc.

The design variables needed for the generation of the leading and trailing
edge are listed in Table [2.3]

Variable name Symbol
Circular arc center coordinates (z.rg,YerE), (TerE, YerE)
Circular arc radius TLE,TTE
Circular arc starting angles OorE, OorE
Circular arc ending angles Oz, 031E

Table 2.3: Leading and trailing edge design variables.
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Figure 2.4: The osculating circle at the Leading Edge.

The offset distance between the endpoint P, of a circular arc and the adjacent
Bézier control point P; (and symmetrically between P, and Pj) is given by

4 AO
d= gr tan(T)

This expression arises from the requirement that a cubic Bézier curve approx-
imating a circular arc must not only interpolate the endpoints of the arc, but
also reproduce its local geometric properties. In particular, the Bézier curve
is constrained to match both the tangent direction and the curvature of the
circle at the endpoints.

The derivation of the above formula follows from a Taylor expansion of the
circle and the cubic Bézier representation around t = 0 [5]. By equating the
expansions up to second order, one ensures that the first and second deriva-
tives coincide at the endpoints, thereby enforcing tangent and curvature con-

sistency. This condition leads directly to the factor % in the expression for
d.

As a consequence, the resulting cubic Bézier curve osculates the circle at F,
and Pj, meaning that it shares the same position, tangent, and curvature
at these points. Such construction guarantees third-order accuracy in arc
length. In contrast, omitting the % factor would reduce the approximation
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to first-order accuracy, yielding only tangent agreement without curvature
preservation.

As shown in Table [2.4] the relative error of this approximation is very small.
For a quarter-circle (Af = 7/2), this approximation is highly accurate: the
maximum radial error is approximately 0.00027r (i.e., roughly 0.027% of
the radius). For larger arcs, it is common practice to subdivide the curve
into multiple Bézier segments. For instance, a full circle is typically rep-
resented using four cubic Bézier curves, each spanning 90°. Consequently,
this approach represents the best-practice method in computer-aided design
(CAD) and computer graphics for approximating circular arcs with cubic
Bézier curves.

Angle Relative Error
/4 4.2 x 107°
/2 2.7 x 1074

T 1.8 x 1072

3m/2 2.8 x 1071

Table 2.4: Relative error at different angles [3).

The reason for adopting this approach, rather than the more straightforward
one (i.e., simply joining the pressure and suction sides at the front), lies in
the treatment of the leading edge (and similarly the trailing edge) as a curve
rather than a sipmple point. Modeling it in this manner ensures infinite
continuity at the internal points, thereby eliminating the risk of spikes in
curvature—a critical consideration for aerodynamic design, as this region
corresponds to the stagnation point. At the boundary points—specifically
the junctions with the SS and PS—C? continuity can be enforced, ensuring
a smooth transition. In contrast, the conventional approach not only places
the junction point within the region of interest but also achieves only G?
continuity between the SS and PS.

For clarity, it is important to distinguish between C? and G? continuity.
Type C? continuity requires agreement of the second derivatives in addition
to C' continuity. Because curvature depends on both the first and second
derivatives, C? continuity implies that the curvature is continuous. On the
other hand, G? continuity requires only that the directions of the second
derivatives are identical, which is less stringent than C?. By adjusting the
parameterization of one entity, the geometric curvatures—independent of
parameterization—can be made to agree.

Another motivation for this technique arises from the design considerations of
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turbine blades. Many blades incorporate complex cooling systems to with-
stand the high gas temperatures downstream of the combustion chamber.
Designing these systems can present challenges both in terms of aerody-
namic performance and manufacturability, particularly if the blade thickness
in this region is very small. By employing the current approach, it is possi-
ble to optimize this critical section of the blade independently, while keeping
the remainder of the geometry unchanged (as will be shown in Chapter 6)
to avoid construction conflicts, or vice versa, something that is not achiev-
able with the conventional method. This methodology provides substantial
flexibility in controlling a small yet crucial region of the blade.

Overall, this custom Bézier-based parameterization offers a unique concep-
tual approach to airfoil generation, tailored for blade airfoils, by dividing the
geometry into segments. A total of 26 design variables is used to describe
the entire airfoil, providing a compact yet flexible representation. The Ta-
bles 2.2 highlight the intuitive nature of the design variables and
demonstrate the extent to which the user can directly assign values to phys-
ical parameters. By segmenting the airfoil, this method also transforms the
inherently global influence of Bézier curves into a more local control, as each
segment is independent. This contrasts with other airfoil parameterization
methods, in which the entire airfoil is described by one or two Bézier curves,
making it difficult to capture complex geometries due to limited local control.



Chapter 3

Geometric Inverse Design

Algorithm

The best-fit optimization developed in this work is a form of geometric in-
verse design. Instead of specifying aerodynamic targets, a reference airfoil
geometry is provided, and the algorithm computes the physical design vari-
ables that best reproduce it. The method employs a best-fit loop between the
given airfoil geometry and the one constructed using the custom Bézier-based
parameterization. To this end, a custom C++ code was implemented, which
will be presented in the following chapter, together with its mathematical
formulation, the optimization and initialization procedures, as well as the
resulting approximations. Such a tool is highly valuable for blade airfoil de-
signers, as engineers are often required to improve an existing design with
respect to a set of constraints. To achieve this improvement, the reference
design must first be represented using an appropriate set of design variables,
after which the combination of variables leading to an optimized design can
be determined.

3.1 Formulation of the Best-Fit Loop

The objective of this loop is to determine the appropriate design vector b
that, when applied using the aforementioned custom Bézier-based parame-

25
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terization method, produces a blade airfoil that best approximates the given
target geometry. Since the target blade airfoil is defined by a set of coordi-
nates (27, y!), a metric is required to quantify the deviation between these
points and the corresponding points (z2,y?) of the generated airfoil. For
this purpose, the squared Euclidean distance (L2 norm), commonly referred
to as the Sum of Squared Errors (SSE), is employed:

B3 [ ) )] 5.1)

=0

Due to the fact that the blade airfoil, as defined by the custom Bézier-based
parameterization, is divided into four segments (leading edge, trailing edge,
pressure side, and suction side), four individual metrics of the form given in
Equation (3.1)) are computed. The overall metric is then obtained as:

F=Fss+ g+ Fps+ Frp (3.2)

The design vector comprises a total of 25 design variables that must be
determined in order for the parameterization to generate an airfoi:

T

/ /

. |chord oy o din dow Tere Yere Toe GoLe

b= 93,LE LeTE YeTE TTE QO,TE ‘93,TE (8 Q15 A2 (3-3)
a3s Q4 Qop Q1p Q2p asp Q4p

In other words, equation represents the target-cost function that must
be minimized for a given set of design variables in order to achieve the
best possible match between the two blade airfoils. To this end, a gradient-
based optimization loop was developed in C++.

It should be emphasized that this optimization process differs fundamen-
tally from the one performed using the PUMA software. The former aims
to determine the geometry that best approximates the reference airfoil by
means of the custom Bézier-based parameterization method, without the use
of CFD analysis. In contrast, the latter identifies the geometry that best
satisfies a prescribed cost function through a CFD-based optimization. For
clarity, the first approach will henceforth be referred to as airfoil best-fit
optimization, while the second will be referred to as CFD optimization. Im-
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portantly, the best-fit optimization provides a reliable initial solution, which
can subsequently serve as the starting point for the CFD optimization.

The method chosen to minimize the cost function is the Steepest Descent
method, which is mathematically expressed as:

- - dF
bpy1 =bp, —n—= 3.4
k+1 k=7 a5 1. ( )

where gk is the current vector of design variables, ng is the updated vector
after one step, F' is the objective function, %‘Ek of the cost function with
respect to the design variables, evaluated at the current iteration k (a vector
pointing in the direction of steepest increase of F), and 7 is the step size
or learning rate (a positive scalar that determines the step length along the
direction of the negative gradient).

The gradient of the objective function with respect to the design variables
is computed analytically to achieve the highest possible accuracy. This is
feasible due to the availability of the explicit expression for the Bézier curves
and it is formulated as:

OxzB oyB
o0, (2" =) + W =) s,
oF N B T 92 B T 9y;
VF = by | _ QZ (:EZ - )6_132 + (yi — Y ) b (3‘5)
y i=0 :
OF dxB oyB
2z (7 = 2) g + W7 —uD 3

Their evaluation is very fast, even for large matrices with many design vari-
ables, as they mostly consist of polynomial and trigonometric expressions
that require minimal computational time. Again because the airfoil consists
of four segments, the corresponding gradients must be computed individually
for each segment. The overall gradient is then obtained as the summation of
the four segment contributions as in equation

VF = VFss+ VFp + VFps + VFrg (3.6)

At this point, it should be noted that the camber line does not contribute
explicitly to the computation of the gradient. This is because it is not di-
rectly compared to any reference points, as the given blade airfoil coordinates
describe only the airfoil geometry and not the camber line itself. However,
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as the camber line is coupled with the generation of the suction and pres-
sure side control points, it contributes implicitly to the gradient. In fact, its
contribution is significant, as it strongly influences the curvature and overall
camber of the resulting airfoil.
. . ozB . . . .

The analytical expression of the term - in equation is derived from
direct differentiation of the Bézier curve formulation. In other words, since
the x-coordinate is represented by a Bézier curve, it can be expressed as:

X(t) = Z Bia(t) P, tel0,1] (3.7)

so its partial derivative with respect to the design variables is obtained
through the equation

3

OX (1)
0b;

or,
ob;’

1=0

telo,1] (3.8)

This is the case to produce the partial derivatives of the Bézier curves with
respect to the design variables for the camber line and the leading and trailing
edge areas. When it comes to the suction and pressure side, distinction arises
because of the coupling betwenn the inner control points of the first two and
the produced points of the camber line as seen in equation (3.9)) (for more

details see equation (2.7)) and (2.8)):
PP = XMOE(uy) £ Lt(ky) i(wi), i=3,...,n)° —4 (3.9)

Due to this correlation, the chain rule must be applied, resulting in the
following expression for the partial derivatives:

OX(1)S5PS  OXMOL(w) 1 [0t(k:)
o, T e, T2 ap Mww k)

07 (u;)
ob; |’

=3,...,ny9—4
(3.10)

The exact same principles apply for the y coordinate. Further details, in-
cluding the explicit computation of the partial derivatives of each segment
with respect to the design variables, are provided in Appendix A.
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To sum up, the optimization loop for the best-fit procedure begins with the
initialization of the design vector. A blade airfoil is then generated using the
custom Bézier-based parameterization. The objective (cost) function is eval-
uated by comparing the generated airfoil with the target blade geometry and
the analytical derivatives of the cost function with respect to the design vari-
ables are subsequently computed, after which the design vector is updated.
This process is iteratively repeated until a specified convergence criterion is
satisfied, either based on a maximum number of iterations or when the gra-
dient norm approaches zero.. The flowchart of the best-fit algorithm for the
inverse design is shown in Figure [3.1}

‘ Start ’

|

Initialization of the Design Vector

S LT T LT T SRR :

Generation of the Blade Airfoil

|

Cost Function
Computation

|

Cost Function
Sensitivities w.r.t Design Variables

|

Update Design

Convergence Criterion )
Variables

Best-Fit Loop

End

Figure 3.1: Flowchart of the Best-Fit optimization.
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3.2 Initialization Techniques

Given the fact that the design variables in the custom Bézier-based blade
airfoil parameterization have pure physical meaning, selecting appropriate
initial values for the best-fit optimization loop can be challenging. This task
is further complicated by the fact that gradient-based algorithms, such as the
Steepest Descent method employed in the loop, are highly sensitive to the
initialization, which significantly influences both the convergence behavior
and the local optimum reached. Therefore, it is critical to adopt robust
initialization techniques. In this context, specific techniques for initializing
the mean camber line and the circular arcs defining the leading and trailing
edge regions are proposed.

Starting with the mean camber line, it serves a baladeur role during the best-
fit loop, as it does not have a direct target for comparison and it implicitly,
but strongly, affects the gradient. Moreover, as it is the stepping stone for the
other segments to be built upon, it is important to provide an accurate initial
shape. For a two-dimensional blade airfoil, the mean camber line, based on
the classical definition, is the curve that lies halfway between the upper and
lower surfaces at each chordwise location x, as seen in equation (3.11)):

Yu() + yi(z)

5 (3.11)

Ye(T) =

where y.(z) = ordinate of the mean camber line at chordwise position z,
yu(z) = ordinate of the upper surface at position x, y;(x) = ordinate of the
lower surface at position x.

At first the user must split the target blade airfoil into an upper and lower
surface and using the euation to extract a mean camber line. After that
a preliminary best-fit loop is performed between only the parameterized mean
camber line and the extracted one. The outcome of this process provides a
well-suited initialization set of values for the design variables of the mean
camber line.

Moving to the initialization of the design variables of the circular arcs that
represent the leading and trailing edge area, an algebraic circle fitting tech-
nique was implemented, known as Kasa method (1976) [17], which will be
explained in the following lines.

The equation of a circle in Cartesian coordinates is given by:
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(l‘ - xc)Q + (y - yc)2 = T2 (312)

where (z,7.) denotes the center of the circle and r its radius. Expanding
and rearranging terms, this can be written as:

22+ y? — 2x.x — 2u.y + (:Eg + yg — 7“2) =0 (3.13)

Defining

A=-2r, B=-2y., C=z2+y>—1? (3.14)

the circle equation becomes linear in the unknowns (A, B, C):

2 +y*+ Az + By +C =0 (3.15)

Given a set of n data points, the Kasa method [I7] determines the parameters
A, B, C by minimizing the sum of squared algebraic distances:

n

: 2 2 , . 2
min ) (27 +y7 + Az; + By; + C) (3.16)

The minimization leads to the following linear system:

w2y i | Bl =— | X wial +v?) (3.17)
i oy yoon | |C (@ + )

Solving this system yields the coefficients A and B, from which the circle
center is recovered as:

A B
_ 4 —_Z 1
T 5 Ye 2 (3.18)

Finally, the circle radius is obtained from:

r=\/22+y?-C (3.19)
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After fitting a circle with center (z.,y.) and radius r, any point (z;,7;) on
or near the circle can be expressed in polar coordinates relative to the circle
center:

Ty = x.+rcosb;, y; =y.+rsinb; (3.20)

where 6; is the angle of the point relative to the circle center, measured from
the positive z-axis.

The angle 6; for a given point (x;,y;) is computed using the function:

0; = arctan(y; — Y., T; — T.) (3.21)

By substituting the coordinates of the first and last points of each circular
arc into equation ({3.21)), the starting angle 6y and the ending angle 03 of the
arc can be obtained.

The Kasa method provides a robust initial estimate for the design variables
of the circular arcs. However, it minimizes the algebraic distance rather than
the true geometric distance between the points and the circle. This is why
these design variables are recalculated during the best-fit optimization loop.

3.3 Best-Fit Results

As targets, the blade airfoils selected for this study correspond to the geome-
tries of the stator and rotor blades of a single-stage turbine. In both cases,
during the best-fit procedure, the uncoupled system of minimizing each target
function (see Equation ([3.2])) was solved. This means that when optimizing
one pair of similarly parameterized surfaces, the other two surfaces were held
fixed. In other words, after obtaining a suitable initialization for the mean
camber line, the leading and trailing edges were approximated while keeping
the suction and pressure sides frozen and then the process was reversed for
the remaining sides of SS and PS.

Another thing that must be declared is how the difference in points distribu-
tion was managed. The given blade airfoil is typically provided with an arbi-
trary discretization, whereas the parameterized geometry is generated with
a user-defined one (i.e. uniform distribution). A direct point-to-point com-
parison based on the index of each point would produce misleading results,
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as points from different physical regions of the airfoil could be incorrectly
matched. To solve this issue, the closest-neighbor approach was employed.
For every point on the generated geometry, the method searches the refer-
ence geometry and identifies the point that lies closest in space. The distance
between these two points is then recorded as the local error. Repeating this
procedure for all generated points and summing the results returns the cost
function.

For the rotor blade airfoil approximation the total number of given points
was 456 and the convergence of the best-fit loop for each side and for the
total blade airfoil is presenteed in Figure

As shown in Figures and [3.2D] the leading edge requires more iterations
to converge compared to the trailing edge, but it achieves a smaller final
error (4.30x107* versus 7.935x10~%). Additionally, the convergence trajec-
tories differ at the trailing edge, the error decreases sharply at the beginning,
whereas at the leading edge, the decrease is smoother. These differences can
be explained by the capability of the circular arc model to approximate these
regions. As illustrated in Figure the leading edge has a shape more like
an elliptical arc rather than a circular one (unlike the trailing edge), which
explains why convergence is slower at the start.

The suction and pressure sides present similar convergence paths (see Fig-
ures and , which validates that the proposed 4th-degree polynomial
model for the thickness distribution is equally capable of representing both
sides. The fact that the pressure side achieves a smaller error (2.236x1072
versus 5.30x1072 for the suction side) arises from its smaller camber, as it
is obvious from Figure 3.3, The total error in approximating the rotor blade
airfoil using the custom Bézier-based parameterization is 3.8x1072, demon-
strating the accuracy of the model.

Table [3| presents a summary of the results obtained from the best-fit loop.

Side Number of points Cost Function F

LE 23 4.300 x 10~*
TE 20 7.935 x 1074
5SS 264 5.300 x 1072
PS 149 2.236 x 1072
Total 456 3.800 x 1072

Table 3.1: Number of points and corresponding errors for each segment of
the rotor blade airfoil and for the total.
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Figure 3.2: Convergence of the objective function for each segment of the
rotor blade airfoil and for the total blade airfoil.
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Figure 3.3: Approzimation of the rotor blade airfoil using the custom Bézier-
based parameterization.

The total number of given points for the stator inverse design procedure was
583. The convergence behavior of the best-fit loop for each segment, as well
as for the complete blade airfoil, is illustrated in in Figure [3.4]

In this case, the convergence progress between the leading edge and trailing
edge (Figures and is more similar which indicates that the leading
edge more closely resembles a circular arc, although it is still less circular
than the trailing edge. Notably, again, the model achieves higher accuracy
for the region with a more elliptical shape compared to the more circular
region, with errors of 2.188x107° and 9.931x10™*, respectively.

Regarding the suction and pressure side, their convergence behavior is largely
similar (see Figures and , establishing that the 4th-degree polyno-
mial model for the thickness distribution effectively represents both sides.
This time, susction side results in a smaller error compared to the pressure
side (1.265x1072 versus 4.097x 1072 respectively), which can be justified by
the fact that the curvature of the pressure side seems to slightly change near
the chord midspan of the blade airfoil, as seen in Figure [3.5] Overall, the to-
tal error of the geometric invesre design procedure of the stator blade airfoil
using the custom Bézier-based parameterization remains low, reflecting the
accuracy of the proposed modeling approach.

The results produced by the best-fit loop are gathered in Table [3.2]
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Side Number of points Cost Function F
LE 40 2.188 x 107
TE 22 9.931 x 1074
SS 341 1.265 x 1072
PS 180 4.097 x 1072
Total 583 2.020 x 1072

Table 3.2: Number of points and corresponding errors for each segment of
the stator blade airfoil and for the total.
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Figure 3.4: Convergence of the objective function for each segment of the
stator blade airfoil and for the total blade airfoil.
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Figure 3.5: Approximation of the stator blade airfoil using the custom Bézier-
based parameterization.

Overall, the accuracy of the custom Bézier-based blade airfoil parameteri-
zation model is sufficient to proceed with the fitted blade for aerodynamic
shape optimization, where its advantage in imposing geometric constraints
will be demonstrated. Another key benefit of this parameterization method
is that, once the blade airfoil geometry has been obtained, the distribution
of points along the airfoil can be re-adjusted. This capability is particularly
important in optimization and, more generally, in CFD applications, where
the quality of the mesh around the blade airfoil strongly depends on the
number of points and their distances.



Chapter 4

CFD Analysis - Validation

PUMA is an in-house, GPU-enabled flow solver developed by the PCOpt/N-
TUA research group and has been extensively tested across a wide range of
turbomachinery cases [29], [30]. Given the availability of experimental data
for the single-stage turbine from which the stator and rotor blade airfoil ge-
ometries were derived, it was considered essential to perform a CFD analysis
as a means of validating the numerical model of both the reference and the
fitted stage geometries, prior to proceeding with the aerodynamic shape op-
timization. The comparison between numerical predictions and experimental
measurements provides confidence in both the accuracy of the solver and the
fidelity of the adopted CFD methodology. Therefore, this chapter presents
the single-stage turbine configuration under study, together with the com-
putational mesh and the details of the CFD setup. The analysis concludes
with a validation against the experimental data, thereby establishing a re-
liable foundation for the aerodynamic shape optimization described in the
subsequent chapters.

4.1 Introduction

The test case that was use is a single-stage axial turbine (in some exper-
imental setups it is also referred to as a one-and-a-half-stage turbine, sta-
tor—rotor—stator [28]), which was developed and investigated around 1995 by
the Institute of Jet Propulsion and Turbomachinery — IST of the Department
of Mechanical Engineering at RWTH Aachen University, Germany [34], with
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the aim of studying three-dimensional unsteady flows in turbomachinery.

The turbine was constructed using blades without twist in both the stator and
rotor, with a constant hub and tip diameter along the entire blade span. The
stator employs a Traupel distribution, with its blades stacked radially, one
on top of the other at the trailing edge, whereas the rotor was designed based
on a modified model from the Von Karman Institute of the same period, with
its blades positioned in a radial alignment relative to their center of gravity.

Experimental measurements were acquired at the midspan plane of the blades.
Specifically, the measurement instruments were placed 8.8 mm downstream
of each blade along the axial direction, with the stator positioned 15 mm
upstream of the rotor. The main blade dimensions are provided in detail in
Table[4.1] while a schematic representation of the turbine blade arrangement,
including the relevant distances (in mm) and the corresponding velocity tri-
angles, is shown in Figure {4.1]

Parameter Stator Rotor
Chord [mm] 62 60
Number of Blades 36 41
Blade Pitch (midspan) [mm]  47.6 41.8
Pitch-to-Chord Ratio 0.77 0.67
Rotational Speed [rpm)] - 3500

Table 4.1: Main geometric and operational parameters of the stator and rotor
blades.



40

p,=49.3°

Figure 4.1: Representation of the blading of the single-stage azial turbine.
All the indicated distances and dimensions are given in mm [3]|].

4.2 Mesh Generation

For the construction of all the meshes, the software Fidelity Pointwise (by
Cadence) [21] was employed. A block-structured mesh was selected for both
blade rows and particular emphasis was placed on achieving a high-fidelity,
blade-centered, topology around the blades in order to ensure solver stability.

Intentionally, the rotor mesh is presented first, since it is more demanding
to generate compared to the stator mesh. The main reason for this lies in
the relatively high stagger angle (28°) of the rotor blade in combination with
its high camber in the front. In practice, this corresponds to a pronounced
curvature (“cambering”) on the suction side, where the blade bends signif-
icantly and relatively sharply, complicating the mesh generation process in
this region. The difficulty arises from the requirement that the mesh must
accommodate this curvature while preserving its orthogonality as much as
possible. Any excessive skewness would otherwise result in increased nu-
merical dissipation and diffusion during the solution of the Navier—Stokes
equations, thereby introducing errors in the results.

To address this issue, the mesh topology was carefully studied and divided
into smaller blocks, allowing the preservation of orthogonality in regions of
high curvature. The block separation lines (split lines) were placed after
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several trials, with the criterion being the minimization of skewness. Fur-
thermore, near the blade walls, the mesh was refined. Using the hyperbolic
extrusion method, a boundary-layer mesh was generated with a geometric
growth rate of 1.1 and an initial wall-normal spacing of As = 10~% mm. This
ensured improved resolution of near-wall flow features, minimizing dissipa-
tion and diffusion errors. Additionally, the periodic boundaries over suction
and pressure sides were defined, along with the inlet and outlet flow regions,
in accordance with the prescribed distances (see schematic in Figure .

The resulting mesh is shown in Figure[4.2] The two-dimensional grid consists
of 31,354 nodes and is of high quality, with a minimum included angle of 34°.
The minimum included angle is defined as the angle formed between one grid
line along which a curvilinear coordinate (;) varies (while the other remains
constant) and another grid line along which the second curvilinear coordinate
(&;) varies (with the first remaining constant).

Figure 4.2: The mesh of the rotor blade, generated using Fidelity Pointwise
(top), with a zoomed-in view of the leading-edge region (bottom left) and the
trailing-edge region (bottom right).

Regarding the generation of the stator blade mesh, an entirely similar pro-
cedure to that of the rotor was followed. Initially, denser layers were created
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around the blade walls with the same growth rate (equal to 1.1) and the same
initial spacing from the wall (As = 107 mm), again using the hyperbolic
extrusion method. In contrast to the rotor blade, the stator blade exhibits
lower curvature-camber along its length. Nevertheless, at its trailing edge it
becomes nearly vertical, maintaining a large inclination throughout its span
(high stagger angle of 44.5°). This characteristic leads the structured mesh
to distortion and skewness as it attempts to conform to the blade shape.

For this reason, as in the rotor case, the mesh topology was appropriately
modified through the addition of split lines, in order to prevent distortion.
Finally, the periodic flow boundaries were defined on both sides of the blade,
along with the inlet and outlet regions, in accordance with the prescribed
distances (see schematic representation in Figure .

The resulting mesh is shown in Figure . It consists of 46,600 nodes (in
two dimensions) and is of high quality, with a minimum included angle of
28°.

Figure 4.3: The mesh of the stator blade, generated using Fidelity Pointwise
(top), with a zoomed-in view of the leading-edge region (bottom left) and the
trailing-edge region (bottom right).
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Property Value
Gas constant R [J/kg-K] 287
Specific heat ratio ~ 1.33

Dynamic viscosity u [Pa-s] 1.716 x 1075

Table 4.2: Gas properties.

4.3 Results Validation

Having generated the two individual meshes of the single stage (stator and
rotor blades), the PUMA software was employed to solve the fully resolved
two-dimensional compressible RANS equations, along with the one equation
low-Reynolds Spalart-Allmaras turbulence model. In the fluid properties
section, the values presented in Table were specified for the turbine gas.

In the flow model, parameters describing the flow characteristics were speci-
fied. In this application, the flow is turbulent, and the turbulence was mod-
eled using the Spalart—Allmaras model. This is a one-equation turbulence
model, with the low-Reynolds-number formulation applied without wall func-
tions, since both of the generated meshes achieve y* < 1 (for these flow
conditions). The model computes the turbulent viscosity p; at each iteration
[27].

Based on experimental data, the inlet conditions specified total pressure,
total temperature, and flow angles, while the Mach number was set as an
extrapolated variable. The spatial distribution of these variables was chosen
to be uniform across the inlet section, as shown in Table [£.3]

Variable Symbol Value

Total Pressure Dt 158545.44 [Pa]
Total Temperature T, 309.12 [K]
Flow Angles a, B 0

Viscocity Ratio Ly 20

Table 4.3: Inlet boundary conditions for the CFD model.
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At the outlet, a fixed static pressure was imposed, while the static tempera-
ture and velocity components were treated as extrapolated variables. Similar
to the inlet, their spatial distribution was defined as uniform. The conditions

are gathered in Table [4.4]

Variable Symbol Value

Pressure p 130300 [Pa]

Table 4.4: Outlet boundary conditions for the CFD model.

The walls of both the stator and rotor blades were modeled as adiabatic.
That is, during the solution, the code neglects heat transfer between the
walls and the fluid. Additionally, a no-slip boundary condition was applied
to the walls, enforcing zero relative velocity. It should be noted that, in the
rotor, the velocity of interest is the relative velocity, whereas in the stator
it is the absolute velocity V. Furthermore, to model the motion of the rotor
blades, the rotor mesh was considered moving with a translational velocity
of approximately 100m/s along the negative Y-axis, corresponding to the
3500rpm rotation in the 2D analysis.

To solve the flow on the two meshes and enable information transfer be-
tween them, the mixing plane technique [I0] was used. This is one of sev-
eral stator-rotor interaction methods available in PUMA, which allows the
two meshes to communicate while maintaining their independence. In this
case, the conservative flux formulation of was applied, whereby the integrated
fluxes of mass, momentum, and energy at the stator outlet are imposed as
uniform inlet conditions at the rotor inlet.

The simulations were executed on GPU processors, with the full-stage case
requiring about 5 minutes for 3,000 iterations on an NVIDIA Tesla K40m.
The resulting contours of static and total pressure, static and total temper-
ature, and Mach number are shown in Figure
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Figure 4.4: Contours of flow field variables from CFD: Static and Total
Pressure, Static and Total Temperature, and Mach Number distributions.
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Note: To avoid confusion, it should be emphasized that in Figure the
flow field coloring for the stator corresponds to the Mach number calculated
based on the absolute flow velocity, whereas for the rotor depicts the relative
Mach number (M,,). This explains why, at the interface between the two, the
coloring is not continuous, as it should based on the mixing plane technique
and the use of area-averaged values with a uniform spatial distribution, which
were applied in the flow solution.

Along the turbine stage, both total and static pressures decrease, as seen in
Figures [paland [£.4D] at different rates, due to flow acceleration, as expected,
while no discontinuities are observed in the streamlines (such as abrupt dis-
tortions, sudden changes in flow angles, or shock waves). A comparison of
these results with the corresponding experimental measurements at stations
0, 1, and 2 is summarized in Table [ Subscript 0 denotes the stage inlet,
subscript 1 corresponds to the stator outlet, and subscript 2 to the rotor
outlet (see Figure [4.1). The az-axis (horizontal) represents the axial flow
direction, aligned with the turbine longitudinal axis, whereas the y-axis (ver-
tical) represents the circumferential direction. Subscript ¢ is used to denote
total quantities. Additionally, Table [4] contains the stage total pressure ra-
tio as obtained from both the experimental measurements and the PUMA
computations.

Percentage  Percentage

Deviation Deviation
Quantity Experimental [Pa] PUMA Reference [Pa] PUMA Fitted [Pa] Reference [%] Fitted [%]
Dio 1.585 x 10° 1.585 x 10° 1.585 x 10° 0 0
Do 1.574 x 10° 1.565 x 10° 1.565 x 10° 0.575 0.575
Pa 1.521 x 10° 1.580 x 10° 1.584 x 10° -3.833 -3.977
P1 1.338 x 10° 1.381 x 10° 1.386 x 10° -3.164 -3.463
Do 1.326 x 10° 1.327 x 10° 1.331 x 10° -0.093 -0.37
D2 1.303 x 10° 1.303 x 10° 1.303 x 10° 0 0
PR = pio/p2 1.1941 1.1945 1.1881 0.030 0.034

Table 4.5: Comparison of experimental and numerical pressure values at
different turbine stations for both the reference and the fitted stage geometry.

As shown in Table [4, the PUMA solver predicts the flow pressures along the
stage with high accuracy. More specifically, all deviations, except those at
station 1, are below 1%. It should be emphasized that the total pressure
at station 0 was imposed as an inlet boundary condition, while the static
pressure at the outlet of the rotor (station 2) was prescribed as an out-
let boundary condition (see Table 4.4]). Regarding the outlet of the stator,
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PUMA slightly underestimates the losses in both total and static pressure.
This, is most likely explained by the modeling assumption of adiabatic stator
blade walls. Nevertheless, the error remains very small (less than 4%) for
both the reference and the fitted geometry.

In Figurespbland [4.4d] is clear that the computed flow fields are qualitatively
consistent with physical expectations. Along the turbine stage, both total
and static temperatures decrease, due to the work exchange with the moving
rotor, and the flow acceleration. Table presents a comparison between
the experimental temperature measurements and the PUMA predictions at
stations 0, 1, and 2.

Percentage  Percentage

Deviation Deviation
Quantity Experimental [K] PUMA Reference [K] PUMA Fitted [K] Reference [%] Fitted [%]

Ty 309.12 309.12 309.12 0.000 0.000
T 308.44 308.14 308.14 0.0970 0.0973
Th 307.30 309.19 309.84 -0.615 -0.8265
Ty 296.26 299.05 299.38 -0.942 -1.05
Ty 296.08 296.53 296.79 -0.152 -0.239
15 294.60 295.22 295.22 -0.210 -0.210

Table 4.6: Comparison of experimental and numerical temperature values at
different turbine stations for both the reference and the fitted stage geometry.

PUMA predicts values very close to the measurements, with divergence of
both total and static temperatures remaining almost below 1% at all stations.
However, it is noteworthy that the increase in temperature deviation from
station 0 to station 1 is larger than the corresponding increase observed for
pressure. This is explained by the fact that temperature takes on greater
values. Nonetheless, if someone examines the increase of each quantity from
stator’s inlet to outlet, then it is clear that the temperature miscalculation
gets 10 times bigger (from 0,09% to 0,9%) while pressure’s only increased by
almost 6 times (from 0,58% to 3,16%) which reveals the truth. The error
caused by the adiabatic walls modelling affects indirectly the pressure and
directly the temperature as it should. However, the error between the two
geometries is very small.

The Mach number values at the selected stations, based on both measure-
ments and PUMA computations, are presented in Table [£.7]
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Percentage  Percentage

Deviation Deviation
Quantity Experimental PUMA Reference PUMA Fitted Reference [%] Fitted [%]

My 0.1056 0.1096 0.1096 -3.803 -3.803
M, 0.4315 0.4628 0.4672 -7.259 -8.274
My 0.1869 0.1998 0.2018 -6.902 -7.972
M2 0.1584 0.2267 0.2267 -4.613 -4.613

Table 4.7: Comparison of experimental and numerical Mach numbers at
different turbine stations for both the reference and the fitted stage geometry.

The Mach number within the stage is predicted by PUMA with a divergence
from the experimental value of 7% according to Table 4.7, Furthermore, the
flow is characterized as subsonic and compressible (maximum Mach number
0.5), without the presence of oblique or normal shock waves.

For the stator, the streamlines follow the absolute flow angles, whereas for
the rotor, they follow the relative flow angles. The exact values of these

angles, as computed by PUMA and as measured in the experimental setup,
are presented in Table 4.8

Percentage  Percentage

Deviation Deviation
Quantity Experimental [deg] PUMA Reference [deg] PUMA Fitted [deg] Reference [%] Fitted [%)]

Qg 0.0 0.0 0.0 0.000 0.000

o -20.0 -20.229 -20.229 -1.143 -1.143
b1 -49.3 -49.100 -48.900 0.406 0.8114
(a2 -90.0 -89.915 -89.87 0.095 0.144
Bo -151.2 -150.520 -150.20 0.450 0.6613

Table 4.8: Comparison of experimental and numerical flow angles at different
turbine stations for both the reference and the fitted stage geometry.

From Table [£.8] is made understood that PUMA accurately predicts all flow
angles at all considered stations, with the maximum deviation slightly above
1%. Furthermore, analyzing the deviations of the flow angles in comparison
with those of other computed quantities, no significant increase is observed at
station 1, unlike what was previously noted due to the modeling of the stator
wall thermal behavior. This is reasonable, as the flow angles depend solely
on kinematic factors (blade geometry, flow density) and are not influenced by
thermodynamic effects (heat transfer). In addition, no significant differences
are observed between the reference and fitted geometries.



Chapter 5

Integration of the Custom

Parameterization into the

ShpO Cycle

In order to perform aerodynamic ShpO of the best-fitted blade airfoil ob-
tained from the inverse design algorithm, the custom Bézier-based parame-
terization, the CFD solver, and the adjoint solver PUMA must be integrated
in the optimization process. In this chapter, the outline of the used op-
timization cycle along with some more specifications on each step will be
adressed.

5.1 ShpO Cycle

The first step for the optimization circle to start is to apply the best-fit
algorithm to the target blade airfoil in order to replicate the baseline geom-
etry, as described in detail in Chapter 3. Subsequently, the computational
mesh is generated, and the initial CFD simulation is performed. As previ-
ously mentioned, the so-called primal problem requires the solution of the 2D
compressible RANS equations, coupled with the one-equation low-Reynolds
Spalart—Allmaras turbulence model.
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The next step is the computation of the sensitivity derivatives. The method
employed for this purpose is the continuous adjoint method, as seen in [32],
[31], an efficient numerical technique that evaluates the derivatives of the cost
function with respect to the design variables at a computational cost indepen-
dent of the number of such variables. This represents its greatest advantage
and is the primary reason for its selection in this diploma thesis. In CFD,
the adjoint method is particularly well-suited for aerodynamic shape opti-
mization, where performance metrics depend explicitly on the geometry of
the computational domain. When the number of geometric design variables
is large, sensitivity methods, such as finite differences, become computation-
ally prohibitive. The continuous adjoint method is based on the augmented
function Fy,, from the objective function F, through the following equation
[1:

Faug - F-'—/\IleZ dQ (51)
Q

where F' denotes the objective function, €2 is the flow domain, R; are the
residuals of the governing flow equations (RANS), and U, are the adjoint
variables

Differentiation of equation ([5.1)) with respect to the design variables yields:

5Fwg OF 0§
Pawg _ 7+ 2 [ @R, d) 2
5oy oby | ab, J, Vit (52)

where b,, are the design variables, n = (1,2,..., N) is the index of the design
variables, and N is the total number of design variables.

The procedures of solving both the primal and the continuous adjoint prob-
lem using the Field Integral adjoint formulation (FI) are carried out using the
PUMA software. For the computation of the sensitivity derivatives, external
communication between the PUMA and the custom code for calulating the
geometrical grid sensitivites was required. More specifically, the sensitivity
derivatives of the cost function F' at the boundary nodes of the blade airfoil
are computed using the chain rule, according to the equation:

8b,  Ox; 0b, = Oy; 6b, = Oz Oby,

(5.3)

where £ 9F “and g—F are the sensitivity derivatives of the cost function F
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with respect to the coordinates x;, 1;, and z; of the i-th node of the blade air-
foil, while glﬂf" , gg;” , and g;i are the sensitivity derivatives of the coordinates of
the -th node of the blade airfoil with respect to the design variables, obtained

from the differentiation of the custom Bézier-based parameterization.

As shown in equation (2), the computation of the sensitivity derivatives of
the objective function F' at the boundary nodes requires the corporation of
the sensitivity derivatives of the custom Bézier-based parameterization into
the PUMA software. For this purpose, a code named GRID_SENSITIVITIES
.exe was developed in C++, which computes the required derivatives and
provides them to PUMA via a properly formatted file, so that the sensitivity
derivatives of F at the boundary nodes can be computed. For the remaining
nodes, the PUMA software employs the Elastic Medium technique to transfer
the sensitivity derivative information of the boundary nodes of the blade
airfoil, to all other nodes.

Once the sensitivity derivatives of the cost function have been computed for
all nodes, the following steps are performed: the update of the design vari-
ables, according to equation , the generation of the new blade airfoil, and
the adaptation of the mesh to the updated geometry. At this stage, further
external intervention in PUMA is required in order to prescribe the displace-
ment of the boundary nodes of the new mesh. For this purpose, the same
code, GRID_SENSITIVITIES.exe, is execuded. It reads the updated design
variables from an input file (designVars.dat), reconstructs the geometry of
the current blade airfoil using the custom Bézier-based parameterization, and
computes the deformations of the nodes between the baseline and the current
blade airfoil configuration. These displacements correspond to the mesh de-
formations at the boundary nodes and are provided to PUMA via a properly
formatted file. Finally, PUMA once again employs the Elastic Medium tech-
nique to propagate the boundary-node displacement information throughout
the computational mesh.

- - dF
b1 = by, — B! —

= (5.4)

by

where, by is the current vector of variables at iteration k, % }E}c is the gradient

of the objective function evaluated at gk, and By ! is the inverse of the Hessian
approximation

The employed ShpO algorithm is a Quasi-Newton method for gradient-based
constrained nonlinear optimization problems. Specifically, the Sequential
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Least Squares Quadratic Programming (SLSQP) method is used, which ap-
plies the BFGS scheme to approximate the Hessian matrix and uses a line
search strategy to determine the step length. This ensures that each iteration
proceeds along a descent direction that reduces the objective function while
simultaneously satisfying the imposed constraints.

The flowchart of the ShpO process is shown in Figure [5.1] providing a general
overview of the optimization procedure.

Best-Fit Airfoil
Algorithm (GRID_SENSITIVITIES.exe)

|

Mesh Generation

Primal Problem
Solution

Adjoint Problem

Optimization Cycle

E Solution .
E Parameterization Sensitivity H
' Derivatives E
: (GRID,SENSITIVITIES 5 exe) H
. I Mesh Adaptation '
E Cost Function i .
H Sensitivity Derivatives Boundary Node :
: I Displacements .
H (deformations.exe) E
' Convergence Criterion Updatfe Design E
' Variables :
H \

End

Figure 5.1: Flowchart of the Aerodynamic ShOp Airfoil Optimization Algo-
rithm.



Chapter 6

Aerodynamic ShpO Cases

Aerodynamic shape optimization (ShpO) of the airfoil representing the rotor
blade in the single-stage turbine discussed in Chapter 4 was performed using
a gradient-based algorithm. Specifically, the continuous adjoint method was
employed through the PUMA software to minimize the mass-averaged total
pressure losses in the airfoil cascade, subject to constraints on the exit flow
angle and the inlet capacity across a set of test cases. This chapter provides
a detailed discussion of the imposed flow and geometrical constraints for
each case, presents the corresponding ShpO results, and offers a comparative
analysis among the different cases.

6.1 Case Description

As previously mentioned, the target function to be minimized in the fol-
lowing aerodynamic ShpO cases is the mass-averaged total pressure loss.
It quantifies irreversibilities and energy losses due to viscous and turbulent
effects, boundary layers, shocks, secondary flows, and similar phenomena.
Employing mass-averaging, ensures that the total pressure at each location
is weighted by the local mass flux, so regions with higher flow contribute more
to the average. Essentially, it represents the reduction in the fluid’s ability
to perform useful work as it passes through the component, accounting for
the actual flow distribution. For a turbine rotor blade, it serves as a key per-
formance indicator, since total pressure losses directly affect stage efficiency:
higher losses reduce the energy extracted from the flow and degrade aerody-
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namic performance. Mathematically, it is defined as the difference between
the mass-averaged total pressures at the inlet and outlet planes:

Apinass = pt,in - ﬁt,out (61)

where the mass-averaged total pressure at a plane is computed as

— A

P = (6.2)

t
//andA
A

where, p is the local density, V,, is the velocity component normal to the
surface, p; is the local total pressure, and A is the surface over which the
averaging is performed.

As far as the first constraint, the inlet capacity expresses the ability of a
turbomachine blade row (e.g., a turbine rotor) to admit and process a given
mass flow under specified inlet conditions. These conditions are determined
by both geometric parameters (such as chord, pitch, and blade height) and
flow parameters (including inlet flow angle, velocity, total pressure, and total
temperature). For a turbine rotor blade, inlet capacity is particularly impor-
tant in determining overall stage performance. It governs the amount of flow
that the rotor can process for a given pressure ratio, directly influencing both
efficiency and power output. At the same time, it defines whether the flow
at the rotor throat becomes choked, establishing the upper limit on the mass
flow that can enter the rotor. Furthermore, it must be carefully matched
with the stator and with adjacent turbine stages to maintain proper flow
alignment. Any mismatch in capacity can lead to increased aerodynamic
losses, a reduction in efficiency, or even the onset of flow instabilities. In-
let capacity is defined in terms of the non-dimensional mass flow parameter,
independently of the absolute operating conditions and directly comparable
between different machines or operating points, as:

i VT,

yg;

Capacity = (6.3)

where, 1 is the inlet mass flow rate, T} is the total (stagnation) temperature
at the inlet, and p; is the total (stagnation) pressure at the inlet.
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The second constraint is the flow exit angle, which quantifies the flow de-
flection imposed by the blade geometry. In a stationary rotor blade, the
exit angle represents the direction of the absolute velocity of the flow leaving
the blade relative to the axial direction. It is a critical parameter for ensur-
ing efficient flow redirection, minimizing aerodynamic losses, and properly
matching the next stage. Misalignment of the flow can lead to increased
incidence losses, reduced efficiency, and the development of secondary flows.
Controlling the exit angle ensures that the flow leaves the blade with mini-
mal swirl or separation, reducing total pressure losses and improving stage
performance. It can be computed from the velocity components at the exit
plane as:

Oexit = atan(V,, U) (6.4)

where V, is the axial velocity component and U is the circumferential velocity
component.

Both constraints are enforced as a double inequality with a small tolerance
of £0.1% of the initial value, rather than as strict equalities, to account for
numerical errors and iterative convergence tolerances inherent in the compu-
tational method. This small margin ensures that the constraints are effec-
tively satisfied while allowing the solver to converge reliably without being
overly restrictive.

On top of these flow constraints, several geometrical ones were imposed.
These constraints ensure that the generated blade geometry meets the re-
quired design and manufacturing standards, addressing the practical chal-
lenges that arise when constructing a blade airfoil. Further discussion of
their purpose and implementation is provided in the corresponding chapter
for each case study.

6.2 Baseline Mesh

The starting point for all aerodynamic ShpO cases was the best-fitted blade
airfoil, hereafter referred to as the baseline geometry. In all cases, it will be
represented with blue color as shown in Figure [6.1]

Accordingly, a new mesh was generated using an in-house meshing tool. The
baseline mesh is hybrid consisting of 67,984 nodes, shown in Figure [6.2] In
the near-wall region, structured layers with a step size of 107 mm (chord
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Figure 6.1: Rotor airfoil baseline geometry.

length 60 mm) were employed to adequately capture flow phenomena in this
area, while the outer region of the mesh was unstructured and extended to
the periodic boundary. The boundary conditions applied were identical to
those described in Chapter 4, and the same inlet, outlet, and initialization
flow variables were imposed as shown in Table [6.1

Category Variable Symbol Type / Units Value
Gas constant R [J/kg-K] 287
Gas Properties Specific heat ratio v — 1.33
Dynamic viscosity [Pa-s] 1.716 x 107°
Total Pressure D Uniform [Pa]  1.586 x 107°
Inlet Total Temperature T; Uniform [K] 309.12
Flow Angle o' Scalar [°] 0
Viscosity Ratio L Scalar 20
Outlet Pressure p Uniform [Pa]  1.303 x 107°

Table 6.1: Gas properties and CFD boundary conditions.

The resulting mesh, for these flow conditions, achieves a y™ < 1, enabling
the application of a low-Reynolds-number turbulence model without the use
of wall functions.



o7

Figure 6.2: The hybrid mesh of the stasonary rotor (top) with a zoomed-
in view of the leading-edge region (bottom left) and the trailing-edge region
(bottom right).

A brief description of each case, along with its corresponding convergence
figure, will be presented in the subsequent section, while the static pressure
and Mach number fields will be also compiled and evaluated.

6.3 ShpO Results

In the first optimization, Case A1, the objective is to minimize the mass-
averaged total pressure losses of the stationary rotor blade airfoil, subject
to constraints on the exit flow angle and the inlet flow capacity. All design
variables are permitted to vary freely within a margin of 10% of their initial
values, and no additional geometrical constraints are imposed. The ShpQO’s
convergence is shown in Figure [6.3a]

As the blade airfoil represents a stationary 2D rotor blade of a turbine stage,
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it is crucial to account for the high temperatures it experiences, particularly
in the leading-edge region where the stagnation point forms. The primary
solution to this issue is the implementation of an internal cooling system.
However, reducing the leading-edge thickness to decrease total pressure losses
simultaneously reduces the available area for cooling. For this reason, an
explicit geometrical constraint was imposed in the Case A2, requiring the
leading-edge region to remain identical to the initial configuration. This con-
straint was implemented through the custom Bézier-based parameterization
by fixing the design variables that define the leading-edge region (x.rg, YerE,
rie, 6oLE, and 05 ), while allowing the remaining variables to vary freely
within the margin specified for Case Al.

Taking as a fact that the blade airfoil must be effectively cooled, a practical
challenge in manufacturing lies in creating the internal air or fluid passages,
particularly in regions where the available cross-sectional area becomes very
small. One such critical region is the trailing edge, which was observed to
thin out during the ShpO process aimed at reducing total pressure losses.
If the trailing edge becomes excessively thin, the construction of internal
cooling passages through casting becomes impractical. To address this, an
ShpO with a frozen trailing edge was performed, designated as Case A3. In
this case, only the corresponding variables x.rg, yere, rre, bore, and Osrg
were kept constant, while the remaining variables were allowed to vary freely.

Allowing the trailing and/or leading edges to move results in a change in
the airfoil chord, as the center points of the circular arcs representing these
regions are free to move. Such changes can potentially impact several aspects
of the rotor blade, including aerodynamic behavior (e.g., flow separation),
manufacturability (e.g., blade interference), and overall performance (e.g.,
rotor solidity). For this reason, in this ShpO, Case A4, the leading and
trailing edge regions were frozen by keeping x.r.g, Yere, "LE, Gore, O3LE,
TeTE, YeTE,s TTE, Gore, and Os7p constant. The remaining design variables
were allowed to vary freely within the specified range.

Another critical parameter in the design of a blade airfoil, particularly a ro-
tor blade, is its thickness. Blade thickness is directly related to the overall
structural integrity, as it must withstand thermal, aerodynamic, and rota-
tional loads. Therefore, maintaining the same maximum thickness during
the design and ShpO of the airfoil is essential. Hence, in this ShpO, Case
Ab, the thickness of both the suction and pressure sides was kept constant,
along with the leading and trailing edges. This was achieved by controlling
the relevant design variables while allowing the camber line to vary freely.
Consequently, only the variables chord, 0;,, 0o, din, and d,,; were allowed
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to change.

All of these geometrical constraints can be easily imposed thanks to the
proposed custom Bézier-based parameterization and the way it generates
the blade airfoil in distinct segments. By making minor modifications to
the relevant code—specifically, by setting the appropriate design variables as
constants—these constraints can be directly enforced. In contrast, with more
conventional parameterization techniques, such as volumetric NURBS, direct
imposition of geometric constraints is not feasible because they cannot be
explicitly expressed. Instead, they must be applied indirectly as aerodynamic
constraints, which not only requires more complex programming but also
increases computational cost, as additional PDEs must be solved to satisfy
the constraints.

A table summarizing all constraints and the key characteristics of each ShpO
case is provided, Table [6.2}

Case Objective Flow Constraints Geometrical
Function Constraints

Al  Minimize Total Inlet capacity and exit -
Pressure losses angle

A2 Frozen LE

A3  Same Same Frozen TE

A4 Frozen LE and TE

A5 Frozen LE, TE, SS,
PS

Table 6.2: Details of each adjoint ShpO case.

To assess ShpO performance, Figure depicts the convergence of the ob-
jective function for all five cases over the optimization cycle number. The
evolution of the flow constraints, namely 6,,; and inlet capacity, is also shown
to evaluate constraint satisfaction.
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Figure 6.3: Convergence of the objective function and evolution of constraints
for the five ShpO cases.

For the A1 case after 24 optimization cycles, the mass-averaged total pressure
losses are reduced by 17%, reaching a local optimum with an inlet capacity
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and exit flow angle change of 0.1% (the absolute limit), as shown in Fig-
ure [6.3al

From Figure [6.3b]it can be observed that after 23 optimization cycles, prac-
tically the same result as in Case Al is achieved, with a reduction of 17%
(difference smaller than 0.1%). This indicates that the contribution of the
leading edge to the mass-averaged total pressure losses is negligible. The fact
that two fewer cycles were required compared to Case A2 is most likely due
to the reduced number of design variables, as five fewer variables needed to
converge to their appropriate values for a local optimum to be reached.

As displayed in Figure [6.3c], after 21 optimization cycles, the total cost func-
tion was reduced by 13.6%, indicating that the trailing edge plays a signifi-
cant role in generating losses (a 3.4% difference compared to Case Al). This
outcome was expected, as the trailing edge is responsible for the wake it gen-
erates, which induces turbulence and energy dissipation in the downstream
flow, thereby contributing significantly to total pressure losses

A reduction of 13.4% in the objective function after 22 optimization cycles
was achieved in the case A4, as presented in Figure . As expected,
the leading edge contributes minimally to the generation of total pressure
losses, which is evident from the difference in total pressure loss reduction
between Cases A1l and A2. Consequently, the improvement observed in Case
A4 relative to Case A3 is marginal, approximately 0.4%.

The result of the A5 case ShpO run is an important reduction in the total
pressure losses, amounting to 6.5% after 11 optimization cycles, illustrated in
Figure[6.3€|. This improvement was achieved solely by modifying the camber
line of the blade, which highlights its contribution to the cost function. The
camber line influences the blade’s pressure distribution and flow acceleration,
thereby affecting boundary layer behavior and flow separation, which are key
factors in total pressure losses. Also, noteworthy in A5 case is that the inlet
capacity constraint shifted to the lower boundary, in contrast to all other
cases. This behavior can be attributed to the fact that, in A5, the blade
thickness remained constant, whereas in the other cases the blade became
thinner, allowing a larger mass flow to pass through.

For clarity and comparison, Figure [6] presents the optimized airfoil shapes
obtained for each case alongside the baseline configuration. This visualization
highlights the geometric modifications introduced during the ShpO process.
In addition, the Mach number and static pressure fields are presented for each
ShpO case and the baseline configuration in Figure and [6.6] respectively,
to illustrate how geometric modifications affect local flow velocities, pressure
distribution, and aerodynamic loading along the blade, thereby highlighting
the mechanisms behind changes in total pressure losses.
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(e) Case A5 baseline (blue) and optimized

(red) geometry.
Figure 6.4: Optimized airfoil geometries (red) for all cases compared with

the baseline configuration (blue).
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The Case Al optimization run is indicative of the subsequent cases, as no
geometrical constraints were imposed. This makes it possible to observe the
natural trend of the blade airfoil towards an optimized solution, highlighting
the regions with the greatest contribution to total pressure losses, intuitively
corresponding to those that underwent the most significant modifications.
The optimized airfoil exhibits minor changes in the first half of the chord,
while the second half is heavily modified. In this latter region, the airfoil
becomes thinner, particularly near the trailing edge, and presents a different
stagger angle and camber, as illustrated in Figure

As expected, the optimized airfoil in Case A2 shows no substantial differences
compared to Case Al, since the leading edge (which is frozen in this case) has
only a minor contribution to the total pressure losses. What is noteworthy,
however, is that because the leading edge cannot be modified, the thinning
of the airfoil blade begins slightly earlier than in Case Al. In addition, the
difference in stagger angle is smaller, as the airfoil cannot ‘turn’ as much in
the first half of the chord as illustrated in Figure [6D]

The most pronounced differences relative to Case A1, though less substantial
when compared to the baseline geometry, are observed in Case A3. Since the
trailing edge—the primary contributor to total pressure losses—is frozen,
the ShpO does not achieve as large a reduction as in the first ShpO case.
This limitation is evident in Figure where the optimized airfoil shows
only modest deviations from the baseline. The airfoil blade becomes thinner
along most of its chord, with noticeable changes in camber, before thickening
again near the trailing edge to satisfy the imposed constraint.

With the additional constraint of fixing both the leading and trailing edges,
the blade airfoil in Case A4 closely resembles that of Case A3. As a result, the
airfoil becomes slightly thinner toward the end compared to Case A3, before
adjusting again to meet the constant trailing-edge constraint. Overall, it
maintains a smoother camber along its entire length relative to the baseline
geometry, as illustrated in Figure [6d]

Considering the geometrical constraints imposed in ShpO Case A5, the re-
sulting airfoil maintains the same chord, leading and trailing edges, and thick-
ness polynomial as the baseline, while achieving a reduction in mass-averaged
total pressure losses. As illustrated in Figure [6¢] the baseline and optimized
airfoils appear very similar, yet the optimized configuration achieves a 6.5%
improvement in the objective function. This improvement is primarily due
to a more favorable redistribution of the camber, which is less aggressive near
the leading edge and gradually converges to the baseline distribution toward
the trailing edge.
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(a) Baseline geometry Mach number field. (b) Case A1 Mach number field.

(c) Case A2 Mach number field. (d) Case A3 Mach number field.

(e) Case A4 Mach number field. (f) Case A5 Mach number field.

Mach 0.050.150.25 0.35 045
(g) Mach number field palette.

Figure 6.5: Mach number field around the optimized airfoils for the baseline
geometry and the five ShpO cases.
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The Mach number contours for the baseline and optimized configurations
(A1-Ab) are bounded by M < 0.55. Consequently, the sharp gradients ob-
served in the contour fields are regions of rapid subsonic deceleration associ-
ated with adverse pressure gradients (APGs). In such regimes, performance
is governed by the management of surface diffusion, boundary-layer develop-
ment, and wake mixing.

The baseline geometry, shown in Figure [6.5a], exhibits distinct flow features
on the SS and PS. On the suction side, the flow experiences a strong accel-
eration followed by a pronounced adverse pressure gradient (APG), which is
expected to promote boundary-layer thickening. On the pressure side, the
flow accelerates near the trailing edge, resulting in steep velocity gradients
and heightened sensitivity to downstream diffusion. The wake downstream
of the trailing edge is relatively thick, as indicated by the extended low-Mach
region and the elevated mixing losses, which are also verified by the ShpO
results.

In Case Al, Figure [6.5b] the suction-side acceleration is smoother over the
first half of the chord, resulting in a more concentrated high-Mach-number
region, resembling a “bubble,” toward the trailing edge.The diffusion process
is distributed more evenly, resulting in a weaker adverse pressure gradient
(APG) compared with the baseline. Consequently, the wake thickness is re-
duced, indicating lower total pressure loss. A similar behavior is observed
in Case A2, Figure [6.5d, although the high-Mach-number region is slightly
smaller, reflecting a reduction in acceleration and diffusion effectiveness rel-
ative to Al.

The suction-side Mach number distribution shifts slightly toward the lead-
ing edge, resulting in a more gradual and well-distributed high-Mach-number
region in Case A3. Consequently, the adverse pressure gradient (APG) inten-
sity is reduced, the boundary layer is less burdened, and the wake is thinner
than in the baseline case, reflecting lower downstream mixing losses. A sim-
ilar trend is observed in Figure Case A4, where the frozen leading edge
produces slightly higher Mach numbers near the leading edge compared with
Case A3.

Under all the additional geometrical constraints, Case A5 produces a blade
airfoil whose suction-side Mach number field resembles the baseline pattern
but exhibits a more favorable distribution. The smoother camber variations
promote better acceleration and reduce the intensity of the (APG), as seen

in Figure [6.51]



66

(a) Baseline geometry static Pressure field. (b) Case Al static Pressure field.

[~ -

(c) Case A2 static Pressure field. (d) Case A3 static Pressure field.

- -

(e) Case A4 static Pressure field. (f) Case A5 static Pressure field.

pressure 126000.00 130800.00 135600.00 140400.00 145200.00 150000.00
(g) Static Pressure field palette.

Figure 6.6: Static Pressure field around the optimized airfoils for the baseline
geometry and the five ShpO cases.
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Total-pressure loss is typically correlated with three static-pressure features:
the severity and streamwise extent of adverse pressure gradients, the abrupt-
ness of pressure recovery near the trailing edge, and the wake footprint, which
can be judged by how far the low-pressure region extends downstream. Sharp
suction peaks with rapid pressure recovery tend to thicken the boundary layer
and may trigger separation, leading to irreversible energy losses. In contrast,
a gentle recovery and a narrow, well-formed wake indicate lower dissipation
and smaller total-pressure deficits. The static pressure contours presented in
Figure illustrate the distribution of pressure around the airfoil surfaces
and within the near-field wake region. High-pressure zones, represented by
yellow to green contours, are concentrated near the leading-edge stagnation
region, while low-pressure zones dominate along the suction side. A general
trend across the optimized cases is the smoothing of pressure gradients and
the redistribution of the suction peak.

The baseline field shows a deep suction peak, visualized as a dark blue region
in Figure just downstream of the leading edge and an abrupt recovery
toward the trailing edge. Together with a relatively broad, uneven wake sig-
nature, these features point to significant viscous and mixing losses. The
downstream wake region also displays notable pressure variations, suggest-
ing the formation of drag-inducing vortices that contribute to total pressure
losses.

For the Case A1, the suction peak develops more smoothly and is conveyed
toward the back section of the airfoil, while the pressure recovery along the
suction side occurs more gradually, as seen in Figure [6.6b] This distribution
indicates improved flow attachment and a reduced likelihood of separation.
Case A2, Figure[6.6d, exhibits very similar behavior, with a slightly stronger
suction peak compared to Case Al.

Constrained by the constant trailing edge, in Case A3, Figure [6.6d] the suc-
tion peak shifts slightly toward the leading edge in an effort to distribute it
more uniformly, while allowing a gradual pressure recovery. Case A4, illus-
trated in Figure [6.6€] exhibits higher suction than Case A3, yet maintains a
gentle pressure recovery and a visibly narrower, coherent wake. This com-
bination indicates reduced losses—higher than those of Case A3, but still
below the baseline—representing a low-loss configuration that preserves a
larger pressure differential.

Despite a shape very similar to the baseline, the airfoil in Case Ab, Fig-
ure [6.61] achieves a smoother and more gradual redistribution of static pres-
sure compared to the baseline. This results in improved pressure recovery
yielding lower total pressure losses.
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Table [6] presents the values of the objective function and flow constraints for

the baseline geometry and the optimized airfoil across all cases.

Total Pressure Loss [Pa]

Inlet Capacity [x1077]

Exit Flow Angle [rad]

Case
Baseline Optimized A[%] Baseline Optimized A[%] Baseline Optimized A[%)]
Al 721.72 599.36 -17 5.280 5.285 -0.09  1.090 1.091 -0.09
A2 721.72 999.95 -17 5.280 9.285 -0.09  1.090 1.091 -0.09
A3 T721.72 624.05 -13.6  5.280 5.282 -0.04  1.090 1.091 -0.09
A4 T21.72 626.54 -13.4  5.280 5.282 -0.04  1.090 1.091 -0.09
A5 721.72 675.25 -6.5 5.280 5.275 -0.09  1.090 1.091 -0.09

Table 6.3: Comparison of optimized results for all ShpO cases. A[%] indi-
cates the percentage deviation relative to the baseline.



Chapter 7

Conclusions

7.1 Overview

In this diploma thesis, the main objective was to propose a new, customized
approach to airfoil parameterization, specialized for turbine blade airfoil ge-
ometries and to integrate it into the aerodynamic optimization process. The
airfoil geometry was decomposed into five distinct segments: the mean cam-
ber line, suction and pressure sides, and the leading and trailing edges. Ini-
tially, the conceptual background of the custom Bézier-based airfoil parame-
terization method was presented, with emphasis on the mathematical formu-
lation for generating each segment of the airfoil. Subsequently, an algorithm
for best-fit approximation of airfoils was developed, enabling their represen-
tation through the proposed parameterization, and was tested on turbine
blade airfoil geometries.

Furthermore, the validation of the CFD model for a single turbine stage,
based on available experimental data, was conducted prior to performing
aerodynamic shape optimization (ShpO) of the blade airfoil geometry repre-
senting the turbine rotor. The process of integrating the custom Bézier-based
parameterization into the optimization cycle via the PUMA software was
then described. Within this framework, multiple ShpO cases were conducted
using the same objective function and flow constraints but with different ge-
ometrical constraints, highlighting the flexibility and unique capabilities of
the proposed parameterization method in enforcing complex geometric re-
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quirements. The results were evaluated in terms of both the quality of the
final solution and computational efficiency.

7.2 Conclusions

The main conclusions drawn from this diploma thesis are as follows:

The proposed parameterization provides a smooth and flexible repre-
sentation of the airfoil geometry while maintaining a clear link between
the design variables and physical quantities such as camber, chord,
thickness, and metal angles. Furthermore, explicit analytical gradients
of the control points with respect to the design variables are available,
enabling efficient application of gradient-based optimization methods.

Its uniqueness arises from its distinctive conceptual approach, in which
the airfoil is divided into five separate segments: the mean camber line,
suction and pressure sides, and the leading and trailing edges.

The proposed parameterization proved to be a powerful tool for de-
scribing airfoil geometry, offering high accuracy with a relatively small
number of design variables, typically 25.

Compared to other parameterization methods, it enables the direct
enforcement of geometrical constraints without the need to solve ad-
ditional equations, resulting in reduced complexity and computational
cost. This capability is particularly important for turbine blades, where
certain regions must remain unchanged during optimization due to
cooling requirements, structural integrity, or other physical constraints.

Following shape optimization, the resulting design vector can be eas-
ily understood, providing an intuitive understanding of the changes in
physical quantities and informing future designs or optimization stud-
ies.

7.3 Proposals for Future Work

A natural follow up of the work carried out in this diploma thesis regarding
the proposed parameterization method could include the following directions:
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e Application of the custom Bézier-based parameterization to 3D prob-
lems: Extending the method to three-dimensional geometries could
open new opportunities in the aerodynamic design of aerospace and
automotive components, particularly in cases where complex geometri-
cal constraints must be respected (e.g., maintaining the thickness dis-
tribution in a wing or airfoil section for structural integrity).

e Investigation of inverse design problems using the proposed parame-
terization: The application of this parameterization to inverse design
problems, together with a comparative analysis against other parame-
terization methods, could establish it as a robust and efficient tool for
inverse design.

e Combination of the proposed parameterization with other methods:
Employing alternative parameterization techniques during the initial
optimization cycles, followed by the proposed Bézier-based method for
fine-tuning, could accelerate the optimization process while ensuring
high-quality solutions.



Appendix A

Analytical derivative formulas

In the following appendices, the analytical derivative formulas for Bézier
curves, as referenced in Chapter 2, as well as the explicit computation of the
partial derivatives of each segment of the blade airfoil with respect to the
design variables of the custom Bézier-based parameterization, as discussed
in Chapter 3, are presented.

A.1 Derivatives of a Bézier curve

The computation of the unitary vector, described in equation (2.16) is based
on the calculation of the first derivative of the mean camber line, expressed
by Bézier curves. This is formed as follows:

Since the control points are independent of the variable u, computing the
derivative curve MCL'(u) reduces to the computation of the derivatives of
B,,.i(u)’s. With some simple algebraic manipulations, we have the following
result for B ;(u):

B:m(u) =n [Bn—l,i—l(u) - Bn_lji(u)} y 1= O, 17 oo n (Al)

Then, computing the derivative of the curve M CL(u) yields:
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MCL(w) = 3 PB! () (A2)

Let

Qozn(Pl—Po), len(P2—P1), ey Qn_lzn(Pn—Pn_l) (Av?))

Then the above equation reduces to the following:

A.2 MCL partial derivatives w.r.t design vari-

ables

The mean camber line partial derivatives w.r.t design variables

833; O B3 1) dy cos sy — BE(t) dyn 08 Oone (A.5)
C
Oxp(t) _ —Bi(t) diy c sin by, o)
aein
Orp(t) _ B3 (t) dous ¢ sin fou A7)
aeout
dxp(t) 3
ody By(t) ¢ cos Oin A
Oxp(t) = —B3(t) ¢ cos Oy (49)

8d0ut
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Jyp(t)

e = B (t) diy sin 0y, — B3 (t) doys S0 Oy (A.10)
c
Oy 1) = B¥(t) di, ¢ cos by, (A.11)
8ein
ys(t) = —B3(t) doyt ¢ €08 Oot (A.12)
aeout
Oyp(t) _ 3 :
2d B (t) ¢ sin by, (A.13)
ys(t) = —B3(t) ¢ sin Ogus (A.14)
adout

%50@) =3 (Bg (t) din €08 Oy, + BE(t) (—dout €08 ot — din €08 01) + B () dous cOS 90ut>
(A.15)

P00 _ e im0 (B0) — B3(0) (A.10)

000 3 e sin o (B300) — B3(0) (a17)

P50 _ e contin (53(0) -~ B0) (19

O5M0) _ 3 cose (B3(1) — BI(1) (A1)

adout
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aygj i 3(33@) din Si0 O3, + B7(t) (—doug Si0 o — din sin 0) + B3 (£) dows sin e)
(A.20)
Pol0) _ g cost (53(0) ~ B30) o
P50) _ 3 conb (330) — BE) 22
agzi(nt) = 3¢ sinby, (B2(t) — B2(t)) (A.23)
%y%i? = 3 sinboy (B3(1) — B3 (1)) (A.24)

denom(t) = @p(t)* + yp(t)? (A.25)
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o) _ _dip(t) 1 vanll) (aor ()22 + e (1) 2212
e dc \/denom(t) (denom(t))*?
(A.26)
o) _ () 1 vaell) (aer ()25 + yaer (1) 2022 )
06y 00i  \/denom(t) (denom(t))*/?
(A.27)
oncht) _aislt) 1 tae(®) (s 0GR + v (0 5)
bt Oout /denom(t) (denom(t))*/?
(A.28)
oSy _ oy 1 vl (aor (1) 25542 + e (1) 212
Od;y Odin /denom(t) (denom(t))*?
(A.29)
onSHe) _ ojp(t) 1 Ve (e (% + oo (1) 552
adout adout denom(t) (denom(t))3/2

(A.30)
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o) dig(t) 1 el (zan ()25 + yan (1) 250)
dc ¢ /denom(t) (denom(t))*/*
(A.31)
92 p(t) 9yp(t)
onCH(t)  din(t) 1 Zaos(t) (2aer (1) 282 + ar(1) 252
80 00w /denom(t) (denom(t))*?
(A.32)
oSt omp(t) 1 Taerlt) (3ae DT + yaer() G
Mows  ous /denom(t) (denom(t))*/?
(A.33)
onSH(t)  Oip(t) 1 aee(1) (e (1) 582 + e ()5 )
Odi,  Odin \/denom(t) (denom(t))**
(A.34)
o) oip) 1 Zaos(t) (2aer () 52D + per (1) 22
Odowe  Odow +/denom(t) (denom(t))*/
(A.35)

A.3 SS partial derivatives w.r.t design vari-

ables

The suction side partial derivatives w.r.t design variables.



ngs—1
< ngs—1 (t) (% . anSL tsuction)
£y Pt g T The 2
ngs—1
_ x ans—l (t)(ﬁxb o angL tsuction)
L Dresm N0y T 00 2
ngs—1
< ans—l (t)( axb N 871?} tsuotion)
=0 mss—1-J aeout aeout 2
ngs—1
< ngs—1 (t) ( 8*/Eb N 8n§L tsuction)
£ PO\ oy, T Oy 2
ngs—1
< ans—l (t)( axb N anSL tsuction)
=0 nes—1-J 8dout adout 2
ngs—1 1
nggs—1
ansss—1—j(t)< - 5”1)
7=0
ngs—1 1
- BZSSSS:%—j(t)( - 57%]%)
j=0
ngs—1 1
ngs—1
ansss—1—j<t)< - 5”:}:1‘7@2)
j=0
ngs—1 1
ngs—1
nSSSS—l—j (t) ( - inik'?)
j=0
ngs—1 1
Bl 0 = gnak!)

78

(A.36)

(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)



al‘ss (t)
aZECLE
c%ss (t)

aTLE

al’ss (t)
690LE

81‘58 (t)
0031k
(933'53 (t)
0t
al'ss (t)

aT’TE

al‘ss (t)
a‘90TE

— BnSS*l(t) +BnSS*1<t) + BnSS*1<t)

ngs—3 ngs—2 ngs—1

4 0
— ans’l(t) cos By + ans*l(t) ( cos By + - tan —= sin 0o

ngs—1 ngs—2

3N3

= ans_l (t)(_TLE sin QOLE)

ngs—1
ngg—1 : 1 2( OLE ]
+ ans—2<t>< — rig sinOgLg — WTLE sec (T) sin Oor.p
3
LE
+ —— g tan — cos 6, )
3N, LE 1 OLE
= B (1) g sec?(%E ) sind
= b2 3N3 TLE SeC 1 SN UgLE

= B0 + BT (0 + BT )

4
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(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

_ ansil(t) (COS QOTE — COS ‘93TE — tan GTTE(g sin HSTE + % sin GOTE)
2 N,
8 Ore .
—+ cos 93TE — 3_N tan % Sin 03TE>
4 o
+ B?Ss_l (1) ( cos Ostg — IN tan % sin 93TE> + Bgss_l (t) cosO3rg

1 0
— B{Lssfl(t) [3_NTTE sec? (%) sin 03TE]

+ BysTH(1)

(A.51)

Ny

%TTE tan(eTTE> COS GOTE 2 O

— 7 + S_NTTE sec? (—

+ Bgss_l(t) [ — rrE SIn HOTE]

ZE ) sin 93TE]

: 1 0 8 o 4
[—TTE sin Ootg + 47TE sec? (%) (3 sin O3ty + 3 sin QOTE)

(A.52)
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rrg Sin 03 — —rTEseC _term_sq_ TE( sinfy + 4 3 8inf) — %rTE tan O?TE cos 05

Oxgs(t
wSS( ) _ Bgss*1<t>
0037E Ny
2
— 3—N7“TEsec _term_sq_TE sin 63 — rrg sin 93]
+ ByssTH) | — LT sec_term_sq_TE sin 05 — —rrp tan Ori cos f5 — g sin 0
1 3N TE q- 37 3N TE 1 3 TE 3
+ By (t) (—rog sin 6s) (A.53)

rTE COS Oy — irTE sec? (%) (% cos 0z + ;—l cos 90>

Ny

Oyss (t e
aZ—jT(E) = By 1(t>[

%TTE tan<94 ) sin 0, 9 0"
N 3N TR SeC (T) cos 63
2

+ BssTH(¢) [ S TTE sec” (%TE) cos 03} (A.54)

—7r7E Cos O3 + T‘TE sec (0 ) (% cos B3 + %cos 90> - %rTE tan(g ) sin 05
No

Oyss(t e
b = By 1<t>[

2( 0 8 O
+ 3NTTE sec (%) cos 63 — 3NTTEtan< . )sm93+rTE cos 63

+ B?Ss—l(t) [3NTTE se(:2 <9TE> CcOS 93 3N7"TE tan(e ) sin 93 + rTg COS 93]

+ Bys T (t) rop cos 05 (A.55)



81

ngs—1
-3 Bid (2 Ot
Y. Y. ;lon)
nil (A.56)
— ans 1 a
j=0 ngs—1 ](t)< no_ anSL Lsuction
00, 00 2 )
5 : (A.57)
- X B (s "
890m 860 suction >
nil - (A.58)
— ans—l a
=0 nssflfj(t)<8§b a %”SL tswion)
In d
Z — (A.59)
B’I’LSS 1 a
5 et (- e
ddoyw,  Odo ‘°“>
= — (A.60)
— ans 1
g ngs—1 ](t)< - %ny>
nssz_l (A.61)
— ansfl ]‘
g nss—l—j(t>< - iny 5)
= (A.62)
g nss—l—j(t>< - %ny 52)
5 (A.63)
=0 nsg_l_j(t)( h %ny 53)
= (A.64)
nss—l—j(t)< - %ny €4>
(A.65)
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Oyss (t S
gZ—SL(E) = angfll(t)rLE cos b
0
+ B”SS_Ql(t) rLE cos Oy + L7"LEsec,term,sq,LE cos bty + irLE tan QL—E sin 6,
e 3Ns 3N; 4
(A.66)
Dyss(t nss— 1
82?;(1”3) = ang,é(t)( - 3—]\[37"LEsec,term,sq,LE cos 90) (A.67)

dyss(t) Brss=1() [sin 0y — sin 03 + tan OTTE (% cos 03 + % cos 90)
= Dy

8 )
N, + sin 05 + 3N tan %E cos 93]

4 0
+BIH(0)(sinfy + g tan = cosf) + B (0)sindy
(A.68)

A.4 PS partial derivatives w.r.t design vari-

ables

The pressure side partial derivatives w.r.t design variables.
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nps—1 . oxy angL tpreﬂ) (A'69)
Orvs(t) _"§~ pres 0 ( R
31‘(; 7=0
npg—1 . amb " 8nSL tpreSSure> (A?O)
Poesll) N et (G + G e
aeln 7=0
nps—1 1 Oxy, 4 angL tpressure> (A71)
Oxps(t) _ Z B;LPS_ (t)<890ut o 2
D00t =0
nps—1 Ly (07, onS* tp> (A.72)
Ozes(t) _ > BT (t)<8d1n Odi, 2
npg—1 L 8xb n 5ngL tpressure) (A73)
drps(t) - Z BT (t)<8d0ut ddout 2
adOut 3=0
nps—1 1 1 (A74)
Ozps(t) _ Z B;,LPS* (t)(?%)
dag j=0
nps—1 L 1 ) (A'75)
) % gy (L
day §=0
nps—1 ) 1, ) (A.76)
drps(t) Z BisT <t)<§nx &ps
daly =0
nps—1 1 1 3 ) (A77)
Orps(t) _ Z Byvs™ (t)(in:r €ps
aag =0
nps—1 1 1 4 ) (A78)
Ozps(t) _ Byrs™ (t)(ﬁnaz Eps
a—ali
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Oxps(t)
O LE = Bg(t) + B%(t) + B22(t) (A.79)
0 t 4 0
gi—ié) = B2(t) cos s + Bi(t) (cos 03 — 3N, tan % sin 03>
cos By — cos B3 — tan L& (& gin f; + £ sin b, 8 OE .
+ B3(t) Né G 3 ) —i—cosé’g—g—]\%tan%sm@g
(A.80)
0 t
?(;;é) = Bf(t)g—MrLEsec,term,sq,LE sin 0
+ B2(1) —rpE sin Oy + %TLEsec,term,sq,LE(g sin 05 + % sin 00) — %rLE tan GIjTE cos By
2 N,
2 .
+ ——rppsec_term _sq_LE sin 03 (A.81)
3N5
0 t 1
xpié ) B3 (t)(—rigsinfs) + Bi(t)| — rLgpsin 03 — ——rppsec_term sq_LE sin 6
4
— 3—N57“LE tan % cos 93]
rLE Sin 03 — l7“LEsec,term,sq,LE(§ sin 05 + 2 sin 90) — 8prp tan ZLE cos f,
2 4 3 3 3 4
+ B3 (t) N
6
in 6 2 t LE sin @ tan O cos g
— rpgsin 3 — ——rpgsec_term_sq_LE sin #3 — ——r g tan — cos
LE 3 3N; LE q 3 3N, LE 1 3
(A.82)
aZEpS (t)
9rTE = B727«PS—3(t) + Bips—2(t) + BZPS_1(75) (A.83)
Oxps(t) ) cos 63 — cos 6y + tan GTTE (4sin6; + Ssindy) 8 [—
D — Bnpsfg( ) N + cos by + 3_N7 tan e sin 6y

4 o
+ B,y o(t) ( cos by + 3N, tan % sin «90) + B2, _1(t) cos by
(A.84)
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. 1 ) g
Ops (1) ) @ [rTE sinfy — 77r1E sec? (%) (3 sin 03 —i— S sin 00) + TTE tan( ) cos b,

ol - Tnes—3 Ng
—TTE sin 00 Org O 9
T 3N TR SEC (T) sinfy + 3 3N T'TE tan<T> cos b,

+ Bnps 5(t) [ — ﬁrTE sec <QT> sin 0y + 3 v TR tan<0 > cos 0y — rog sin 90}
+ BnPS 1(t)(—’f‘TE sin 00) (A85)

axps (t)
aegE B721Ps 3

—rrgsin fs + 1T TE Sec <0 ) ( sin 05 + —sm90) + TTEtan(e )COSGg
(t )[
Ng

+ %N?TTE sec? <0TTE> sin 90]

+ BnPS 5(t )[3N TTE se02<0 > sin 90} (A.86)

Ayps (1) , @ [—T’TE cos by + TTE sec (0 ) (3 cos b, —i— 2 cos 93) + TTE tan(g ) sin 6y

doTE — Tres3 Ny

~+rT1g cos 6 s 9 (

N 37 T'TE Sec frp > cos by + 3 3N T TE tan<0 ) sin 0y + rrg cos 90]
8

+ BnPS 5(1) [?ﬂlv r'TE SeC <9 > costly + 3 TTE tan(g ) sin Oy + rrg coS (90]

+ B2 (1) [T’TE cos 60} (A.87)
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B = Bl al0)
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yps (1)
OyLE = B(Q)(t) + B%(t) + B22(t) (A.100)
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A.5 LE partial derivatives w.r.t design vari-

ables

The leading edge partial derivatives w.r.t design variables.

|
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A.6 TE partial derivatives w.r.t design vari-

ables
The trailing edge partial derivatives w.r.t design variables.

1

o (%)

sec_term_sq TE = (A.114)
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Eicaywy™

O aepoduvounde oyedlaoude Twv TTepuYiwy evog otpofilou eivar xployog Yo
TNV anddoct), TNV anoTeAeopaTxdTNTA Xat TNy oflomotio Tou. O Tapadoot-
oxég uédodol oyedaouol Bactlovion e eumelpiné PeVOBOUC XL ETOVOANT-
TIXEG BOXYES YEYOVOS Tou TiC oo Td ypovoPopec. Tlopdhhnha, n aw&avouevn
{htnom v uPnhoTeEn am6d00T), OE GUVBLAOUOG UE TNV TEOODO TNG UTOAOYLO-
TS 1o 00¢, EYEL XATAC THOEL DUVATES TO TROTYUEVES TPOCEYYIoES Oy EdLIO-
uo0. Emmiéov, 1 Bertiotonoinon ue Bdon tn culuyr u€dodo cuUTANE®VEL QUTHY
TNV TEOGEYYLOT), ETUTEENOVTVG TOV AMOTEAECUATIXG UTOAOYLIOUO TWV THRAY (LYY WV
cuanoinolag Twv oTdywY anddoong W TEOS TOMEG UETUSANTEG OyeEdlaouoy,
UE YOUNAG ouYXETIXd PE dAAEC UeUVHBOUS LTOAOYIOTIXG %OGTOS.  Axoun, 7
TopopeTeoTolNo Ue XaumUAeg Bézier mopéyel euéAxTn xou opahy| ovamoedo-
TUOT) TOU OYAHATOSC TWV UEPOTOUWY, ETITEETOVTOS axplBelc TpOTOTONOELS EVE
oatneet T YewueTewr ouveyel. Hevowpdtwon tou avtiotpogou yewuetpo
oyedouol, g BeAtioTomoinong Lopgrc (BM) pe ™ ouluyt| pédodo xou TNg
TapapeTeonoinong Bézier npoogépouy éva mhaicio yu T Behtiworn tng omo-
doome agpoTou®y TTEPLUYinY otpoflihou. H Simhwuotin cpyoasia eqopudlel
ouT6 1o TAulolo aUTé xou TpoTelvel uio VEo uédodo mopoueTeoToiNoNG dERO-
TOU®Y, PE YeNom TwV xoumuhwy Bézier, evioylovtag tautdypova Ty amodo-
Tx6tTNTo 6T BM on avtigetonilovtog i 00y poves oyedlaoTIXEC-YEWUETRINES
TEOXANCELS TTOU UTOREL Vo TEOXV(YOUY XATE TNV EQPUOUOYT TNC.

H ITcotewopevn Iapauetponoinon

Yy epyaoia auth, n TopaueTponolNoT TNG acpotopnc Bactletal oE U oyE-
LG T TEOGEYYLOT), CUUPWVOL UE TNV oTtola 1) YEWUETElO TNG AEEOTOUNG ava-
ToploToToL UEGE TEVTE BLOXELTOV TUNUATWY, EV OVOUATL TNV TAEURd uToTiEong
(suction side) xou unepnicone (pressure side), oplopévec oe oyéon pe tn uéon
YO XUETOTNTOG (mean camber line), xat Tig TEPLOYES TNG OXUY|C TEOOTTWONG
(leading edge) xou tnc axurc exgpuync (trailing edge), ot onotec povieronotoiv-
T WG XUXAXE TOZa. ‘Ohal Tor TUAUOTO XATAOHEVALOVTOL UE YPNOT XOUTUAGDY
Bézier xou amartoOy T0v 0pIop0, GUVOAXA, 26 UETUBANTOY GYEBIAGHOV UE dUEDT
puotxr onuocio. To xe@diono auTd TUEOVCLALEL TN BLUUOPPWST| AUTWY TV Xo-
TUAGY X0l TTEELY PAEL TIC UETUPBANTES Oy Edlaopol Tou amantel xodeutd, Topéy ov-
Tag TN Bdomn v Ty vAorolnor tou aviioToyou xmoxa o C++.



(a) Hapapetponoinon tng péons ypauuns  (b) I'éveon tov gopéa twv onueiwy eAéyyou

KUpTOTNTAS. NS TAEYpdS umomieonS kal Tng TA€UpdS un-
eprieons ue fdon tn péon ypauun kuptocn-
Tag.

(c) H povtedonoinon twv mepioxcy ylpw
ané to onueio mPOoTTWONS KAl To onueEio
€kQUYNS Ue KukAikd Toéa.

ExhAno 1: I'éveon pe Eexwpiotn) mapapetponoinon twy TUNUATwY Tns aepo-
TOUTS.

To xuxdind T6Ea €VHVOVTOL UE TNV TAELEE UTOTIESTC XAl TNV TAELUEA UTEPTiETNG
UE OUVEYELL TPMTNS Xou dEVTEPNC Taparyyou (cuvéyeta timou C?), evid oL 26
UETUBANTES OYEBLUGUOU TOU TIRETEL VAL TROGOLOPLG TOLY MO TE 1) TURUUETEOTONO
vor Topdéel pla agpotour| moapouatdloviar otov Ilivaxa . Toviletar 6Tl o€
ONEC TIC TEPLTTWOELS oL YeTaBAnTéC autéc mpoodlopilouv Tn Véon twv onueiwy
ehéyyou (control points) twv avtioTolywy xoutuiny Bézier.



‘Ovopa uetoBANT?C YOuporo
KuxAixd to6Za
LUVTETOYUEVES HEVTRPOV XUXAXOV TOEWY (TerEs YerE), (TS YT E)
Axtiva xux Aoy tOEwv TLE,TTE
Lovieg exxivnong xuxhixey t6€wy OorE, OorE
Ioyvieg MAENG XXXy TOE0V Osre,037E
ITAevpdg unonicong xaw unepnicong
LUVTEAEOTEC Ty 0UC TAELEAS AVIPEOPTIONS Q0s, A1gy g, A3, Qag
LUVTEAECTEG Ty oug TAeLEAS Teong Agp, A1p, A2p, A3p, Qap
Méon v XUUATLUAOTNTAC
Mrxog yopdrg c
I'wvia xAhiong ¢
L'wvio yetdhhou eloddou ol
Tovio petdhhou e€680u o
Adyoc epantopévng eloéoou din
Adbyoc egantopévng £660u Aout

ITivaxog 1: MetafAntés oxediaopol yia to onueio npéontwons/ekpuyns, s
TA€UPES uToTleonS/ UntepTtieons Kal Tt Héon Ypapur) KaumuAdTtnTag.

ANyopdpog Avtiotpogou I'ewuesteixon
2 IYEGLUCUOU

H Bértiotn npocapuoyt (best-fit optimization) tou avantiyinxe otny napovoa
epyaota anotehel pla popen avtioTpo@ou YewpeTeixol oyediacuol. Avti tng
TEOBLAYQUPHC UEQODUVIUIXODY OTOY WYV, TopEYETAUL Wio YEWUETPl AEPOTOUNS, 1
ovapopd, xou o alyoprduoc umohoyilel Tic QuUOXEC UETABANTEC OYEDLAOUOU
TOU TNV AVImoRdyouy PE Tov xahltepo duvatd teomo. H uédodog Pooile-
T oe évay Bpdyo BEATioTng mpooopuoyrc ueTall e doleicag yewueTtplog
NG QEQOTOUNG X0 QUTAG TOU XATUOXEVALETOL UE YPHON TNG TEOCUQUOCUEVNS
mopopeTeonoinone. o tov oxond autd, avamtiyUnxe xwdIC o YAOGoU
C++, o omoloc TopouctdlETon XATWTEQ®.

[ T eniteudn Tou avTlo TE0POU YEMUETEXOU GYEDBLIOUOL 0pIGTNXE pla GUVEETNON
%x00TOUG, TPOG ehayloTomolnon, 1 omolo amotehel TNV UXAIDEI YEWUETEXT
ATOCTACT, TWV ONUELDY TNG TUPUUETPOTOWUEVNG UEQOTOUNG UE Tor avTioToLyol
¢ doopévng, Lopévn oto TETEdYWVO, oK galvetar oty Ellcwon . H
uédodog mou yenowonotinxe elvor auTH TNS amOTOUNS XoEBOU Xou ETELDT| OAXL



ToL TUAPOTA TNG EPOTOPTNE TEPLYpdpovTan e Ti¢ xoumOAeg Bézier o utohoyiouog
Tou Bavbopatog xhiong (grad) mparypatonoteiton avoluTiXd.

P30 [ a4 )] )

()¢ agpoTouES oThYOL TEUNHAY Ol YEWUETPIEC TV TTEPLYIY o Todeprc o xiv-
Ntg TTepLYwWonNg evog wovofldduou afovixolh otpofilou o omolog Atav Olo-
Yéoyog oto epyacTrhplo and mponyolueveg pehéteg. To amoteréoupato Tou
avT{oTEOYOU YEWUETEIXOV GYEDLACUOU YO TIC TEPLTTWOELS AUTES, TUPOLGLALOV-
TOL XATWTEPW.
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(a) Ipooéyyion ns aepotouris (b) Kwntr Hteplywon: Xlyklion
TOU TTEPUYIOU KIvNTNAS TTEPUYWONS TNS ourdpTnong k6oTous.

M€ XPNOn TNS TPOOUPUOOUEVTS

TapapETPOTOIMNOTNS.

Yynpa 2: Kwnt Hweplywon: [ewpetpikn mpooéyyion tns aepotouns kal
oUyKkAIon) TNS oUVAPTNONS KOO TOUS.

Tugua Apwdpog onueiny Juvdpeinorn xé6cToug

LE 23 4.300 x 1074
TE 20 7.935 x 1074
SS 264 5.300 x 102
PS 149 2.236 x 1072
YUvVoho 456 3.800 x 1072

IMTivaxag 2: Kwntr Iteplywon: Apiuds onpeiowy kar avtiotoya opdApata
yia kdOe Tunua tns aepotourns.

To turua yipw and To onueio TpdonTwoNG amoutel TEPLOGOTERES EMAVIAPELC
Yoo Voo oLYxhivel e oUYxpLon PE TO avTIOTOLYO EXQUYNC, GAAS ETLTUYYAVEL



LxpdOTERO TEMXG o@dhpa (4.30x107* évavtt 7.935x107%). Autéd ogelhetan 670
OTL 1) TEpLoy Y| YUpw améd 1o ONUElo TPOOTTWONG EYEL YU TOU UOLALEL TEPLO-
0OTEPO UE EMELTTING TOLO TR UE HUXALXO, OE avTiVeoT UE TO ONUElD EXPUYTC,
Omwe amewoviletar 6To My fua . Avtideta, ol mhevpéc umonicong xon unep-
mleone mopouctdlouy TopduoLeg TopElee GUYHAIONG XaL ETUTUYYEVOUY TEAXES
Téc TN ouvdpTnone xdotoug e T8Ene Tou 1072 AvtioToya anotehéouota
ToEOUCLACOVTaL Xl YIo TN YEWUETEIO TOU TTEPLYIOL G TaERhC TTEPUYWONG.
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(a) Ipooéyyion ns aepotouris (b) Xradepny Itepywon: Xlyk-
v mTepuyiov otalepris mTepUy- Aion tng ouvdpTnong kGO Tovs.
wonNS M€ Xpron s mpogap-

HOOUEYNS TapapeTpoToinang.

Yyxnpa 3: Yralepn) Iteplywon: I'ewuetpikn mpooéyyion tns aepoTopuns kal
oUyKkA10n) TNS OUVAPTNONS KOO TOUS.

Tuqua Apwdpog onueiny Juvdeinor xé6cToug

LE 40 2.188 x 10~°
TE 22 9.931 x 1074
SS 341 1.265 x 1072
PS 180 4.097 x 1072
Y Ovolo 456 3.800 x 1072

ITivaxag 3: XwaOepn Hreplywon: Apiducs onueiwy kai avtiotoya opdApata
yia kdle Tunua tng aepoTouns.

Ye authy TNV TEpinTwot), 1) 60YXAoT Tou TURUATOS YUPw amd T0 GNPEio TPOCTTHONS
xaL To onuelo exQUYNG elvol TUEOUOLA, YEYOVOS TOU UTOBELXVUEL OTL TO TEWTO
Teocopoldlel TepoadTERO UE xLUXAXG ToLo. H oxplfeia mou ornueidveta ota
Tt Ut ebvan Tng TaEng Tou 107% »ou 1074 | avtioTtorya. ‘Ocov agopd
NV TAeLpd uToTieong xaL TNV TAELEd UTEPTIESTC, EMITUYYAVOUY TEMXT T
NG OUVEETNOTE XOCTOUC NS TAENES TOU 1072, Yuvohxd, 1o OQAAUO TNG Ol



adixaciog avTioTEOPOU YEWUETEIXOU GYEDLUCUOU UE YEHOT TNG TEOTEWVOUEVNS
TOPUUETEOTOINONS TAUPAPEVEL YaUNAO, avTxatonteilovtag TNy axpifela Tng pedodoroylug.

ITiotonoinorn Twv ATOTEAECUATLY TOU
Avtiotpogou I'ewuetpixod Yyediacuod pe
xenorn touv PUMA

Aedouévng T SLIECLUOTNTAC TELRUUATIXGDY OEDOPEVGY Yiol TOV LovoBdduio al-
ovix6 6TEOBLA0 amd Tov omolo TEOoATaY Ol YEWUETEIES TeV AECOTOUMY o TadeprC
xalL XavnThg TTEpUYWoNg, xplinxe anopaltntn 1 extéreon plog CFD avdiuong
¢ HECO ETUNVEWOTG TOU HOVTEAOL TOGO TNG 0P XS YEWHETELG 660 X AUTAG
Tou TEOoExLPE amd ToV ahYOELIUO aVTICTEOPOU YEWUETEIXOU GYEBLICUOY, TOWV
T Swdtxaoio Tng acpoduvaixric BM. ‘Olec ot avolboelg mpaypatomolinxoy
ue yeron tou emAlTny PUMA o omolog avantiydnxe oto Epyaothplo Ocpuixddy
Yrpofhounyavey tou EMIT ané ty MIITPB.

[a v yéveorn OAwV TV TASYUdTLY £YWVE Yprorn Tou Aoylouxol Fidelity
Pointwise (by Cadense), eve o tOmog toug eivon multiblock Sounuéva mhéyporto.
[Swadtepn Eugaon 66UNxe oTNny Tomohoyia YUEW Amd ToL TOLYUATA UE OXOTO TNV
xohOTEPN BUVOTY| AmOTUTWON TNG PONC OTIC TMEPLOYEC aUTES. )¢ oplaxéc GUV-
Ufxeg oty eloodo tednray Tor oAxd peyedn tng mieong xou g Vepuoxpaotug
xS xou 1) ywvio TNg porg, eve oty Ae€odo TéUNXe N oty mieon. To
wovtého TOpPne mou emAbinxe etvan to piog eiowone Spalart-Allmaras ywpic
TN XPHOT CUVORTHOEWY TOLYOU WG XOL YIo TIC CUYXEXPWEVES GUVITXEC PONC
o TAEypaTo gépouy Yy < 1. To toryduoto povielomotidnxay o odBotind,
EVO Yot TNV ahAnAenidpoom Tng o TadeRhc UE TNV XvNTH TTERUYWOT ETAEYUNXE,
1 TEYVIXT) Tou emmédou aviuine (mixing plane technique).



() HAéyua otadepns tteptywons. (b) IHAéyua kivntig nteplywong.

Yynpa 4:  Ta mAéypata tng otabepniis kar tng Kwntig mteplywons Tou
povofduov agovikod otpofilov.

Hopoxdter Topouotdloval eVOELXTIXG Tal TEBlA TwV OMXWDY VEQUOXRAGLOY, TLECEWY
xat tou oprduol Mach xadde xan évag ouyxevTpwTinde mivaxog YeTol Twv
TELOUOTIXGY OEBOUEVLY Xal TwV anoteheoudtwy Tou PUMA yio tic 600 nepin-
TOOELC (YewpeTplor oavapopdc ol TEOGUPUOCUET)).

Iocootwia Tocootada
Amoxdion Andxon
Meyedog Heopotixd [Pa] PUMA Avagopd [Pa] PUMA Tlpoocopuoopévn [Pa] - Avagopd %] Tlpooupuoopévn (%]
Do 1.585 x 10° 1.585 x 10° 1.585 x 107 0 0
Do 1.574 x 10° 1.565 x 10° 1.565 x 10° -0.575 -0.575
P 1.521 x 10° 1.580 x 10° 1.584 x 10° 3.833 3.977
j21 1.338 x 10° 1.381 x 10° 1.386 x 10° 3.164 3.463
P2 1.326 x 10° 1.327 x 10° 1.331 x 10° 0.093 0.37
D2 1.303 x 10° 1.303 x 10° 1.303 x 10° 0 0
1P = pro/pee 1.1941 1.1945 1.1881 0.030 0.034

ITivaxag 4: XUykpion twy nepapatikay kar aptdunTikdy Tipdy tng tieong oe
dudpopes Déoeis Tou aTpofilov yia TNy apx1KI) YEUETPIA Kal THY TPOOAPILOTUEYT).

‘Onwe gaivetan otov Hivaxa , o PUMA npofiénel Tic méoelc pofic xatd prxog
Tou oTadlou pe PNy axplBela. Tho cuyxexpyéva, dheg ol amoxhioelg, extog
ané autég otn Véon 1, etvor xdtw and 1%. ‘Ocov agopd v é£0bo tou otdtopa,
o PUMA unoextud ehappde TIC ATOAEIES TOGO GTNY OALXY| OGO XU GTY) GTUTIXY
mleon.  Avuté mbavétota e&nyelton and Ty undleon yoviehomoinong OTL Ta
TOLY WUATO TWV TTEPUYIWY TNe otadepr|c TTeplywaong eivan adtaBatixd. Emmiéoy,
1 omOXALOT LETAE) TNS aEy NS YEWUETElOGC (avacpopo’c) X0l TNC TEOCUQUOCUEVNC
elvo Wwaktepa pLxE).



Total Pressure [Pa]

Total Temperature [K]

(a) CFD Iledio Ohikcyv Ihéoewv. (b) CFD IIebio Ohikdv Oepprokpacicv.

Mach
0.5

Y

(c) CFD Iledio Apiduob Mach.

Yyxnpa 5: Ta media twrv ohikwy méoewv kar Deppokpaoicyy kalds kai Tov api-
Ouod Mach dnws avtd npoékvpay and tny CFD avdAvon.

Evowudtwon tng Ilpocapuoocuévng
[Tapapetponoinong otnv Acgoduvauixry BM

To mpwto Briua Yo v €vopdn Tou xUxhou BeATioTonolnong elvat 1 QoEUOYN
ToU ahyopliuou avTioTEOPOoU YEWUETEXO) GYEBLUCUOU, TEOXEWEVOU VO TPOO-



OLopto Tel 1) opy ) YEWUETELA avapopdic. TN GUVEYELY, ONULOURYELTOL TO UTOA-
oYL TIXG TAEYHA xou TparypatoToleiton 1 apyr tpocouoiwon CFD. To eno-
uevo PBriua ebvar o uTohoyiouOS TV TaEAYWYLY evacinoiuc. H pédodog mou
YENOUWOTOLETOL Yo TO OX0T6 AUTO Efval 1) GUVEYTC UEV0BOC, Uiar AmodoTiXY| dpe-
Nt TEY VX Tou a&LONOYEL TIC THEAYWMYOUS TNG CUVARETNONS XOGTOUC G
TEOC TIG UETUPANTES OYEDBLAOUOY UE UTOAOYLOTIXG %00 TOG aveldpTnTo and Tov
opriud TGV TV LETABANTOY. O dladixacieg emiluorg 1600 Tou TEMTELOVTOS
OGO %Al TOU GLVEYOUS AdVOVT TEOBAAUATOS TEAYHATOTOLOUVTOL Y PTCULOTIOLGV-
ta¢ T0 hoytopxod PUMA. Ou napdywyor evaicdnociag tng cuvdptnong xéo-
ToUg 6ToUC XOUBoug oplwy TNE aepoTouc LTOAOYIOVTOL YENOULOTOLOVTIS TOV
xavova oAueidag, oL@y pe TNV e€lonon:

8b,  Ox; 0b, = Oy; 6b, = Oz Oby,

(2)

[t Tov oxomd autd, avamtuydnxe Evag xwdwag Ye Ty ovououcio GRID_SENSIT-
IVITIES.exe oc C++, 0 onologc unoloyilel TIC AmoUTOUUEVES TP YOUC X0l
Tic emxowwvel otov PUMA péow evog xatdhinha popgomoinuévou opyeiou,
(OOTE VoL UTOPOLY Vol UTOAOYLGTOUV Ol Topdywyol evonodnciag Tne cuvdeTnong
%x60T0UG 6TOUG XOUPoug Tng agpotouns. Ta Toug umbroimoug xouPBoug, To
hoyouxd PUMA yenowomowel v teyvixr} tou Edactixod Méoou v va
UETAUPEREL TIC TTANPOPOPIES TeV Topay YWy evatodnotag Twv xOUPny oplewv Tng
OEQOTOURC OE OGAOUC TOUG UTOAOLTOUC.

Moéhic utohoyioTolv oL Topdywyol evaicUnoloc TNe cuVETNONE XOGTOUS YLl
Oloug Toug xOUPoug, EXTEAE(TOL 1) EVIUEQPWOY TWV UETABANTOV OYEdUOUOU,
1 Onuoupyior TG VEUG AEPOTOUNG XL 1) TROCUPUOYT| TOU TAEYUUTOS OTH VEO
yveouetplo. Ye autd T0 0Tddo amouteiton TeEpanTEPL eEwTERLXT ToREUPacT oTOV
PUMA mpoxeyévou va utohoyloTel 1 HETATOTIOT] TwV XOUBwY 0plwV Tou VEOU
mhéypatoc. T'a tov oxomd autéd extereiton Lovd o (Blog xwoixac, GRID_SENSIT-
IVITIES.exe . O x0wog autdg SwfBdlel Tic EVNUEpWPEVES UETABANTEC OYEDL-
aopol and éva apyeto elo6dou (designVars.dat), avoxotaoxeudlet T yewueTtpla
NG TEEYOUCUS UEQOTOUNC YPNOHOTOUWVTAS TV TROGUQUOCUEVT) TUPUUETEOTOM-
on umohoyilel TIC TUPUUOPPNOCELS TOV XOUBWY PETALY TNG dpytxAC XoL TNG
TEEYOUOUS DLUORPWOTG TN AEPOTOUNC.

- - dF

bpi1 =b, — B 1 — 3

k+1 k O (3)
O ypenowornolotyevog arybprduoc BM ebvan wa uédodoc Quasi-Newton yuo
meoBhAuaTa un yeouuxic Beitiotonolnone ue meploplopols.  Luyxexpluéva,
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yenoudomoteiton 1 uédodoc Sequential Least Squares Quadratic Programming
(SLSQP), n omola eqopudlel to oyfua BFGS yu tnyv mpocéyyion twyv deutépmy
TEAY Y WV.

Meieteg Agpoduvouixne BM

Ynuelo évaplng g acpoduvauixic BM anotéheoe 1 yewueTpla TG agpoTourg
TWY TTEPUYIWY XIVNTAS TTERLYMOTE Tou povofdiutou aovixol oTpolilou omwe
ouTY| TpocoeyYioTxe and Tov ahyoeLiuo avTiGTEOPOL YEWUETEIXOU CYEDLIO-
MOV ULaG %ot oUTY) OEV OLUPEREL ONUOVTIXG UE TNV CEYIXT, UEQCODUVOULXS %ol
YEWUETEX, OTw¢ amodelydnxe. T ) Pedtiotonoinon yenotwonotfinxe 1
ouveyfic ouluyTg uédodog u€ow tou Aoylouxold PUMA yia tny ehayiotonoinon
TWV ATWAELOY O Tileong, uTd ToV TEPLOPLOUS 1) AvNYHEVY ooy xodig
xou 1 ywviot e£660u g pohc vor unv petoAnhdy neplocdtepo and 0.1%. Emi-
Théov, o€ xde YeAETN emBARUNXAY BlapopeTixol YEwUETELXOL TEploploUol OTG
neptypdgovton otov Ilivaxa [ Téoo ta yewuetpind oo xon tor oprihuntind
amoteréopato napovatdlovton otov Ilivaxa .

Meiétn Avtuxewpevixry Ilepiopiopol Porc Tewpetpixol

Yuvdpetnon ITepropiopol
Al Elayiotonoinon  Avnyuévn Iogoyn & -
AnwAelwy Twvia EE660u
Ohunrc Tlteone
A2 Yradepo LE
A3 Towo Towo Ytodepo TE
A4 Ytadepd LE, TE
Ab Ytadepd LE, TE,

SS, PS

ITivaxag 5: Ta yapaktnpiotikd twy S1apopeTikdy HeAeTdy aepoduvauknig BM.
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Merétny A3
Bertiotoromuévn (kékkivo) yewpetpia.

(c)

Kai

(ume)

7

apxkry

Merétn A5
Beltiotonomuévn (kékkivo) yewpetpia.

(e)

(UTA€).

3

7

7

YxApe 6: BeAtiotonomuéres aepotopés (k6kkivo) yia OAeS TS UEAETES TUYKPL-
Tikd pe TNV apxIkn) yewpetpia
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Mehén

Andheiec Ol Tlieone [Pa]  Avnypévn Hapoyh [x1077] Twvia EZ680u Porc [rad]
Aoy, Bedt/vn  A[%]  Apywh Beht/vn  A[%]  Apywh Beht/vn  A[%]

Al
A2
A3
A4
A5

721.72  599.36 -17 5.280 5.285 -0.09 1.090 1.091  -0.09
721.72  599.95 -17 5.280 5.285 -0.09 1.090 1.091  -0.09
721.72  624.05 -13.6 5.280 5.282 -0.04 1.090 1.091  -0.09
721.72  626.54 -13.4 5.280 5.282 -0.04 1.090 1.091  -0.09
721.72  675.25 -6.5 5.280 5.275 -0.09 1.090 1.091  -0.09

ITivaxoag 6: XUykpion twv anoteeopdtwr tng aepoduvvauxric BM. To A[%]
ovpporiler Tny mooooTiaia andkAon and THY APXIKT) YEWUETPIA.

Yvprnepdouata xou [lpotdoeig yio

MeAhovTtixry Mehetn

T x0pLor GUUTERACUATA TTOLU TEOXVTTOLY U6 TNV TOEOVCN OLTAWUATIXY EPYATTaL
ebvor Tor e€X¢:

H npotewouevn yedodoroyio mapouetponolnong mapéyet uio opohn ovo-
TOEAC TUOT) TNG YEWUETEING TNG UEPOTOUN|C, DLUTNEMVTAS TUUTOYEOVA GUPY
oOVOEDT) PETOEY TwV 26 UETABANTOV GYEBLACUOD Xol TV QUOLXMY UEYE-
YOV, OTMWS 1) XOUTUAGTNTA, 1) 00T, TO TAYOC XoL Ol YWVIEC UETHA-
hou. Emmiéov, etvor Sroadéoiues pntéc avahuTIXES OOy WYOL TwV ONUEiwY
EAEYYOU WG TTPOG TIG UETUBANTEG OYEBLUCUOY, ETUTRETOVTAS TNV UTOTEAED-
MOTLX EQOQUOYT| oUTIOXEUTIXGY PEVODWY BeATioToTolNoTC.

H povodixdtntd tne mpoxOntel and T dlaxpitiny| oyedLo TIXT| TeOoEY-
YoM, xoTd TNV onola 1 aepoTOUT| YwelleTon ot TEVTE BlaxELITd TUAUATL
TN UECT YRUUUT XOUUTUAOTNTAC, TIC TAEUPES LToTiEoNe oL LTepTicong,
%xdG xou TIG TEPLOYES YUPW amd To ONUELN TEOOTITWONG XL EXPUYTIC.

Ye olUyxplon ue dAleg uedddoug TapaueTEoToiNoNG, ETLTEETEL TNV dUEDT
eTUBOAT) YEWUETRXOY TERLOPIOUMY YWEIC TNV avdryxn emiAuong TpdcVeTwy
UEQXOVY BLopopdV €ELOMOEMY, PE OTMOTEAEOUA T WPelworn Tne Tolu-
TAOXOTNTAG X0l TOU UTOAOYLO TiX0U X605 TouC. AUTH 1) BuvatdTrTa Elvan LOL-
aftepa onuovTixd yia o TTepUyta 6TEOPBIAWY, oo oTolo OPLOPEVES TERLO-

YEC TEETEL VoL TapoelvoLY aUeTIBANTES xoTd TN Sudipxelor TNng BeATioTonolnong

AOY® amoutHoeny POENG, SOUXNC AXEQUOTNTAS 1) SAAWY PUOLXGY TEPLOE-
LOUWY.

Metd tn Behtiotonolnon oy uotog, 1 TEoXUTTOUcH AEQOTOUY| UTopel va
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yiver ebxoha xatorvonTr, TUEEYOVTOC Lol SLUCUTTIXT XATAVONOT) TWV GA-
Aoy v oo Quod UeYEDT. Me autdv Tov TpdTOo BiveTon GTOV UNYavixo 1)
xatedduvon yio yehhovTixnd oyédia 1) uehéteg BeAtiotonolnong.

M puotnr| cuvéyela Tng epyaciog oyeTnd e TNV TEOTEWVOUEVT H€Y0d0 TapaueTeoTOiNoNG
Yo unopoloe va tepthapBdver Tic axolovieg xatevdivoelc:

o Egopuoyn Tng TpocupuooUEvne TUpUUETEOTONOTG OF TELOIC ToTa TEo3-
Moo H enéxtoon tng uedddou o toiodido tateg yewuetpleg Ya uropovoe
var ovolel VEEC BUVITOTNTEC GTO UEPOBLVOUIXO CYEDLIOUS, WBLiTEPR OF
TEPITTWOELS OOV TEETEL Vo TNEOVVTAL TOAUTAOXOL YEWUETEIXO! TEPLOE-
topol (TE.X. OlUTAENON NG XATUVOUNG Tyoug Ot Uia TTEPUYX 1) TUNUX
UEPOTOUNG YioL TN SopxY) axEpoLOTNTAL).

o Mehétn meofAnudteny avtic Toopou agpodUVIUIX0) GYEDICUOU YENOUIOTOLWY-
TAC TNV TEOTEWVOUEVT TapaueTeonoinon: H epapuoy| authc Tng mapauetponoinong
o€ TEOBAAUAT AVTIoTEOPOU dEEOBUVIULXOY CYEBLUCUOY, OE GUYOUAOUO
UE oLYXELTIXH ovEAUGT, EvavTl dAAwY UeVddmY mopaueTpomoinoneg, Yu
UToEoUGE Vo TNV XAHNEPMOEL G €Val AIOTIOTO X0l ATOTEAECUATING €0-

YOAElD YLoL TOV AVTIOTEOPO AEEOBUVAULXO GYEBLAGUO.

e YUVOLUOUOC TNG TPOTEWVOUEVNG TUPUUETEOTOIMONG UE GAAES UeVdBOUC:
H yeriomn evaAAoxTxmY TEYVIXOY TUPAUUETEOTOMONG XUTd TOUG oy tx00g
x0xhoug PehtioTonolnorng, axohovdoluevn and TNy TEOTEWVOUEVT HEY0d0
Yoo Aemtouept| pUiutoT, Yo unopoloe va emitay Ovel T dtadactia feAtiotonolnong,
draopahilovTag Tautéypova axdun uhnAotepng ToloTNTaC ACELS.
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