
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Gradient-based Multi-Objective Optimization, for
Discontinuous and 3D Pareto Fronts, with Applications in

Aerodynamics

Diploma Thesis

Eleftherios Kokalis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2024

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervi-
sor, Professor Kyriakos C. Giannakoglou, for entrusting me with the subject of my
Diploma Thesis. His guidance and support have been invaluable throughout this
journey. I am also profoundly appreciative of the time he dedicated to mentoring
me during both my Diploma Thesis and my semester project in Spring 2023.

I would like to extend my heartfelt gratitude to Dr. Varvara Asouti for the the-
oretical and technical discussions we have had over these months. Her eagerness
to help and willingness to address any inquiries I had have been truly invaluable.
Additionally, I would like to thank Dr. Andreas Margetis for his constant support
and suggestions for improvement, which were essential for completing this Thesis.

Last but not least, I would like to express my gratitude to my family and friends for
their support during my years at NTUA. I am particularly grateful to my partner,
Ellie, for standing by me and helping me overcome the challenges I faced throughout
these years.

2

4

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Gradient-based Multi-Objective Optimization, for
Discontinuous and 3D Pareto Fronts, with Applications in

Aerodynamics
Diploma Thesis

Eleftherios Kokalis
Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2024

Abstract

This Diploma Thesis presents a method for solving Multi Objective Optimization
(MOO) problems using Gradient-Based (GB) methods and tracking the Pareto front,
with applications in Computational Fluid Dynamics (CFD). The proposed method
efficiently tracks the Pareto front, starting from a random point or the baseline ge-
ometry. The corresponding software programmed in C++, can be applied to two or
three-objective optimization problems. Additionally, new algorithms are suggested
to address existing challenges in GB MOO, such as tracking discontinuous Pareto
fronts and three-objective Pareto fronts.

The method utilizes the Prediction-Correction scheme, as it can compute a number
of elite points at a specific range of values, with minimal cost. This method involves
two steps: the Go-To-Pareto Step, which computes an initial optimal point, and the
Move-on-Pareto Step, which continues by computing all the other non-dominated
points through the aforementioned Prediction-Correction scheme.

The Correction-step utilizes the Augmented Lagrangian Method (ALM) equipped
with Quasi Newton (Broyden–Fletcher–Goldfarb–Shanno, (BFGS) method), and
Steepest descent, modified to handle general equality and inequality constraints.
The Sequential Quadratic Programming (SQP) algorithm is also adapted, using
Quasi Newton methods to approximate (instead of exactly computing) the hessian
matrix, thus reducing computational cost in CFD applications. The accuracy of the
Prediction-step in SQP is improved by using the last hessian approximation from
the previous Correction-step.

The proposed method is applied in two mathematical applications and the compu-
tational cost and efficiency of the SQP and ALM algorithms are compared. Then,
the method is used to optimize the shape of an isolated airfoil, for two objectives.
The first derivatives of the flow-related objectives function(s) w.r.t. the design vari-
ables are computed using the continuous adjoint method by running the CFD code
PUMA, developed by Parallel CFD & Optimization Unit of the National Technical
University of Athens.

5

New ways to detect discontinuous Pareto fronts are proposed, linking the residuals
of the Karush Kuhn Tucker conditions of the Prediction-step to curvature change
of the front. In this way the prediction of discontinuous regions is enabled, for the
following target point to be tracked on the front. Welford’s online algorithm is used
to detect potential discontinuities. A method to solve problems with discontinuous
fronts is proposed, which is supported by three algorithms: Target-Objective jump,
Back-tracking, and Swap Target-Objective. The method is tested on three bench-
mark cases.

For three-objective problems, the Scan by-Layers algorithm is proposed, extending
the GB method by varying one target objective while keeping the other two constant.
The target points set are efficiently tracked as demonstrated in two benchmark prob-
lems.

Finally, a CFD application is presented, which optimizes the shape of the same
airfoil, for three aerodynamic objectives. The results of the Scan by-Layers algorithm
are compared with those of an Evolutionary Algorithm regarding quality of the front
and computational cost.

6

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Αιτιοκρατική Πολυκριτηριακή Βελτιστοποίηση, για

Ασυνεχή και 3Δ μέτωπα Pareto, με εφαρμογές στην
Αεροδυναμική

Διπλωματική Εργασία

Ελευθέριος Κοκάλης

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2024

Περίληψη

Η διπλωματική αυτή εργασία παρουσιάζει μια αιτιοκρατική μέθοδο που ανιχνεύει το

μέτωπο Pareto, επεκτείνοντάς την σε εφαρμογές CFD. Η μέθοδος ανιχνεύει αποτελε-
σματικά το μέτωπο Pareto, με "λογικό" υπολογιστικό κόστος, έχοντας ως αφετηρία
ένα τυχαίο σημείο ή αρχική γεωμετρία. Το σχετικό λογισμικό που προγραμματίστηκε

σε C++ επιλύει MOO προβλήματα δύο ή τριών στόχων. Επιπροσθέτως, προτείνονται
νέοι αλγόριθμοι για την αντιμετώπιση υπαρκτών προκλήσεων όπως κατά την ανίχνευση

ασυνεχών μετώπων Pareto, ή τη σάρωση μετώπων Pareto τριών στόχων.

Η μέθοδος που αναπτύσσεται χρησιμοποιεί το σχήμα Πρόβλεψης-Διόρθωσης, καθώς

μπορεί να υπολογίσει έναν αριθμό σημείων στο μέτωπο Pareto, για ένα συγκεκριμένο
εύρος τιμών, με ελάχιστο υπολογιστικό κόστος. Αυτή η μέθοδος περιλαμβάνει δύο

βήματα: το βήμα Go-to-Pareto, το οποίο εντοπίζει ένα αρχικό βέλτιστο σημείο, και το
βήμα Move-on-Pareto, το οποίο εντοπίζει τα υπόλοιπα μη-κυριαρχούμενα σημεία σα-
ρώνοντας το μέτωπο. Το τελευταίο είναι αυτό που εφαρμόζει το προαναφερθέν σχήμα

Πρόβλεψης-Διόρθωσης.

Το βήμα διόρθωσης χρησιμοποιεί τη μέθοδο ALM με την παραλλαγή της Quasi-
Newton μεθόδου (BFGS) και της απότομης καθόδου, τροποποιημένη για να χειρίζεται
περιορισμούς ισότητας και ανισότητας. Προσαρμόστηκε επίσης η SQP χρησιμοποι-
ώντας Quasi Newton μεθόδους για την εκτίμηση του εσσιανού μητρώου, μειώνοντας το
υπολογιστικό κόστος στις εφαρμογές CFD, καθώς αποφεύγεται ο ευθύς υπολογισμός
των δεύτερων παραγώγων. Επιπλέον, βελτιώθηκε η ακρίβεια του βήματος πρόβλεψης

στην SQP χρησιμοποιώντας την τελευταία προσέγγιση του εσσιανού από το προηγο-
ύμενο βήμα διόρθωσης.

Παρουσιάζονται δύο μαθηματικές εφαρμογές του λογισμικού και συγκρίνεται το υπο-

λογιστικό κόστος και η αποδοτικότητα των αλγορίθμων SQP και ALM. Στη συνέχεια,
παρουσιάζεται μία εφαρμογή CFD για τη βελτιστοποίηση σχήματος μιας μεμονωμένης
αεροτομής, με δύο στόχους. Οι πρώτοι παράγωγοι των αεροδυναμικών ποσοτήτων υπο-

λογίζονται μέσω της συνεχούς συζυγούς μεθόδου, με χρήση του λογισμικού επίλυσης

7

ροών (κώδικας PUMA) που αναπτύχθηκε από τη Μονάδα Παράλληλης Υπολογιστικής
Ρευστοδυναμικής & Βελτιστοποίησης του Εθνικού Μετσόβιου Πολυτεχνείου.

Στη συνέχεια, διατυπώνονται νέες προτάσεις για την ανίχνευση ασυνεχειών στα μέτωπα

Pareto, συσχετίζοντας τα υπόλοιπα (residuals) των συνθηκών Karush Kuhn Tucker,
μετά το βήμα της πρόβλεψης με αλλαγή της καμπυλότητας του μετώπου. Με αυτόν τον

τρόπο προβλέπονται περιοχές ασυνέχειας που περιλαμβάνουν το επόμενο σημείο του με-

τώπου. Επίσης, ενσωματώνεται ο στατιστικός online αλγόριθμος τουWelford για την
ανίχνευση ασυνεχειών. Προτείνεται, επιπλέον, μια μέθοδος αντιμετώπισης των ασυνε-

χειών που περιλαμβάνει τους αλγορίθμους: Target-Objective jump, Back-tracking και
Swap Target-Objective και δοκιμάζεται σε τρεις μαθηματικές εφαρμογές.

Ο αλγόριθμος Scan by-Layers επεκτείνει τη μέθοδο Πρόβλεψης-Διόρθωσης για προ-
βλήματα βελτιστοποίησης τριών στόχων, μεταβάλλοντας εναλλάξ τον ένα στόχο ενώ

οι δύο άλλοι διατηρούνται σταθεροί. Για τους στόχους που έχουν τεθεί, ανιχνεύονται

αποτελεσματικά τα σημεία του μετώπου μέσω αυτής της μεθόδου. Η ακρίβειά της επι-

κυρώνεται σε δύο ενδεικτικά προβλήματα αναφοράς.

Τέλος παρουσιάζεται μια εφαρμογή CFD που βελτιστοποιεί το σχήμα μιας μεμονωμένης
αεροτομής για τρεις αεροδυναμικούς στόχους. Τα αποτελέσματα του αλγορίθμου Scan
by-Layers παρατίθενται δίπλα σε αυτά ενός εξελικτικού αλγορίθμου, πραγματοποιώντας
συγκρίσεις ως προς την ποιότητα του μετώπου και το κόστος υπολογισμού.

Abbreviations

EA Evolutionary Algorithm

SOO Single Objective Optimization

MOO Multi Objective Optimization

GB Gradient-Based

ALM Augmented Lagrangian Method

CFD Computational Fluid Dynamics

EASY Evolutionary Algorithm SYstem

PCOpt Parallel CFD & Optimization unit

NTUA National Technical University of Athens

PUMA Parallel solver, for Unstructured grids,
for Multi-blade row computations, including Adjoint

SQP Sequential Quadratic Programming

EFS Equivalent Flow Solutions

KKT Karush Kuhn Tucker

BFGS Broyden–Fletcher–Goldfarb–Shanno

SR-1 Symmetric Ranking One

NURBS Non Uniform Rational B-Splines

DFP Davidon-Fletcher-Powell

ShpO Shape Optimization

BP Benchmark Problem

8

Contents

1 Introduction 13
1.1 Introduction to optimization theory 13
1.2 Categories of optimization methods 13

1.2.1 Line search methods . 14
1.3 Basic Terminology of MOO . 15

1.3.1 Introduction . 15
1.3.2 Mathematical definition, the concept of Non-Dominance . . . 15

1.4 Pareto Points Tracking . 17
1.5 Purpose of the Thesis . 17
1.6 Thesis Outline . 18

2 Constrained Optimization Methods 20
2.1 The KKT Conditions . 20
2.2 The SQP Algorithm . 21

2.2.1 The SQP Algorithm for equality constraints 21
2.2.2 Handling of Inequality Constraints Using SQP, (Active-Set

Method) . 22

3 Tracking the Pareto Front Using GB Methods 23
3.1 Introduction . 23
3.2 Pareto Tracking GB Method . 23

3.2.1 Tracking the Pareto Front . 23
3.2.2 Go-to-Pareto step . 23
3.2.3 Move-on-Pareto steps . 24
3.2.4 Prediction-Step . 24
3.2.5 Correction-Step . 25
3.2.6 Formulation of the Algorithm for Two Objectives 25

3.3 Mathematical Applications of the GB Method 26
3.3.1 BP 1: Bihn and Korn Problem 27
3.3.2 BP 2: Fonseca and Fleming Problem 30

4 Application of GB method in External Aerodynamic ShpO 33
4.1 Case Description . 33
4.2 Optimization without the CM Constraint 34
4.3 Optimization Constrained by CM=0 38

9

10 Contents

5 Tracking Discontinuous 2-D Pareto Fronts Using GB Methods 41
5.1 Introduction . 41

5.1.1 Applying a Pareto Filter . 42
5.2 A New Method to Detect Discontinuous Pareto Fronts 42
5.3 Computing Variance of KKT Residuals Sample 44

5.3.1 Applying Welford’s Algorithm, to calculate Variance of sample
of KKT Residuals . 44

5.3.2 Algorithm Formulation for Detecting Discontinuities 45
5.4 Proposed Method to Move-on Discontinuous Fronts 45

5.4.1 Target-Objective jump . 45
5.4.2 Swap Target-Objective . 47
5.4.3 Back-tracking . 47

5.5 Algorithm Formulation of the Tracking Method 49
5.6 Mathematical Applications, for Tracking Discontinuous Fronts 50

5.6.1 BP 3 . 50
5.6.2 BP 4 . 52
5.6.3 BP 5 . 57

5.7 Conclusions . 59

6 Tracking Three-Objective Pareto Fronts 60
6.1 Introduction . 60
6.2 Tracking the 3D Pareto front (Scan by-Layer Algorithm) 60

6.2.1 Formulating the Problem . 60
6.2.2 Scan by-Layers . 61
6.2.3 Precise Tracking of the 3D Pareto’s front Border 63
6.2.4 The Scan by-Layer algorithm 64
6.2.5 BP 6 . 64
6.2.6 BP 7 . 66

6.3 Conclusions . 68

7 Three-Objective CFD Application 69
7.1 Introduction . 69
7.2 Cruise and Take-Off Airflow Conditions 69
7.3 Scan by-Layers Algorithm Initialization 69
7.4 Results . 72

8 Summary and Future Work 75
8.1 Summary . 75
8.2 Conclusions . 77
8.3 Proposals for Future Work . 78

Appendix A 80
Weak and Strong Dominance . 80

Appendix B 82
Augmented Lagrangian Method (ALM) . 82

ALM Algorithm for Equality Constraints 82
Generalized ALM Algorithm . 83

11 Contents

Appendix C 85
The implicit function theorem . 85
Applying the Implicit Function Theorem, to Track the Pareto Front 85

Chapter 1

Introduction

1.1 Introduction to optimization theory
Optimization is the process of finding the best possible solution under a set of given
circumstances. Since its development, optimization theory has been used in all
engineering branches as a method to minimize costs and effort of a certain proce-
dure, or maximize the desired output and performance of a product. As a branch
of mathematics, optimization is concerned with finding a set of design variables
x⃗ : {x1, x2, . . . , xn} that maximize or minimize an objective function f . Given that
maximizing f is equivalent to minimizing −f , it has been ’de facto’ established (with-
out loss of generality) that optimization stands for minimization.

In aeronautical engineering, optimization is concerned with the minimization of drag
of an airfoil or an airplane, the maximization of the corresponding lift, etc. In me-
chanical and aeronautical engineering problems a set of constraints is often imposed
at the desired solution point, and this increases the complexity of the optimization
problem.

Optimization methods can be categorized based on different criteria. They are
distinguished depending on the imposition or not of constraints (Constrained and
Unconstrained Optimization), the use of one or many targets (Single Objective Opti-
mization (SOO), Multi Objective Optimization (MOO)), or the type of method used
to find the target set of design variables (Stochastic Methods and Gradient-Based
Methods (GB)). In the following section, the different categories of optimization
methods are briefly discussed.

1.2 Categories of optimization methods
A popular distinction among optimization methods is that between gradient-based
(GB) and stochastic methods:

A GB optimization method makes use of the derivatives of the objective function.
The most significant advantage of such methods is that the optimization converges
faster and can efficiently handle a large number of design variables, while retaining
minimal computation cost. Nonetheless, GB methods have the major downside of

13

14 1.2. Categories of optimization methods

occasionally converging to a local extremum.

Stochastic optimization algorithms are generally more easily adaptable to different
optimization problems, in comparison to their counterparts, [11]. They deal with
the search of the optimal solution utilizing randomized sets of design variables. The
major advantage of stochastic algorithms is that they can easily be programmed and
always converge to the global minimum of the objective function, if a great number
of function calls is allowed. On the other hand, they tend to perform poorly with
a great number of design variables and they, generally, converge in a much slower
rate compared to GB methods, (even if assisted by surrogate evaluation models).

1.2.1 Line search methods
Line Search methods are a class of iterative GB methods that update in each step
the current set design of variables x⃗k, that approaches the optimal solution, by a
vector search direction p⃗ k, multiplied by a coefficient ηk controlling the step size of
each update.

Steepest descent

Steepest Descent is one of the most popular Line Search methods that, at a given
iteration k of the optimization process, uses as search direction p⃗ k, the opposite to
the local gradient of the objective function F(x⃗ k). This can be expressed as:

p⃗ k = −∇F (x⃗ k) (1.1)

The design variables x⃗ k+1 at each step of the method are obtained by:

x⃗ k+1 = x⃗ k + ηkp⃗ k (1.2)

Quasi Newton methods

Another class of Line Search Methods is that of Quasi-Newton methods. These
methods approximate the hessian matrix, by updating an initial approximation of
it. The approximated hessian is symbolized as Bk for the rest of the section, while
Hk represents the inverse of the approximated hessian matrix. The effectiveness
of Quasi-Newton methods largely depends on the accuracy of the initial hessian
matrix. They are known for their rapid convergence rate and robustness when the
initial point is close to the sought optimal solution.

The hessian of F (x⃗k) is approximated using the Taylor expansion of F (x⃗k + p⃗ k),
which leads to the following expression (secant method), [11]:

∇2F (x⃗k+1)(x⃗k+1 − x⃗k) ≈ ∇F (x⃗k+1)−∇F (x⃗k) (1.3)

The following terms can be defined:

s⃗ k = x⃗k+1 − x⃗k

y⃗ k = ∇F (x⃗k+1)−∇F (x⃗k)
(1.4)

15 1.3. Basic Terminology of MOO

the most popular Quasi-Newton methods are Symmetric Ranking-One (SR-1) and
Broyden–Fletcher–Goldfarb–Shanno (BFGS) methods, which are formulated as:

1. SR-1 method:

Bk+1 = Bk + (y⃗ k −Bks⃗ k)(y⃗ k −Bks⃗ k)T

(y⃗ k −Bks⃗ k)T s⃗ k
(1.5)

2. BFGS method:

Bk+1 = Bk + y⃗ k(y⃗ k)T

(y⃗ k)T s⃗ k
− Bks⃗ k(Bks⃗ k)T

(s⃗ k)T Bks⃗ k
(1.6)

Both methods require inverting the matrix Bk+1, after each iteration in order to
compute its inverse Hk+1. The search direction p⃗ k is then defined as:

p⃗k = −Hk · ∇F (x⃗k) (1.7)

The update of the inverse hessian matrix Hk+1 can also be approximated, without
inverting the Bk+1 matrix (DFP formula), as:

Hk+1 = (I − ρks⃗ ky⃗ kT)Hk(I − ρky⃗ ks⃗ kT) + ρks⃗ k(s⃗ k)T (1.8)

where:
ρk+1 = 1

(y⃗ k)T s⃗ k
(1.9)

In case its value is smaller than a predetermined threshold, the optimization skips
the update step of the hessian (Bk), retaining its current values.

1.3 Basic Terminology of MOO

1.3.1 Introduction
Another distinction between different types of optimization methods is that between
SOO and MOO. SOO methods deal with the optimization of a single objective
function, for a single objective. SOO methods can also be applied to multi-objective
problems, as long as the objectives are formulated into a single objective function,
likely using weights. MOO methods are concerned with the optimization of more
than one objective functions or the components of an objective vector function. The
optimal (non-dominated) solutions in the multi-dimensional objective space form
the Pareto front or front of non-dominated solutions.

1.3.2 Mathematical definition, the concept of Non-Dominance
MOO methods are recently increasing in popularity, due to the fact that they can
compute a set of solutions that offers trade-offs among contradicting objectives.
MOO problems are formulated as:

min f⃗(x⃗) = min


f1(

→
x)

f2(
→
x)

...
fm(→

x)

 (1.10)

16 1.3. Basic Terminology of MOO

subject to the following constraints:

hj(x⃗) = 0, for j = 1, . . . , Mh

gi(x⃗) ≤ 0, for i = 1, . . . , Mg

Where f : Rn → Rm, g : Rn → RMg , and h : Rn → RMh are all sufficiently differ-
entiable functions. The feasible solutions set is denoted as: D := {x⃗ ∈ Rn | h(x⃗) =
0, g(x⃗) ≤ 0}

The Pareto front represents the optimal solutions for MOO problems and, with two
objectives is formed by a number of discrete points that tend to form a continuous
or discontinuous curve. The curve can either be convex or non-convex; different
approaches to compute the front have been formulated.

Another integral concept associated with the Pareto front is that of non-dominance,
which refers to points in the objective space that are not dominated by other points.
Mathematically, this can be expressed as:

fi(x⃗ 1) ≤ fi(x⃗ 2),∀i ∈ [1, m]
(1.11)

Provided that, for at least one objective function k, k ∈ [1, m]

fk(x⃗ 1) < fk(x⃗ 2) (1.12)

where x⃗ 1 is the set of design variables that corresponds to the optimal, non-dominated
solution, also called "Pareto Optimal", and x⃗ 2 represents the design variables of the
dominated value of f .

In Figure 1.1, gray points are some dominated solutions by the Pareto front, from
which horizontal and vertical lines are drawn, connecting each point with the hori-
zontal and vertical axis, respectively. The set of points included within the square
that is formed from the two perpendicular lines, represents all the solutions that
dominate this point.

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10

f2

f1

Non�dominated front
Dominated points

Figure 1.1: Pareto front, of a (min f1, min f2) problem, with non-dominated points
shown in red and dominated solutions shown in gray.

17 1.4. Pareto Points Tracking

From Figure 1.1, it is noted that any point could be Pareto-optimal, if and only if
there are no other points inside the area defined by the vertical and horizontal lines.
The horizontal and vertical lines at an optimal point would invert their direction,
to include all solutions that are dominated by that point.

1.4 Pareto Points Tracking
GB Pareto tracking strategies aim at moving from one Pareto point to a neighbour-
ing one by taking into account the local front curvature. Such strategies require the
a priori input of a target step and of an initial Pareto point, in order to proceed to
tracking the front.

A GB Pareto tracking scheme is that of the Prediction-Correction, [1]. The
Prediction-step offers an initial approximation of the new Pareto point. The
Correction-step consists of computing the exact optimal solution of the MOO
problem for the target set. Research on the Prediction-Correction scheme and its
application in CFD has already been performed in [22], [21], [8], [13], but there are
still open areas of research.

An important challenge is that of reducing the computational cost of the scheme
in CFD optimization. To this end, alternative and less computationally intense
optimization methods have to be utilized. Another issue is that of tracking dis-
continuous (2D) Pareto fronts. Discontinuities in Pareto fronts can arise due to
constraints imposed on either f1 or f2 over a specific interval, or from changes in the
local curvature of the front. These factors result in regions where solutions are either
non-feasible or dominated. The aforementioned works have addressed the need to
extend the GB method for three-objective problems or an even higher dimension.

1.5 Purpose of the Thesis
The purpose of this Diploma Thesis is to extend the Prediction-Correction method
for solving MOO problems and tracking the Pareto Front, and demonstrate its use
in CFD applications. The necessary software was programmed in C++. This thesis
is an extension of research presented by, [22], [21], [8], [13]. The following novel
contributions are made:

• The SQP algorithm is integrated into the Correction-step of the Prediction-
Correction scheme on par with the ALM, that was used in previous research
for solving equality and inequality constrained problems. A comparison of the
two methods in terms of their computational cost is made.

• A method to detect and track discontinuous Pareto fronts is proposed. This
method is integrated into the software and tested on three mathematical
Benchmark Problems, (BPs).

• An algorithm (Scan by-Layers) is formulated for expanding the GB method to
tracking 3D Pareto fronts, at a low computational cost. The Scan by-Layers
algorithm is applied to two mathematical problems and a CFD three-objective
ShpO application of an isolated airfoil, successfully tracking the Pareto front.

18 1.6. Thesis Outline

1.6 Thesis Outline
The Thesis layout is organised as following:

Chapter 2: A brief introduction to constrained GB optimization methods is
made. After the Karush Kuhn Tucker (KKT) conditions are presented, the
Sequential Quadratic Programming (SQP) method is introduced for both equality
and inequality constraints.

Chapter 3: This chapter lays the groundwork for the GB method used
throughout the thesis. After introducing the Go-to-Pareto and Move-on-Pareto
steps, which track an initial point and the front and move along it respectively, the
Prediction-step and Correction-step are introduced and analyzed. The GB method
is applied in two mathematical problems and its effectiviness in tracking the Pareto
fronts is assessed. The ALM and SQP variants of the Correction-step are both used
and their computational cost is compared.

Chapter 4: The GB method is used for the shape optimization (ShpO) of
an isolated airfoil. The flow around the airfoil is inviscid, and the results of the GB
method are compared to those of EASY, [12]. A variant of this problem constrained
zero-pitch coefficient CM is also optimized and presented.

Chapter 5: New methods are proposed to tackle challenges when tracking
discontinuous Pareto fronts. A method to detect discontinuities is suggested based
on the residuals of the KKT conditions of the Prediction-step. The algorithms of
Target objective jump, Back-tracking and Swap Target-Objective are combined,
constituting a method to track discontinuous fronts. Three mathematical applica-
tions of the methods are presented, investigating the effectiveness of the algorithms
to detect discontinuities and track discontinuous fronts.

Chapter 6: Methods to track three-objective MOO problems are explored
leading to the Scan by-Layers algorithm developed in this Diploma Thesis. This
algorithm is applied in two mathematical BPs.

Chapter 7: The Scan by-Layers three-objective optimization algorithm is
applied to a variant of the airfoil ShpO problem discussed in Chapter 5, with the
third objective being the maximization of CL at take-off conditions. The results of
the GB algorithm optimization are, then, compared with those of EASY.

Chapter 8: This chapter presents the conclusions drawn from the research
performed in the thesis, along with suggestions for future work.

Appendix A: The distinction between the concept of weak and strong dominance
is discussed and made clear in Pareto fronts.

Appendix B: The Augmented Lagrangian method is presented.

Appendix C: The implicit function theorem is defined and applied to per-

19 1.6. Thesis Outline

form the Prediction-step.

Chapter 2

Constrained Optimization
Methods

2.1 The KKT Conditions
When considering equality and inequality constraints, the generalized constrained
optimization problem is:

Minimize f(x⃗)
subject to gi(x⃗) ≤ 0, i = 1, 2, . . . , Mg

hj(x⃗) = 0, j = 1, 2, . . . , Mh

To take constraints into account, the concept of the Lagrange function is introduced,
which for Mh equality and Mg inequality constraints takes the form:

L(x⃗, λ⃗, µ⃗) = f(x⃗)−
Mh∑
j=1

λjhj(x⃗)−
Mg∑
i=1

µigi(x⃗) (2.1)

Here, λj and µi denote the scaling coefficients of the equality and inequality con-
straints, respectively. These coefficients are used to penalize the objective function
when the constraints are violated. λj, µi are also referred to as Lagrange multipliers.

In a minimization problem, two necessary conditions that must be met by the solu-
tion x∗ are the stationarity of the first gradient w.r.t. x⃗ and the feasibility, (primal
and dual) of constraints:

∇L(x∗, λ∗
j , µ∗

i) = 0. (2.2)
hj(x∗) = 0. (2.3)
gi(x∗) ≤ 0. (2.4)

µ∗
i ≤ 0. (2.5)

Furthermore, the first-order optimality conditions must account for the impact of
active inequality constraints at the optimal solution, while disregarding the impact
of inactive constraints (slackness condition). Thus, an additional condition is intro-
duced:

λ∗
jhj(x∗) = 0. (2.6)

20

21 2.2. The SQP Algorithm

Eqs. (2.2), (2.3), (2.4), (2.5) and (2.6) are necessary conditions that must be satisfied
by the optimal solution x∗, λ∗

j , µ∗
i , and are known as the Karush-Kuhn-Tucker

(KKT) conditions.

2.2 The SQP Algorithm
The SQP method algorithm is one of the most robust and efficient iterative methods
for solving constrained optimization problems. It works by decomposing the original
nonlinear problem into a series of quadratic sub-problems, which are independently
solved in place of the original problem. The algorithm can be used for solving
problems with equality and inequality constraints, [6].

2.2.1 The SQP Algorithm for equality constraints
The first subproblem is defined by the second-order Taylor expansion of the objective
function f around the current iterate x⃗k. It involves minimizing a quadratic function
of the step ∆x⃗, which approximates the change in the objective function near x⃗k. If
equality constraints are applied, they are also expanded around x⃗k using a first-order
Taylor expansion. Thus, the problem is formulated as follows:

min
∆x⃗

f(x⃗k) + (∇f(x⃗k))T ∆x⃗ + 1
2∆x⃗T Hxx∆x⃗

subject to h(x⃗k) + J∆x⃗ = 0 (2.7)

In order to satisfy the KKT conditions, eqs. (2.7) are formulated as:

∇2
xxL(x⃗k, λ⃗k)∆x⃗ +∇f(x⃗k)− JT λ⃗k = 0, (2.8)

J∆x⃗ + h(x⃗k) = 0
where f(x⃗k) is the objective function at the current iteration x⃗k while term Hxx

notates its hessian. The Jacobian matrix of constraints, denoted by J, is defined as:

JT = [∇h1(x⃗k),∇h2(x⃗k), . . . ,∇hMh
(x⃗k)] (2.9)

Eq. (2.8) can be cast in a matrix form, thus forming the Jacobian of the quadratic
sub-problem at iteration k as:[

∇2
xxL(x⃗k, λ⃗k) −JT

k

Jk 0

] [
∆x⃗

λ⃗k+1

]
=
[
−∇f(x⃗k)
−h(x⃗k)

]
(2.10)

The dimension of Jacobian matrix is [n + Mh×n + Mh]. The matrix system can be
solved by using any iterative method. For the purposes of this thesis, the Newton
method is used in order to compute the perturbations vector P :

P =
[

∆x⃗

λ⃗k+1

]

After each iteration, the design variables and the hessian matrix ∇2
xxL(x⃗k, λ⃗k) are

updated. It is worth noting that this formulation of the quadratic sub-problem allows
for the direct computation of λ⃗k+1, while x⃗k+1 at the next iteration is updated as:

x⃗k+1 = x⃗k + ∆x (2.11)

22 2.2. The SQP Algorithm

The hessian is approximately updated using Quasi-Newton methods (BFGS, SR-
1). These methods update only positive definite symmetric matrices. Hence,
∇2

xxL(x⃗k, λ⃗k) is required to possess these characteristics which help avoiding a non-
singular solution vector P for the system in eq. (2.10).

2.2.2 Handling of Inequality Constraints Using SQP,
(Active-Set Method)

The active-set method is an algorithm that identifies which inequality constraints
are equal to zero at the optimal solution (x∗, λ∗). These active constraints are then
treated as equalities, transforming the original problem with inequality constraints
into a simpler subproblem consisting solely of equality constraints. During iteration
k of the SQP algorithm, inequality constraints are classified as either active or
inactive:

Active := {i ∈ {1, . . . , Mg} : gi(x⃗k) ≥ 0} (2.11)
Inactive := {i ∈ {1, . . . , Mg} : gi(x⃗k) < 0} (2.12)

If a set of inequality constraints is determined to be inactive at iteration k, they are
not minimized in eq. (2.1) and are thus disregarded from the Lagrangian for the
current iteration. However, these constraints can be re-activated in a subsequent
iteration if eq. (2.11) holds true for them. Therefore, only the active inequality
constraints are considered in eq. (2.1), denoted as gi(x⃗k).

The algorithm of active-set method is thus formulated as:

Algorithm 1 Active-set method, SQP Algorithm
Require: Choose an initial pair (x⃗s0, λ⃗0), choose a convergence tolerance ϵ.
Ensure: Solution (x∗, λ∗)

1: Set k ← 0
2: Set convergence criteria: ∆xk < ϵ
3: while convergence criteria not met do
4: Estimate the Active-set of constraints: Jineqcoeff∆x⃗k + g(x⃗k) ≥ 0 or g(x⃗k) ≥ 0
5: Consider active inequality constraints into, eq. (2.1), as ∑Mg

i=1 µigi(x⃗).
6: Compute f(x⃗k), ∇f(x⃗k), ∇2

xxL(x⃗k, λ⃗k), h(x⃗k), and Jk

7: Solve eq.(2.10) to get P
8: Update design variables x⃗k+1 ← x⃗k + ∆x⃗k

9: Obtain λ⃗k+1 from P
10: if covergence criteria met then
11: (x∗, λ∗)← (x⃗k+1, λ⃗k+1)
12: stop
13: end if
14: Update the hessian matrix ∇2

xxL(x⃗k, λ⃗k) using BFGS or SR-1
15: k ← k + 1
16: end while

The active-set method is utilized in the applications presented in the next chapters
of the thesis, when constrained optimization problems are solved.

Chapter 3

Tracking the Pareto Front Using
GB Methods

3.1 Introduction
The basic layout for MOO problems has been presented in section 1.3. In this
Diploma Thesis, the GB method developed uses the "Prediction-Correction"
scheme, [1].

The MOO problem can be formulated using the Lagrangian function. In order to
track the set of Pareto points for a problem with Mt objectives, f1 is minimized
and the rest of the Mt -1 objectives are treated as additional equality constraints
that must be met at the optimal solution: (fk− f̂k) = 0. Therefore, the Lagrangian
function becomes:

L(x⃗, λ⃗f , λ⃗h, µ⃗) = f1(x⃗)−
Mt∑
k=2

λfk
(fk − f̂k)−

Mh∑
j=1

λhj
hj(x⃗)−

Mg∑
i=1

µigi(x⃗) (3.1)

3.2 Pareto Tracking GB Method

3.2.1 Tracking the Pareto Front
Tracking the Pareto front, given an initial non-optimal point consists of locating a
first point of the front (Go-to-Pareto step) and moving along the front by tracking
neighbouring points (Move-on-Pareto step). In a CFD MOO problem, the baseline
geometry can be provided as input to the algorithm, or alternatively an initial Pareto
point, in which case, the Go-to-Pareto step is unnecessary. The main steps of the
algorithm are outlined below.

3.2.2 Go-to-Pareto step
The Go-to-Pareto Step is applied, when an initial set of design variables x⃗ is provided
as input to the problem and, thus, an initial Pareto point has to be found. The first
Pareto Point can be found by using the weighted sum method, which tracks the

23

24 3.2. Pareto Tracking GB Method

point for either convex or non-convex Pareto fronts and is formulated as:

min
x∈D

f(x⃗) = w⃗ · f⃗(x⃗) =
M∑

i=1
wifi(x⃗) (3.2)

By solving eq. (3.2) w.r.t. either for w1=0 or w2=0, in two-objective problems, the
first and last points at the edge of the Pareto front can be tracked. An alternative
way is treating the Go-to-Pareto step as an initial Correction-step, and thus opti-
mizing eq. (3.1), by using SQP or ALM. In the following applications of the Thesis,
the latter approach is used.

3.2.3 Move-on-Pareto steps
If the initial Pareto point is provided as input to the method or the Go-to-Pareto step
has been completed, the Move-on-Pareto steps are executed consecutively in order
to track the Pareto front. This is achieved by selecting an appropriate target f̂k after
a Pareto point has been tracked and perform a Prediction-step which provides an
initial approximation of optimal design variables and Lagrangian multipliers. Then,
the Correction-step allows for the precise identification of optimal Pareto points. In
both steps, the Lagrangian function eq. (3.1) is used to model the MOO problem.

3.2.4 Prediction-Step
The Prediction-step approximates the optimal solution at the selected target f̂k.
This is realized by expanding expressions, x∗ = x∗(fk), λ∗ = λ∗(fk) and µ∗ = µ∗(fk),
which are collectively denoted with y⃗ ∗ = h(fk), as first-order Taylor series around
the target f̂k. Therefore, y⃗ ∗

i+1 is approximated as:

y⃗ ∗
predicted,i+1 = y⃗ ∗

i + ∂h⃗

∂f̂k

δf̂k (3.3)

z⃗ =


f̂2
...

f̂Mt

 , y⃗ =


x⃗

λ⃗f

λ⃗h

µ⃗

 , H(z⃗, y⃗) =


∇L(x⃗, λ⃗f , λ⃗h, µ⃗)

fk(x⃗)− f̂k

h(x⃗)
g(x⃗)

 (3.4)

At an optimal solution x∗, matrix H is cast from KKT conditions, specifically eqs.
(2.2), (2.3), (2.4) and Mt-1 equations, (fk − f̂k). To compute the derivatives ∂h⃗

∂
⃗̂
fk

, H

is differentiated w.r.t. f̂k, leading to:

∂H

∂
⃗̂
fk

+ ∂H

∂y⃗

∂h⃗

∂
⃗̂
fk

= 0 (3.5)

Given that ∂H

∂
⃗̂
fk

is zero for eqs. (2.2),(2.3), (2.4) and -I for ∂(fk−f̂k)
∂

⃗̂
fk

, the derivatives
∂h⃗

∂
⃗̂
fk

can be obtained by reformulating eq.(3.5) as:

∂H

∂y⃗

∂h⃗

∂
⃗̂
fk

=

B︷ ︸︸ ︷[
0⃗
−I

]
(3.6)

25 3.2. Pareto Tracking GB Method

By applying similar reasoning, derivatives ∂h⃗

∂λ⃗k
are computed.

An alternative way to compute ∂h⃗

∂
⃗̂
fk

, ∂h⃗

∂λ⃗k
is by applying the implicit function theorem

to y∗ = h(f̂k). This method was derived by O. Schmidt and V. Schulz and is
presented in Appendix C, [19].

For two-objective problems, the next optimal point x∗ is approximated from eq.(3.3)
as:

x∗
predicted,i+1 = xi + ∂x⃗

∂f̂2
δf̂2 (3.7)

3.2.5 Correction-Step
The Correction-step follows the Prediction-Step to retrieve the Pareto point, corre-
sponding to the f̂k value. Thus, the Correction-step is formulated in accordance to
the minimization problem set in eqs. (3.1).

f1 must be minimized and fk − f̂k is treated as a constraint that must be met at
the optimal solution. In a two-objective problem, the target is set as f̂2 and with
no other constraints imposed, the Correction-step is:

L(x⃗, λ⃗fk
) = f1(x⃗)− λf2(f2(x⃗)− f̂2) (3.8)

The Correction-step, can be implemented by either the ALM or the SQP method
as described in Appendix B and section 2.2.

3.2.6 Formulation of the Algorithm for Two Objectives
The algorithm of the GB method will be first formulated, for 2 objectives, which
entails one target constraint f̂2 . The two-objectives optimization algorithm reads as:

Algorithm 2 GB method’s Algorithm, in a two-objective optimization problem
Require: Initial Point coordinates x⃗so, SQP initialization, Variable Boundaries,

Initial f̂2INITIAL and δf̂2, number of Elite Pareto Points
1: Counter of Elite Points, im ← 0
2: Go-to-Pareto step Applied:
3: | Solve Optimization Problem, eq. (3.8) → x⃗1

∗

4: Save First Pareto Point
5: while Counter of Elite Points < nElite do
6: Counter of Elite Points, im ← im + 1
7: Move-on-Pareto step Applied:
8: | Estimate f̂2,i+1 ← f̂2,i+1 + δf̂2
9: | Prediction-step, eq. (3.7) → x⃗ ∗

i+1,predicted
10: | Correction-step, solve eq. (3.8) → x⃗ ∗

i+1
11: | Save Correction-Step Pareto point
12: end while

26 3.3. Mathematical Applications of the GB Method

A visual representation of the Prediction-Correction Method is shown in Figure 3.2.

0

10

20

30

40

50

0 20 40 60 80 100

f2

f1

Prediction points
Correction Pareto points

M
ove-on-Pareto

Initial Geometry

Go-to-Pareto

Figure 3.1: Visualization of the GB Method for a two-objective optimization prob-
lem. Blue arrows demonstrate the gaps between each Correction point and the
corresponding Prediction point.

36

38

40

42

44

46

48

50

0 0.5 1 1.5 2 2.5 3 3.5

f2

f1

Prediction points

Correction Pareto points

Prediction-Step
Correction-Step

Figure 3.2: Visualization of the Prediction-Correction scheme in a two-objective
optimization problem.

3.3 Mathematical Applications of the GB
Method

In the remaining of this chapter, the GB method will be applied to track the Pareto
front for a group of mathematical BPs. The efficiency of this method will be assessed

27 3.3. Mathematical Applications of the GB Method

when equality and inequality constraints are also set.

3.3.1 BP 1: Bihn and Korn Problem
The first mathematical BP, for assessing the efficiency of the GB method is the Bihn
and Korn problem, [20] which is defined as following:

Minimize: f1(x1, x2) = 4x2
1 + 4x2

2,

f2(x1, x2) = (x1 − 5)2 + (x2 − 5)2,
(3.9)

The problem is subject to the following inequality constraints:

g1,2(x1, x2) = x1 ∈ [0, 5]
g3,4(x1, x2) = x2 ∈ [0, 3]

g5(x1, x2) = (x1 − 5)2 + x2
2 ≤ 25,

g6(x1, x2) = (x1 − 8)2 + (x2 + 3)2 ≥ 7.7.

(3.10)

The first derivatives ∇f1 and ∇f2 of the function are analytically computed as:

∂f1

∂x1
= 8x1,

∂f1

∂x2
= 8x2, (3.11)

∂f2

∂x1
= 2(x1 − 5), ∂f2

∂x2
= 2(x2 − 5). (3.12)

Both the ALM and the SQP method are used to track the Pareto front. In
both cases, all inequality constraints defined in eqs. (3.10) are treated with the
generalized ALM Algorithm as defined in Appendix B and the active-set SQP
method in subsection 2.2.2.

After retrieving the initial Pareto point, (Go-to-Pareto Step) at (f1, f̂2INITIAL)=
(0.0, 50.0) by minimizing f1, the Pareto front is tracked using the Move-on-Pareto
step. The initialization of algorithm parameters set to track the Pareto Front is
displayed in Table 1.

Parameter Value
δf̂2 -2.5
Hessian Diagonals 1.0

Table 1: BP 1: Initialization of Optimization Parameters.

By minimizing f2, the last extreme point on the Pareto front can be tracked; how-
ever, this incurs additional computational cost, as a second "Go-to-Pareto" step must
be solved. The optimization process terminates when the optimal points between
the two extreme points of the front are identified for the user-defined step δf̂2. Nev-
ertheless, in all case studies of this Diploma Thesis, the last value of f̂2 to be tracked
and the maximum number of elite points are user-defined, as the Pareto fronts are
known a priori from the results provided by EASY. For BP 1 a total of 19 Pareto
points are tracked.

28 3.3. Mathematical Applications of the GB Method

For the ALM method:

The Augmented Lagrangian function is defined as following:

L(x⃗, λ⃗f , λ⃗h, µ⃗) = f1(x⃗)− λf2(f2 − f̂2)−
Mg∑
i=1

µjgj(x⃗) (3.13)

where the set of λk or µk and ωk selected to initialize the algorithm is displayed in
Table 2.

λk Value ωk Value
λ1 50.0 ω1 500.0
λ2 0.0 ω2 50000.0
λ3 0.0 ω3 50000.0
λ4 0.0 ω4 500.0
λ5 0.0 ω5 0.5
λ6 0.0 ω6 0.5

Table 2: BP 1: Initialization Parameters for the ALM applied to the Correction-
step.

The update of the design variables x⃗ using the ALM is performed by using BFGS.
The hessian of the Prediction-Step ∇2

xxL in eqs. (3.4), (3.5) is approximated using
the SR-1 method, in which case S and Y are computed as:

Si = x⃗i − x⃗i,prediction , Yi = ∇LCorrection-step −∇LPrediction-step (3.14)

The Pareto Front obtained by applying the GB method, with the ALM used in the
Correction-step is displayed in Figure 3.3.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 20 40 60 80 100 120

f2

f1

Prediction points
Correction Pareto points

Figure 3.3: BP 1: Pareto points using the ALM algorithm in the Correction-step.

For the SQP method:
For the application of the SQP method, the second derivatives of eq. (3.9) are
computed by the SR-1 method, Figure 3.4.

29 3.3. Mathematical Applications of the GB Method

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

f2

f1

Prediction points
Correction Pareto points

Figure 3.4: BP 1: Pareto points using the SQP algorithm in the Correction-step,
with SR-1 to approximate the hessian.

Optimization using the Exact Hessian:
The SQP method can also be applied in such a mathematical problem in which all
derivatives of any order can be computed analytically. The exact hessian at each
optimization cycle is computed as:

H =
 ∂2f1

∂x2
1
− λf2

∂2f2
∂x2

1
− µ5

∂2g5
∂x2

1
− µ6

∂2g6
∂x2

1

∂2f
∂x1∂x2

− λf2
∂2f2

∂x1∂x2
− µ5

∂2g5
∂x1∂x2

− µ6
∂2g6

∂x1∂x2
∂2f

∂x2∂x1
− λf2

∂2f2
∂x2∂x1

− µ5
∂2g5

∂x2∂x1
− µ6

∂2g6
∂x2∂x1

∂2f
∂x2

2
− λf2

∂2f2
∂x2

2
− µ5

∂2g5
∂x2

2
− µ6

∂2g6
∂x2

2


or:

H =
[
8− 2λf2 − 2µ5 − 2µ6 0

0 8− 2λf2 − 2µ5 − 2µ6

]
The Pareto front tracked, using the exact hessian in (2.10) is shown in Figure 3.5.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

f2

f1

Prediction points
Correction Pareto points

Figure 3.5: BP 1: Pareto points using the SQP algorithm, with exact hessian com-
putation.

As shown in Figures 3.4, 3.5, the optimal points tracked using the exact hessian in
the SQP are almost identical to those tracked using the SR-1.

30 3.3. Mathematical Applications of the GB Method

Comparison of the SQP and ALM used in BP 1:

The computational cost of the SQP and ALM method in BP 1 is assessed based on
the number of optimization cycles used in the Correction-step.

The comparison between the two methods is shown in Table 3.

Method Used Optimization Cycles
SQP with the exact hessian 52
SQP method with hessian updated from SR-1 79
ALM with BFGS update step 288

Table 3: BP 1: Comparison of SQP method and ALM with BFGS used in the
update step of the design variables.

Table 3 demonstrates that the SQP method, when using the exact hessian, requires
fewer optimization cycles compared to approximating the Hessian using the SR-1
method. However, this comparison does not take into account the computational
cost associated with the computation of exact second derivatives in CFD prob-
lems. As a result, the accuracy of the Quasi-Newton method for approximating the
hessian is considered satisfactory, since both approaches yield identical Pareto fronts.

In BP 1, the SQP method with SR-1 yields a more accurate result in less optimization
cycles, than ALM. Hence, in the following chapters, the SQP method is used in the
Correction-step.

3.3.2 BP 2: Fonseca and Fleming Problem
The second BP to be optimized is the Fonseca and Fleming problem, [4]. This
problem yields a non-convex Pareto front.

It is defined as:

Minimize: f1(x⃗) = 1− exp
− n∑

i=1

(
xi −

1√
n

)2
 ,

f2(x⃗) = 1− exp
− n∑

i=1

(
xi + 1√

n

)2
 (3.15)

where x⃗ = (x1, x2),
− 4 ≤ xi ≤ 4 ∀ i = 1, 2.

The first derivatives ∇f1 and ∇f2 of the functions are:

∂f1

∂xi

= 2
(

xi −
1√
n

)
exp

− n∑
i=1

(
xi −

1√
n

)2
 , (3.16)

∂f2

∂xi

= 2
(

xi + 1√
n

)
exp

− n∑
i=1

(
xi + 1√

n

)2
 (3.17)

31 3.3. Mathematical Applications of the GB Method

The bounds of design variables in eq. (3.15) are treated as constraints and thus are
integrated within the objective function using the active constraints SQP method,
as described in subsection 2.2.2. The second derivatives of the function, eq. (3.15)
are approximated using the SR-1 method.

After retrieving the initial Pareto point (Go-to-Pareto step), at (f1,f̂2INITIAL)=
(0.001, 0.99) by minimizing f1, the Pareto front is tracked using the Move-on-Pareto
step. The initialization of the hessian for the SQP algorithm and the rest of the
optimization parameters are displayed in Table 4. The final optimal point of the
front is found by minimizing f2, and is located at (1.0,0.0). Therefore, given the
user-defined δ̂f2, a maximum number of tracking 39 Pareto points was set.

Parameter Value
δf̂2 -0.025
Hessian Diagonals 1.0

Table 4: BP 2: Initial Optimization parameters.
The Pareto front of BP 2, tracked by the GB method, is displayed in Figure 3.6.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f2

f1

Prediction points
Correction Pareto points

Figure 3.6: BP 2: Pareto points using the SQP algorithm in the Correction-step,
with SR-1 method.

Optimization using the Exact Hessian:
The SQP method can also be applied as a test to see the role of the accuracy in
computing the hessian matrix, by using the exact hessian at each optimization cycle,
as the second derivatives of this function are computed as follows:

H =
 ∂2f1

∂x2
1
− λf2

∂2f2
∂x2

1

∂2f
∂x1∂x2

− λf2
∂2f2

∂x1∂x2
∂2f

∂x2∂x1
− λf2

∂2f2
∂x2∂x1

∂2f
∂x2

2
− λf2

∂2f2
∂x2

2


Using the exact hessian in the SQP yields the following Pareto front presented in
Figure 3.7. The non-convex Pareto front tracked with the SR-1 method is accurate
in locating the same front tracked with the use of the exact hessian matrix when
applying the SQP.

32 3.3. Mathematical Applications of the GB Method

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f2

f1

Prediction points
Correction Pareto points

Figure 3.7: BP 2: Pareto points using the SQP algorithm in the Correction-step,
with exact hessian.

Chapter 4

Application of GB method in
External Aerodynamic ShpO

4.1 Case Description
This CFD case is concerned with the ShpO of an isolated airfoil in inviscid
flow, starting from the NACA 4415 profile, for maximum lift and minimum drag
(coefficients). A second variant of this case is presented in section 4.3, where the
pitching moment coefficient (CM) must be equal to zero and it is treated as an
additional equality constraint.

The Pareto front of the objective function is tracked using the GB method. The
GB method’s results are compared with those of EAs (obtained using the EASY
software), and its accuracy and computational cost are assessed. The sensitivity
derivatives of the objective functions are computed using the continuous adjoint
method by running the flow (CFD) and adjoint solver PUMA developed by
PCOpt/NTUA. The external flow is inviscid and, thus, the Euler equations and
their adjoints are numerically solved.

Figure 4.1: Airfoil case two-objectives: CFD mesh (left), and close up view around
the airfoil (right picture).

The mesh around the airfoil is unstructured, consisting of approximately 6500
nodes, Figure. The farfield boundary is located at the distance of approximately 10
airfoil chords. The farfield or free-stream flow conditions are: flow angle α∞ = 2◦,
and Mach number M∞ = 0.8.

33

34 4.2. Optimization without the CM Constraint

The airfoil shape is parameterized using a NURBS lattice, consisting of 10x7 control
points, 4x3 of which are free to be displaced, Figure 4.2.

Figure 4.2: Airfoil case two-objectives: NURBS control lattice, blue points remain
fixed while red control points are allowed to move to normal-to-the-chordwise direc-
tion.

The y (vertical) coordinates of the 12 red control points of Figure 4.2 constitute the
design variables. Therefore, these points are allowed to move only in the vertical
(normal-to-the chord) direction. In order for NURBS lattice points not to overlap
during the optimization process, design variables’ bounds within ±0.05c around
their initial values are introduced.

4.2 Optimization without the CM Constraint
The ShpO case without a zero CM constraint will be presented first. The GB
method begins with the Go-to-Pareto step to track the first point on the front.
Starting with non-optimal aerodynamic coefficients of the airfoil, CD = 0.06 and
CL = 0.985, the Go-to-Pareto step tracks a first point on the front, from which the
Move-on-Pareto step will be applied with a step size δf̂2. Based on the results of
the EA an initial target value of f̂2 = 0.35 is chosen with a step size of δf̂2 = 0.10.
Therefore, the GB method tracks optimal points across the same range of values as
the EA.

The Move-on-Pareto step then sets to track the front by using the Prediction-
Correction scheme. Since the value range of f2 for non-dominated solutions is
obtained from EASY, a threshold of 15 points is set for tracking by the GB method.
These points correspond to values of CL ranging from 0.33 to 1.63, beyond which
drag losses render optimized airfoils as unacceptable. The SQP algorithm is used
in the Correction-step. The problem to be minimized is formulated as:

minimize f :

f =
{

f1(x⃗) = CD(x⃗)
f2(x⃗) = −CL(x⃗)

(4.2)

The objective function to be minimized is the Lagrangian, reading:

L(x⃗, λ⃗f2) = f1(x⃗)− λf2(f2(x⃗)− f̂2) (4.3)

The initial values set for the parameters of the GB method are displayed in Table
5.

35 4.2. Optimization without the CM Constraint

Parameter Value
δf̂2 -0.10
Hessian Diagonals 10.0

Table 5: Airfoil case two-objectives: Initial Values for tracking the Pareto front.

The Algorithm used for the GB optimization is:

Algorithm 3 GB Method Algorithm, applied to Inviscid External Airflow case
Require: Initial Point coordinates x⃗, Hessian matrix initialization for the

Correction-step, design Variable Bounds, Initial f̂2,INITIAL and δf̂2, number of
Elite Pareto Points, Convergence tolerance ϵ

1: Set counter of Elite Points, im ← 0
2: Apply Go-to-Pareto step:
3: while Convergence condition == FALSE do
4: | Adapt mesh to the current design variables x⃗
5: | Solve primal equations
6: | Solve adjoint equations for Lift and Drag
7: | Update x⃗ and λ2
8: end while
9: Apply Move-on-Pareto step:

10: while im < nElite do
11: | im ← im + 1
12: | Apply Pareto Prediction-Step
13: | Apply Pareto Correction-Step
14: while Convergence condition == FALSE do
15: | Adapt mesh to the current design variables x⃗
16: | Solve primal equations
17: | Solve adjoint equations for Lift and Drag
18: | Update x⃗ and λ2
19: end while
20: end while

Computational cost is measured in terms of Equivalent Flow Solutions (EFS),
which stands for the number of times the CFD solver or its adjoint (primal and
adjoint are considered to have the same cost) must be called.

The convergence criterion for the Correction-step is set w.r.t. KKT residuals,
given the nature of the CFD problem the convergence threshold is set as 10−3 for
f̂2. The optimization process is performed with a step-size of δf̂2 = 0.10 until
f̂2 = 0.70. The next target tracked is f̂2 = 0.75, from which the Move-on-Pareto
step resumes, and the front is tracked with the δf̂2 set. The step size was
adjusted to effectively track points corresponding to the previously mentioned
range of values, also identified by the EA, facilitating a comparison between
the two approaches. The GB method yields the Pareto points of Figure 4.3, and
the computational cost of the algorithm is summarized in Table 6, (in terms of EFS).

36 4.2. Optimization without the CM Constraint

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Prediction points

f1

f2

Correction Pareto points

Figure 4.3: Airfoil case, two-objectives: Prediction points and Pareto Points ob-
tained by the GB method.

Differential Equations EFS
Primal 45
Adjoint 90
Total 135

Table 6: Airfoil case, two objectives: Computational cost (in EFS).

For the EA, 50 elite points were traced with the use of the built-in "RBF IF"
metamodels. The computational cost of Algorithm 3 is compared with that of the
EA, using EASY to compute the Pareto Front, in Table 8. The EA algorithm’s
results are displayed in Figure 4.4:

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0 0.02 0.04 0.06 0.08 0.1 0.12

f2

f1

EA, non−dominated front
Pred−Cor, non−dominated front

Figure 4.4: Airfoil case, two-objectives: Pareto front for EA Points and GB method.

37 4.2. Optimization without the CM Constraint

Algorithm EFS
EA with Metamodels 1000
GB Method 135

Table 7: GB method and EAs cost evaluation, (in terms of EFS).

As it can be seen, the GB method costs less evaluations; however, the EA algorithm
computes 50 points, with a given threshold of 1000 evaluations and therefore it
remains inconclusive whether the GB method developed requires less computational
evaluations compared to EAs. Nonetheless, it can be deduced that the GB method
has successfully tracked the Pareto front points, while retaining a reasonable
computational cost.

Figure 4.5: Airfoil case, two-objectives: ShpO, (black): baseline, from left to right,
up to down (red): (CD, CL) : (0.0119, 0.7989), (CD, CL) : (0.0136, 0.8992), (CD, CL) :
(0.0187, 1.1100), (CD, CL) : (0.0435, 1.4856).

The ShpO results of the GB method are presented in Figure 4.5. To achieve a
higher CL value curvature of both the suction and pressure side increase. Since the
flow is assumed to be inviscid, the drag present is primarily due to losses caused by
the formation of shock waves. By optimizing the shape of the airfoils, the intensity
of these shock waves on the suction side is reduced. This minimizes drag losses, as
demonstrated in Figure 4.7.

Figure 4.6: Airfoil case, two-objectives: Mach field around the baseline airfoil
(CD, CL) : (0.06, 0.985).

In Figure 4.7, Mach number fields of the optimized airfoils are presented.

38 4.3. Optimization Constrained by CM=0

Figure 4.7: Airfoil case, two-objectives: ShpO, Mach flow fields, from left to right:
(CD, CL) : (0.0119, 0.7989), (CD, CL) : (0.0136, 0.8992), (CD, CL) : (0.0187, 1.1100),
(CD, CL) : (0.0435, 1.4856).

4.3 Optimization Constrained by CM=0
The MOO problem presented in section 4.1 will be solved with the additional equal-
ity constraint of zero pitching moment coefficient (CM=0). This is mathematically
expressed by altering the Lagrangian as:

L(x⃗, λ⃗fk
) = f1(x⃗)− λf2(f2(x⃗)− f̂2)− λCM

(CM(x⃗)) (4.5)

The additional equality constraint of the problem increases the computational cost
per optimization cycle to 4 EFS. Particularly, computing first derivatives of CM

entails the solution of an additional set of adjoint equations of the function Fz,
accounting for the pitching moment. Thus, at each optimization cycle 1 set of
primal equations and 3 sets of adjoint equations are solved. For 7 Pareto points,
the computational cost is displayed in Table 8:

Differential Equations EFS
Primal 30
Adjoint 90
Total 120

Table 8: Airfoil case, two-objectives, CM = 0: EFS cost evaluation of GB method.

The first target f̂2INITIAL=-0.33 is the same as in the case without the CM constraint.
This is done, in order to compare the results of the problem variants, computed
both by the GB method. Initialization data, for the optimization parameters of

39 4.3. Optimization Constrained by CM=0

this variation of the case are presented in Table 9, while the Pareto front obtained
is shown in Figure 4.8.

Parameter Value
δf̂2 -0.10
Hessian Diagonals 100.0

Table 9: Airfoil case, two-objectives, CM = 0: Optimization Parameters for tracking
the front.

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

f2

f1

Pareto front with CM=0
Original Pareto front

Figure 4.8: Airfoil case, two-objectives, CM = 0: Pareto points with and without
Pitching Coefficient constraint.

Finally, a comparison of the obtained shapes for the optimized airfoils is presented.

Figure 4.9: Airfoil case, two-objectives, CM = 0: ShpO, (black): baseline geom-
etry (CD, CL), from left to right, up to down, (red) optimized shape (Zero pitch-
ing moment coefficient): (CD, CL) : (0.0288, 0.8903), (CD, CL) : (0.0185, 0.7579),
(CD, CL) : (0.0086, 0.5284), (CD, CL) : (0.0051, 0.3446).

40 4.3. Optimization Constrained by CM=0

One observation that can be made from the airfoils shown in Figure 4.9 is that, for
higher CL, they tend to alternate the curvature of both the suction and pressure
side, while reducing the total area of the airfoil. This is made in order to counteract
the negative pitching moment coefficient.

From the Pareto points obtained, it can be seen that optimizing the problem for a
zero CM coefficient comes at the cost of not significantly reducing CD, for airfoils
with a higher CL value.

Chapter 5

Tracking Discontinuous 2-D
Pareto Fronts Using GB Methods

5.1 Introduction
Tracking the Pareto front using GB Methods can pose certain challenges that need
to be tackled during the optimization process. The Pareto front which represents
solution points in most cases can be interpolated by a continuous curve as shown
in subsection 1.3.2. When this Pareto curve abruptly terminates and then resumes
at a subsequent range of values for (f1,f̂2), the Pareto front is referred to as
discontinuous. This abrupt termination can be attributed to a change of the local
curvature of the front, infeasibility within the function’s domain or due to a binding
constraint within a specified range of (f1, f2).

The major challenge in CFD applications when tracking Pareto is that it is not
possible to be aware of discontinuous regions of it beforehand. Thus, the issue of
excessive computational cost arises from conducting evaluations to track target
points of a selected f̂2 which lies in a discontinuous region of it.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

f2

f1

(Weak Pareto) dominated solutions
 Pareto front

Figure 5.1: Visualization of a 2D discontinuous Pareto front.

Discontinuous Pareto fronts leading to divergence of the tracking method can be
associated with the selected step size δf̂2. Specifically, if δf̂2 is large enough to

41

42 5.2. A New Method to Detect Discontinuous Pareto Fronts

bypass a range of (f1,f̂2) values where the front is discontinuous, the Pareto front
can be often tracked without being affected by the discontinuity.

An existing method to tackle this challenge is that of applying a Pareto filter after
tracking every new Pareto point, which is presented in the next subsection, [5].
In the subsequent sections of this chapter, a new method will be presented and
assessed for successfully tracking two-objective discontinuous Pareto Fronts while
avoiding excessive objective function evaluations. The method consists of detecting
a potential discontinuity and successfully tracking the front. Mathematical BPs
have been solved using the proposed method.

5.1.1 Applying a Pareto Filter
An algorithm that can be used to detect discontinuous Pareto fronts is the Pareto
filter which detects solutions that are dominated by other Pareto points, [5].

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

f2

f1

 Pareto front

Figure 5.2: Visualization of the Pareto Filter, where solutions located within the
area bounded by the blue dotted horizontal and vertical lines are dominated by the
corresponding point, from which the lines are drawn.

The Pareto filter algorithm is used after tracking a new point to check if it is domi-
nated and thus omitted from the Pareto front, or if it dominates an existing point
that has been previously added to the front. The filter recursively checks whether
each identified solution, when compared to the others, satisfies eq. (1.12). In the
developed software, the Pareto filter acts as a minimum precaution, as it is applied
after a new point is tracked, to ensure that any dominated solution is removed from
the front.

5.2 A New Method to Detect Discontinuous
Pareto Fronts

The first step in successfully tracking a discontinuous front is detecting a potential
region where the front is discontinuous. The proposed method makes use of
insufficient approximations to Pareto points yielded by the Prediction-step and

43 5.2. A New Method to Detect Discontinuous Pareto Fronts

correlates them with potential discontinuous regions of the front.

The GB method utilizes the Prediction-Correction scheme, as formulated in section
3.2, to track points along the Pareto front. The Prediction-step yields a satisfactory
approximation of the optimal point given that x∗ = x∗(f̂2) can be approximated
using a first order Taylor Series, eq. (3.7). Therefore, when the Taylor expansion
of x∗ = x∗(f̂2) is sensitive over its higher-order terms, a first-order approximation
of the next optimal point would yield inaccurate results.

This occurs in discontinuous regions of the front, where local curvature changes.
Therefore, starting from this inaccurate and dominated Prediction point, the
Correction-step will not be able to refine it to the optimal solution for the selected
f̂2 target, as all solutions in a discontinuous region are either dominated or infeasible.

A correlation between the curvature of (f1, f2) at each optimal point and the suc-
cess of the Prediction’s step approximation can be established. Indeed, eq. (3.7)
underlines the need for function x∗ = x∗(f̂2) to be sufficiently approximated using
a first-order Taylor series approach over a specified range δf̂2. Since every optimal
solution x∗ is a function of x∗ = x∗(f1, f2), any significant change in the curvature
of f1 or f2 will affect it. Consider the intervals (f̂2, f̂2 + δf̂2) or (f̂1, f̂1 + δf̂1), which
represent the range between two consecutive target points. If the curvature of f1 or
f2 undergoes a notable change within these intervals, it follows from eq. (3.7) that
the derivative ∂x⃗

∂f̂2
will also exhibit a significant change, as:

∂x⃗

∂
⃗̂
f2

=
(

∂H

∂x⃗

)−1
B︷ ︸︸ ︷[
0
−I

]
(5.1)

From eq.(5.1), it is deduced that the Prediction’s step first order accuracy in a
region where curvature of the front (f ∗

1 , f ∗
2) changes, will be poor. Therefore, a

linear approximation eq. (3.7) is insufficient as ∂x⃗
∂f̂2

significantly fluctuates.

A way to deem whether an approximated point is close to the optimal x∗ or not
is through the KKT conditions, eq.((2.2), (2.3), (2.4), (2.5), (2.6)), that must hold
true for all optimal points. The residuals of KKT conditions are defined as:

Residualspredict,i+1 =

∇L(x∗
predicti+1

, λ∗
f2,predicti+1

, µ∗
predicti+1

)
h(x∗

predicti+1)
g(x∗

predicti+1)

 (5.2)

Eq. (5.2), is updated after each Prediction-step, thus yielding new Prediction
residuals of the KKT conditions. Unexpectedly high residuals signify a poor
Prediction solution for the f̂2 and thus, a region of discontinuity is signified.
Therefore, there is no need to realize the Correction-step for f̂2 and in this way
SQP evaluations are avoided, which in CFD translates into EFS cost.

In order to determine whether the Prediction-step KKT residuals of eq.(5.2) are
inadmissibly high, a method to calculate their variance at every optimization cycle,
must be used. For this reason, the concept of online algorithms is proposed. In

44 5.3. Computing Variance of KKT Residuals Sample

particular, the Welford’s online algorithm is used, which is presented in the next
section, [2], [3].

5.3 Computing Variance of KKT Residuals Sam-
ple

Computing the variance of a given sample is of fundamental role in computational
statistics. Online algorithms refer to a class of algorithms that process data in a
sequential manner. By definition, these algorithms do not have access to the entire
data set at the outset. Online algorithms are particularly useful when the complete
input is initially unknown or when memory limitations prevent storing the entire
data set to be processed.

A widely known online Algorithm used to compute variance of a sample is Welford’s
algorithm. For a new element xn, the following formulas are defined to update the
mean and (estimated) variance of the sequence. Here, xn = 1

n

∑n
i=1 xi denotes the

sample mean of the first n samples (x1, . . . , xn), σ2
n = 1

n

∑n
i=1(xi − xn)2 their biased

sample variance, and s2
n = 1

n−1
∑n

i=1(xi − xn)2 their unbiased sample variance.

xn = (n− 1)xn−1 + xn

n
= xn−1 + xn − xn−1

n

σ2
n = (n− 1)σ2

n−1 + (xn − xn−1)(xn − xn)
n

= σ2
n−1 + (xn − xn−1)(xn − xn)− σ2

n−1
n

s2
n = n− 2

n− 1s2
n−1 + (xn − xn−1)2

n
= s2

n−1 + (xn − xn−1)2

n
−

s2
n−1

n− 1 , n > 1

A better quantity for updating is the sum of squares of differences from the current
mean, ∑n

i=1(xi − xn)2, denoted, M2,n:

M2,n = M2,n−1 + (xn − xn−1)(xn − xn)

σ2
n = M2,n

n

s2
n = M2,n

n− 1
It is also common to denote Mk = xk and Sk = M2,k.

5.3.1 Applying Welford’s Algorithm, to calculate Variance
of sample of KKT Residuals

The GB method developed for tracking the Pareto front can be adapted to
collect KKT condition residuals, as shown in eq. (5.2), after each Prediction-step
approximates a new optimal point. To determine the initial mean and variance
of the sample, it is recommended to collect at least the first 5 tracked prediction
points. This process does not incur any additional computational cost. Each
time a new Prediction point is approximated, its KKT residuals are added to the

45 5.4. Proposed Method to Move-on Discontinuous Fronts

sample, and Welford’s algorithm is used to update the sample’s mean and variance
accordingly.

If the sample of points is large enough, a Z-score test, [10] is then conducted to
determine whether the newly added predicted point is an outlier in the sample, by
using the following relation:

z >
xn − xn

sn

(5.3)

If the Prediction point is identified as an outlier to the sample of collected KKT
residuals, then the Correction-step applied to refine this solution to the optimal
point is skipped. In such a case, it is recommended to use the methods described
in section 5.4. If the sample consists of a small number of points a t-score test is
recommended, [10]. Other non-parametric statistical tests, can also be applied, [14]

5.3.2 Algorithm Formulation for Detecting Discontinuities
The new method proposed in sections 5.2, 5.3 can be formulated into the following
algorithm:

Algorithm 4 Detecting Discontinuities Algorithm
Require: Elite point im, Hessian matrix and Prediction-step Input

1: Perform Prediction-step
2: Estimate first-order KKT conditions’ residuals, eq. (5.2)
3: Perform Welford’s algorithm, section 5.3 and statistical test, 5.3.1, to identify

outlier.
4: if Prediction Point is Outlier then
5: Do not proceed to the Correction-Step
6: Apply an algorithm to track discontinuous Fronts, section 5.4
7: end if
8: Iteration: im← im + 1
9: Move-on-Pareto

5.4 Proposed Method to Move-on Discontinuous
Fronts

After detecting a potential discontinuous region of the front at the selected f̂2 from
algorithm 4, a method to track the front is suggested. The following three algo-
rithms: Target-Objective jump, Swap Target-Objective and Back-tracking can be
combined to constitute a method that can track such fronts.

5.4.1 Target-Objective jump
The first algorithm that can be applied after detecting a discontinuous region is
that of Target-Objective jump. It is realized by selecting a different δf̂2. A new
Correction-step is performed for the selected f̂2 from either the starting non-optimal
point of the algorithm (baseline geometry in CFD) or from the most recent Pareto
point tracked. The GB method for tracking the Pareto Front continues until the

46 5.4. Proposed Method to Move-on Discontinuous Fronts

next discontinuous area be located or the selected number of optimal points has
been tracked.

Using the Target-Objective jump algorithm presupposes that the new target f̂2
selected should be far from the interval where the discontinuity of the Pareto front
occurs, and thus a δf̂2 large enough is selected to avoid yielding a point that falls
into the discontinuous region. If this is not the case the jump will be repeated
with a larger δf̂2, which in CFD amounts to the cost of solving primal and adjoint
equations for all the iterations of the Correction-step.

In what follows, the Target objective jump are selected as a function of the current
target-step δf̂2 that is used. The scaling of these jump must be selected, beforehand.

0

1
1.5

3.25

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

f2

f1

Figure 5.3: A demonstrative example of the Target-Objective jump algorithm tech-
nique to track Discontinuous Pareto Fronts. From f̂2= 3.25, to f̂2= 1.5, by selecting
a δf̂2Jump = 7 δ̂f2.

In Figure 5.3, after locating the discontinuity of the Pareto front, a jump of
δf̂2Jump = 7 δ̂f2old is performed and the tracking of the front continues from this
point on.

Algorithm 5 Target-Objective jump Algorithm
Require: Starting Point before the Jump (baseline or previous Pareto point), f̂2,

convergence criterion for Correction-step ϵ
1: while Correction-step not converged do
2: | The next Target-Objective jump δf̂2Jump is selected.
3: | f̂2new = δf̂2Jump + f̂2

4: | Run Correction-step with f̂2new
5: end while
6: Iteration: im← im + 1
7: Use Back-tracking to track omitted Pareto Points, subsection 5.4.3.
8: Proceed with Tracking The Pareto Front

47 5.4. Proposed Method to Move-on Discontinuous Fronts

5.4.2 Swap Target-Objective
Another algorithm that can be utilized when a discontinuous region is encountered
is that of swapping the objective and target of the Lagrangian function, (Swap
Target-Objective).

For a two-objective problem, the Lagrangian reads as:

L(x⃗, λ⃗f1 , λ⃗hj
, µ⃗) = f2(x⃗)− λf1(f1 − f̂1)−

Mh∑
j=1

λhj
hj(x⃗)−

Mg∑
i=1

µjgj(x⃗) (5.4)

This algorithm can be successfully applied in cases where a region of f̂2 yields
solutions that are not included in the solution domain of the objective function or
are placed outside the Pareto front, due to the binding of constraints.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

f2

f1

Figure 5.4: Implementation of Swap Target-Objective on a discontinuous front.

Similarly to the Target-Objective jump, the new f̂1 should be far from the dis-
continuity of the Pareto Front. Again, in case a new optimal point is not found
after performing a Correction-step, the δf̂1 is doubled and the algorithm proceeds
to perform once again a Correction-step.

5.4.3 Back-tracking
Back-tracking is a technique used when tracking the Pareto front and is applied
after one of the two aforementioned algorithms of subsection 5.4.1, 5.4.2 have been
used. Therefore, Back-tracking is used to track omitted Pareto points after a jump
with a large δf̂1 or δf̂2 has been performed. It consists of inverting the tracking
direction of the Pareto front in order to locate Pareto points for a range of f̂2
that was omitted, while performing a dis-proportionally large Target-Objective
jump or selecting an f̂1 which omits an amount of Pareto points if the Swap
Target-Objective algorithm is used.

48 5.4. Proposed Method to Move-on Discontinuous Fronts

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

f2

f1

First Back�tracked Point

Last Back�tracked Point

load

step 2.

step 3..

step 1.

Figure 5.5: Demonstration of the Back-tracking technique for tracking the Pareto
front after a Target-Objective jump has been performed. The symbols for the last
Back-tracked Point and first Back-tracked Point will be used throughout the rest of
the chapter.
The steps of the Back-tracking algorithm are depicted in Figure 5.5. The algorithm
starts by transferring the data of its initial point after the jump (hessian matrix,
first derivatives and (f1, f2) in a separate file). After that, the tracking direction
is inverted until locating a new discontinuous region or reaching the old target f̂2,
from which the jump was performed, (step 1.). The algorithm reverts back to its
starting point and the hessian matrix as well as the derivatives of it are retrieved
from the file they were stored (step 2.). In the final step, the tracking direction of
the front is reverted to its original resuming the tracking of the front, (step 3.).

Algorithm 6 Back-tracking Algorithm
Require: Input Data: last tracked point (f1, f̂2), Hessian matrix estimated by the

SQP algorithm, δf̂2,
1: δf̂2 ← -δf̂2
2: Store Input Data in a separate file.
3: while Detecting discontinuity, algorithm 4 not satisfied do
4: | Move-on-Pareto Step
5: | Iteration: im← im + 1
6: end while
7: Load Input Data, (step 2)
8: Proceed with Tracking The Pareto Front (step 3)

49 5.5. Algorithm Formulation of the Tracking Method

5.5 Algorithm Formulation of the Tracking
Method

The proposed tracking method involves identifying potential discontinuities on the
Pareto front and performing a jump to continue tracking solutions along the front.
The algorithm for this method is outlined as follows:

Algorithm 7 Detecting and Tracking 2D Pareto fronts Algorithm
Require: Elite point im, Hessian matrix and Prediction-step Input

1: Perform Prediction-step
2: Estimate Prediction-step’s KKT conditions’ residuals, eq. (2.2),(2.3),(2.4)
3: Perform statistical test, 5.3.1, to identify outlier Prediction point.
4: if Prediction Point is Outlier then
5: Do not proceed to the Correction-Step
6: Starting from the last tracked Pareto point, apply either Target-Objective

jump or Swap Target-Objective.
7: Apply Back-tracking algorithm to track omitted points due to a large jump.
8: end if
9: Iteration: im← im + 1

10: Move-on-Pareto steps, from the point tracked after the jump.

50 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

5.6 Mathematical Applications, for Tracking Dis-
continuous Fronts

In order to assess the accuracy of the aforementioned method, three mathematical
BPs are optimized, by using combinations of the algorithms presented in section
5.4. The three BPs and their optimization process are presented in the following
subsections.

5.6.1 BP 3
The third BP to be minimized is defined as:

min : f1(x⃗) =
3∑

i=1

(
(xi − 2)2 + ω

(x1 − 3.5)2 + ϵ

)

f2(x⃗) =
3∑

i=1

(
(xi − 5)2 + ω

(x1 − 3.5)2 + ϵ

)

where x⃗ is a vector of 3 design variables, (x1, x2, x3).

The gradients ∇f1(x⃗) and ∇f2(x⃗) w.r.t. x⃗ are:

∇f1(x⃗) =

2(x1 − 2.0) + −2ω(x1−3.5)
(x1−3.5)2+ϵ

2(x2 − 2.0)
2(x3 − 2.0)



∇f2(x⃗) =

2(x1 − 5) + −2ω(x1−3.5)
(x1−3.5)2+ϵ

2(x2 − 5)
2(x3 − 5)


Terms ω and ϵ are parameters of the problem, which regulate the span of the dis-
continuity region:

Parameter Value
ϵ 10−3

ω 10−1

Table 10: BP 3: Values assigned to the parameters.

After retrieving the initial Pareto point (Go-to-Pareto step), at (f1,f̂2INITIAL)=
(0.00, 18.0) by minimizing f1, the Pareto front is tracked using the Move-on-Pareto
step, with a step of δ̂f2= -0.5 tracking a total of 34 points.

Prediction-step’s residuals of eq.(5.2) are collected and processed from the Detecting
discontinuities algorithm, which estimates their variance and mean value after a new
predicted point is added to the sample. After detecting an outlier to the sample,
according to eq.(5.3), the GB method does not proceed to the Correction-step and
executes a Target-Objective jump.

Initialization data for the BP are presented on Table 11.

51 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

Parameter Value
δf̂2 -0.5
δf̂2Jump 6 δf̂2
Zscore 6.0
Hessian Initialization 1.0

Table 11: BP 3: Values of optimization parameters for tracking the Pareto front.

In Figure 5.6, the Prediction residuals of the KKT conditions are depicted for each
Pareto Point tracked.

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

R
e

si
d

u
a

l o
f

K
K

T
−

co
n

d
iti

o
n

 1

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Residual of KKT x1 for the Prediction−Step, Benchmark Function 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

R
e

si
d

u
a

l o
f

K
K

T
−

co
n

d
iti

o
n

 2

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

0

0.05

0.1

0.15

0.2

0.25

0.3

Residual of KKT x2 for the Prediction−Step, Benchmark Function 3

0

0.05

0.1

0.15

0.2

0 5 10 15 20 25 30

R
e

s
id

u
a

l
o

f
K

K
T
−

c
o

n
d

it
io

n
 3

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Residual of KKT x3 for the Prediction−Step, Benchmark Function 3

Figure 5.6: BP 3: Prediction-step residuals of KKT conditions.
In Figure 5.6, the Welford’s algorithm detects an outlier residual at the KKT
conditions imposed upon x1 and x2 at the 24th predicted Pareto point. This
detection signals a discontinuous region in the Pareto front by the Detecting
discontinuities algorithm, leading to the execution of the Target-Objective jump,
with δf̂2Jump = 6δf̂2. After the jump, Back-tracking is used to retrieve points for
the omitted f̂2 values.

The Pareto front tracked from the aforementioned initialization is displayed in Figure
5.7. Both Predicted points and Correction Pareto points are Displayed, while Figure
5.8 shows the Correction points tracked by the algorithm by utilizing the Target-
Objective jump and the omitted points, due to the jump, located with Back-tracking.

52 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

f2

f1

Prediction points
Correction Pareto points

Figure 5.7 : BP 3: Prediction points and Correction Pareto points.

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12

f2

f1

Pareto front

Figure 5.8: BP 3: Demonstration of Target-Objective jump (shown with red arrow)
and Back-tracking (shown with blue arrow) algorithms for tracking the Pareto front,
with Target-Objective jump of δf̂2Jump = 6δf̂2.

5.6.2 BP 4
The fourth BP to be minimized is:

minimize : f1(x⃗) =
(1

2(x1 + x2)− 2
)2

+ ω((
1
2(x1 + x2)− 3.5

)2
+ ϵ

) + (x1 − x2)2

f2(x⃗) =
(1

2(x1 + x2)− 5
)2

+ ω((
1
2(x1 + x2)− 3.5

)2
+ ϵ

) + (x1 − x2)2

53 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

The gradients ∇f1(x⃗) and ∇f2(x⃗) w.r.t. x⃗ are:

∇f1(x⃗) =
(1

2(x1 + x2)− 2
)

+∇x1P (x⃗) + 2(x1 − x2)(
1
2(x1 + x2)− 2

)
+∇x2P (x⃗)− 2(x1 − x2)



∇f2(x⃗) =
(1

2(x1 + x2)− 5
)

+∇x1P (x⃗) + 2(x1 − x2)(
1
2(x1 + x2)− 5

)
+∇x2P (x⃗)− 2(x1 − x2)


The design variables vector is −→x = (x1, x2), representing 2 design variables for this
case.

The function P (x⃗) is called the Penalty term, as parameters ω and ϵ regulate the
span of the discontinuous region of the front.

P (x⃗) = ω((
1
2(x1 + x2)− 3.5

)2
+ ϵ

)
The values of the selected parameters are displayed in Table 12.

Parameter Value
ϵ 10−3

ω 5 10−3

Table 12: BP 4: Values assigned to the parameters.

An interesting observation made when optimizing this BP, without applying the
proposed method, is that the direction selected to scan the Pareto front yields Dom-
inated points if f̂2 is selected to be decreasing, or track the border of the Weak
Pareto Front (dominated solutions) if increasing.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

f2

f1

Non�dominated points

Figure 5.9: BP 4: Demonstration of generated points for f̂2 step-target decreasing.

54 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

0

1

2

3

4

5

6

7

8

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

f2

f1

Generated points

Figure 5.10: BP 4: Demonstration of generated points for f̂2 step-target increasing.

The shape of the generated points in Figure 5.10 is explained by the fact that λ
is violating KKT conditions eq, (2.6), namely slackness condition by converging to
positive values. Thus, in Figure 5.10 dominated points are tracked while positive
Lagrangian coefficients indicate that the rate of change of the Lagrangian function
L w.r.t. f2 is positive. Consequently, the optimal Lagrangian function’s value is
increasing for an increase in f2 instead of decreasing.

After retrieving the initial Pareto point (Go-to-Pareto step), at (f1,f̂2INITIAL)=
(0.00, 9.0) by minimizing f1, the Pareto front is tracked with a step of δ̂f2= -0.25
tracking a total of 40 points.

For this case, the algorithms of Target-Objective jump, Back-tracking and of Pareto
filter in the Prediction-step will be utilized in order to track the discontinuous front.
The parameters used to initialize the optimization algorithm are shown in Table 13.

Parameter Value
δf̂2 -0.25
δf̂2Jump 5 δf̂2
Zscore 10.0
Hessian Initialization 1.0

Table 13: BP 4: Values of optimization parameters.

The residuals of the KKT conditions for the Prediction-step, as well as Prediction
points and Correction Pareto points are demonstrated in Figure 5.11.

55 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

0

2

4

6

8

10

0 5 10 15 20 25 30

R
e

s
id

u
a

l
o

f
K

K
T

c
o

n
d

it
io

n
 1

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

�1

0

1

2

3

4

5

6

7

8

9

10

Residual of KKT x1 for the Prediction�Step, Benchmark Function 4

0

2

4

6

8

10

0 5 10 15 20 25 30

R
e
s
id

u
a
l
o
f
K

K
T

c
o
n
d
it
io

n
 2

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

�1

0

1

2

3

4

5

6

7

8

9

10

Residual of KKT x2 for the Prediction�Step, Benchmark Function 4

0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

R
e
s
id

u
a
l
o
f
K

K
T

c
o
n
d
it
io

n
 3

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

�0.14

�0.12

�0.1

�0.08

�0.06

�0.04

�0.02

0

0.02

0.04

0.06

0.08

Residual of KKT x3 for the Prediction Step, Benchmark Function 4

Figure 5.11: BP 4: Demonstration of Prediction-step KKT residuals.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

f2

f1

Prediction points
Correction Pareto points

Figure 5.12: BP 4: Prediction points and Correction Pareto points.
The Pareto front tracked is shown in Figure 5.13, demonstrating, the Target-
Objective jump and Back-tracking methods used in the optimization process.

56 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

f2

f1

C Pareto points

Figure 5.13: BP 4: Demonstration of Target-Objective jump and Back-tracking, for
δf̂2Jump = 5δf̂2.
The Swap Target-Objective algorithm is also applied on this Benchmark. After
Welford’s algorithm detects the outlier point, a swapped δf̂1Jump = 5.4 δf̂1 is
chosen to perform the jump. After the jump, the problem’s target and objective
swap once again to min(f1,f̂2) and tracking the front continues with the original
step δf̂2 = −0.25.

The Pareto front tracked by this method is presented in Figure 5.14. The red
arrow indicates the target set after the swapping, while the blue arrow, the tracking
direction after reverting the initial objective-target functions.

0

1

2

3

4

5

6

7

8

9

0 1 2 2.9 4 5 6 7

f2

f1

Pareto points

Figure 5.14: BP 4: Implementation of Swap Target-Objective.

57 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

5.6.3 BP 5
The fifth BP concerns the minimization of an alternative version of the ZDT3 func-
tion, [7]. For one design variable x1, functions f1 and f2 are:

Minimize:f1(x⃗) = x1

f2(x⃗) = g(x⃗) · h(f1(x⃗), g(x⃗))

Gradients of the objective function f, for f1 and f2 for BP 5:

∇f1(x⃗) = 1.0

∇f2(x⃗) =
[
g(x⃗) ·

− 0.5
 1.0√

g(x⃗)

√ 1
f1(x⃗)

− 1
g(x⃗) sin(10.0πf1(x⃗))−

10.0π

(
f1(x⃗)
g(x⃗)

)
cos(10.0πf1(x⃗))

]

Function g(x⃗) is defined for this version of ZDT3 as:

g(x⃗) = 1.0

whereas function h(f1, g) is:

h(f1, g) = 1.0−
√

f1

g
−
(

f1

g

)
sin(10.0πf1)

The gradient of f2 is computed using the chain rule based on the functions g and
h, with g(x⃗) and f1(x⃗) being part of the computation.

The design variable’s bounds are:

0 ≤ x1 ≤ 1

The optimization process parameters are presented in Table 14.

Parameter Value
δf̂2 -0.025
Hessian Initialization 1.0
Zscore 10
δf̂2Jump eq. (5.5).

Table 14: BP 5: Values of optimization parameters.

58 5.6. Mathematical Applications, for Tracking Discontinuous Fronts

Given, that the Pareto front of ZDT3 is known, an internal point of the front is se-
lected to be retrieved by the Go-to-Pareto step, with its target set as f̂2Initial=0.95.
Moreover, after detecting discontinuous regions on the front, the Target-Objective
jump algorithm is selected, to jump over them and track the front. A total of 74
Pareto points are tracked.

Several Target-Objective jump values are initialized in case one of them fails to track
an optimal point. The Target-Objective jump vector is initialized as:

δf̂2Jump =


δf̂2

5δf̂2

10δf̂2

12δf̂2

 (5.5)

The jump values are initialized in a way that, when a discontinuous region is
detected, an initial jump is attempted with a coefficient δf̂2Jump = δf̂2. If this
attempt fails to converge to the target point, the jump is repeated with an increased
coefficient δf̂2Jump = 5δf̂2, and so on, until convergence is achieved. The value δf̂2
concerns the initial target-step as selected in Table 14.

In this case, four discontinuous regions are encountered (it is known that ZDT3 is
comprised by four discontinuous regions). The Pareto Front is tracked by combining
the Target-Objective jump and Βack-tracking algorithms. The residuals of the
KKT conditions for the Prediction-step as well as Prediction points and Correction
Pareto Points are demonstrated in Figure 5.15.

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70

R
e
s
id

u
a
l
o
f
K

K
T

c
o
n
d
it
io

n
 1

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

�1

0

1

2

3

4

5

6

7

Residual of KKT x1 for the Prediction�Step, Benchmark Function 5

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70

R
e
s
id

u
a
l
o
f
K

K
T

c
o
n
d
it
io

n
 2

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

�0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Residual of KKT x2 for the Prediction�Step, Benchmark Function 5

Figure 5.15: BP 5: Prediction-Step residuals.
From Figure 5.15 it can be seen that the upper limit set by the Z-score for Welford’s
algorithm is violated 4 times leading to the detection of the Pareto discontinuous
regions.

Prediction points and Correction Pareto points of the objective function are shown
in Figure 5.16, while the jumps performed and Back-tracking is displayed in Figure
5.17.

59 5.7. Conclusions

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f2

f1

Prediction points
Correction Pareto points

Figure 5.16: BP 5: Pareto points obtained by GB method.

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f2

f1

Pareto points

Figure 5.17: BP 5: Pareto points, with Target-Objective jump (red-arrow) and
Back-tracking (blue-arrow) algorithms shown.

5.7 Conclusions
It can readily be concluded that the step size δ̂f2 in the GB method can greatly
impact how discontinuities are handled. Selecting a step size, δf̂2 that is larger
than the discontinuous region might avoid yielding an outlier, when examining the
pool of samples. In this case tracking the front will be easier as the discontinuity
tackling method will not be used.

A Pareto filter is integrated into the software and can be used after tracking a point
to ensure that it is not-dominated. However, the generation of dominated points
rarely occurs. The computational cost of the algorithm, is thus maintained low.

Chapter 6

Tracking Three-Objective Pareto
Fronts

6.1 Introduction
This chapter aims at extending the Prediction-Correction scheme as described in
section 3.2 to three-objective optimization problems. The reason for extending the
method for three objectives is its application in CFD. Visualization of the Pareto
points is performed by three-axis plot. The major challenge in attempting to locate
a 3D Pareto front is determining the algorithm that will effectively scan the front
and identify all the target points. Locating the boundary points of the 3D Pareto
front,and, thus altering the scanning direction to avoid evaluating non-feasible op-
timal points is also important and will be addressed given its significance in CFD
simulations. An algorithm inspired by the box method, [1], is proposed. The accu-
racy, and the initialization parameters of the algorithm will be shown by optimizing
two three-objective BPs, (DTLZ-1 and DTLZ-2).

6.2 Tracking the 3D Pareto front (Scan by-Layer
Algorithm)

6.2.1 Formulating the Problem
Three-objective optimization problems can be formulated using eq. 3.3 for Mt =
3. Therefore, two-target constraints are applied with f̂2 and f̂3 being selected as
constraints in each iteration of the algorithm.

L(x⃗, λ⃗fk
, λ⃗hj

, µ⃗) = f1(x⃗)− λf2(f2 − f̂2)− λf3(f3 − f̂3)−
Mh∑
j=1

λhj
hj(x⃗)−

Mg∑
i=1

µjgj(x⃗)

(6.1)
The SQP method is used in the Correction-step treating the objective targets f̂2
and f̂3 as equality constraints.

The Prediction-step of the algorithm is based on the dependency of x∗ on f̂2 and f̂3.

x∗ = x∗(f̂2, f̂3) (6.2)

60

61 6.2. Tracking the 3D Pareto front (Scan by-Layer Algorithm)

Expanding eq.(6.2), as a first-order Taylor scheme yields:

x∗
predicted,i+1 = xi + ∂x⃗

∂f̂2
δf̂2 + ∂x⃗

∂f̂3
δf̂3 (6.3)

Eq. (6.3) is the basis of the Scan by-Layers, algorithm presented in order to track
3D Pareto fronts.

6.2.2 Scan by-Layers
The major challenge that is faced when tracking 3D Pareto fronts is the choice of a
direction of scanning the front. In order to accurately track the front, the border
points of the Pareto front must be known.

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.1
 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

Pareto front

f1

f2

f3

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Figure 6.1: Visualization of a 3D- Pareto front.
In 3D Pareto fronts, as shown in Figure 6.1, choosing a single tracking direction
is not feasible due to the complex shape of the front. Therefore, it is essential to
develop a method that can dynamically adjust the tracking direction to ensure that
Pareto points are accurately scanned without excessive evaluations accounting to
scanning dominated points.

The Scan by-Layers method is a Prediction-Correction tracking scheme applied for
two target objectives, and thus for a three-objective optimization problem.

The method consists of selecting initial values for f̂2 and f̂3 and tracking the
3D Pareto front by keeping one target constant while shifting the other. For the
following applications, f̂3 is selected as the constant target of the layer while f̂2 is
the changing target. This involves scanning in a layer of the 3D Pareto front where
f̂3 remains constant while f̂2 varies.

62 6.2. Tracking the 3D Pareto front (Scan by-Layer Algorithm)

The Scan by-Layers method is depicted in Figure 6.2.

0
0.1

0.2
0.3

0.4
0.5

0

0.1

0.2

0.3

0.4

0.5

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

Pareto front

f1

f2

f3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 6.2: Demonstration of the Scan by-Layers method. Layers of δf̂3 = 0 are
shown in blue. The Move-Layer step is depicted with black arrows.

The notion of areas of influence is fundamental for the aforementioned method.
Areas of influence is an auxiliary term used to determine the scanning di-
rection of the Prediction-step of the method and the need to move to the next
layer of the 3D Pareto front thereby changing δf̂3 while δf̂2 is set as 0, from eq.(6.3).

An area of influence is a circular area of the (f2, f3) plane, centered around the
target point set (f̂2, f̂3), with radius:

rinfluence = 1
2δf̂2, if δf̂3 = 0, (6.4a)

rinfluence = 1
2δf̂3, if δf̂2 = 0. (6.4b)

In these equations the tolerance of each area, is set at the half distance between two
consecutive target points (f1, f̂2). If appropriate, this tolerance can be adjusted to
take values ranging between 0 and 1.

63 6.2. Tracking the 3D Pareto front (Scan by-Layer Algorithm)

Figure 6.3, depicts the area of influence, of 3 target-points (f̂2, f̂3).

0.8

0.85

0.9

0.95

1

0.1 0.15 0.2 0.25 0.3 0.35 0.4

f3

f2

Figure 6.3: Demonstration of the selected Areas of Influence (shown in dotted red
lines), around the target points:(f̂2, f̂3). The green predicted point is outside the
area of influence of the blue target point selected, therefore Back-tracking is used
for the layer that is scanned.
The Prediction-step is determined as valid, if the Prediction point of eq.(6.3) is
inside the area of Influence of the target point selected. Otherwise, Back-tracking
is used on the layer, to scan it on the opposite direction as described in subsection
5.4.3. Yielding a second predicted Pareto point outside the area of influence of the
target points will initiate a Move-Layer step. In this case, by using eq.(6.3) for a
stable δf̂2 =0, and a shifting δf̂3, the layer is changed, triggering once again the
scanning the layer-step.

A Pareto filter is integrated within the algorithm as described in subsection 5.1.1.
The filter is applied after a new point is tracked, removing dominated points. The
algorithm terminates once the optimal points corresponding to the δf̂2 and δf̂3 set
have been tracked, covering the three extreme points: min f1, min f2, and min f3.

6.2.3 Precise Tracking of the 3D Pareto’s front Border
Another way of performing the Move-Layer step is by precise tracking of a surface’s
border elite point. The underlying idea of the concept inspired by [23], is that a
single two-objective optimization Correction-step takes place with its Lagrangian to
be minimized formulated as:

L(x⃗, λ⃗fk
, λ⃗hj

, µ⃗) = f1(x⃗)− λf3(f3 − f̂3NEW)−
Mh∑
j=1

λhj
hj(x⃗)−

Mg∑
i=1

µigi(x⃗) (6.5)

or

L(x⃗, λ⃗fk
, λ⃗hj

, µ⃗) = f2(x⃗)− λf3(f3 − f̂3NEW)−
Mh∑
j=1

λhj
hj(x⃗)−

Mg∑
i=1

µigi(x⃗) (6.6)

In this way, a border point of the new layer will be known without using a Prediction-
step from the preceding layer. This method can be used as an alternative to using

64 6.2. Tracking the 3D Pareto front (Scan by-Layer Algorithm)

a Prediction-step in the Move-Layer step. The main advantage is that in irregular
shaped 3D Pareto fronts the border point of the layer is unlikely to be tracked using
the Prediction-step from the former layer, as it could lead to dominated Pareto
Points adding to the computational cost of the problem.

6.2.4 The Scan by-Layer algorithm
The Scan by-Layer algorithm is formulated as:

Algorithm 8 Scan by-Layer Algorithm
Require: Number of Pareto Points Nelite, Hessian matrix initialization, δf̂2, δf̂3

steps
Ensure: Elite Points tracked counter: im, δf̂3

1: im← 0
2: δf̂3 ← 0
3: Go-to-Pareto step
4: while Elite Points tracked: im < Nelite do
5: Store first point of the layer
6: Scan-the Layer step
7: | Prediction-step
8: if XElite,Predicted < Radiusinfluence(δf̂2, δf̂3) then
9: | Correction-step

10: else if Back-tracking is not active then
11: | Load first point of the layer data
12: | Back-tracking → "ACTIVE"
13: | Algorithm 6, on layer
14: else if Back-tracking is active then
15: | Back-tracking → "NOT ACTIVE"
16: | δf̂3 ← 0
17: | Move-Layer Step
18: | | Prediction-Step with eq. (6.4b)
19: | | Or
20: | | Border-tracking of an elite Point, subsection 6.2.3
21: end if
22: | Elite Points tracked: im← im + 1
23: end while

The Scan by-Layer Algorithm will be tested in two BP, in three-objective optimiza-
tion (DTLZ-1 and DTLZ-2).

6.2.5 BP 6
The sixth BP to be optimized is the DTLZ-1 function. This BP yields a 3D Pareto
front, that coincides with the linear hyper-plane defined by ∑M

m=1 f ∗
m = 0.5. The

objective function has three components f⃗ = (f1, f2, f3) and should be minimized
for three design variables x⃗ :

65 6.2. Tracking the 3D Pareto front (Scan by-Layer Algorithm)

The function f1 for DTLZ-1, is defined as:

Minimize: f1(x⃗) = 1
2(1 + g(xM))x1x2

f2(x⃗) = 1
2(1 + g(xM))x1(1− x2)

f3(x⃗) = 1
2 (1− x1) (1 + g(xM))

Function g(xM) is:

g(x⃗, k) = 100(k +
nvar−1∑

i=nvar−k

(xi − 0.5)2 − cos(20π(xi − 0.5)))

where k = n − 3 + 1. The variable XM refers to the design variables exceeding k,
that is M > k.

The gradient of objective function for DTLZ-1 is:

∇f1(x⃗) =

 ∇x1f1
∇x2f1
∇x3f1

 ,∇f2(x⃗) =

 ∇x1f2
∇x2f2
∇x3f2

 ,∇f3(x⃗, n) =

 ∇x1f3
∇x2f3
∇x3f3


The ∇f(x⃗) terms are formulated as:

∇x1f1 := 0.5x2(1 + g(xM)) + 0.5x1x2∇x1g(x⃗M)
∇x2f1 := 0.5x1(1 + g(xM)) + 0.5x1x2∇x2g(x⃗M)
∇x3f1 := 0.5x1x2∇x3g(x⃗M)
∇x1f2 := 0.5(1− x2)(1 + g(xM)) + 0.5x1(1− x2)∇x1g(x⃗M)
∇x2f2 := −0.5x1(1 + g(xM)) + 0.5x1(1− x2)∇x2g(x⃗M)
∇x3f2 := 0.5x1(1− x2)∇x3g(x⃗M)
∇x1f3 := −0.5(1 + g(xM)) + 0.5(1− x1)∇x1g(x⃗M)
∇x2f3 := 0.5(1− x1)∇x2g(x⃗M)
∇x3f3 := 0.5(1− x1)∇x3g(x⃗M)

The Scan by-Layers algorithm is initialized with the parameters shown in Table 15.

Parameter Value
δf̂2 -0.05
δf̂3 -0.1
Hessian Diagonals Initialization 1.0

Table 15: BP 6: Initialized parameters of optimization process.

The initial Go-to-Pareto step, is performed by minimizing f1,f2 and thus the
point:(f̂1INITIAL,f̂2INITIAL,f̂3INITIAL)= (0.0, 0.0, 0.5) is retrieved. The GB method
tracks a total of 36 points. Once again the SQP algorithm is used in the Correction-
Step. As shown in Figures 6.4, 6.5 the Scan by-Layer algorithm successfully tracks

66 6.2. Tracking the 3D Pareto front (Scan by-Layer Algorithm)

the 3D Pareto front for the steps δf̂2, δf̂3, set.

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0
0.1
0.2
0.3
0.4
0.5

Pareto front

f1

f2

f3

0

0.1

0.2

0.3

0.4

0.5

Figure 6.4: BP 6: Demonstration of the 3D Pareto front obtained by Scan by-Layers
method.

0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4
0.5

0
0.1
0.2
0.3
0.4
0.5

Pareto front

f1

f2

f3

0

0.1

0.2

0.3

0.4

0.5

Figure 6.5: BP 6: Demonstration of the Scan by-Layers method, used to track
3D Pareto front, (red arrows): scanning direction on layer, (green arrows): points
obtained by Back-tracking, (black arrows): Move-Layer step.

6.2.6 BP 7
The seventh BP to be optimized is the DTLZ-2 function. This function yields a
convex surface shaped 3D Pareto front defined by ∑M

m=1 f 2∗
m = 1. The function is

defined for three design variables x⃗ and three objective functions f⃗ = (f1, f2, f3), as:

Minimize:f1(x⃗) = (1 + g(xM))cos(π

2 x1)cos(π

2 x2)

f2(x⃗) = (1 + g(xM))cos(π

2 x1)sin(π

2 x2)

f3(x⃗) = (1 + g(xM))sin(π

2 x1)

Function g(xM) is:

g(x⃗, k) =
n−1∑

i=n−k

(xi − 0.5)2

67 6.2. Tracking the 3D Pareto front (Scan by-Layer Algorithm)

Where XM denotes the number of design variables that exceed k, defined as k =
n− 3 + 1, implying that M > k. The gradient of Objective Function f is:

∇f1(x⃗) =

 ∇x1f1
∇x2f1
∇x3f1

 ,∇f2(x⃗) =

 ∇x1f2
∇x2f2
∇x3f2

 ,∇f3(x⃗) =

 ∇x1f3
∇x2f3
∇x3f3



where ∇x1f1 := −π0.5sin(π

2 x1)cos(π

2 x2)(1 + g(xM)) + cos(π

2 x1)cos(π

2 x2)∇x1g(x⃗M)

∇x2f1 := −π0.5sin(π

2 x2)cos(π

2 x1)(1 + g(xM)) + cos(π

2 x1)cos(π

2 x2)∇x2g(x⃗M)

∇x3f1 := cos(π

2 x1)cos(π

2 x2)∇x3g(x⃗M)

∇x1f2 := −π0.5sin(π

2 x1)sin(π

2 x2)(1 + g(xM)) + cos(π

2 x1)sin(π

2 x2)∇x1g(x⃗M)

∇x2f2 := π0.5cos(π

2 x1)cos(π

2 x2)(1 + g(xM)) + sin(π

2 x2)cos(π

2 x1)∇x2g(x⃗M)

∇x3f2 := cos(π

2 x1)sin(π

2 x2)∇x3g(x⃗M)

∇x1f3 := −0.5π(1 + g(xM))cos(π

2 x1) + sin(π

2 x1)∇x1g(x⃗M)

∇x2f3 := sin(π

2 x1)∇x2g(x⃗M)

∇x3f3 := sin(π

2 x1)∇x3g(x⃗M)

The Scan by-Layers algorithm is initialized with the parameters shown in Table 16:

Parameter Value
δf̂2 -0.05
δf̂3 -0.1
Hessian Diagonals Initialization 1.0

Table 16: BP 7: Initialized Parameters for 3D Pareto front

The initial Go-to-Pareto step is performed by minimizing f1,f2 and thus the point:
(f̂1INITIAL,f̂2INITIAL,f̂3INITIAL)= (0.0, 0.0, 1.0) and a total of 174 Pareto points are
tracked, scanning 10 layers of f̂3 . The front obtained by the Scan by-Layers algo-
rithm is.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0
0.2
0.4
0.6
0.8

1

Pareto front

f2

f1

f3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 6.6: BP 7: Demonstration of the 3D Pareto front, obtained by Scan by-Layer
method.

68 6.3. Conclusions

6.3 Conclusions
The proposed Scan by-Layers algorithm has successfully tracked both mathematical
BPs. It is characterized by its low computational time and its adaptability as the
user can define the number and the range of Pareto points that are to be tracked.
However, using areas of influence to track the border of the 3D Pareto front may
mistakenly identify a discontinuity region as the border potentially missing elite
points on a layer. Integrating the precise tracking of the 3D Pareto front’s border
can facilitate tracking all the points of the layer at the expense of additional com-
putational cost. Furthermore, the precise tracking of the 3D Pareto front’s border
can be combined with the method described in chapter 5 to track discontinuous 3D
Pareto fronts.

Chapter 7

Three-Objective CFD Application

7.1 Introduction
The following application focuses on optimizing a three-objective CFD case. The
aim is to optimize the shape of the airfoil under both the airflow conditions set
in section 4.1 and take-off conditions, that will be defined in section 7.2. The
three aerodynamic objectives to be optimized are: minimum drag, maximum lift
(coefficients), both at cruise conditions and attaining a high target lift coefficient
during take-off. Therefore, two operating points are involved. The above mentioned
CFD problem can be solved using the GB Scan by-Layers algorithm as described in
section 6.2.4.

7.2 Cruise and Take-Off Airflow Conditions
Cruise flight conditions are defined as the airflow conditions of the section 4.1.
M∞ = 0.8 while a∞ = 2°.

During take-off, the free-stream Mach speed is set to M∞ = 0.23, with a∞ = 9°. The
mesh around the airfoil is selected to remain the same as in section 4.1, comprised of
6500 nodes while the farfield boundary is located at approximately 10 airfoil chords
away from the airfoil.

7.3 Scan by-Layers Algorithm Initialization
The Pareto front of the case is tracked by applying the Scan by-Layers algorithm
as described in section 6.2 for three-objective problems.

The functions to be minimized read as:

f =


f1(x⃗) = CD(x⃗), at Cruise conditions
f2(x⃗) = −CL(x⃗), at Cruise conditions
f3(x⃗) = −CL(x⃗), at Take-off conditions

(7.1)

The Lagrangian of the problem is:

L(x⃗, λ⃗fk
) = f1(x⃗)− λf2(f2(x⃗)− f̂2)− λf3(f3(x⃗)− f̂3) (7.2)

69

70 7.3. Scan by-Layers Algorithm Initialization

Once again, the airfoil shape is parameterized using the same NURBS lattice and
thus, the y (vertical) coordinates of the same 12 CPs constitute the design variables
of the application. The Scan by-Layers algorithm for this CFD case is modified in
order to handle the primal and adjoint equations and reads as:

Algorithm 9 Scan by-Layer Algorithm, applied to external inviscid flow
Require: Number of Pareto Points Nelite, Hessian matrix initialization, δf̂2, δf̂3

steps, Initial Point coordinates
Ensure: Elite points tracked counter: im, δf̂3

1: im← 0
2: δf̂3 ← 0
3: Go-to-Pareto step
4: | Adapt mesh to the current design variables
5: | Solve primal equations
6: | Solve adjoint equations
7: | Update Fobj and sensitivity derivatives
8: while Elite points tracked: im < Nelite do
9: Store first point of the layer

10: Scan-the layer step
11: | Prediction-step
12: | | Solve primal equations
13: | | Update Fobj and sensitivity derivatives
14: if XElite,Predicted < Radiusinfluence(δf̂2, δf̂3) then
15: | | Correction-step
16: | | | Adapt mesh to the current design variables
17: | | | Solve primal equations
18: | | | Solve adjoint equations
19: | | | Update Fobj and sensitivity derivatives
20: else if Back-tracking is not active then
21: | | Load first point of the layer data
22: | | Back-tracking → "ACTIVE"
23: | | Algorithm 6, on Layer
24: else if Back-tracking is active then
25: | | Back-tracking → "NOT ACTIVE"
26: | | δf̂3 ← 0
27: | | Move-Layer Step
28: | | Prediction-Step with eq.(6.4b)
29: | | Or
30: | | Border-tracking of an elite Point, subsection 6.2.3
31: end if
32: | Elite points tracked: im← im + 1
33: end while

The convergence criterion of the algorithm adopted is selected for the Correction-
step of the SQP method as 10−2 for f̂2, and 5 10−3 for f̂3.

The EFS of this CFD case can be measured by first estimating the number of
times the primal and adjoint equations are solved in each optimization cycle. In

71 7.3. Scan by-Layers Algorithm Initialization

each cycle two primal equations (one for the cruise conditions (f1,f2) and one for
the take-off conditions f3) are solved, while three adjoint equations (two for f1=CD

and f2=-CL at flight conditions and one for the sensitivity derivatives of f3=-CL

at take-off conditions) are solved. The lift adjoint equations are first solved to
obtain the values of CL. Subsequently, the sensitivity derivatives of these values are
inverted, as they represent objectives to be maximized. The cost is 5 EFS at each
optimization cycle.

Additionally, the use of Back-tracking involves solving two additional primal
equations before reversing the scanning direction. This is the case, because
Back-tracking is triggered after a Prediction-step point is found outside the radius
of influence of the target solution. This accounts to the solution of an additional
set of 2 primal equations. The same procedure is followed each time a Move-Layer
step is applied.

The GB method begins with the Go-to-Pareto step to track the first point on the
front. Starting from an airfoil geometry with non-optimal aerodynamic coefficients
CD = 0.06 and CL = 0.985, at cruise conditions, the Go-to-Pareto step tracks an
initial point on the front, from which the Move-on-Pareto step will be applied using
a step size of δf̂2 on the first layer to be scanned. Based on the results of the EA,
the initial target values of f̂2 = −0.83, f̂3 = −1.33 are chosen, with a step size
of δf̂2 = −0.15, δf̂3 = −0.1 to track points across the same range as it. The GB
method is set to track 10 Elite points

The parameterization data for the Scan by-Layers optimization method, is displayed
in Table 17.

Parameter Value
δf̂2 -0.15
δf̂3 -0.1
Hessian Diagonals Initialization 10.0

Table 17: Airfoil case three-objectives: Initial values for the parameters of 3D Pareto
front.

Thus, for 10 Elite Points, the total cost in EFS is presented in Table 18.

Differential Equations EFS
Primal 134
Adjoint 180
Total 314

Table 18: Airfoil case three-objectives: EFS cost evaluation of the Scan by-Layers
Algorithm.

72 7.4. Results

7.4 Results
The execution of the Scan by-Layers algorithm yields the following 3D Pareto front:

−1.5−1.4−1.3−1.2−1.1−1−0.9−0.8−0.7

 0
 0.02

 0.04
 0.06

 0.08
 0.1

 0.12
 0.14

 0.16

−2.1
−2

−1.9
−1.8
−1.7
−1.6
−1.5
−1.4
−1.3

Prediction points

Correction Pareto points

f2

f1

f3

−2.1
−2
−1.9
−1.8
−1.7
−1.6
−1.5
−1.4
−1.3

Figure 7.1: Airfoil case three-objectives: Demonstration of the 3D Pareto front
tracked with the Scan by-Layers algorithm.
For the EA selected to track the 3D Pareto front the EASY software was once again
utilized. The 3D Pareto front traced with the use of the EA, is comprised of 31 elite
points in total. The use of "RBF IF" metamodels are enabled during the EA run.

−1.8−1.6−1.4−1.2−1−0.8−0.6−0.4−0.2

0
0.02

0.04
0.06

0.08
0.1

0.12
0.14

0.16

−2.6
−2.4
−2.2
−2

−1.8
−1.6
−1.4

EA non−dominated front

Scan by−Layers non−dominated front

f2

f1

f3

Figure 7.2: Airfoil case three-objectives: Pareto front tracked with Scan by-Layers
algorithm (black) and EA (red).

The EFS cost of the EA has increased in comparison to the case described in section

73 7.4. Results

4.1, as two sets of primal equations are solved at each evaluation instead of one thus
increasing the algorithm’s cost.

Algorithm EFS
EA with Metamodels 2000
GB Method 314

Table 22: Airfoil case three-objectives: EFS evaluation for Scan by-Layers and EA.

Figure 7.3: Airfoil case three-objectives: ShpO (black), (baseline geometry) from
left to right, up to down (red): (CD,2◦ , CL,2◦ , CL,9◦) = (0.0178, 0.768, 1.356),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0282, 0.842, 1.450),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0312, 1.049, 1.551),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0332, 1.457, 1.745).
The ShpO results of the GB method are presented in Figure 7.3. It is shown that
in order to achieve the target coefficient of Lift, CL,9◦ , at take-off conditions, as
expected curvature of both the suction and pressure side increase, even yielding an
extremely curved-shaped airfoil as the second one. Additionally, for higher CL,9◦ ,
the area around the trailing edge is flap-shaped, as this yields a higher lift coefficient.

In Figures 7.4 and 7.5, the Mach number fields of the optimized airfoils are
compared for cruise and take-off flight conditions. Once again, the intensity of
shock waves on the suction side is reduced thus, minimizing drag losses.

It is important to note that the shapes presented in Figure 7.3, particularly
the shape corresponding to (CD,2◦ , CL,2◦ , CL,9◦) = (0.0332, 1.457, 1.745), may be
disregarded due to aerodynamic considerations and the total surface characteristics
of the airfoil. However, these shapes arise from the parameterization of the problem.

74 7.4. Results

Figure 7.4: Airfoil case three-objectives: Mach flow fields, from left to right, (cruise
conditions): (CD,2◦ , CL,2◦ , CL,9◦) = (0.0178, 0.768, 1.356),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0282, 0.842, 1.450),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0312, 1.049, 1.551),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0332, 1.457, 1.745).

Figure 7.5: Airfoil case three-objectives: Mach flow fields, from left to right, (take-
off conditions): (CD,2◦ , CL,2◦ , CL,9◦) = (0.0178, 0.768, 1.356),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0282, 0.842, 1.450),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0312, 1.049, 1.551),
(CD,2◦ , CL,2◦ , CL,9◦) = (0.0332, 1.457, 1.745).

Chapter 8

Summary and Future Work

8.1 Summary
In this Diploma Thesis, a method for solving MOO problems using GB techniques
and tracking the Pareto front, extended also to CFD applications, was developed
and programmed in C++. The underlying concept is that by providing a starting
point, the method will be able to track the Pareto front of the MOO with a
reasonable number of (CFD) evaluations. A range of methods are provided to
optimize two and three-objective problems. New algorithms are developed and used
to solve problems in which the purpose is to track discontinuous Pareto fronts and
three-objective 3D Pareto fronts.

The Prediction-Correction scheme was integrated within the GB method for
tracking the Pareto front as it can accommodate tracking a particular number
of elite points, with a set target step. Briefly, the algorithm a priori receives as
input the maximum number of Pareto points to be tracked, the step size between
them, and an initialization in the design space. It comprises of two steps: the
Go-to-Pareto Step and the Move-on-Pareto Step. The first step is responsible for
locating the first optimal point of the Pareto front based on the given initial solution
in the design space. The second step tracks the rest of points along the Pareto
front. The Move-on-Pareto Step consists of a Prediction-step which utilizes the
implicit function theorem to estimate the next optimal solution. This is followed
by a Correction-step that accurately refines the solution obtained to the Pareto front.

In this thesis, the Correction-Step was applied utilizing the ALM method equipped
with a steepest descent and a Quasi-Newton, BFGS variant. An additional
modification was made to use the SQP method. In order to reduce the cost
in CFD applications the hessian matrix needed in SQP can be estimated with
Quasi-Newton methods either (BFGS,dBFGS or SR-1 method). The accuracy of
the Prediction-step in the SQP method was enhanced by using the most recent
hessian approximation from the previous Correction-step.

Two mathematical applications were presented to compare the computational
cost of the SQP and ALM algorithms. Particularly, the Bihn and Korn BP was
optimized using both methods in the Correction-step and it was shown that SQP
minimizes the case in 88 optimization cycles while ALM in 288. By minimizing

75

76 8.1. Summary

both BPs, with the exact computation of the hessian and their Quasi-Netwon, it
was shown that Quasi-Newtons can be used to accurately track optimal point, as
the Pareto fronts tracked were almost identical.

A CFD application aimed at the shape optimization of the NACA-4415 airfoil
for minimum CD and maximum CL is solved under external airflow conditions of
(M∞ = 0.8, a∞ = 2), and the software was integrated with the primal and adjoint
solvers of PUMA/NTUA. The computed fronts and the computational cost (EFS)
were compared to those of EASY, and it was shown that the Pareto front tracked
by the GB method tracked a total of 15 points. A variant of this application
was also presented where the same aerodynamic coefficients were optimized, while
maintaining a zero-pitching moment coefficient CM , tracking a total of 7 optimal
points

New proposals were presented regarding discontinuous Pareto fronts. A connection
was made between KKT conditions residuals obtained from the Prediction-step and
local front curvature change. This allowed KKT residuals to be used as indicators of
discontinuous regions in the Pareto front. Welford’s Online algorithm was integrated
into the software to calculate the variance of the sample of KKT residuals collected
after each Prediction-step, and detect the outlier points. Furthermore, a method for
tracking discontinuous fronts was proposed. In order to track discontinuous fronts
three algorithms can be combined, constituting a robust method: Target-Objective
jump, Back-tracking, and Swap Target-Objective. These methods were applied
to three mathematical BPs, successfully detecting discontinuous regions and by
performing the tracking method, they tracked the 2D fronts.

The GB method developed was expanded to three-objective optimization problems,
(Scan by-Layers algorithm). The Scan by-Layers algorithm involves changing
one of the two target objectives while keeping the other constant until the
Prediction-step yields a solution point outside the area of influence of the next
target point to be optimized. Back-tracking is then used to scan in the reverse
direction until a solution point outside the area of influence of the next target
point is reached again. After this the second target changes by a step size,
and the process is repeated until all elite points are tracked. Two BPs were
optimized and presented using this algorithm (DTLZ-1, DTLZ-2), which were
both successfully tracked by the algorithm for 36 and 174 Pareto points respectively.

Finally, a three-objective CFD application was presented which optimized the shape
of the airfoil under both cruise airflow conditions (M∞ = 0.8, a∞ = 2) and take-off
conditions (M∞ = 0.23, a∞ = 9), while also binding a third objective of a target CL
at a higher angle of attack during take-off conditions. The results of the Scan by-
Layers algorithm were compared to those of EASY, with the GB method tracking
10 Pareto points at the cost of 314 flow solutions (in terms of EFS).

77 8.2. Conclusions

8.2 Conclusions
After having completed the development of the software and the algorithms, and
having optimized the CFD applications in the Thesis the following conclusions can
be made:

SQP and ALM, robustness and computational cost

The configuration of the SQP algorithm is considered to be easier and more robust
than that of the ALM algorithm, given the latter’s requirement for precise initial-
ization of the Lagrangian variables λk and penalty constants ωk which often leads
to divergence of the method. The integration of Quasi-Newton methods in the SQP
algorithm makes it less computationaly intense than its ALM counterpart even when
the latter utilizes these methods. Therefore, the SQP method was used in all the
applications of this thesis.

Quasi-Newton Methods in CFD applications

When tracking the Pareto front, Quasi-Newton methods can be integrated with the
optimization software but they require a "good" initialization of the hessian. In all
applications, multiple initializations of the hessian were given as input optimization
process each at different orders of magnitude. This ensures that, if the first initial-
ization fails to converge, another can be used allowing the tracking of the Pareto
front to continue. Therefore, the optimization code should be provided with multiple
values of different orders of magnitude for the hessian initialization.

Influence of Step-Size and Target-Objective jumps’s accuracy, in Discon-
tinuous Fronts

The step size of the Prediction-Correction algorithm can significantly influence the
effect of discontinuities. Choosing a step size larger than the discontinuous region
may prevent the generation of an outlier point, when processing the pool of samples,
assuming the curvature of the front remains consistent. The Prediction-step by
default cannot be used to locate the next point because the x∗ = x∗(f̂2) function
can vary significantly after the discontinuous region. Therefore, it is recommended
to initialize the algorithm with multiple values for Target-Objective jumps and Swap
Target-Objective jump respectively in the algorithm. This ensures that if the first
jump fails to yield an optimal point, the next can be employed, etc. Inevitably, failed
jumps increase the computational cost of the GB method, as the Correction-step
must be repeated.

Three-objective optimization, computational cost

The proposed Scan by-Layers algorithm is a low computational time GB method
used to solve three-objective multi-objective optimization (MOO) problems. The
main advantage of this method compared to the algorithm suggested in, [23], is
that it incurs no additional EFS cost to evaluate three two-objective Pareto fronts
(tracking all the border), rendering the Scan by-Layers algorithm a low-cost method.
However, using areas of influence to track the border of the 3D Pareto front may

78 8.3. Proposals for Future Work

mistakenly identify a discontinuity region as the border, if not combined with the
exact tracking of the border method.

8.3 Proposals for Future Work
The following future research work is proposed:

First, the use of KKT Prediction residuals to track the discontinuous fronts could
be used as an initial tracking tool for the Pareto Frontier. The gaps shaped on the
front could then be analyzed using EA methods as suggested in, [17], in order to
solidify whether a gap is a discontinuity or not (i.e Elite points existing inside the
gap regions or not). A low cost, hybrid algorithm could be developed which also
employs EA on top of GB techniques to track elite points in the gaps.

Moreover, the Scan by-Layers algorithm could be extended to discontinuous 3D
Pareto fronts. This would require scanning the feasible border of the 3D Pareto
front employing the algorithm of, [23]. The areas of influence would then be
turned as a tool to detect discontinuities on the front, at the cost of increasing the
computational cost of the Scan by-Layers algorithm.

Finally, the Scan by-Layers algorithm can be extended for more than three-objective
optimization problems. This requires graphic visualization techniques to present
Optimal Solutions for greater than three objectives.

Appendix A

Weak and Strong Dominance
In certain cases, the objective function’s feasible border does not coincide with the
Pareto Front of optimal solutions as demonstrated in Figure A.1. It can be deduced
that the optimal solution of a given MOO problem could be feasible while being
dominated by other elite points of the Pareto front.

Figure A.1: An example of a border of the feasible set of solutions for an objective
function that is not identical to the Pareto front of the function.

The members of the feasible border of the objective function that are not dominated
constitute the strong Pareto front as displayed in Figure A.1, while the dominated
points constitute the weak Pareto front.

For the mathematical definitions of weak Pareto front optimal and strong Pareto
front optimal conditions for a given objective function Fobj, the vector of objective
function values is represented as:

f⃗(x⃗) =
(
f1(x⃗) f2(x⃗) · · · fm(x⃗)

)
(A.1)

80

81 Appendix A

Strongly Pareto Optimal: The Pareto optimal solution x∗ for (A.1) satisfies the
conditions:

∀j : fi(xj) ≤ fi(x∗), for i = [1, . . . , M]
∃n : fn(xj) < fn(x∗) (A.2)

This implies that for x∗ ∈ X to be strongly Pareto optimal, there does not exist
another xj ∈ X such that fi(xj) ≤ fi(x∗) for all functions fi, ∀i ∈ [1, m] and that,
for at least one target function fk, fk(xj) < fk(x∗). This definition is in accordance
with that of subsection 1.3.2 and Pareto optimal conditions. Thus, strong Pareto
Optimality will be referred to shortly as Pareto optimality.

Weakly Pareto Optimal: A weak Pareto point x̃∗ satisfies:

∀j : fi(xj) < fi(x̃∗), for i = [1, . . . , m] (A.3)

A solution is weakly Pareto optimal if no other point exists that improves all of the
objectives simultaneously. This is different from a strongly Pareto optimal point such
that no point exists that improves at least one objective without being detriment to
other objectives.

Appendix B

Augmented Lagrangian Method (ALM)
The Augmented Lagrangian Method (ALM) for short is an iterative algorithm de-
veloped, to handle constrained optimization problems, [15], [16].

ALM Algorithm for Equality Constraints
ALM combines the concept of the Lagrangian function with that of the Quadratic
Penalty Function. The objective function is formulated mathematically as:

Fobj(x⃗) = f(x⃗)−
Mh∑
j=1

λjhj(x⃗) + ω

2

Mh∑
j=1

h2
j(x⃗) (B.1)

The gradient of the objective function is:

∇xFobj(x⃗) = ∇xf(x⃗)−
Mh∑
j=1

λj∇xhj(x⃗) + ωk

Mh∑
j=1

hj(x⃗)∇xhj(x⃗) = 0 (B.2)

From the above, it is deduced that for the optimal (KKT) conditions denoted by λ∗

are binding for this optimization problem:

λ∗ ≈ λk
j − ωk · hk(x⃗) (B.3)

This equation eliminates perturbations provided that the approximation of the La-
grange multiplier (λ∗) is satisfactory as follows:

hk(x⃗) ≈ 1
ωk

(λ∗ − λk
j) (B.4)

An iterative algorithm is thus set up, defined as:

Algorithm 10 Augmented Lagrange Method
Require: Given ω0 > 0, convergence tolerance tol0 > 0, starting points x⃗s0 and λ⃗0

1: while not converged satisfied do
2: Update design variables ⃗xs(k+1) ← x⃗k

3: if converging condition satisfied then
4: stop with approximate solution x⃗k

5: end if
6: Update Lagrange multipliers to obtain ⃗λk+1
7: Optional: Choose new penalty parameter ωk+1 ≥ ωk

8: Use a Search line method (Steepest descent or BFGS)
9: end while

82

83 Appendix A

In the software developed as part of the diploma thesis, which uses the ALM method,
the scheme selected to update ω, is:

ω = min(γ · ωp, ωpmax) (B.5)

Respectively λ⃗ is updated using :

λ⃗ k+1 = λ⃗ k − ζ · ω
(¯∇xh(x)

)
/Mh (B.6)

where the average ¯∇xh(x) is estimated as:

¯∇xh(x) =
∑N

i=1
¯∇xh(x)

N

and ζ is an over-relaxation coefficient aimed at preserving ω · ¯∇xh(x) and λ⃗ at the
same order of magnitude, when updating the Lagrange multipliers, [9].

Generalized ALM Algorithm
The Generalized ALM takes into account the effect of imposing inequality con-
straints to the optimization problem. The underlying concept is to incorporate the
inequality constraints with additional terms in the ALM eq. (B.2). This concept can
be realized by introducing slack variables z2

j to the inequality constraint functions
gj(x⃗) thereby transforming them into additional equality constraints. The inequality
constraints are thus formulated:

g1(x⃗) + z1
2 = 0

g2(x⃗) + z2
2 = 0
...

gMg(x⃗) + zMg

2 = 0

(B.7)

Slack variables can be treated as additional design variables that increase the di-
mension of the set of design variables from n to n + Mg. The objective function in
this case is changed to:

Fobj(x⃗) = f(x⃗)−
Mh∑
j=1

λjhj(x⃗)+ ωc

2

Mh∑
j=1

h2
j(x⃗)−

Mg∑
i=1

µi(gi(x⃗)+z2
j)+ ωg

2

Mg∑
i=1

(gi(x⃗)+z2
i)2

(B.8)
where ωhj

are the penalty parameters for equality constraints and ωgi
for inequality

constraints. In eq (B.8), the set of design variables that leads to the global minimum
is x⃗ = {x1, x2, . . . , xn, z1, . . . , zmg}:

∇xFobj(x⃗) = ∇xf(x⃗)−
Mh∑
j=1

λj∇xhj(x⃗)

+ ωc

Mh∑
j=1
∇xhj(x⃗) · hj(x⃗)

−
Mg∑
i=1

µi∇xgi(x⃗) + ωg

Mg∑
i=1

2 · (gi(x⃗) + z2
j) · ∇xgi(x⃗) (B.9)

84 Appendix B

From eq B.9, it is deduced that the relation used to optmize µi is:

min
{

µi + ωg[gi(x⃗) + z2
j] + 1

2[gi(x⃗) + z2
j]2
}

(B.10)

which, by estimating the gradient of this term, is formulated into:

z2
j = −{

[
µi

c
+ gi(x⃗)

]
} (B.11)

Thus, the value of slack variables can be recomputed after each iteration. Given that
slack variables have to be positive or zero the following expression can be given:

z2
j = max{0,−

[
µi

c
+ gi(x⃗)

]
} (B.12)

It is possible to reformulate (B.12) by adding the inequality constraint:

gi(x⃗) + z2
j = max{gi(x⃗), gi(x⃗)−

[
µi

c
+ gi(x⃗)

]
} (B.13)

By setting g+
i (x⃗) = gi(x⃗) + z2

j , (B.9) reads:

Fobj(x⃗) = f(x⃗)−
Mh∑
j=1

λjhj(x⃗) + ωc

2

Mh∑
j=1

h2
j(x⃗)−

Mg∑
i=1

µig
+
i (x⃗) + ωg

2

Mg∑
i=1

(g+
i (x⃗))2 (B.14)

Using this expression both equality and inequality constraints can be handled and
thus the ALM can be generalized.

Appendix C

The Implicit Function Theorem
Let [H : Rn+m → Rm] be a continuously differentiable function, and let Rn+m have
coordinates [(y⃗, z⃗)].Where Rn+m, is defined as the Cartesian
product Rn ·Rm, [18].

Lets consider the point [(y⃗, z⃗) = (a, b) ∈ Rn+m]. For these values, [H(a,b)=0], where
0 is the Zero vector. The Jacobian w.r.t. z⃗ is denoted as:

JHz(a, b) = [∂Hi

∂zj

(a, b)] (C.1)

And it is assumed to constitute the left-hand panel of the Jacobian matrix. Respec-
tively, the Jacobian w.r.t. z⃗ is denoted as:

JHy(a, b) = [∂Hi

∂yj

(a, b)] (C.2)

and this constitutes the right-hand panel of the Jacobian matrix.

The implicit function theorem states that If Jz
f : Rn → Rm is invertible, then there

exists an open set U ⊂ Rn that includes a and guarantees the existence of a unique
function g : U → Rm such that g(a) = b and f(x, g(x)) = 0 for every x ∈ U .
Additionally, the function g is continuously differentiable, and the left-hand side of
the Jacobian matrix from the earlier section is denoted as follows: :[

∂gi

∂zj

(z⃗)
]

m×n

= − [Jfz(z⃗, g(z⃗))]−1
m×m

[
JHy(y, g(y⃗))

]
m×n

(C.3)

which can be also stated as:

∇z⃗g(z⃗) = − [∇y⃗H(z⃗, g(z⃗))]−1∇z⃗H(z⃗, g(z⃗)) (C.4)

Applying the Implicit Function Theorem to Track
the Pareto Front
The implicit function theorem expresses the derivatives of the design variables and
Lagrange Multipliers w.r.t. the target functions that are set as constraints. Eqs.
(3.4) when differentiated with regards to z⃗ and y⃗ yield the following expressions:

∇⃗z⃗y⃗ =
[

∂x⃗
∂f̂2,...,M

, ∂x⃗
∂λf2,...,fMt

, ∂x⃗
∂λh,...,Mh

, ∂x⃗
∂µ1,...,Mg

]
(C.5)

85

86 Appendix C

∇⃗z⃗H(z⃗, y⃗) =
[
∇2

x⃗,f̂k
L(x⃗, λ⃗f , λ⃗h, µ⃗),∇f̂k

(fk(x⃗)− f̂k),∇f̂k
h(x⃗),∇f̂k

g(x⃗)
]

(C.6)

∇⃗y⃗H(z⃗, y⃗) =
[
∇x⃗H(z⃗, y⃗),∇λ⃗fH(z⃗, y⃗),∇λ⃗h

H(z⃗, y⃗),∇µ⃗H(z⃗, y⃗)
]

(C.7)

For eq. (C.5) the terms in the formulated matrix are defined as following:

[
∂λf2,...,fMt

∂f̂2,...,Mt

]
=



∂λf2
∂f̂2

∂λf2
∂f̂3

· · · ∂λf2
∂f̂Mt

∂λf3
∂f̂2

∂λf3
∂f̂3

· · · ∂λf3
∂f̂Mt...

∂λfMt

∂f̂2

∂λfMt

∂f̂3
· · · ∂λfMt

∂f̂Mt

 (C.8)

[
∂λh1,...,hMt

∂f̂2,...,Mt

]
=



∂λh1
∂f̂2

∂λh1
∂f̂3

· · · ∂λh1
∂f̂Mt

∂λh2
∂f̂2

∂λh2
∂f̂3

· · · ∂λh2
∂f̂Mt...

∂λhMh

∂f̂2

∂λhMh

∂f̂3
· · · ∂λhMh

∂f̂Mt

 (C.9)

[
∂µ1,...,Mg

∂f̂2,...,Mt

]
=



∂µ1
∂f̂2

∂µ1
∂f̂3

· · · ∂µ1
∂f̂Mt

∂µ2
∂f̂2

∂µ2
∂f̂3

· · · ∂µ2
∂f̂Mt...

∂µMg

∂f̂2

∂µMg

∂f̂3
· · · ∂µMg

∂f̂Mt

 (C.10)

It is obvious that in eq. (C.6), ∇2
x⃗,f̂k

L(x⃗, λ⃗f , λ⃗h, µ⃗) = 0 and the same applies for
∇f̂k

h(x⃗) = 0⃗ and ∇f̂k
g(x⃗) = 0⃗. When differentiating w.r.t. f̂k, the target constraint

∇f̂k
(fk(x⃗)− f̂k) = −I⃗

Finally, the terms of eq. (C.7) are computed as:

∇x⃗H(z⃗, y⃗) =


∇2

x⃗L(x⃗, λ⃗f , λ⃗h, µ⃗)
∇x⃗fk(x⃗)
∇x⃗h(x⃗)
∇x⃗g(x⃗)

 (C.11)

∇λfk
H(z⃗, y⃗) =


∇2

x,λfk
L(x⃗, λ⃗f , λ⃗h, µ⃗)

0⃗
0⃗
0⃗

 (C.12)

∇λh
H(z⃗, y⃗) =


∇2

x⃗,λh
L(x⃗, λ⃗f , λ⃗h, µ⃗)

0⃗
0⃗
0⃗

 (C.13)

∇µH(z⃗, y⃗) =


∇2

x⃗,µL(x⃗, λ⃗f , λ⃗h, µ⃗)
0⃗
0⃗
0⃗

 (C.14)

87 Appendix C

The right-hand sides of eqs. (C.11),(C.12),(C.13),(C.14) are written as:

∇x⃗H(z⃗, y⃗) =


∇2

x⃗L(x⃗, λ⃗f , λ⃗h, µ⃗)
∇x⃗fk(x⃗)
∇x⃗h(x⃗)
∇x⃗g(x⃗)

 (C.15)

∇λfk
H(z⃗, y⃗) =


−∇x⃗fk(x⃗)

0⃗
0⃗
0⃗

 (C.16)

∇λh
H(z⃗, y⃗) =


−∇x⃗h(x⃗)

0⃗
0⃗
0⃗

 (C.17)

∇µH(z⃗, y⃗) =


−∇x⃗µ(x⃗)

0⃗
0⃗
0⃗

 (C.18)

The derivation of the Jacobian matrix of constraints can be made from eqs.
(C.15),(C.16),(C.17),(C.18):

J(x)T = [∇x⃗fk(x⃗),∇x⃗h(x⃗),∇x⃗µ(x⃗)] (C.19)

Thus, the following system needs to be solved:

Ã︷ ︸︸ ︷[]∇2
xxL −JT

k

Jk 0

X︷ ︸︸ ︷



∂ x⃗
∂f̂2,...,Mt

∂λf2,...,Mt

∂f̂2,...,Mt
∂λh1,...,Mh

∂f̂2,...,Mt
∂µ∗

1,...,Mgg

∂f̂2,...,Mt

=

B︷︸︸︷


0̃
Ĩ
0̃
0̃

(C.20)

The dimensions for the matrices in eq. (C.20) are the following:

Matrix A: [(n + (Mt − 1) + Mh + Mg)× (n + (Mt − 1) + Mh + Mg)]
Matrix X: [(n + (Mt − 1) + Mh + Mg)× 1]
Matrix B: [(n + (Mt − 1) + Mh + Mg)× 1]

Using the Implicit Function theorem’s expression (C.4) presented in Appendix C,
equation (C.20) is formulated as:

∂h⃗

∂z⃗
(z⃗) = −∂H⃗

∂z⃗
[⃗h(y⃗), y⃗]−1 · ∂H⃗

∂y⃗
[⃗h(y⃗), y⃗] (C.21)

From eq. (C.21) it becomes clear that this first-order accuracy scheme can effectively
be employed to predict the value of an unknown Pareto point on the curve, provided
a target value has been set for its Mt-1 variables. The primary challenge in employing
eq. (C.20) lies in estimating the hessian ∇2

xxL which due to its high computational
cost will be estimated using BFGS or SR-1.

Bibliography

[1] A.Dell’Aere, O.Schütze, and M.Dellnitz. On continuation methods for the nu-
merical treatment of multi-objective optimization problems. In Dagstuhl Sem-
inar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2005.

[2] B.Einarsson. Accuracy and reliability in scientific computing. SIAM, 2005.

[3] B.Welford. Note on a method for calculating corrected sums of squares and
products. Technometrics, 4(3):419–420, 1962.

[4] C.Fonseca and P.Fleming. Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. pages 416–423, July 17-22 1993.

[5] C.Mattson, A.Mullur, and A.Messac. Smart pareto filter: Obtaining a mini-
mal representation of multiobjective design space. Engineering Optimization,
36(6):721–740, 2004.

[6] D.Bertsekas. Constrained optimization and Lagrange multiplier methods. Aca-
demic press, 2014 Chapter 3.

[7] E.Zitzler, K.Deb, and L.Thiele. Comparison of multiobjective evolutionary
algorithms: empirical results. Evolutionary Computation, 8(2):173–195, 2000.

[8] I.Vasilopoulos. Cad-based and cad-free aerodynamic shape optimization of tur-
bomachinery blade rows using the adjoint method. PhD Thesis, 2020.

[9] J.Nocedal and S.Wright. Numerical optimization. Springer, 1999, Chapter 17.

[10] J.Patel and C.Read. Handbook of the normal distribution, volume 150. CRC
Press, 1996.

[11] K.Giannakoglou. Optimization Methods in Aerodynamics. NTUA, 2006.

[12] K.Giannakoglou. The easy (evolutionary algorithms system) software.
https://velos0.ltt.mech.ntua.gr, 2008.

[13] K.Gkaragkounis. Τhe continuous adjoint method in aerodynamic and conjugate
heat transfer shape optimization, for turbulent flows. PhD Thesis, 2020.

[14] L.Wasserman. All of nonparametric statistics. Springer Science & Business
Media, 2006.

[15] M.Hestenes. Multiplier and gradient methods. Journal of optimization theory
and applications, 4(5):303–320, 1969.

89

90 Bibliography

[16] M.Powell. A method for nonlinear constraints in minimization problems. Op-
timization, pages 283–298, 1969.

[17] R.Lussier. Filling gaps on the pareto front in multi-and many-objective opti-
mization. Scholarly Horizons: University of Minnesota, Morris Undergraduate
Journal, 9(2):5, 2022.

[18] S.Krantz and H.Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002.

[19] S.Schmidt and V.Schulz. Pareto-curve continuation in multi-objective opti-
mization. Pacific Journal of Optimization, 4(2):243–258, 2008.

[20] T.Binh and U.Korn. Mobes: a multiobjective evolution strategy for constrained
optimization problems. Proceedings of the Third International Conference on
Genetic Algorithms (MENDEL97), pages 176–182, 1997.

[21] Μ.Καρούζου. Επίλυση Προβλημάτων Βελτιστοποίησης Δύο Στόχων με Βάση
τη Θεωρία της Συνέχισης του Μετώπου Pareto. Διπλωματική Εργασία ΕΜΠ,
Σεπτέμβριος 2015.

[22] Μ.Καψής. Εντοπισμός του Μετώπου Pareto στην Πολυκριτηριακή Αεροδυναμική
Βελτιστοποίηση με Μέθοδο Newton με Αποκοπή. Διπλωματική Εργασία ΕΜΠ,
Ιούλιος 2014.

[23] Ν.Πατσαλίδης. Ανάπτυξη αλγορίθμου και λογισμικού υπολογισμού του μετώπου
Pareto με αιτιοκρατική μέθοδο βελτιστοποίησης και εφαρμογές στην αερο-
δυναμική. Διπλωματική Εργασία ΕΜΠ, Φεβρουάριος 2020.

Ε Μ Π
Σ Μ Μ
Τ Ρ
Μ Π Υ Ρ
& Β

Α Π Β, 
Α  3Δ  Pareto,   

Α

   

Ε Κ

:  . ,  Μ

, 2024

1    

Ε

   ,     -
  (Μ)     Pareto  
  CFD.       Pareto 
  ,      .  
        
   2  Pareto,      .
         C++.

       -, [1] 
,          Pareto,
    ,    .   -
   :   Go-to-Pareto,     
 ,    Move-on-Pareto,      -
    .      
  -  .     
        
 . ΄        
 ,       ALM    SQP, -
       .    , 
  ,       -
  ALM  SQP, [2], [3].      
CFD      ,    
   CM .  ,    -
   Pareto,      
   ,      
 Welford, [4],        . ,
   Scan by-Layers,     -
         ,
    CFD.

Α Μ Σ  Μ

          
 .    (Go-to-Pareto step),      
      .     
         Move-on-Pareto step,
    ,     -.

Β Π

        .    
 x∗

i ,       Pareto x∗
i+1  :

x∗
predict,i+1 = xi +

∂x⃗

∂f̂2
δf̂2

2    

   ∂x⃗
∂f̂2

    KKT   

f̂2,     :

∂H

∂x⃗

∂x

∂
⃗̂
f2

=

B  
0
−I



          -
,    .

Β Δ

      Pareto      -
.       :

L(x⃗, λ⃗fk , λ⃗h, µ⃗) = f1(x⃗)−
Mt

k=2
λfk(fk − f̂k)−

Mh

j=1
λhj

hj(x⃗)−
Mg

i=1
µigi(x⃗)

   ,     f̂2,   
:

L(x⃗, λ⃗fk) = f1(x⃗)− λf2(f2(x⃗)− f̂2)
          ALM   SQP.

Σ  Μ Pareto

          
       CFD.   1  2 -
         ,   
 -.

0

10

20

30

40

50

0 20 40 60 80 100

f2

f1

Prediction points
Correction Pareto points

Move-on-Pareto

Initial Geometry

Go-to-Pareto

( 1)   Pareto  
  .

36

38

40

42

44

46

48

50

0 0.5 1 1.5 2 2.5 3 3.5

f2

f1

Prediction points

Correction Pareto points

Prediction-Step
Correction-Step

( 2)  -
.

Μ Ε

   ,       
Bihn and Korn, [5]         

3    

  SQP   ALM.     :

minf1(x1, x2) = 4x2
1 + 4x2

2, f2(x1, x2) = (x1 − 5)2 + (x2 − 5)2,

  :

g1,2(x1, x2) = x1 ∈ [0, 5] g3,4(x1, x2) = x2 ∈ [0, 3]
g5(x1, x2) = (x1 − 5)2 + x2

2 ≤ 25, g6(x1, x2) = (x1 − 8)2 + (x2 + 3)2 ≥ 7▷7▷

  ,        ( 1,2):

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 20 40 60 80 100 120

f2

f1

Prediction points
Correction Pareto points

( 3):BP 1: Μ Pareto,
   ALM   -
.

 5

 10

 15

 20

 25

 30

 35

40

 45

 50

 0 20 40 60 80 100
f2

f1

Prediction points
Correction Pareto points

( 4): BP 1: Μ Pareto
   SQP   -
.

 ALM,      ,   288 
,     SQP,    78.   6
 ,  ALM     12 -
 Lagrange,   SQP      .

       Fonseca and Fleming,
   ,   :

min f1(x) = 1− exp

−

n

i=1


xi −

1√
n

2

 , f2(x) = 1− exp


−

n

i=1


xi +

1√
n

2

 ,

 x = (x1, x2), −4 ≤ xi ≤ 4 ∀ i = 1, 2▷

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f2

f1

Prediction points
Correction Pareto points

( 5):BP 2:Μ Pareto
     SQP, 
SR-1.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f2

f1

Prediction points
Correction Pareto points

( 6): BP 2: Μ Pareto
   SQP,  -
.

4    

     39      δf2,target =
-0.025.          Pareto  
      .

Ε Δ Σ: Ε  ,  NACA-4415,
     Π-Δ

       CFD.   
     NACA 4415    ,
     f2 = −CL    
 f1 = CD.        
        
PUMA  Μ    & -
         .

     α∞ = 2◦  M∞ = 0▷8.  
       
   NURBS 10x7,    y   43
()      , ( 7).

 7:Airfoil case two-objectives:  NURBS, 10x7
    ,    f̂2 = −0▷35,  -
   10    δ̂f2 = 0▷1,  15   ,
  135    EFS,    45   -
   90     . Μ    ,
        CM .  
  ,  7     f̂2 = −0▷35
     . ( 8, 9)

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Prediction points

f1

f2

Correction Pareto points

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

f2

f1

Pareto front with CM=0
Original Pareto front

(.8): Airfoil case two-
objectives: Μ Pareto
  .

(.9):Airfoil case two-obj.,
No CM : Μ Pareto 
 .

5    

Α  Α  Μ Pareto

         ,
     ,    ,   
  ,     .   
         ,
        .

    ,      
          Pareto, 
(x1∗,x2∗). Μ    ,    
   KKT ,        on-
line   ,       .
        Welford.  -
 ,   KKT    ,   
         
 ,      3  .

Σ Α Pareto Μ

• Target-Objective jump:    Target-Objective jump -
    f̂2. ΄,     
  ,        
     (   CFD),    
  Pareto  .

• Swap Target-Objective:      
f̂2      f1  Lagrangian.   
   ,       f̂2 
       .

• Back-tracking:  Back-tracking     Target-Objective
jump   Swap Target-Objective      
  . Μ       
            .
         
  .

Ε  Μ Σ

     ,   BP 3:

minf1(x⃗) =
n

i=1


(xi − 2)2 + 0▷1

(x1 − 3▷5)2 + 10−3


f2(x⃗) =

n

i=1


(xi − 5)2 + 0▷1

(x1 − 3▷5)2 + 10−3



    x⃗ = (x1, x2, x3), 3  . 
       f1, f2     
  x1   3.5.

     ,   BP 4

6    

min





f1(x⃗) =

1
2(x1 + x2)− 2

2
+ 5×10−3

(1
2 (x1+x2)−3▷5)2+10−3

 + (x1 − x2)2

f2(x⃗) =

1
2(x1 + x2)− 5

2
+ 5×10−3

(1
2 (x1+x2)−3▷5)2+10−3

 + (x1 − x2)2

       x⃗=(x1,x2).  
           (x1∗,x2∗)
   3▷5.

−0.1

 0

 0.1

 0.2

 0.3

0.4

 0.5

 0.6

 0.7

 0 5 10
 15

 20
 25

 30

R
e

s
id

u
a

l
o

f
K

K
T

−
c
o
n

d
it
io

n
 1

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

−0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Residual of KKT x1 for the Prediction−Step, Benchmark Function 3

0
2
4
6
8
10
12
14
16
18

0 2 4 6 8 10 12
f2

f1

Pareto front

 0

 2

 4

 6

 8

 10

 0 5 10
 15

 20
 25

 30

R
e

s
id

u
a

l
o

f
K

K
T

−
c
o
n

d
it
io

n
 1

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

−1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Residual of KKT x1 for the Prediction−Step, Benchmark Function 4

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6 7 8 9 10

f2

f1

C Pareto points

 10: BPs 3,4:   KKT     -
 x1(),   Pareto      
 ().

  Pareto   10       jump
       Back-tracking    
       .    Pareto
 BP 4     Swap Target-Objective    δf1Jump = 5▷4δf1,
( 11):

0
1
2
3
4
5
6
7
8
9

0 1 2 2.9 4 5 6 7

f2

f1

Pareto points

 11: BP 4:  Swap Target-Objective.
  BP       ZDT3, [6] 

7    

   x1:

min





f1(x) = x1

f2(x) = (1▷0)

1▷0−


f1
1▷0 −


f1
1▷0


sin(10▷0πf1)



  Pareto   ( 13)   4  ,
          ,
     Target-Objective jump.   
    Back-tracking       -
   .

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10
 20

 30
 40

 50
 60

 70

R
e

s
id

u
a

l
o

f
K

K
T

−
c
o
n

d
it
io

n
 1

Number of Pareto Points Traced

Histogram
Mean

Upper Limit

−1

 0

 1

 2

 3

 4

 5

 6

 7

Residual of KKT x1 for the Prediction−Step, Benchmark Function 5

( 12): BP 5:  
KKT .

−0.8
−0.6
−0.4
−0.2
0

0.2
0.4
0.6
0.8
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f2

f1

Pareto points

( 13): BP 5:
Μ Pareto

Σ 3Δ Μ Pareto

       Pareto     
          
    .      
   ,      ,  
        -
,       CFD.

,   Scan by-Layers,      -
,   .         -
       x∗   f̂2,  f̂3,

x∗ = x∗(f̂2, f̂3)

      Taylor  :

x∗predict,i+1 = xi + ∂x⃗
∂f̂2

δf̂2 + ∂x⃗
∂f̂3

δf̂3

      f̂2  f̂3,  3-Pareto  
       .    ,
  f̂3      ,   f̂2   
 .         
     δρ = δf̂2 /2,      .
        δρ   
(area of inuence).   ,     
   ,         

8    

   .

Μ           
     ,    (layer) ,  f̂2,
  ( )   f̂3,  Move-Layer step. 
   (layer),      
         .

      Move-Layer step  
        .  
    -  Lagrangian

L(x⃗, λ⃗fk , λ⃗h, µ⃗) = f1(x⃗)− λf3(f3 − f̂3NEW)−Mh
j=1 λhj

hj(x⃗)−
Mg

i=1 µigi(x⃗)
L(x⃗, λ⃗fk , λ⃗h, µ⃗) = f2(x⃗)− λf3(f3 − f̂3NEW)−Mh

j=1 λhj
hj(x⃗)−

Mg

i=1 µigi(x⃗)
       Pareto  ,  
            
   .

        Scan by-
Layers.   (BP 6)    DTLZ-1    
x⃗:
min (f1, f2, f3)

f1(x⃗) =
1
2(1 + g(xM)) x1 x2 f2(x⃗) =

1
2(1 + g(xM)) x1(1− x2)

f3(x⃗) =
1
2(1− x1)(1 + g(xM)) g(x⃗, k) = 100


k +

n−1

i=n−k

(xi − 0▷5)2 − cos(20π(xi − 0▷5))



    36 ,   δ̂f2 = -0.05, δ̂f3 = -0.1.  
       1, ( 14)

,    DTLZ-2,    :
min (f1, f2, f3)

f1(x⃗) = (1 + g(xM))cos(π2x1)cos(
π

2x2) f2(x⃗) = (1 + g(xM))cos(π2x1) sin(
π

2x2)

f3(x⃗) = (1 + g(xM)) sin(π2x1) g(x⃗, k) =
n−1

i=n−k

(xi − 0▷5)2

    174 ,   δ̂f2 = -0.05, δ̂f3 = -0.1.  
       1. ( 17)

0 0.1 0.2 0.3 0.4 0.5

0
0.1

0.2
0.3

0.4
0.5

0
0.1
0.2
0.3
0.4
0.5

Pareto front

f1
f2

f3

0
0.1
0.2
0.3
0.4
0.5

( 14): BP 6: 3 Pareto

0 0.2 0.4 0.6 0.8 1

0
0.2

0.4
0.6

0.8
1

0
0.2
0.4
0.6
0.8
1

Pareto front

f2
f1

f3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

( 15): BP 7: 3 Pareto

9    

Ε Τ Σ: Ε Α Ρ  

   CFD       
  NACA-4415,   .      -
    ,      f2 = −CL

     f1 = CD,   
   (M∞ = 0▷23, a∞ = 9°),  f3,target = −CL,ΤΟ.
    ,       Scan
by-Layers,   314, (134        180 
    ).

            
(10  100),          
,    .    , δf̂2= -0.05  δf̂3= -0.1 
 10 . ( 16, 17).

−1.5−1.4−1.3−1.2−1.1−1−0.9−0.8−0.7

 0
 0.02

 0.04
 0.06

 0.08
 0.1

 0.12
 0.14

 0.16

−2.1
−2

−1.9
−1.8
−1.7
−1.6
−1.5
−1.4
−1.3

Prediction points

Correction Pareto points

f2

f1

f3

−2.1
−2
−1.9
−1.8
−1.7
−1.6
−1.5
−1.4
−1.3

( 16):Airfoil case three-
objectives Pareto ,  
Scan by-Layers

( 17):Airfoil case three-
objectives:  -
 .

Σ

Μ          
  .   SQP     
     ALM,      
 Lagrange      ALM.   CFD, 
   Pareto     
     .    ,   
         
,    .       -
       ,   
      Target-Objective jumps    .
,   Scan by-Layers    
     ,       
        ,  
    .

Βιλιορφί

[1] A.Dell’Aere, O.Schütze, and M.Dellnitz. On continuation methods for the nu-
merical treatment of multi-objective optimization problems. In Dagstuhl Seminar
Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2005.

[2] M.Hestenes. Multiplier and gradient methods. Journal of optimization theory
and applications, 4(5):303–320, 1969.

[3] J.Nocedal and S.Wright. Numerical optimization. Springer, 1999, Chapter 18.

[4] B.Welford. Note on a method for calculating corrected sums of squares and
products. Technometrics, 4(3):419–420, 1962.

[5] T.Binh and U.Korn. Mobes: a multiobjective evolution strategy for constrained
optimization problems. Proceedings of the Third International Conference on
Genetic Algorithms (MENDEL97), pages 176–182, 1997.

[6] E.Zitzler, K.Deb, and L.Thiele. Comparison of multiobjective evolutionary al-
gorithms: empirical results. Evolutionary Computation, 8(2):173–195, 2000.

10

	Introduction
	Introduction to optimization theory
	Categories of optimization methods
	Line search methods

	Basic Terminology of MOO
	Introduction
	Mathematical definition, the concept of Non-Dominance

	Pareto Points Tracking
	Purpose of the Thesis
	Thesis Outline

	Constrained Optimization Methods
	The KKT Conditions
	The SQP Algorithm
	The SQP Algorithm for equality constraints
	Handling of Inequality Constraints Using SQP, (Active-Set Method)

	Tracking the Pareto Front Using GB Methods
	Introduction
	Pareto Tracking GB Method
	Tracking the Pareto Front
	Go-to-Pareto step
	Move-on-Pareto steps
	Prediction-Step
	Correction-Step
	Formulation of the Algorithm for Two Objectives

	Mathematical Applications of the GB Method
	BP 1: Bihn and Korn Problem
	BP 2: Fonseca and Fleming Problem

	Application of GB method in External Aerodynamic ShpO
	Case Description
	Optimization without the CM Constraint
	Optimization Constrained by CM=0

	Tracking Discontinuous 2-D Pareto Fronts Using GB Methods
	Introduction
	Applying a Pareto Filter

	A New Method to Detect Discontinuous Pareto Fronts
	Computing Variance of KKT Residuals Sample
	Applying Welford's Algorithm, to calculate Variance of sample of KKT Residuals
	Algorithm Formulation for Detecting Discontinuities

	Proposed Method to Move-on Discontinuous Fronts
	Target-Objective jump
	Swap Target-Objective
	Back-tracking

	Algorithm Formulation of the Tracking Method
	Mathematical Applications, for Tracking Discontinuous Fronts
	BP 3
	BP 4
	BP 5

	Conclusions

	Tracking Three-Objective Pareto Fronts
	Introduction
	Tracking the 3D Pareto front (Scan by-Layer Algorithm)
	Formulating the Problem
	Scan by-Layers
	Precise Tracking of the 3D Pareto's front Border
	The Scan by-Layer algorithm
	BP 6
	BP 7

	Conclusions

	Three-Objective CFD Application
	Introduction
	Cruise and Take-Off Airflow Conditions
	Scan by-Layers Algorithm Initialization
	Results

	Summary and Future Work
	Summary
	Conclusions
	Proposals for Future Work

	Appendix A
	Weak and Strong Dominance

	Appendix B
	Augmented Lagrangian Method (ALM)
	ALM Algorithm for Equality Constraints
	Generalized ALM Algorithm

	Appendix C
	The implicit function theorem
	Applying the Implicit Function Theorem, to Track the Pareto Front

