
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Deep Neural Networks and their differentiation for use in
gradient-based optimization in single- and multi-phase flows

Diploma Thesis

Eirini-Sotiria Kefaloukou

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2025

ii

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Professor Kyriakos
Giannakoglou for his trust, guidance and support throughout the implementation
of my diploma thesis and in broader academic matters. His ability to convey his
knowledge was vital in resolving complex scientific challenges. His expertise and
experience have been an inspiration to me during all the years of my studies, and I
feel honored to have worked under his supervision.
I would also like to express my sincere gratitude to Dr. Marina Kontou. Her scientific
expertise, continuous guidance, and support were decisive during the execution of
my diploma thesis. I am grateful for the knowledge she has imparted to me, which
has helped me grow as an engineer. I would like to thank PhD candidate Spyros
Stalikas for his guidance and continued support.
Finally, I would like to express my gratitude to my family, who, throughout my
studies, was by my side with their love and patience.

iii

iv

National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Deep Neural Networks and their differentiation for use in
gradient-based optimization in single- and multi-phase flows

Diploma Thesis

Eirini-Sotiria Kefaloukou

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2025

Abstract

Target of this diploma thesis is the use of Deep Neural Networks (DNNs) in gradient-
based Shape Optimization (ShpO), as low-cost surrogates of the primal and adjoint
computations, thus reducing the optimization overall cost.
The DNNs are trained on databases containing both the objective function val-
ues and their corresponding Sensitivity Derivatives. The networks architecture is
inspired by the notion of the Hermite polynomials, since besides the objective func-
tion, incorporate gradients in their training process. The computation of gradi-
ents is accomplished by differentiating the networks outputs with respect to their
inputs, using automatic differentiation in reverse mode. The accuracy of the com-
puted gradients is verified against reference values of the adjoint method. Improving
the networks generalization capabilities and reducing the cost of constructing their
database is also investigated.
Primary goal of this diploma thesis is the integration of the Hermite-DNNs in the
gradient-based ShpO, so as to provide an approximation to the objective function
values and derivatives. During the ShpO, the DNN-optimized solutions are re-
evaluated on the Computational Fluid Dynamics code. If necessary, this design is
incorporated in the database and the networks are re-trained. All implementations
are related to ShpO studies in single- and multi-phase flows. Two turbomachinery
applications are presented, the first concerns a turbine blade-airfoil (single-phase
turbulent flow), and the second a compressor blade-airfoil (single-phase turbulent
flow). The proposed gradient-based optimization algorithm is implemented also in
the design of an isolated airfoil (single-phase transitional flow) and a hemispherical-
cylinder body (two-phase cavitating flow).

v

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Βαθέα Νευρωνικά Δίκτυα και η διαφόρισή τους για

χρήση σε αιτιοκρατική βελτιστοποίηση μονοφασικών και

πολυφασικών ροών

Διπλωματική Εργασία

Ειρήνη-Σωτηρία Κεφαλούκου

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2025

Περίληψη

Στόχος της παρούσας διπλωματικής εργασίας είναι η χρήση Βαθέων Νευρωνικών Δι-

κτύων (ΒΝΔ) σε αιτιοκρατική βελτιστοποίησης μορφής σωμάτων στη μηχανικών των

ρευστών, ως χαμηλού-κόστους υποκατάστατα για την επίλυση του πρωτεύοντος και

συζυγούς προβλήματος, με στόχο τη μείωση του συνολικού κόστους της βελτιστοπο-

ίησης.

Τα ΒΝΔ εκπαιδεύονται σε βάσεις δεδομένων που περιέχουν τόσο τις τιμές της αντι-

κειμενικής συνάρτησης όσο και των αντίστοιχων παραγώγων ευαισθησίας. Η αρχιτε-

κτονική των δικτύων είναι εμπνευσμένη από τα πολυώνυμα Hermite τα οποία εκτός
από την αντικειμενική συνάρτηση, συμπεριλαμβάνουν και τις παραγώγους ευαισθησίας

στην διαδικασία εκπαίδευσης τους. Η μοντελοποίηση των παραγώγων ευαισθησίας ε-

πιτυγχάνεται με τον υπολογισμό των παραγώγων των εξόδων των δικτύων ως προς τις

εισόδους τους, χρησιμοποιώντας αντίστροφη αυτόματη διαφόριση. Η ακρίβεια των υπο-

λογιζόμενων παραγώγων ευαισθησίας επικυρώνεται έναντι τιμών αναφοράς της συζυ-

γούς μεθόδου. Επίσης η έρευνα εστιάζει στην βελτίωση των δυνατοτήτων γενίκευσης

των ΒΝΔ και στη μείωση του κόστους κατασκευής της βάσης δεδομένων τους.

Πρωταρχικός στόχος είναι η ενσωμάτωση των Hermite-ΒΝΔ στην αιτιοκρατική βελ-
τιστοποίηση μορφής, έτσι ώστε να παρέχουν μια προσέγγιση για τις τιμές της αντι-

κειμενικής συνάρτησης και των παραγώγων ευαισθησίας της. Κατά την διάρκεια της

βελτιστοποίησης μορφής, οι βελτιστοποιημένες λύσεις από τα ΒΝΔ επαναξιολογο-

ύνται από τον κώδικα Υπολογιστικής Ρευστοδυναμικής. Εάν χρειάζεται, η γεωμετρία

συμπεριλαμβάνεται στη βάση δεδομένων και τα δίκτυα επανεκπαιδεύονται. ΄Ολες οι

υλοποιήσεις αφορούν μελέτες βελτιστοποίησης μορφής σε μονοφασικές και πολυφα-

σικές ροές. Παρουσιάζονται εφαρμογές στροβιλομηχανών, η πρώτη αφορά αεροτομή

πτερυγίου στροβίλου (τυρβώδης μονοφασική ροή) και η δεύτερη αεροτομή πτερυγίου

συμπιεστή (τυρβώδης μονοφασική ροή). Ο προτεινόμενος αλγόριθμος αιτιοκρατικής

vi

βελτιστοποίησης εφαρμόζεται επίσης σε μεμονωμένη αεροτομή (μονοφασική ροή με

μετάβαση) και ημισφαιρικό-κύλινδρο σώμα (διφασική ροή με σπηλαίωση).

vii

Contents

Contents i

1 Artificial Intelligence 1
1.1 Machine Learning . 1
1.2 Artificial Neural Networks . 3
1.3 Machine Learning in Computational Fluid Dynamics and Optimization 5

2 Deep Neural Networks 8
2.1 Training Process . 8

2.1.1 Weight Initialization . 8
2.1.2 Loss functions . 8
2.1.3 Differentiation of DNNs and Backpropagation 9
2.1.4 Activation Functions . 11
2.1.5 Optimizers . 12
2.1.6 Learning Rate . 14
2.1.7 Batch size . 14
2.1.8 Generalization capabilities . 15
2.1.9 Pruning . 16

2.2 Hermite-trained DNNs . 18
2.2.1 Hermite interpolation . 18
2.2.2 Hermite DNN configuration 18

3 The Proposed DNN-driven Optimization 22
3.1 The RANS equations . 22
3.2 The Spalart-Allmaras Turbulence Model 24
3.3 The γ–R̃eθ Transition Model . 24
3.4 The Adjoint-Driven Optimization Process 25
3.5 DNNs as surrogates of the CFD-solver 25
3.6 The L-BFGS Algorithm . 27

4 Single-Phase Turbulent Flow around a Turbine Blade-Airfoil 29
4.1 Introduction . 29
4.2 Flow conditions and parameterization 29
4.3 DNN Configuration and Training . 31

4.3.1 First DNN configuration optimization 32

i

4.3.2 Second DNN configuration optimization 33
4.3.3 Pruning . 37

4.4 ShpO of the turbine blade-airfoil . 42
4.5 Reducing DNN database construction cost 43

5 Single-phase Transitional Flow around an Isolated Airfoil 49
5.1 Introduction . 49
5.2 Flow conditions and parameterization 49
5.3 DNN Configuration and Training . 51

5.3.1 Database constructed with LHS 52
5.3.2 Database constructed with adjoint-driven optimization solutions 59

5.4 Airfoil ShpO . 61

6 Single-Phase Turbulent Flow around a Compressor Blade-Airfoil 67
6.1 Introduction . 67
6.2 Flow conditions and parameterization 67
6.3 DNN Configuration and Training . 69
6.4 ShpO of the compressor blade-airfoil 73

7 Two-phase Flow around a Hemispherical-Cylinder Body 76
7.1 Introduction . 76
7.2 Cavitation . 77
7.3 Flow Conditions and Parameterization 77
7.4 DNN Configuration and Training . 80
7.5 ShpO of the hemispherical-cylinder body 83

8 Conclusion 87
8.1 Overview - Findings in the Examined Cases 87
8.2 General Conclusions . 89
8.3 Future Work Proposals . 89

Bibliography 91

ii

Chapter 1

Artificial Intelligence

1.1 Machine Learning

Artificial Intelligence (AI) is an evolving field focused on developing agents that
emulate human intelligence. In recent years, it has experienced rapid growth, en-
abling AI-based systems to perform complex tasks such as perception, learning,
problem-solving, and decision-making without human intervention. These systems
are applied across a wide range of domains, including healthcare, engineering, and
finance. Recent advances have led to the integration of AI in technologies such as
robotics, autonomous vehicles, web search engines, virtual assistants, and beyond.
ML is a subset of AL that focuses on developing systems capable of performing tasks
autonomously. ML algorithms are trained to identify patterns within data and use
them to make predictions, classify information, and generalize based on previously
learned knowledge. Deep Learning (DL), a specialized subfield of ML, accomplishes
these goals through the use of multi-layered Artificial Neural Networks (ANNs) ([1]).
The hierarchal relationship is presented in Figure 1.1.

Figure 1.1: Subfields of AI. Figure from (https: // www. researchgate. net/
figure/ Artificial-intelligence-and-its-subsets_ fig1_ 370470867).

ML approaches, as illustrated in Figure 1.2, are traditionally divided into three
broad categories.

1

https://www.researchgate.net/figure/Artificial-intelligence-and-its-subsets_fig1_370470867
https://www.researchgate.net/figure/Artificial-intelligence-and-its-subsets_fig1_370470867

1. Supervised Learning: Supervised learning algorithms construct a mathemat-
ical model of the labeled training data. Each training pattern consists of input
features paired with a corresponding output. Through iterative optimization,
these algorithms establish relationships between inputs and the associated out-
puts, in order to minimize the output prediction error. Supervised learning is
applied to two types of problems: classification, where inputs are assigned to
binary or multi-class categories, and regression that predicts continuous outputs.
Common supervised learning algorithms include regression, random forests, Sup-
port Vector Machines (SVM), k-Nearest Neighbors (kNN), and Artificial Neural
Networks each with different properties and training configurations, as detailed
in ([2]).

2. Unsupervised Learning: Unsupervised learning algorithms work with unla-
beled data. They identify patterns without explicit guidance, and react on new
inputs based on the absence or presence of these patterns. Some applications
of unsupervised learning include density estimation of observed data, clustering,
where data are categorized based on their similarities, and dimensionality reduc-
tion, which transforms the high-dimensional data in low-dimensional, retaining
only a subset of the original information ([2]).

3. Reinforcement Learning: Reinforcement learning algorithms learn through
a trial-and-error process. They interact with the environment, develop through
feedback from that and adapt their actions to maximize a reward signal. They are
used in application regarding autonomous vehicles, robotics, and game playing.

Figure 1.2: An overview of different types of ML algorithms. Figure from (https:
// 7wdata. be/ visualization/ types-of-machine-learning-algorithms-2/).

2

https://7wdata.be/visualization/types-of-machine-learning-algorithms-2/
https://7wdata.be/visualization/types-of-machine-learning-algorithms-2/

1.2 Artificial Neural Networks

The concept of Artificial Neural Networks (ANNs) ([3]) is inspired by the struc-
ture and function of biological neurons in the human brain. A biological neuron
comprises three primary components: dendrites, a soma (cell body), and an axon.
The dendrites interact with the neighboring neurons, and receive signals from them.
The importance of each connection is determined by its synaptic strength, which is
learnable and can be adapted. The signals are summed to the soma, and an output
is produced. If the output is above a certain threshold the neuron can fire and send
an output signal, that travels though its axon and interacts with the dendrites of
other neurons. The analogy between biological and artificial neuron is shown in
Figure 1.3.

Figure 1.3: A biological neuron (top) and a neuron of a DNN inspired from that (bot-
tom). Figure from (https: // www. researchgate. net/ publication/ 363833676_
Advance_ Artificial_ Neural_ Networks)

An artificial neuron has similar structure; it transforms an input vector into a scalar
output. It receives an N-dimensional input vector x ϵ RN = [x1, x2, ..xN]

T , and
multiplies it with a weight matrix w=[w1, w2, ..wN], often referred to as kernel. This
kernel determines the influence of each input feature on the neuron’s output. A
bias term (b) —a learnable scalar— is typically added, that shifts the activation to
the desired direction. The sum passes through a non-linear activation function (f).
The activation function decides when the neuron should be activated, and enables
the representation of complex, non-linear relationships. Without this non-linearity,
the network would be limited to linear mappings, regardless of its depth. The

3

https://www.researchgate.net/publication/363833676_Advance_Artificial_Neural_Networks
https://www.researchgate.net/publication/363833676_Advance_Artificial_Neural_Networks

computations performed by a single neuron can be expressed as:

σ =
N∑
i=1

xiwi (1.1)

a = f(σ + b) (1.2)

Figure 1.4 shows the architecture of a feed forward neural network (FFNN). It
consists of a series of layers that sequentially process inputs to produce outputs.
Each one has a specific purpose:
• Input Layer The input layer receives the input patterns; it does not perform
any computations, instead it passes them to the proceeding layer. Its dimension-
ality is determined from the number of features in the input data, with each node
corresponding to one feature.
•Hidden Layers After the input layer, a series of hidden layers follow, that perform
most of the computations. Each hidden layer receives inputs from the preceding
layer, processes them, and passes its outputs to the next. Each layer is capable of
learning different features. Layers can be either fully connected, also referred to as
dense layers, or partially connected. In Fully Connected Neural Networks (FCNNs),
each neuron is connected to all neurons in the preceding and succeeding layers.
In contrast, Partially Connected Neural Networks (PCNNs [4]) introduce sparsity,
by skipping some connections. Each connection maintains a learnable weight, that
determines its importance. The number of hidden layers is a user-defined design
parameter, typically determined by the complexity of the task. Increasing the depth
of the model enhances its ability to learn complex tasks.
• Output Layer The output layer aggregates the previous layer’s outputs, to form
the final predictions. Its dimensionality matches the number of the targets.

Figure 1.4: Architecture of a dense network with 4 input units, 3 hidden layers, and
3 output neurons.

4

1.3 Machine Learning in Computational Fluid Dy-

namics and Optimization

Computational Fluid Dynamics (CFD) is a branch of fluid dynamics that employs
numerical methods to analyze and solve problems involving fluid flow. Despite their
effectiveness, CFD methods come with significant computational cost, influenced
by factors such as the chosen algorithms and mesh resolution. The integration
of ML techniques in CFD applications has been adopted, due to their ability to
learn complex representations and provide cost-efficient surrogates of the traditional
solvers. ML applications in CFD can be divided in two main categories: Data-Driven
surrogates, and ML-assisted numerical simulations.
Data-Driven surrogates are employed to replace the CFD solutions. For instance,
([5]) uses DNNs to predict the pressure field around a wing, and to substitute the
CFD-solver in the Evolutionary Algorithm (EA)-based Shape Optimization (ShpO)
of the wing. ([6]) employs Radial Basis Function networks for uncertainty quantifi-
cation and EA-based ShpO of an isolated airfoil and a wing. The proposed method
quantifies the uncertainties regarding the constants of the γ− R̃eθt transition model
and the roughness of the solid surfaces, and achieved a reduction in the optimization
time by orders of magnitude. In ([7]) DNNs trained on high fidelity data obtained
with DNS, predict the Reynolds stresses on a turbulent flow in a channel and a
stationary passage. ([8]) uses Physics-Informed Neural Networks (PINNs) to solve
inverse problems in 3D wake and supersonic flows. PINNs, which are constrained
to satisfy the Navier-Stokes equations, approximate the velocity and pressure fields
and calculate all required derivatives via automatic differentiation (AD).
ML models can be coupled with the CFD-solver, in order to accelerate the simula-
tions. For example, ([5]) uses DNNs in a conjugate heat transfer problem, dealing
with a solid domain in contact with a flow within a duct. In this case, the DNNs
replace the solver of the heat conduction equation on the solid domain. In ([9])
DNNs substitute the numerical solution of the turbulence and transition models,
by predicting the turbulence viscosity fields. This DNN-assisted RANS solver is
applied to the shape optimization of a turbine blade and a car model, resulting in
a significant reduction in optimization turnaround time. ([10]) uses DNNs, trained
on high-fidelity data generated from simulations on fine grids, to approximate the
convection term in the Navier–Stokes equations on coarser meshes. This approach
achieves up to a tenfold computational speedup while maintaining solution quality
comparable to that of the original high-resolution simulations. An overwiew of the
recent advantages of machine learning applications in CFD are presented in ([11],
[12]).
Gradient-based optimization algorithms require the computation of objective func-
tion’s derivatives, which can be obtained through Finite Differences, Direct Differ-
entiation, Complex Variable Method, or the Adjoint method. The computational
cost of obtaining the Sensitivity Derivatives (SDs) varies significantly with the cho-
sen approach and can, in some cases, become prohibitively high. When an adjoint

5

solver is available, the cost of computing SDs becomes independent of the number of
design variables and is approximately equal to that of solving the primal problem.
In this diploma thesis, attempts for cost reduction are made, by using DNNs as
data-driven surrogates of the primal and adjoint solvers. The DNNs, often referred
to as Hermite-DNNs, are trained on databases containing the target values and their
derivatives. Inputs are the coordinates of the nodes parameterizing the geometry
shape, and outputs the target objective values. The SDs are modeled using the
derivatives of the networks outputs w.r.t. their inputs, computed via AD. Since the
networks are integrated in a gradient-based optimization process, it is essential that
their derivatives predictions are as accurate as possible. To achieve this, their config-
uration is optimized with an EA-based process, seeking to minimize their prediction
error.
This DNN-Driven gradient-based optimization was originally introduced in ([13]). In
the diploma thesis, its extension to multiphase flow problems is explored. Addition-
ally, attempts are made to enhance the generalization performance of the networks,
and various strategies for constructing the training database are examined, with a
focus on the computational cost of the database generation.

1. Chapter 2: An overview of the training process of the DNNs is provided,
highlighting the various hyperparameters that can be tuned during training
and the differentiation of the models. Finally, the architecture of the Hermite-
DNN is presented in detail.

2. Chapter 3: The proposed DNN-driven gradient-based optimization algorithm
is presented.

3. Chapter 4: The proposed methodology is demonstrated to the ShpO of a
turbine blade-airfoil (C3X). The flow is single-phase and turbulent. Different
database construction approaches are compared, focusing primarily on their
computational demands. Various DNN configurations are evaluated based on
their generalization performance. The quality of the DNN-optimized solutions
is compared to the solutions obtained with the adjoint-driven ShpO.

4. Chapter 5: The proposed DNN-driven algorithm is applied to the ShpO of
an isolated airfoil (RG15). The flow around the airfoil is single-phase and
transitional. Attempts are made to enhance the networks generalization per-
formance and reduce their database construction cost. The obtained solutions
are compared to those of the adjoint-driven optimization, regarding their qual-
ity and the computational time required to obtain them.

5. Chapter 6: The proposed algorithm is applied to the gradient-based ShpO of
a compressor blade-airfoil under single-phase turbulent flow. Its performance
is compared to the adjoint-based optimization in terms of computational cost.

6. Chapter 7: The generalization of this method to multi-phase flows is inves-
tigated. The implementation concerns the ShpO of a hemispherical-cylinder

6

body. The solutions obtained from the DNN-driven phase are compared to
the adjoint-driven ShpO in terms of solution quality.

7

Chapter 2

Deep Neural Networks

2.1 Training Process

The DNN’s training process is formulated as a gradient-based optimization prob-
lem. In each iteration, the input data propagate through the network’s layers to
generate predictions. The discrepancy between these predictions and the target
values is quantified using a loss function. The gradients of the loss function w.r.t.
each parameter are computed with AD and are subsequently employed to update
the model’s weights. A complete pass of the entire dataset through the network
constitutes one epoch. The hyperparameters that will be tuned during training are
discussed below. The section 2.2 presents the architecture of the DNNs employed
in this diploma thesis.

2.1.1 Weight Initialization

At the beginning of training, the network’s weights are initialized with small ran-
dom values ([14]), often sampled from a uniform distribution within each layer. As
with any other gradient-based optimization algorithm, DNNs are sensitive to the
initialization choice. Different initializations lead the optimization algorithm along
different trajectories, potentially resulting in models with varying performance.

2.1.2 Loss functions

Loss functions offer a way to asses the model’s predictions, by quantifying their
discrepancy from the target values. Numerous loss functions have been proposed; the
most common ones for regression tasks are Mean Squared Error and Mean Absolute
Error, each offering different advantages. The choice between them depends on the
nature of the problem and the characteristics of the database, as explained below.

8

• Mean Squared Error (MSE)

MSE ([15]) measures the average of the squared differences between N pre-
dicted values Ŝ = [ŷ1, ŷ2, . . . ŷN] and the targets S = [y1, y2, . . . yN].

LMSE(Ŝ, S) =
1

N

N∑
i=1

(yi − ŷi)
2 (2.1)

The MSE is differentiable at all points, which ensures a smooth and stable
training process. By computing squared differences between predicted and
target values, MSE amplifies larger errors. This characteristic makes it suitable
when the presence of outliers needs to be penalized. In contrast, in scenarios
where outliers should have minimal influence, or when the dataset contains
noisy samples, the use of MSE might skew predictions and subsequently affect
the model’s performance.

• Mean Absolute Error (MAE)

MAE ([15]) computes the average of the absolute differences between N pre-
dicted values Ŝ = [ŷ1, ŷ2, . . . ŷN] and the targets S = [y1, y2, . . . yN].

LMAE(Ŝ, S) =
1

N

N∑
i=1

|yi − ŷi| (2.2)

The MAE treats all errors equally. It is less sensitive to outliers and prevents
them from influencing the training process disproportionately. Consequently,
MAE would be more preferable when the dataset contains noisy samples ([16]).
It is not differentiable at zero, however such small errors are rarely encountered
during training.

2.1.3 Differentiation of DNNs and Backpropagation

After computing the prediction error, the next step involves computing its partial
derivatives w.r.t. each of the network’s parameters (weights and biases). The for-
ward pass through the network can be expressed as:

al = bl + hl−1W l (2.3)

hl = f l(al) (2.4)

where f l, W l, and bl denote the activation function, weight matrix, and bias vector
of the l-th layer, respectively, where l ϵ [0, . . . ,L]. For l=0, the tensor h0 contains
the input features of the network. At the final layer l=L, the output tensor hL

corresponds to the network’s predictions (ŷ).

9

The gradients of the error w.r.t. each parameter are calculated using reverse-mode
automatic differentiation (RAD) ([17], [18]). To implement this, all intermediate
computations during the forward pass must be recorded. Then, the list of operations
in reversed, and the error is propagated backwards, starting from the output and
proceeding to the inputs. The back-propagation algorithm is presented below.

1. The gradient of the loss function w.r.t. the predictions for each training pattern
is computed:

g = ∇ŷL

2. The gradient is propagated backwards, through the activation function, to
obtain the gradient w.r.t. the pre-activation values::

g ← ∇alJ = g · f ′(al)

3. The gradients w.r.t. the weight and biases of the l-th layer are computed as:

∇blJ = g

∇W lJ = h(l−1)Tg

4. Finally, the gradient is propagated to the previous layer’s activations:

∇hl−1J = gW lT

Steps 2-4 are repeated for all the hidden layers. Similarly to the backpropagation
of the loss, the gradients of the networks outputs w.r.t. the input variables can be
computed. Figure 2.1 presents the computations during the forward and backward
pass on a two-layer DNN, including the computation of the gradients w.r.t. the
inputs. The accuracy of these gradients, depends on the network’s topology (number
of neurons and layers), the resulting weights, hence the training configuration, and
the activation function’s outputs and derivatives.

Figure 2.1: Computational graph of a two-layer DNN. Forward and backward
propagations are presented. Figure from (https: // medium. com/ data-science/
neural-networks-iv-the-graph-approach-cb25590a7f24).

10

https://medium.com/data-science/neural-networks-iv-the-graph- approach-cb25590a7f24
https://medium.com/data-science/neural-networks-iv-the-graph- approach-cb25590a7f24

2.1.4 Activation Functions

This Section provides an overview of the activation functions considered in this work.
The linear activation function returns the input x scaled by a constant c. Since it
does not introduce any non-linearity, its use can limit the network’s ability to learn
complex representations.

linear(x) = cx (2.5)

The sigmoid activation function ([19]) is defined as:

sigmoid(x) =
1

1 + e−x
(2.6)

It exhibits a smooth, S-shape curve and maps every input between [0,1]. The hy-
perbolic tangent (tanh) activation function ([19]) is given by:

tanh(x) =
ex − e−x

ex + e−x
(2.7)

Like the sigmoid, it squashes the inputs, but into the range [-1,1]. They both
face a limitation: the gradients for small or large inputs become small, leading
to the vanishing gradients phenomenon. Vanishing gradients occur, especially in
first layers of deep architectures, when the gradients w.r.t. some parameters are
extremely small, resulting in minor updates and slowing down the learning process.
The Rectified Linear Unit (ReLU) ([19]) is computed by:

ReLU(x) = max(0, x) (2.8)

ReLU is similar to the linear activation function, except that it outputs zero for
negative inputs. It has been widely used in deep networks due to its simplicity and
improved performance. For positive inputs, the gradients are consistent, which helps
mitigate the vanishing gradient problem. However, for negative inputs, the neuron
consistently outputs zero and becomes inactive. When a significant fraction of the
neurons remain inactive, the network’s learning capacity diminishes. This is known
as the ”dying ReLU” phenomenon. The Gaussian Error Linear Unit (GELU) ([19])
is a non-linear activation function:

GELU(x) = xΦ(x) =
1

2
x[1 + erf(x/

√
2)] (2.9)

GELU is a smooth activation function, that is able to model negative values and
gradients. The activation function outputs and their derivatives are illustrated in
Figure 2.2.

11

(a) Activation function outputs (b) Activation derivatives

Figure 2.2: The activation function outputs (left) and their derivatives (right).

2.1.5 Optimizers

Optimizers iteratively update the model’s weights and biases to minimize the train-
ing loss. First-order optimization algorithms, use the first gradients of the loss
function to their parameter update rules. Several optimization methods have been
developed for training deep neural networks; the algorithms utilized in this study
are analyzed below.

I) Adam Optimizer

Adam ([20]), short for Adaptive Momentum Estimation, is a first order optimization
algorithm, suitable for training large networks, in terms of data and/or parameters.
Adam combines the advantages of two popular optimization methods in deep learn-
ing: Momentum and RMSprop.
Momentum-based gradient descent computes an exponential moving average of the
previous and current gradients, denoted as mt, and uses this to update the pa-
rameters. Keeping track of past gradients accelerates convergence and helps the
algorithm avoid local minima. The update rule is:

mt = β1mt−1 + (1− β1)gt (2.10)

wt = wt−1 − amt (2.11)

gt = ∂L
∂wi

represents the gradient of the loss function w.r.t each parameter of the
network, β1 is the momentum factor, α is the learning rate, and wt, wt−1 are the
weights of the network at time steps t, t-1 respectively.
RMSprop is an adaptive learning rate optimization algorithm. It maintains an
exponentially moving average of the squared gradients, denoted as ut, to adjust

12

the learning rate for each parameter individually during training. This adaptive
mechanism reduces oscillations and stabilizes the training process.

ut = β2ut−1 + (1− β2)g
2
t (2.12)

wt = wt−1 −
α

(ut + ϵ)
1
2

gt (2.13)

g2t is the squared gradient at timestep t, β2 the decay rate, and ϵ a small constant
to avoid division by zero.
The weight update rule for Adam is derived by combining Eq. 2.11 & 2.13. Ad-
ditionally, since mt and ut are initialized as zeros, they are biased towards zero at
the beginning of training, herein Adam employs the biased-corrected estimates as
follows:

wt = wt−1 −
αm̂t

ût

1
2 + ϵ

(2.14)

m̂t =
mt

1− βt
1

(2.15)

ût =
ut

1− βt
2

(2.16)

II) AdamW Optimizer

AdamW ([21]) is an extension of the Adam algorithm, that incorporates weight
decay in the parameter update rule. Large weights make the network more sen-
sitive towards changes to its inputs and increase the risk of overfitting. Weight
decay encourages for smaller, more robust weights, which can enhance the model’s
generalization performance. Instead of adding a penalty term to the loss function,
AdamW decouples the weight decay, so that it doesn’t interfere with the adaptive
learning rate dynamics. The update rule is:

wt = wt−1 −
αm̂t

ût

1
2 + ϵ

− λwt−1 (2.17)

where λ is the weight decay rate, with default value to 0.004.

II) Adamax Optimizer

Adamax ([20]) is an extension of Adam, that adapts the learning rate using the
infinity norm, instead of the average of the squared gradients used in Adam. This
approach is effective when dealing with sparse gradient matrices, and parameters

13

with large variations.

wt = wt−1 − α
mt

(1− βt
1)ut

(2.18)

mt = β1mt−1 + (1− β1)gt (2.19)

ut = max(β2ut−1, |gt|) (2.20)

2.1.6 Learning Rate

The learning rate of the optimizer is a fundamental hyperparameter in deep learning,
as it controls the step size at gradient descent. A high learning rate can cause
overshoot of the minimum or even divergence, while a small one may result in slow
convergence. The ideal one typically involves a balance between stability and speed,
and depends on the specific training configuration and the architecture of the DNN.
A common strategy involves starting with a relatively large learning rate, since the
weights in this phase are far from the optimal, and gradually decrease it. This allows
for rapid initial progress and finer updates as the model approaches a minimum.

2.1.7 Batch size

Batch size refers to the number of samples processed in a single forward and back-
ward pass of the network. It influences both the convergence speed and the model’s
overall performance. Larger batch sizes reduce the training time per epoch. Usually
when dealing with large databases the number of samples that can be processed in
each iteration is constrained by the available memory resources. Although larger
batch sizes provide more accurate gradient approximations, it has been observed
that such training configurations might result in a degradation of the model’s gen-
eralization performance ([22]). In contrast, small-batch training of DNNs yields
solutions with better generalization capabilities. This improvement is attributed to
the noise introduced by smaller batches in the gradient estimates, which acts as
a form of implicit regularization and helps avoid overfitting. ([23]) highlights that
mini-batch training -ranging from 2 to 32- achieves better test accuracy. The opti-
mal batch size depends on factors such as the dataset’s size and the complexity of
the network.

14

2.1.8 Generalization capabilities

In the training of DNNs, the objective extends beyond minimizing the training
loss; it also involves identifying minimizers that have accurate predictions on unseen
inputs. Figure 2.3 illustrates various scenarios that can be encountered during train-
ing. Underfitting occurs when the model is too simple to capture the underlying
patterns in the data, leading to poor performance on both the training and valida-
tion sets. In contrast, overfitting refers to a case in which the model memorizes the
training data in detail, but fails to generalize on new inputs.

Figure 2.3: Illustration of underfitting (left), optimal fit (center), and overfitting
(right) scenarios in model training. Figure from (https: // evolucionapps. com/
understanding-overfitting-and-underfitting-in-machine-learning/)

Overfitting occurs when the model is overparameterized relative to the complexity of
the patterns it is expected to learn. In such cases, its capacity enables it to memorize
noise or less meaningful details. When feasible, increasing the number of training
patterns can help address this issue. In this work, cost constraints necessitate the use
of small databases. Therefore, the primary focus is on identifying DNN architectures
and training configurations that exhibit better generalization performance. Several
regularization techniques, that can be imposed during training, have been proposed
to prevent overfitting. These include:

1. Early stopping: ([24]) To assess generalization during training, the dataset
is split into training and validation subsets, following the commonly adopted
80–20 % rule. In the early stages of training, training and validation losses
typically decrease together. As training progresses, the validation loss may be-
gin to increase, indicating the onset of overfitting. Early stopping, terminates
the training process at this point, in order to preserve the parameters at their
optimal values for generalization.

2. Weight decay: Weight decay is a widely used regularization technique that
penalizes large weights. It suppresses irrelevant components and reduces the
tendency to memorize noise from the training features ([25]). Weight decay
can be expressed in various forms, including adding a penalty term to the
loss function (L1, L2 regularization) or incorporating decay directly into the
parameter update rule ([26], [21]).

15

https://evolucionapps.com/understanding-overfitting-and-underfitting-in-machine-learning/
https://evolucionapps.com/understanding-overfitting-and-underfitting-in-machine-learning/

2.1.9 Pruning

DNNs are frequently over-parameterized, with only a subset of their weights sig-
nificantly influencing predictions. Pruning techniques aim to remove redundant
parameters —such as individual weights, neurons in dense layers, or filters in con-
volutional layers— that have minimal impact on the network’s overall performance.
The primary objective is to reduce the network’s size while maintaining its accu-
racy. Additionally since pruning suppresses noise during training, it can potentially
improve the generalization performance. Pruning strategies are typically catego-
rized as unstructured ([27]), where individual weights are removed, and structured
([28]), which involve removing entire architectural components such as neurons, or
filters. The DNN architecture prior and after pruning is presented in Figure 2.4.
While structured pruning yields greater benefits in terms of model compression and
inference speed, it leads to higher degradation in accuracy due to the removal of en-
tire computational blocks. The sparse matrices produced by unstructured pruning
can be stored using formats such as Compressed Sparse Row (CSR) or Compressed
Sparse Column (CSC), which retain only the non-zero values and their correspond-
ing indices. These representations require only 2a+n+1 entries, where a denotes the
number of non-zero elements and n the number of rows (in CSR) or columns (in
CSC). A more detailed presentation of compression algorithms that can be applied
on pruned networks is provided in ([29]). This diploma thesis focuses on unstruc-
tured pruning of dense layers; each connection is evaluated independently, and those
that do not satisfy specific criteria are removed.

Figure 2.4: DNN architecture before (left) and after (right) pruning. In
unstructured pruning, individual weights are set to zero, creating sparse
connections between the layers, while in structured pruning entire neu-
rons are removed. Figure from (https: // vitalitylearning. medium. com/
neural-network-node-pruning-a-keras-implementation-on-mnist-e696f4276e2f)

Several pruning criteria have been proposed in the literature; commonly used meth-
ods prune based on magnitude, or loss change. Magnitude-based pruning considers
the weights, filters, etc, with larger values more important for the predictions, while
those with absolute values below a threshold contribute less and can be trimmed.
([27]) utilizes a magnitude-based iterative pruning algorithm, applied gradually un-
til the desired prune-ratio is achieved. ([28]) prunes filters based on the sum of the
absolute values of their kernel weights. The method presented in ([30]) estimates
the importance of each weight by computing a Taylor expansion for the change in

16

https://vitalitylearning.medium.com/neural-network-node-pruning-a-keras-implementation-on-mnist-e696f4276e2f
https://vitalitylearning.medium.com/neural-network-node-pruning-a-keras-implementation-on-mnist-e696f4276e2f

the loss function resulting from the removal of the specific connection. A thorough
overview of pruning algorithms is presented in ([31]). This work adopts a magnitude-
based criterion, introduced iterative during training, as described in ([27]). Sparsity
is increased gradually, giving the model the appropriate time to adapt to the fewer
parameters. This can achieve better accuracy levels at higher prune-ratios, com-
pared to one-shot pruning methods applied prior or after training ([31]). Training
begins with a fully connected network. At specific optimizer steps, as specified by a
user-defined schedule, pruning is applied: the weights are sorted according to their
absolute values, and those below a threshold are pruned. Training proceeds with the
remaining parameters, allowing the network to adapt to its sparse structure. This
pruning cycle is repeated until the desired sparsity is achieved, or a user-defined
stooping criterion of pruning is satisfied. In the developed code, a binary mask is
assigned to each trainable layer of the network, with the same shape as the weight
matrix of that layer. The mask contains the value of 0 at the indices of the pruned
weights, and the value of 1 at those of active weights. During the forward pass,
pruned weights do not contribute to the network’s output. The binary masks are
applied to the backpropagated gradients, ensuring that pruned weights receive no
updates and remain inactive. These masks are updated only when pruning is ap-
plied and remain fixed throughout the remaining training process. The pruning
algorithm, along with the evolution of the number of remaining parameters in the
network, is illustrated in Figure 2.5.

(a) Pruning algorithm (b) Remaining parameters

Figure 2.5: The pruning algorithm (left) and the network’s parameters at different
phases of training (right).

17

2.2 Hermite-trained DNNs

2.2.1 Hermite interpolation

Hermite interpolation ([32]) is applied in cases where both the function values and
their first derivatives are known at Ns interpolation points. It computes a polyno-
mial, that together with its first derivatives, satisfies the given function and deriva-
tive values at each node. This polynomial can be expressed as a linear combination
of orthogonal polynomials, called Hermite basis polynomials. Two types of Her-
mite basis polynomials are defined, Hj(x), where j=1,..,Ns, that contributes only
to the value of the function for the j-th point, without being involved in satisfying
the derivative value and Hj(x) that has the exact opposite role. As a result, Hj(xi)
must return the value of 1 when evaluated at the i=j point, where i=1,...,Ns and zero

at any other point, while H
′

j(xi) must equal 1 at the j-th point and zero otherwise.

Hj(xi) = δji H ′
j(xi) = 0

Hj(xi) = 0 H
′
j(xi) = δji

(2.21)

The Hermite basis polynomials are defined using the Lagrange basis polynomials
(Lj):

Hj(x) = (1− 2L
′

j(xj)(x− xj))(Lj(x))
2 (2.22)

Hj(x) = (x− xj)(Lj(x))
2 (2.23)

The Hermite interpolation equation is expressed in Eq. 2.24 as a linear combination
of the basis polynomials:

g(x) =
N∑
j=0

yjHj(x) +
N∑
j=0

y′jHj(x) (2.24)

2.2.2 Hermite DNN configuration

Eq. 2.24 can be written in matrix form as:

18


g(xi=1)
g(xi=2)

...
g(xi=Ns)

 =


Hj=1(xi=1) Hj=2(xi=1) . . . Hj=Ns(xi=1)
Hj=1(xi=2) Hj=2(xi=2) . . . Hj=Ns(xi=2)

...
...

...
...

Hj=1(xi=Ns) Hj=2(xi=Ns) . . . Hj=Ns(xi=Ns)



yj=1

yj=2
...

yj=Ns



+


Hj=1(xi=1) Hj=2(xi=2) . . . Hj=Ns(xi=Ns)
Hj=1(xi=1) Hj=2(xi=2) . . . Hj=Ns(xi=Ns)

...
...

...
...

Hj=1(xi=1) Hj=2(xi=2) . . . Hj=Ns(xi=Ns)



y

′
j=1

y
′
j=2
...

y
′
j=Ns


(2.25)

The first term of Eq. 2.25 consists of the product of an [Ns × Ns] matrix, whose
entries are the values of the Hj basis polynomials evaluated at each of the Ns in-
terpolation points, and a vector containing the Ns function values. Similarly, the
second term is the product of an [Ns ×Ns] matrix, formed by the values of the Hj

polynomials at the same points, and a vector containing the Ns derivative values.
Based on the properties of the basis polynomials of Eq. 2.21 the Hj, Hj matrices
equal the identity and zero matrix respectively. The Hermite interpolation method
was formulated for a function with one design variable. The generalization to higher
dimensions can be complicated. In this diploma thesis an alternative generalization
method is implemented, where instead of the explicit computations, the interpola-
tion function (g) is approximated using DNNs ([13]). The network consists of two
branches, named Bfunc, Bgrad. Each branch models the corresponding term of Eq.
2.25 and determines the contribution of the function and derivative values to the
total interpolation function. The outputs from each branch are summed up to form
the DNN’s output with the prediction of g. The DNN’s branches architecture is
shown in Figure 2.6 and discussed next.
The input data (X̂) correspond to the values of the design variables. Both branches
share the same input data, hence the architecture of the input layer is identical
in each one. Each branch contains a series of hidden layers, whose architecture is
user-defined and should not necessarily be the same. In all the cases, the hidden
layers consist of fully connected layers, however different types of layers can also
be incorporated. Following the hidden layers, an additional layer is introduced, to
be referred as basis layer, with number of neurons equal to the number of training
patterns, Ns. When the entire database is processed the output of the basis layer
forms an [Ns ×Ns] tensor, that serves as surrogate of the basis polynomials.
To compute the first term of 2.25, the Hj matrix is multiplied with the vector of
target function values. To achieve this within the Bfunc branch, a fully connected
layer is introduced, consisting of a single neuron. This layer is non-trainable, and
its weight matrix of size [Ns × 1] is initialized with the normalized target function
values. As a result, the output of this branch ([Ns × 1]) will hopefully act as the

19

first term of the Hermite interpolation function.
The Bgrad branch has similar structure as the Bfunc branch, except for the output
layer, which consists of Nb neurons—equal to the number of design variables and
thus to the dimensionality of the input layer. The output layer’s weights are non-
trainable and defined by the [Ns × Nb] matrix with the target derivatives of the
normalized outputs with respect to the normalized inputs. Thus, the contribution
of each partial derivative will be taken into account, by adding Nb terms to the
interpolation function, similar to the second term of Eq. 2.25.
The output layer of the network contains a single neuron, as this diploma thesis
considers only one target. This neuron uses a linear activation function. The outputs
from the two branches are combined into a single tensor of shape [Ns × (Nb + 1)].
This combined tensor then passes through the output layer, where the contributions
of each term are added to produce the predictions of the Hermite interpolation
function.

Figure 2.6: Hermite DNN architecture

Input (x) and output (y) data of the networks are normalized with the minimum and
maximum values encountered in the samples. The normalization process scales the
entire dataset to the same range and ensures that each feature contributes equally
during learning.

xk =
Xk −Xk,min

Xk,max −Xk,min

(2.26)

y =
Y − Ymin

Ymax − Ymin

(2.27)

20

Xk,min, Xk,max represent the minimum and maximum bounds of the k-th design
variable, where k=1,..,Nb, Xk is the dimensional value and xk the normalized one.
The derivatives of the normalized outputs w.r.t. the normalized inputs are rescaled
using Eq. 2.28:

dy

dxk

=
d
(

Y−Ymin

Ymax−Ymin

)
d
(

Xk−Xk,min

Xk,max−Xk,min

)) = dY

dXk

· Xk,max −Xk,min

Ymax − Ymin

(2.28)

While in standard training of DNNs, the loss function to be minimized is the error
between the DNN’s predictions (ŷ) and the normalized target values, in Hermite
training of DNNs the error between the predicted derivatives (Dxŷ) and the target
ones (Dxy) must be included in the loss function, hence Nb terms will be added that
measure the error of each partial derivative. Herein, the network will be trained
to match the function’s values and after being differentiated, to predict the target
derivatives. The Losshermite consists of the (Nb+1) terms of Eq. 2.29, where lk
represents the loss function used in each one.

LHermite = w1 ℓ0(y, ŷ) +

Nb∑
k=1

wk ℓk (Dxk
y,Dxk

ŷ) (2.29)

Since no restrictions are applied, the properties of the basis polynomials in Eq. 2.21
are not necessarily satisfied and the contribution of each branch will be determined
during training. Although y,ŷ range in [0,1], the normalized derivatives (Dxy, Dxŷ)
does not necessarily have the same bounds, since their values are determined from
the values of SDs and DNN’s input and output. Different scales of function and
derivative terms can be ineffective for the learning process of the network. Learning
can be balanced by adjusting the weights of each term on Losshermite accordingly.

21

Chapter 3

The Proposed DNN-driven
Optimization

3.1 The RANS equations

The Reynolds Averaged Navier Stokes (RANS) equations for single phase flows are
expressed:

RMF
n =

∂f inv
nk

∂xk︸ ︷︷ ︸
inviscid

− ∂fvis
nk

∂xk︸ ︷︷ ︸
viscous

= 0 (3.1)

The inviscid and viscous fluxes are given by:

f inv
nk =


ρuk

ρu1uk + pδ1k
ρu2uk + pδ2k
ρu3uk + pδ3k

ρukht

 fvis
nk =


0
τ1k
τ2k
τ3k

ulτlk + qk

 (3.2)

where ρ is fluid’s density and p the static pressure. The viscous stresses are computed
as:

τnk = (µ+ µt)

(
∂uk

∂xm

+
∂um

∂xk

)
− 2

3

(
∂ul

∂xl

)
δkm (3.3)

In this diploma thesis, a cavitating flow is also considered, for which the homoge-
neous two-phase approach is employed. Both phases (liquid and vapor) share the
same velocity and pressure fields, and are distinguished from their volume fractions.
A volume fraction is defined as the ratio of each phase’s volume in a computa-
tional cell, to the total volume of that cell. The mixture’s density (ρ), and dynamic
viscosity (µ) are computed as a weighted-sum of each phase’s properties:

ρ = f(al) = ρℓal + ρvαv (3.4)

µ = g(al) = µℓal + µvαv (3.5)

22

ρl, µl stand for the density and dynamic viscosity of the liquid phase, and ρv, µv for
the corresponding ones of the vapor phase. Since the two phases share the same
pressure and velocity fields, the RANS are solved for the mixture:

RMF
n =

∂f inv
nk

∂xk︸ ︷︷ ︸
inviscid

− ∂fvis
nk

∂xk︸ ︷︷ ︸
viscous

− Scav,MF
n︸ ︷︷ ︸

cavitation

= 0 (3.6)

The viscous, inviscid fluxes, and the source terms are given by:

f invnk =


uk

ρu1uk + pδ1k
ρu2uk + pδ2k
ρu3uk + pδ3k

 , fvisnk =


0
τ1k
τ2k
τ3k

 , Scav,MF
n =


(

1
ρℓ
− 1

ρv

)
(ṁcond − ṁevap)

0
0
0


(3.7)

The liquid volume fraction is computed by the mass conservation of the liquid phase:

RVF =
∂aluj

∂xj

− Scav,VF = 0 (3.8)

where

Scav,VF =
1

ρl
(ṁcond − ṁevap) (3.9)

al + av = 1 (3.10)

The condensation and evaporation mass rates are computed using empirical formu-
las, specifically the cavitation model proposed by Kunz et al. in ([33]).

Cavitation model ṁevap ṁcond

Kunz Ceρval
max(pvap−p,0)

0.5ρℓu
2
ref tref

Ccρvαv
a2l
tref

Table 3.1: Evaporation and Condensation mass rates.

Ce, Cc are empirical coefficients, pvap is the constant vapor pressure, uref , tref are
the reference velocity and the time scale. The viscous stresses are:

τnk = (µ+ µt)

(
∂uk

∂xm

+
∂um

∂xk

)
(3.11)

The CFD tool used in this diploma thesis, is the GPU-accelerated solver PUMA
developed by PCOpt/NTUA ([34]). PUMA solves compressible and incompressible
flows using the vertex-centered finite volume method on unstructured and hybrid
meshes. Additionally, PUMA enables surface parameterization via Volumetric Non-
Uniform Rational B-Splines (NURBS) ([35]). Several mesh-morphing techniques are

23

available, that can be used as standard morphers or during an optimization process.
A variety of turbulence and transition models are implemented in PUMA. In this
diploma thesis, the Spalart–Allmaras turbulence model ([36]) is utilized, and when
needed, a version of the γ − R̃eθ transition model, namely the version proposed by
Piotrowski&Zingg (SA-sLM2015) ([37], [38]).

3.2 The Spalart-Allmaras Turbulence Model

The Spalart-Allamaras turbulence model ([36]) solves an additional partial differ-
ential equation (PDE), for the turbulence field variable ν̃. The PDE is presented
in Eq. 3.12. The turbulent viscosity (µt) is computed using Eq. 3.13. In case of
cavitating flow simulations, the equation is solved for the liquid-vapor mixture.

Rν̃ =
∂(ρν̃uk)

∂xk

− ρ

σ

[
∂

∂xk

(
(ν + ν̃)

∂ν̃

∂xk

)
+ Cb2

∂ν̃

∂xk

∂ν̃

∂xk

]
− Pν̃ +Dν̃ = 0 (3.12)

µt = ν̃ρfv1 (3.13)

where the production (P) and dissipation (D) terms are:

Pν̃ = ρcb1(1− ft2) S̃ ν̃, Dν̃ = ρ
(
cw1fw −

cb1
κ2

ft2

)(
ν̃

∆

)2

(3.14)

More information about the constants of the Spalart-Allmaras turbulence model are
provided in ([36]).

3.3 The γ–R̃eθ Transition Model

The γ-R̃eθ ([37]) transition model solves two additional PDE, for the transition
intermittency (γ), and the transition momentum-thickness Reynolds number (R̃eθ):

Rγ =
∂(ρukγ)

∂xk

− ∂

∂xk

[(
µ+

µt

σf

)
∂γ

∂xk

]
− Pγ +Dγ = 0 (3.15)

RR̃eθt =
∂(ρuk R̃eθt)

∂xk

− ∂

∂xk

[
σθt (µt + µ)

∂R̃eθt
∂xk

]
− Pθt −DSCF = 0

Piotrowski & Zingg proposed smoother approximations for the source terms, forming
the version SA-sLM2015 ([38]). The transition model is coupled with the Spalart-
Allmaras turbulence model, by affecting its source terms as:

24

Pν̃ = γρcb1S̃ν̃ (3.16)

Dν̃ = ρcw1fw

(
ν̃

∆

)2

(3.17)

More information for the source temrs and the constants of each model are provided
in ([37], [38]).

3.4 The Adjoint-Driven Optimization Process

In each optimization cycle in a gradient-based process, the primal, here the RANS
equations, is solved. Then, the computation of the derivatives of the objective
function w.r.t. the design variables, also referred to as SDs, are required. The
adjoint method is used to compute the SDs, either in its continuous form or with
consistent discretization schemes ([39], [40]).
The continuous adjoint approach constructs an augmented objective function, which
combines the objective sought to be minimized and the integrals, over the flow
domain, of the products of the primal residuals and the adjoint variables. Once the
primal has converged, and their residuals are close to zero, the augmented equals the
objective. The augmented function is then differentiated w.r.t. the design variables.
From the differentiation integrals are formed that include derivatives of the flow
variables w.r.t. the design variables. To avoid the computation of that terms, the
multipliers of these derivatives are set to zero. This forms the field adjoint equations,
that are discretized and solved, at a computational cost approximately equivalent
to that of solving the primal equations.

3.5 DNNs as surrogates of the CFD-solver

Two DNN-driven optimization strategies are compared in this diploma thesis. The
first one is presented in Figure 3.1 and discussed next.

1. Parameterization: To construct the database used for training of the DNNs,
a set of potential geometries must be generated. This is achieved by sampling
the design variable space, to create various combinations of the control points
positions. Each combination corresponds to a different geometry. Sampling
is implemented with Latin Hypercube Sampling (LHS) ([41]). LHS generates
N samples in [0, 1)d, where d is the number of design variables. For each one
it places a point in every [j/N, (j + 1)/N) interval at random position, for
j=0,..N-1. LHS ensures the samples are representative of the real variability,
even at small datasets.

25

2. Mesh-adaptation and CFD-evaluation: A grid displacement method is
employed to adapt the mesh to the modified geometry. The geometry is then
evaluated using the CFD-solver, and the results are added the database. For
each sample, besides the primal evaluation, the SDs are also included in the
database. Given the computational cost of these evaluations, the number of
samples is kept as small as possible.

3. DNN training: DNNs are trained on the constructed database. Inputs to the
models are the design variables, and output the objective function prediction.

4. DNN-driven gradient descent: The optimization process is initiated from
the baseline geometry. During this phase, the expensive primal and adjoint
evaluations are replaced by the cost-efficient DNN surrogates.

5. CFD re-evaluation of the optimized solution: The solution obtained
from the DNN-driven optimization is evaluated on the CFD tool. If the opti-
mized solution satisfies the desired accuracy, the optimization process can be
terminated. Otherwise, the re-evaluated geometry is added to the database
and steps 2-3 are repeated. The new gradient descent begins from the previ-
ously optimized solution.

Figure 3.1: Representation of the first DNN-driven optimization process.

The second one employs a hybrid adjoint and DNN-driven optimization approach, as
shown in Figure 3.2. During the early optimization cycles, the flow fields and SDs are
computed using the CFD-solver. Each intermediate geometry is stored, to construct

26

the DNN database. After a few initial cycles, the adjoint-driven optimization is
stopped. The optimization process resumes, starting from the last candidate solution
obtained by the adjoint-driven phase. In this second phase, the optimization is
driven exclusively by DNNs. The DNN optimized geometry is re-evaluated on the
CFD tool, to verify its accuracy. Based on this evaluation, the designer may choose
to continue the optimization. If so, the new geometry is added to the database,
the networks are retrained, and the DNN-driven optimization is repeated using the
updated models.

Figure 3.2: Demonstration of the second DNN-driven optimization.

Each DNN configuration used in this diploma thesis, is optimized with the in-house
evolutionary software, EASY ([42]). EASY is a general purpose, high-fidelity soft-
ware develop by PCOpt/NTUA. It is based on generalized evolution algorithms and
can be used for single- and multi-objective optimizations. Additionally a coupling
possibility with low-cost on-lime metamodels is available, to reduce the EA-based
optimization turnaround time. The DNN optimization using EASY was introduced
in [40]. The enhancement of this setup is also investigated in this diploma thesis, as
demonstrated in Chapter 4.

3.6 The L-BFGS Algorithm

In optimization second-order methods utilize the Hessian matrix, which consists of
the second-order partial derivatives of the objective function. The Hessian contains

27

information about the curvature of the objective, and enables fast convergence near
the optimum. However, constructing it is computationally expensive. Quasi-Newton
methods approximate the inverse Hessian matrix, preserving the fast convergence
advantages of second-order methods while avoiding the computational cost of com-
puting the Hessian directly. They have the following update rule:

xk+1 ←− xk − akHk∇f(x) (3.18)

where Hk is the approximation of the inverse Hessian matrix at time-step k. Specif-
ically, the BFGS algorithm uses the following formula for updating the H matrix:

Hk+1 = V T
k HkVk + ρksks

T
k (3.19)

where

sk = xk+1 − xk

yk = ∇f(xk+1)−∇f(xk)

ρk = 1/yTk sk

Vk = 1− ρkyks
T
k

The L-BFGS method ([43]) is used in the shape optimization studies of this work. It
is a variant of the BFGS algorithm, that rather than storing the full approximation
of the inverse Hessian matrix, retains only the most recent m values of s,y, since these
have a greater impact on the approximation. The Hk is constructed by updating
a symmetric, positive definite H0 matrix m̂+1 times using the pairs [si, yi]

k
i=k−m̂,

where m̂=min(k,m-1):

Hk+1 = (V T
k . . . V T

k−m̂)H0(Vk−m̂ . . . Vk)

+ ρk−m̂(V
T
k . . . V T

k−m̂+1)sk−m̂s
T
k−m̂(Vk−m̂+1 . . . Vk)

+ ρk−m̂+1(V
T
k . . . V T

k−m̂+2)sk−m̂+1s
T
k−m̂+1(Vk−m̂+2 . . . Vk)

...

+ ρksks
T
k

28

Chapter 4

Single-Phase Turbulent Flow
around a Turbine Blade-Airfoil

4.1 Introduction

In this Chapter, the aerodynamic ShpO of the C3X turbine blade-airfoil is per-
formed. Aim of the optimization is to minimize the massed-averaged pt losses of the
cascade (∆pt), while preserving the exit flow angle (aexit) close to its original value.
The employed Hermite-DNNs are trained to predict the objective values and, after
they are differentiated, their SDs. Once trained, these networks are utilized to drive
the gradient-based ShpO of the blade-airfoil, by substituting both the primal and
adjoint computations. In the first part of this Chapter, the entire ShpO process is
implemented using networks trained on a database generated by the near-random
LHS. Various DNN configurations are compared, regarding their generalization ca-
pabilities, and the memory requirements for storing them. In the second part an
alternative approach is implemented. The ShpO during the initial cycles is driven
by adjoint; after a specific number of cycles the CFD evaluations are substituted by
the DNNs predictions.

4.2 Flow conditions and parameterization

The C3X is a cooled turbine blade, introduced in [44], and has been widely studied
in heat transfer and optimization cases. The flow inlet and outlet conditions are
illustrated in Table 4.1. An unstructured computational mesh of approximately
95K nodes is generated. The mesh is shown in Figure 4.1.

29

Flow Conditions

Inlet total temperature (K) 808

Inlet total pressure (bar) 2.44

Inlet flow angle (◦) 0

Outlet static pressure (bar) 1.43

Working fluid Air

Table 4.1: The turbine blade-airfoil case: Flow Conditions.

Figure 4.1: The turbine blade-airfoil case: Computational mesh of the whole domain
(top) and the region near the solid boundaries (bottom).

30

The airfoil is parameterized using a 6 x 3 NURBS lattice, shown in Figure 4.2,
that controls the airfoil’s shape. The lattice is equidistant in each direction. The
black points remain fixed during the optimization and the red ones are free to
move in the cord-wise and pitch-wise direction with a maximum displacement of
0.15d around their initial values, where d represents the distance of adjacent control
points in each direction. This results to 32 design variables (⃗b ∈ R32). During the
optimization process, a grid displacement method is used to adapted the mesh to the
design variables displacements. In all cases, the Inverse Distance Weighting (IDW)
method is used ([45]). The displacement of each mesh node is the average of the
displacement of each CP weighted by the inverse of its distance from the specific
node. Nodes near the parameterized geometry are displaced more, while farfield
points are not influenced significantly.

Figure 4.2: The turbine blade-airfoil case: Blade-airfoil parameterization.

4.3 DNN Configuration and Training

Two separate DNNs are build for ∆pt and aexit, in order to ensure high accuracy
on the SDs predictions. The database to be used for training of the networks is
created by modifying the geometry of the baseline airfoil. The design variable space
is sampled to create 29 different combinations of the Control Points (CPs) position.
Sampling is implemented with LHS and for each sample the primal and adjoint
problem is solved, thus ∆pt, aexit and their SDs are computed. These quantities,
along with those of the baseline geometry, compose the DNN database (DBLHS).
Development, training and differentiation of DNNs is carried out in the Tensorflow
framework using Python ([46]). Input to each branch of the DNNs is the [N×32]
tensor containing the coordinates of the DBLHS samples, where N is the number of
samples the DNN processes at the training or validation step. The outputs of each
branch are concatenated to form the output [N×1] tensor, containing the predictions
on the target values. The DNNs are then differentiated to produce an [N×32] tensor
with the predicted derivatives. To asses generalization during training, the database
is split in training and validation patterns, using the commonly adopted 80%-20%
rule. As a result, the networks are trained on 24 samples, with a fixed set of 6
samples used for validation.

31

In order improve the accuracy of the DNNs predictions their optimal configuration
should be identified. Herein, the DNN architecture and hyper-parameters are opti-
mized with the in-house evolutionary algorithm software, EASY. For each network,
two optimizations of their configuration are carried out, and these will be illustrated
below.

4.3.1 First DNN configuration optimization

The optimized hyperparameters in this case include the number of hidden layers,
the number of neurons per layer and the selection of activation functions. This
setup was originally introduced in ([40]). The number of hidden layers in each
branch range from 3 to 10. The number of neurons are expressed as a power of
two and can be selected between 25 and 212. All hidden layers share the same
activation function, while different activation functions may be assigned to the final
layers of each branch. The remaining DNN’s hyperparameters are fixed, to user-
defined choices. More specifically, the optimizer is Adam with its default learning
rate of 0.001. The batch size equals the number of training samples, and the loss
function used during training is MSE. The objective, to be minimized by EASY,
is the LHermite measured on the entire database (30 samples), after the DNN (to
be referred as DNNA) has been trained for the first 200 epochs. Training of each
candidate network does not reach convergence, as this would significantly increase
the cost of the EA-based process. Instead, the number of epochs is calibrated,
to ensure that the resulting predictions are both reliable and representative of the
network’s performance. The optimized architectures are listed in Tables 4.2 & 4.3.

DNN ∆pt

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 8 128-2048-512-1024-64-256-24-1 Gelu Tanh

Bgrad 6 2048-4096-1024-64-24-32 Gelu Sigmoid

Table 4.2: The turbine blade-airfoil case: Optimized architecture of ∆pt DNNA.

DNN aexit

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 7 32-4096-64-1024-2048-24-1 Tanh Tanh

Bgrad 5 256-1024-64-24-32 Tanh Sigmoid

Table 4.3: The turbine blade-airfoil case: Optimized architecture of aexit DNNA.

32

Once the optimal architectures are defined, the DNNs are trained until convergence
is reached. The loss curves for the ∆pt and aexit models are presented in Figure 4.3,
with the function and derivative components of the loss shown separately. The SDs
loss corresponds to the sum of the individual loss terms associated with each design
variable. Accurately predicting the derivatives, in addition to the target outputs, is
a more complex task; thus, a higher loss is generally expected for the SDs terms.

Figure 4.3: The turbine blade-airfoil case: Training loss convergence (left) and val-
idation loss (right) of ∆pt DNNA (top) and aexit DNNA (bottom). Total loss is the
weighted sum of the function loss and gradient loss.

4.3.2 Second DNN configuration optimization

The design variable space of the DNN configuration optimization is expanded to
explore a broader range of candidate DNN configurations. Besides the network’s
architecture, this optimization regards also its training configuration. Primary goal
is to identify configurations than generalize better than DNNA. In addition to the
previously optimized hyperparameters, the optimization of the DNN configuration
includes the selection of the loss function, the batch size, the training pattern shuf-
fling in batch-processing scenarios, and the choice of optimizer along with its initial

33

learning rate. The loss function selection is between MSE and MAE. The batch
size varies from 8 to 24 patterns. The optimizer’s choice is among Adam, AdamW,
Adamax and Adadelta, with an initial learning rate ranging from 10−2 to 10−4. The
bounds of the rest design variables of the DNN configuration optimization remain
the same as DNNA. The objective, to be minimized, is the LHermite measured on
the entire database (30 samples) after the DNNs (to be referred as DNNB) are
trained for 240 epochs. Since MAE and MSE yield outputs on different scales, at
the evaluation step of the models the MSE is used. The optimized configurations
are summarized in Tables 4.4 & 4.5

DNN ∆pt

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 12
64-2048-512-4096-1024-
32-32-1024-4096-32-24-1

Gelu Gelu

Bgrad 7 4096-4096-64-1024-32-24-32 Gelu Tanh

Optimizer Loss function Batch Size
Shuffle
(epochs)

Adam
(lr=0.0007)

MAE 16 15

Table 4.4: The turbine blade-airfoil case: Optimized architecture of ∆pt DNNB.

DNN aexit

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 11
256-1024-1024-64-1024-32-

2048-4096-4096-24-1
Gelu Gelu

Bgrad 6 512-1024-32-128-24-32 Gelu Gelu

Optimizer Loss function Batch Size
Shuffle
(epochs)

AdamW
(lr=0.002)

MAE 16 20

Table 4.5: The turbine blade-airfoil case: Optimized architecture of aexit DNNB.

Figure 4.4 presents the training and validation loss curves of ∆pt and aexit DNNB.
The comparison of their performance with the corresponding networks of the previ-
ous Section is based on the quality of their predictions on the whole database. Re-
garding the ∆pt DNNs, it can be observed in Figure 4.5 that DNNA achieves higher
accuracy on validation ∆pt predictions. However, in Figure 4.6DNNB demonstrates
an improvement in SDs of the validation blade; the value of the higher-magnitude
derivatives are closer to the reference, and the sign in specific design variables is

34

corrected. The predictions on aexit SDs are depicted in Figure 4.7. DNNB yields a
closer match to the validation SDs, which is desirable since the constraint that will
be imposed on aexit during the ShpO is strict.

Figure 4.4: The turbine blade-airfoil case: Top) The training loss convergence (left)
and validation loss (right) of ∆pt DNNB. Bottom) The training (left) and validation
(right) loss curves of aexit DNNB. The convergence of the function and derivative
terms is presented separately.

Figure 4.5: The turbine blade-airfoil case: The ∆pt (right) and aexit (left) values of
the whole database computed with CFD and the DNNs predictions.

35

Figure 4.6: The turbine blade-airfoil case: The ∆pt SDs of the baseline geometry
(left) and a validation one (right), against reference values computed with adjoint.
Baseline geometry is included in the training database.

Figure 4.7: The turbine blade-airfoil case: The baseline geometry (left) and a vali-
dation geometry (right) aexit SDs computed with adjoint and the DNNs predictions.

Expanding the design variable space of the DNN configuration optimization enabled
the discovery of better solutions. Well-chosen values for the additional parameters
of this Section helped the DNNB achieve the same training performance as DNNA,
however with improved generalization. Ensuring more reliable predictions beyond
the training database is important, since the DNNs will ultimately be used to guide
the ShpO of the airfoil. Shuffling the training patterns proved beneficial for both
models. By randomly rearranging the training data, the model is exposed to varying
subsets in each batch, which helps prevent biases related to the data order. This
encourages the learning of more general patterns and reduces the risk of overfitting.
Additionally, a smaller batch size compared to that used in the initial configuration
of DNNA, was found to be optimal, confirming the efficiency of mini-batch training
of DNNs. The optimal choice of loss function and optimizer’s learning rate depends
on the specific problem and should be tuned accordingly for each case.

36

4.3.3 Pruning

This Section explores an additional approach: DNN pruning. Pruning is a widely
adopted technique aiming to reduce the complexity of the network by removing
its redundant parameters. In this work, pruning is applied throughout the entire
network, excluding the final two layers of each branch and the output layer of the
network. Only the weight matrices are pruned, leaving the biases untouched, since
they are fewer than the weights and their impact on the network’s size is smaller.
Two different magnitude-based pruning criteria are compared, and their results are
demonstrated below. Each one is applied in an iterative manner with a frequency
of 100 epochs, starting from around the 300th, until the limit of the 600th epoch is
reached. Afterwards a fine-tuning phase follows, until convergence is reached.
The first approach maintains a gradually increasing sparsity, shown in Figure 4.8.
During the initial epochs, sparsity increases rapidly, followed by a slower rate as
the DNN parameters are progressively reduced. The frequency of applying pruning
depends on the training configuration; however, it should not be applied frequently,
as this may negatively impact accuracy. The global threshold is computed based
on the target sparsity of each epoch. The optimized configurations are presented in
Tables 4.6 & 4.7.
The second approach adapts a layer-wise threshold, in contrast to the earlier method
that relied on a single global one. Within each layer, the significance of weights is
evaluated by computing the mean value (µ) and standard deviation (σ) of their
magnitudes. Weights with absolute values below either µ-σ or µ-2σ are considered
less significant and can be trimmed. For this approach the optimized configurations
of DNNB are employed.

Figure 4.8: The turbine blade-airfoil case: Different pruning schedules applied to
the DNNs. The sparsity at different epochs during training is presented. Sparsity is
defined as the ratio of the zero-valued weights to the total number of weights (dense
matrix) in the layers targeted for pruning.

37

DNN ∆pt

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 11
1024-32-2048-1024-256-
256-256-64-32-24-1

Gelu Tanh

Bgrad 7 4096-2048-64-512-256-24-32 Gelu Tanh

Optimizer Loss function Batch Size Shuffle

AdamW
(lr=0.0014)

MAE 16 No

Table 4.6: The turbine blade-airfoil case: Optimized architecture of ∆pt pruned
DNNC .

DNN aexit

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 8 1024-32-256-128-512-256-24-1 Gelu Gelu

Bgrad 5 512-512-64-24-32 Gelu Sigmoid

Optimizer Loss function Batch Size
Shuffle
(epochs)

AdamW
(lr=0.0027)

MAE 16 10

Table 4.7: The turbine blade-airfoil case: Optimized architecture of aexit pruned
DNNC .

Figures 4.9 & 4.10 present the training and validation loss curves of ∆pt and aexit
DNNC , pruned using each of the predefined criteria. At low sparsity levels, the
curves are similar to those of DNNB. An increase in loss appears at the 70% target
sparsity, due to the significant reduction in network’s parameters. Notably, the
networks can still recover during the fine-tuning epochs. No further improvement
is observed on validation predictions, possibly due to the small size of the DBLHS.
For the ShpO only the networks with the lowest validation loss are used. These
correspond to the models pruned with the second approach, according to the mean
value and deviation of each layer’s weights. The benefits of pruning on the network’s
size can be observed by applying a standard compression algorithm: ∆pt DNNC

(84MB) is by 19% lighter than the original dense ∆pt DNNB, while aexit DNNC

(74MB) by 24%. The benefits of this approach would be more evident in memory-
constrained environments, where the same prediction quality would be acquired
with a much lighter network. Figure 4.11 presents the sparsity per layer for the two
DNNC ; their predictions on the ∆pt, aexit and their SDs are depicted in Figures
4.12 & 4.13.

38

(a) training loss (b) training loss ∆pt

(c) training loss SDs (d) validation loss

(e) validation loss ∆pt (f) validation loss SDs

Figure 4.9: The turbine blade-airfoil case: Training and validation loss curves of ∆pt
DNNC . The convergence of the ∆pt and SDs loss terms is compared using different
pruning schedules.

39

(a) training loss (b) training loss aexit

(c) training loss SDs (d) validation loss

(e) validation loss aexit (f) validation loss SDs

Figure 4.10: The turbine blade-airfoil case: Training and validation loss curves
of aexit DNNC . The convergence of the aexit and SDs loss terms is also presented
separately.

40

(a) Bfunc branch ∆pt DNNC (b) Bgrad branch ∆pt DNNC

(c) Bfunc branch aexit DNNC (d) Bgrad branch aexit DNNC

Figure 4.11: The turbine blade-airfoil case: Sparsity for each branch of the ∆pt (top)
and aexit (bottom) DNNC . Sparsity is defined as the ratio of the number of pruned
weights to the total number of weights in each layer prior to pruning (dense layer).

Figure 4.12: The turbine blade-airfoil case: The target ∆pt (left) and aexit (right)
values computed with CFD and the DNNs predictions.

41

Figure 4.13: The turbine blade-airfoil case: The baseline geometry SDs computed
with adjoint and the DNNC predictions.

4.4 ShpO of the turbine blade-airfoil

Each Hermite-DNN is used to drive a distinct optimization processes of the turbine
blade-airfoil. Each optimization relies exclusively on the DNNs predictions on the
values of the objective function and its SDs. An adjoint-driven optimization is also
performed, using PUMA. For a fair comparison, all optimizations are conducted
using the L-BFGS algorithm. The convergence of the adjoint-driven process and
the solutions obtained from the DNN-driven ones are shown in Figure 4.14. The
objective is:

F = 10−8∆pt + 10−1(a+ 1.275)2 (4.1)

where atarget = abaseline = −1.275rad.
Each optimization cycle requires 3 Time Units (TU), 1 TU for the primal evalu-
ation, and 2 TUs for the adjoint solution. The DBLHS contains 30 blades, as a
result the cost of constructing it amounts to 90 TUs. The optimized solution of
each DNN-driven optimization is re-evaluated on the CFD solver. The re-evaluated
values along with their SDs are added to the DBLHS and the networks are re-
trained. The optimization is repeated from the latest solution using the re-trained
networks. Two re-trainings are necessary to achieve an optimized solution similar
to the adjoint-driven optimization. Since the cost associated with DNN training
is negligible compared to a CFD evaluation, the total cost of the DNN-driven op-
timization process is 97 TUs. The adjoint-driven optimization requires 37 TUs to
converge to its optimized solution.

42

Figure 4.14: The turbine blade-airfoil case: Convergence of the adjoint-driven op-
timization, the DBLHS and the DNN-driven optimized solutions, after they are re-
evaluated on the CFD tool. For each DNN solution, the cost of constructing the
database has been taken into consideration.

As shown in Figure 4.14 only the DNNB-driven optimization achieves a similar
solution with the adjoint-driven one. Although the cost of constructing the DNN
database is higher than that of the adjoint-driven optimization, once the DNN is
trained, it can be re-used to drive an optimization process. For instance, when the
objective changes or an optimization with relaxed constraint needs to be performed
the cost of a DNN-driven optimization is minimal relative to re-starting the entire
optimization process.

4.5 Reducing DNN database construction cost

The DNN-driven optimization of the previous Section had a high computational
cost, due to the higher cost of constructing the DBLHS. In order to mitigate this,
the number of training patterns should be reduced. Herein a different approach is
explored. A new database is formed, to be referred to as DBadjoint, using the initial
five solutions of the adjoint-driven optimization. The ∆pt, aexit values of these blades

43

and their corresponding SDs constitute the DBadjoint. As previously, Hermite-DNNs
are employed for this study, and their configuration is optimized using the first setup
introduced in the previous Section. Due to the restricted number of samples, the
entire database is utilized during the training process. The optimized DNN (to be
referred as DNND) architectures are presented in Tables 4.8 & 4.9. Training loss
convergence is shown in Figure 4.15, and each network’s predictions in Figures 4.16
& 4.17.

DNN ∆pt

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 8 2048-64-512-64-512-128-5-1 Relu Gelu

Bgrad 12
512-128-4096-128-32-64-256-

1024-32-32-5-32
Relu Gelu

Table 4.8: The turbine blade-airfoil case: Optimized architecture of ∆pt DNND.

DNN aexit

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 5 4096-128-64-5-1 Gelu Relu
Bgrad 7 256-32-2048-1024-64-5-32 Gelu Gelu

Table 4.9: The turbine blade-airfoil case: Optimized architecture of aexit DNND.

Figure 4.15: The turbine blade-airfoil case: Training loss of ∆pt (left) and aexit
(right) DNND. Both models have converged after they are trained for 1400 epochs.

44

Figure 4.16: The turbine blade-airfoil case: Training patterns computed with CFD
and DNND predictions.

Figure 4.17: The turbine blade-airfoil case: ∆pt SDs (left) and aexit SDs (right) of
the fifth point of the adjoint-driven optimization computed with adjoint and DNND

predictions.

The adjoint-initiated ShpO from its fifth point onward is driven exclusively by the
DNND, as shown in Figure 4.18. The re-evaluation cycles described before, are ap-
plied during the DNN-driven phase. Three re-evaluations of intermediate optimized
solutions are required to reach a solution of the same quality with the adjoint-driven
optimization. The DNN-driven optimization turnaround time amounts to 25 TUs,
achieving a 32% cost reduction.
A comparison of the Figures 4.14 & 4.18 reveals that LHS yields a representative
sampling of the design variable space, resulting in a database that encompasses a
broader variety of blade geometries. However some designs are far from the optimal
ones, leading to unnecessary CFD evaluations. In contrast, the initial samples gen-
erated through adjoint-driven optimization are concentrated and provide more infor-
mation in the desired direction. This targeted approach ensures that the networks
learn patterns useful for guiding the optimization process, and restricts significantly
the database generation turnaround time.

45

Figure 4.18: The turbine blade-airfoil case: Convergence of the adjoint-driven opti-
mization and DNND solutions, after they are re-evaluated on the CFD code.

The optimized solutions are presented in Table 4.10 & Figure 4.19. In Figure 4.20,
the airfoils of the DBLHS and DBadjoint are presented. The airfoils generated with
LHS cover a wider range of potential geometries, while the geometries obtained
through the adjoint-driven optimization are closer to the optimized airfoils. The
shape of the optimized geometries is compared in Figure 4.21 with the baseline
airfoil. The Mach number fields are shown in Figure 4.22.

Comparison of the Optimized Solutions

F
Fbaseline

(%) ∆pt (Pa) aexit (
◦)

∆pt
Reduction (%)

∆aexit (
◦)

Baseline - 4.189× 103 -73.08 - -

Adjoint solution 77.83 3.260× 103 -73.09 22.18 -0.01

DNNA solution 78.94 3.305× 103 -73.10 21.11 -0.02

DNNB solution 78.00 3.266× 103 -73.10 22.03 -0.02

DNNC solution 82.89 3.470× 103 -73.10 17.16 -0.02

DNND solution 78.48 3.286× 103 -73.06 21.56 0.02

Table 4.10: The turbine blade-airfoil case: Comparison of optimized solutions.

46

Figure 4.19: The turbine blade-airfoil case: Solutions obtained from each DNN-
driven optimization, after they are re-evaluated on CFD, and adjoint optimal solution.
The ∆pt, aexit values are normalized with those of the baseline geometry, respectively.

Figure 4.20: The turbine blade-airfoil case: Left) Geometries generated with LHS
(black) are compared to the baseline (orange) and the optimized airfoils obtained with
adjoint (blue) and DNNB (red). Right) The first solutions of the adjoint-driven op-
timization (black) along with the baseline geometry (orange), the adjoint optimized
solution (blue) and DNND optimized solution (green).

47

Figure 4.21: The turbine blade-airfoil case: Optimized geometries resulting from
adjoint (blue), DNNB (red), and DNND (green), are compared to the baseline airfoil
(black).

Figure 4.22: The turbine blade-airfoil case: The Mach number fields for the baseline
geometry (top left) and the optimized geometries resulting from adjoint (top right),
DNNB (bottom left) and DNND (bottom right).

48

Chapter 5

Single-phase Transitional Flow
around an Isolated Airfoil

5.1 Introduction

In this Chapter, the aerodynamic ShpO of an isolated airfoil is carried out. Ob-
jective of the optimization is the minimization of the drag coefficient (cd) while
maintaining the lift coefficient (cl) close to the value of the baseline airfoil. The
airfoil’s polar diagram is first validated against the experimental one. Subsequently,
Hermite-trained DNNs are employed to guide the ShpO process. Each DNN-driven
optimization relies solely on the predictions generated by the models. Two strategies
for constructing the DNN database are examined: the first involves a near-random
sampling of the design variable space, and the second utilizes initial solutions ob-
tained from an adjoint-driven optimization. Several DNN configurations are assessed
regarding their accuracy, generalization capabilities, and overall performance in the
optimization task.

5.2 Flow conditions and parameterization

The RG15 airfoil is a low Reynolds number airfoil originally developed for sailplane
applications. Subsequently a family of airfoils derived from the RG15 with varying
relative thicknesses was introduced for use in small horizontal axis wind turbines
[47]. A C-type mesh, shown in Figure 5.1, is used with approximately 70K nodes.
Farfield boundaries are located approximately 100 chords away from the airfoil.
The airfoil’s polar diagram is validated against experimental data in Figure 5.2.
The available measurements span a range of Reynolds numbers from Re=61.400
to Re=304.200 ([48]). Simulations are conducted at Re=304.200 and free-stream
Mach number of 0.01. In the figure, results obtained using only a turbulence

49

Figure 5.1: The isolated airfoil case: Computational mesh of the entire domain (left)
and close up view (right).

model are shown with blue markers, while red markers represent simulations that
incorporate both turbulence and transition models. Turbulence is modeled using
the Spalart–Allmaras model (3.2), and transition with the γ-R̃eθ model (the SA-
sLM2015 variant, 3.3). It can be observed that the use of only turbulence model
leads to an overestimation of the cd. It is essential to incorporate a transition model
to accurately capture the correct boundary layer behavior.

Figure 5.2: The isolated airfoil case: Airfoil’s polar based on experimental data
(black), CFD results assuming turbulent flow (blue) and transitional flow (red). Tur-
bulent flow overestimates the cd values.

50

For the subsequent analysis, the free-stream velocity is slightly increased, since the
variant of PUMA this diploma thesis is based upon solves compressible flows. From
now on, transition model will be also included in the modeling. The flow conditions
are listed in Table 5.1.

Flow Conditions

M∞ 0.1

Re 1.5 · 105

a∞ 2◦

Table 5.1: The isolated airfoil case: Flow conditions.

The airfoil is parameterized with a 10 x 9 NURBS lattice, shown in Figure 5.3. The
black control points remain fixed during the optimization, while the red ones are
allowed to move within ±0.4d of their initial positions, in order to avoid overlapping.
Here d equals the vertical distance between adjacent control points. The CPs are
displaced only in the direction normal to the chord, resulting in a total of 28 design
variables (⃗b ϵ R28).

Figure 5.3: The isolated airfoil case: Airfoil parameterization.

5.3 DNN Configuration and Training

Two approaches are compared for constructing the database: the first approach uses
samples generated via LHS, and the second uses the initial candidate solutions from
the adjoint-driven optimization of the airfoil.

51

5.3.1 Database constructed with LHS

To construct the DNN database, 19 distinct combinations of the design variables
are generated using LHS, which correspond to 19 different airfoils. Each airfoil is
evaluated using the CFD solver, herein the cd, cl values and their SDs are computed.
These quantities, along with the baseline geometry added after sampling, form the
DNN database (DBLHS). Separate models are employed for each coefficient. Input
to each network is the [N×28] tensor containing the y-coordinates of the control
points, where N equals the batch size. Output is the [N×1] tensor with the predic-
tions on the coefficients. During training, the models are differentiated to compute
the derivatives of their outputs w.r.t. their inputs, that correspond to the SDs for
each quantity of interest. A fixed validation set, containing 20% of the DBLHS sam-
ples is selected, to evaluate model performance. As in the previous case, two DNN
configuration optimizations are conducted, and their outcomes are compared below.

First DNN configuration optimization

The optimized hyperparameters are based on the initial setup introduced in Chapter
4. Objective is the minimization of LHermite, after each network has been trained
for the first 200 epochs. The MSE is used for each term of the LHermite, and the
optimizer is Adam with its default learning rate of 0.001. Tables 5.2 & 5.3 summarize
the optimized architectures. The training and validation loss convergence is depicted
in Figure 5.4.

DNN cd

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 11
128-1024-64-4096-4096-32

-2048-64-64-16-1
Gelu Gelu

Bgrad 9 128-2048-32-32-32-1024-64-16-28 Gelu Sigmoid

Table 5.2: The isolated airfoil case: Optimized architecture of cd DNNA.

DNN cl

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 5 2048-4096-128-16-1 Gelu Tanh

Bgrad 11
4096-128-64-256-128-4096-32-1024

-256-16-28
Tanh Tanh

Table 5.3: The isolated airfoil case: Optimized architecture of cl DNNA.

52

Figure 5.4: The isolated airfoil case: Left) Training loss convergence of cd (top)
and cl (bottom) DNNA. Right) Validation loss of cd (left) and cl (right) DNNA,
monitored during training. The total loss is the sum of the function loss and gradient
loss.

Second DNN configuration Optimization

The design variable space of the DNN configuration optimization is expanded to
enhance the search for better DNN configurations. For the specific optimization, the
second setup introduced in Chapter 4 is used. Objective remains the minimization of
LHermite, evaluated over the entire database (20 samples) after the first 240 training
epochs. The optimized architectures are presented in Tables 5.4 & 5.5. The training
loss convergence of the cd, cl DNNB is illustrated in Figure 5.5. As DNNA and
DNNB for both coefficients are trained using different loss functions, their loss values
are not directly comparable. Therefore their predictions on the target outputs are
compared in Figure 5.6. An improvement is observed on validation cl predictions
and a slight degradation on validation predictions of cd DNNB. However both
DNNB demonstrate improved accuracy in predicting the SDs in Figures 5.7 &
5.8. The validation loss comprises multiple terms, including the function prediction
error and loss terms associated with each partial derivative. The superior validation
performance of cd DNNB is attributed to its enhanced accuracy in approximating
these derivatives.

53

DNN cd

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 9 64-2048-64-1024-4096-256-64 -16-1 Tanh Gelu

Bgrad 8 1024-2048-2048-256-256-64-16-28 Tanh Tanh

Optimizer Loss function Batch Size Shuffle

Adam
(lr=0.0003)

MAE 12 No

Table 5.4: The isolated airfoil case: Optimized architecture of cd DNNB.

DNN cl

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 11
128-4096-64-64-64-2048-128-32-512

-16-1
Gelu Tanh

Bgrad 5 512-1024-64-16-28 Tanh Tanh

Optimizer Loss function Batch Size Shuffle

Adamax
(lr=0.005)

MAE 12 No

Table 5.5: The isolated airfoil case: Optimized architecture of cl DNNB.

54

Figure 5.5: The isolated airfoil case: The training (left) and validation (right) loss
curves of cd DNNB (top) and cl DNNB (bottom).

Figure 5.6: The isolated airfoil case: The target values of training and validation
patterns computed with CFD and DNNs predictions. The cd, cl values are normalized
with the values of the baseline airfoil.

Figure 5.7: The isolated airfoil case: The cd SDs for the baseline airfoil (left), which
is included in the training database, and a validation airfoil (right).

55

Figure 5.8: The isolated airfoil case: The cl SDs for the baseline airfoil (left) and a
validation airfoil (right).

Pruning

In this Section, the impact of pruning is investigated, regarding the network’s accu-
racy and size. The implementation employs the optimized architectures of DNNB,
introduced in the previous subsection. Pruning begins at the 300th epoch and re-
curs every 100 epochs until the 600th epoch is reached. A magnitude-based pruning
criterion is employed, the second one introduced in Chapter 4. The training and
validation loss curves for each model are shown in Figures 5.9 & 5.10, alongside those
of the initial dense network (DNNB). The curves corresponding to the pruned net-
works exhibit similar shape to those of the dense models and ultimately reach the
same level of accuracy. This suggests that a significant fraction of the weights have
minimal impact on the network’s performance and, therefore, can be safely removed.

56

Figure 5.9: The isolated airfoil case: The training (top) and validation (bottom)
loss curves of cd pruned DNNC are compared to those of the dense DNNB. The
comparison of each term that make up the total loss is also presented separately (left).

Figure 5.10: The isolated airfoil case: Training (top) and validation (bottom) loss
curves of cl DNNC and DNNB, along with the convergence of each term (left).

Figure 5.11 shows the sparsity ratio for each layer of the network, defined as the
fraction of the number of pruned weights on that layer to the total number of weights
in its dense form. The pruned cd DNNC is by 15% smaller in size (38MB) compared
to the dense DNNB, and the pruned cl DNNC achieves a 24% reduction (5MB).
The DNNC predictions are presented in Figures 5.12 & 5.13.

57

(a) Bfunc branch cd DNNC (b) Bgrad branch cd DNNC

(c) Bfunc branch cl DNNC (d) Bgrad branch cl DNNC

Figure 5.11: The isolated airfoil case: Sparsity for each branch of cd DNNC (top)
and cl DNNC (bottom).

Figure 5.12: The isolated airfoil case: Comparison of the DNNB and DNNC pre-
dictions on the cd (left) and cl (right) of the airfoils, against the CFD computed values.

58

Figure 5.13: The turbine blade-airfoil case: The cd (left) and cl (right) SDs computed
with CFD and DNNs predictions.

5.3.2 Database constructed with adjoint-driven optimiza-
tion solutions

This approach constructs the DNN database using the initial solutions of the adjoint-
driven ShpO. More specifically, the cd, cl values and their corresponding SDs, for the
six initial airfoils, form the database (DBadjoint). As previously, the Hermite-DNNs
are employed in this study. Since the cd DNNB will be employed in the ShpO to
minimize the airfoil’s cd, the minimum cd value for normalization of its inputs is 5%
smaller, than the smallest value encountered in the training patterns. Moreover,
since the smallest SDs differ significantly in magnitude from the others, the input
bounds for the specific design variables are expanded by increasing the maximum
by 5% of its value and decreasing the minimum by 5%. This increases the scale of
the corresponding SDs and facilitates a smoother learning. The optimized DNN (to
be referred as DNND) architectures are presented in Tables 5.6 & 5.7. In Figure
5.14 the convergence of the training process for each model is shown, and their
predictions are depicted in Figures 5.15 & 5.16.

DNN cd

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 5 2048-4096-32-6-1 Gelu Gelu
Bfunc 7 4096-64-4096-256-128-6-28 Gelu Sigmoid

Optimizer Loss function Batch Size

AdamW
(lr=0.0014)

MSE 6

Table 5.6: The isolated airfoil case: Optimized architecture of cd DNND.

59

DNN cl

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 5 128-32-2048-6-1 Gelu Gelu
Bgrad 7 128-32-512-32-512-6-32 Gelu Tanh

Optimizer Loss function Batch Size

AdamW
(lr=0.005)

MSE 6

Table 5.7: The isolated airfoil case: Optimized architecture of cl DNND.

Figure 5.14: The isolated airfoil case: Training loss of cd DNND (left) and cl
DNND (right). Total loss is the weight sum of the coefficients loss and the SDs loss.
Since the number of training patterns is small the entire database is used for training,
and no separate validation set is provided. After 800 epochs the training loss has
converged.

Figure 5.15: The isolated airfoil case: The cd (left) and cl (right) of the airfoils in
the DBadjoint, computed with CFD and DNNs predictions. The coefficient values are
normalized with those of the baseline geometry.

60

Figure 5.16: The isolated airfoil case: The cd SDs (left) and cl SDs (right) of
the sixth point of the adjoint-driven optimization computed with adjoint and DNND

predictions.

5.4 Airfoil ShpO

Each of the DNNs of the previous Section are utilized to drive a separate optimiza-
tion process of the airfoil. The networks trained on the DBLHS dataset initiate
the optimization from the baseline airfoil, while the DNND, trained on the ini-
tial adjoint-driven optimization solutions, begins from the best solution it has seen,
which is the sixth sample. Each DNN-driven optimization relies only on the corre-
sponding DNN’s predictions. Aim of the optimization is to minimize the airfoil’s cd
and keep the cl close to the value of the baseline airfoil. The objective is:

F = 0.1cd + 0.1(cl − 0.488)2 (5.1)

where cl,target = cl,baseline =4.88× 10−1

Each optimization cycle requires 1 TU for the primal solution and 2 TUs for the
adjoint one. The adjoint-driven optimization, whose convergence is shown in Figure
5.17 converges in 43 TUs. The optimized solution of the DNN-driven process is re-
evaluated on the CFD tool, to verify its quality. If further improvement is desired,
the objective and its SDs of the optimized airfoil can be added to the database. The
networks are retrained and the optimization process initiates from the latest solution,
using the re-trained models. Two re-trainings for the DNNs trained on DBLHS

are necessary to acquire solutions of the desired quality. Herein, the optimization
turnaround time amounts to 67 TUs. Among them, the DNNB-driven optimization
yields a better solution compared to the adjoint-driven one. In contrast, the DNND-
driven optimization has a total cost of 22 TUs, making it by 49% faster than the
adjoint-driven process and it results in an even better solution. The solutions are
presented in Figure 5.18 and Table 5.8.

61

Figure 5.17: The isolated airfoil case: Convergence of the adjoint-driven optimiza-
tion and the solutions obtained with each DNN after they are re-evaluated on the CFD
code. The cost of constructing the corresponding DNN database has been included.

Comparison of the Optimized Solutions

F
Fbaseline

(%) cd cl
cd

Reduction (%)
∆cl (%)

Baseline airfoil - 6.22× 10−3 4.88× 10−1 - -

Adjoint solution 74.78 4.64× 10−3 4.86× 10−1 25.40 -0.20

DNNA solution 75.61 4.69× 10−3 4.86× 10−1 24.60 -0.20

DNNB solution 74.26 4.61× 10−3 4.86× 10−1 25.88 -0.20

DNNC solution 74.88 4.64× 10−3 4.85× 10−1 25.40 -0.30

DNND solution 74.19 4.59× 10−3 4.84× 10−1 26.21 -0.40

Table 5.8: The isolated airfoil case: Comparison of the optimized solutions.

62

Figure 5.18: The isolated airfoil case: A comparison is presented between the samples
of the DBLHS, DBadjoint, and the optimized solutions obtained from the adjoint-driven
and DNN-driven optimization processes. All DNN-optimized solutions are re-evaluated
on CFD.

In Figure 5.19, the airfoils of the DBLHS and DBadjoint are presented. The airfoils
generated with LHS cover a wider range of potential geometries, while the airfoils of
the DBadjoint are closer to the optimized. The shape of the optimized geometries is
compared in Figure 5.20 with the baseline airfoil. The shape of the optimized airfoils
seem identical. The Mach number and turbulent viscocity fields are presented in
Figures 5.21 & 5.22, respectively. In Figure 5.23, the pressure and skin friction
coefficient distributions of the optimized airfoils are compared to the baseline. The
optimized geometries exhibit an extended laminar region along the suction side,
which contributes significantly to drag reduction. To preserve lift, a curvature near
the leading edge is formed, that as shown in the cp plots enhances the pressure
difference between the suction and pressure sides.

Figure 5.19: The isolated airfoil case: Left) Geometries generated with LHS (black)
are compared to the optimized airfoils obtained with adjoint (red) and DNNB (blue).
Right) The first solutions of the adjoint-driven optimization (black) along with the
DNND optimized solution (orange) and the baseline airfoil (green).

63

Figure 5.20: The isolated airfoil case: Comparison of the optimized solution obtained
with adjoint (red), DNNB (blue) and DNND (orange) wih the baseline airfoil (black).

Figure 5.21: The isolated airfoil case: The Mach number fields for the baseline airfoil
(top left), and the 3 airfoils optimized by adjoint (top right), DNNB (bottom left),
and DNND (bottom right).

64

Figure 5.22: The isolated airfoil case: The turbulent viscosity fields for the baseline
airfoil (top left), and the 3 airfoils optimized by adjoint (top right), DNNB (bottom
left), and DNND (bottom right).

65

Figure 5.23: The isolated airfoil case: Left) The pressure coefficient distribution
for the baseline airfoil and the optimized ones resulting from adjoint (top), DNNB

(middle), and DNND (bottom). Right) The skin friction coefficient distribution for
the baseline airfoil and the adjoint-optimized (top), DNNB-optimized (middle), and
DNND-optimized (bottom) airfoils.

66

Chapter 6

Single-Phase Turbulent Flow
around a Compressor Blade-Airfoil

6.1 Introduction

In this Chapter, the aerodynamic ShpO of a 2D low-speed compressor cascade is per-
formed. Aim of the optimization is to minimize the mass-averaged pt losses (∆pt)
of the cascade, while maintaining the exit flow angle (aexit) close to its original
value. The proposed method employs a hybrid adjoint- and DNN-driven optimiza-
tion approach. The ShpO of the airfoil during the initial cycles is driven by adjoint.
The solutions obtained from this initial phase are used to train the Hermite-DNNs.
The DNN-driven optimization is then initiated from an intermediate solution of the
adjoint-based process, and from that point relies exclusively on the DNNs predic-
tions. This approach is compared to the standard adjoint-driven optimization in
terms of cost.

6.2 Flow conditions and parameterization

The flow around the airfoil is characterized as low-speed and turbulent. A hybrid
mesh, consisting of approximately 36K nodes, is used. The mesh, which combines
structured and unstructured regions, is shown in Figure 6.1. The flow conditions
are summarized in Table 6.1.
The shape of the airfoil and the mesh are controlled by a 9 × 8 NURBS lattice,
equidistant in each direction, shown in Figure 6.2. The red points may move in
the chord-wise and pitch-wise direction, within a bound 10% of their distance from
adjacent control points in each direction, to ensure smooth deformations in the
airfoil’s shape. The black points remain fixed during the optimization. This results

67

in 40 design variables (⃗b ∈ R40).

Figure 6.1: The compressor blade-airfoil case: Computational mesh of the whole
domain (top) and the region around the solid boundaries (bottom).

Flow Conditions

Inlet total temperature (K) 288

Inlet total pressure (bar) 1.15

Inlet flow angle (◦) 44

Table 6.1: The compressor blade-airfoil case: Flow conditions.

Figure 6.2: The compressor blade-airfoil case: Blade-airfoil parameterization.

68

6.3 DNN Configuration and Training

The database used to train the networks (DBadjoint) contains the first five solutions
of the adjoint-driven ShpO, shown in Figure 6.8. The objective function to be
minimized in the ShpO of the airfoil regards the ∆pt of the cascade, and contains an
additional term that measures the deviation of the aexit value from the target one.
Each term is analyzed in Section 6.4 and will be provided by a different network.
Due to the limited number of samples, all of them are used for training. As a result,
input to each branch of the DNNs is the [5×40] tensor containing the coordinates of
the active CPs for each sample, and output the [5×1] tensor with the predictions on
the ∆pt or aexit values. After differentiation, a [5×40] tensor is computed, containing
the SDs predictions for each pattern.

First DNN configuration

The configuration of the DNNs (DNNA) utilized in this work is presented in Tables
6.2 & 6.3. It is determined by an EA-based optimization, aiming to reduce the
LHermite computed using the entire database. This process is based on the second
setup described in Chapter 4. The training loss of ∆pt and aexit DNNA, including
both the function and the derivative terms for each network, is illustrated in Figure
6.3.

DNN ∆pt

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 7 4096-512-128-64-2048-5-1 Gelu Gelu

Bgrad 9 512-256-64-128-32-256-64-5-40 Gelu Sigmoid

Optimizer Loss function Batch Size

Adam
(lr=0.0027)

MSE 5

Table 6.2: The compressor blade-airfoil case: Optimized architecture of ∆pt DNNA.

DNN aexit

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 9 128-256-32-256-64-256-32-5-1 Tanh Gelu

Bgrad 8 2048-2048-512-32-1024-32-5-40 Tanh Tanh

Optimizer Loss function Batch Size

Adam
(lr=0.0007)

MSE 5

Table 6.3: The compressor blade-airfoil case: Optimized architecture of aexit DNNA.

69

Figure 6.3: The compressor blade-airfoil case: Training loss convergence of ∆pt
(left) and aexit (right) DNNA. The convergence of each term that make up the total
loss is presented separately.

Pruning

In this Section, the impact of pruning on the training convergence of DNNA is
examined. From now on, the pruned networks will be denoted as DNNB. The
pruning criterion employed, corresponds to the second case analyzed in Chapter 4.
The pruning cycles are repeated with a frequency of 100 epochs, 4 times for ∆pt
DNNB and 3 times for aexit DNNB. The resulting training loss curves are compared
to those of the dense network (DNNA) in Figure 6.4. An increase in loss is observed
during the initial pruning epochs, due to the sudden reduction in model’s param-
eters, however, both models recover during subsequent training. The ∆pt DNNB

requires 22% less memory for storage (7.5MB), while the aexit DNNB achieves a
14% reduction, requiring 17MB. Their predictions on the ∆pt and aexit values are
presented in Figure 6.5, normalized by the corresponding values of the baseline air-
foil. The SDs predictions for the fifth point of the adjoint-driven optimization are
compared in Figure 6.6 with the adjoint reference values. The sparsity of each layer
is presented in Figure 6.7.

(a) ∆pt DNNs training loss (b) ∆pt DNNs training loss function

70

(c) ∆pt DNNs training loss SDs (d) aexit DNNs training loss

(e) aexit DNNs training loss function (f) aexit DNNs training loss SDs

Figure 6.4: The compressor blade-airfoil case: Training loss of ∆pt and aexit DNNC ,
compared to the convergence of the dense DNNA.

Figure 6.5: The compressor blade-airfoil case: The training patterns computed with
CFD and DNNs predictions. The ∆pt values are normalized with the ∆pt of the
baseline geometry. The training database consists of all the patterns.

71

Figure 6.6: The compressor blade-airfoil case: The ∆pt SDs (left) and aexit SDs
(right) of the fifth point of the adjoint-driven optimization computed with adjoint and
DNNs predictions.

(a) Bfunc branch ∆pt DNNB (b) Bgrad branch ∆pt DNNB

(c) Bfunc branch aexit DNNB (d) Bgrad branch aexit DNNB

Figure 6.7: The turbine blade-airfoil case: Sparsity for each branch of the ∆pt (top)
and aexit (bottom) DNNB.

72

6.4 ShpO of the compressor blade-airfoil

The Hermite-trained DNNs are employed to drive the optimization process of the
blade-airfoil, initiating from the fifth candidate solution of the adjoint-driven opti-
mization. The objective is:

F = 10−7∆pt + (a− 0.265)2 (6.1)

where atarget = abaseline = 0.265rad.
The adjoint-driven optimization, whose convergence is shown in Figure 6.8, requires
34 TUs to converge, consisting in each cycle of 1 TU for evaluating each blade
and 2TUs for computing the ∆pt and aexit SDs. The DNN-driven optimizations
achieve a solution similar to the adjoint-driven one at a total cost of 16 TUs: 15
TUs to construct their database and 1TU for the CFD-evaluation of their optimized
solution, making it by 53% faster. The optimized solutions are depicted in the ∆pt,
aexit space in Figure 6.9.
Figure 6.10 compares the objective values of the airfoils included in the DBadjoint

with those of 20 airfoils generated using LHS. The latter are created by sampling
the design variable space to configure 20 distinct combinations of the CPs position,
each one forming a different airfoil. Despite the larger database size, the LHS-
generated database does not outperform the adjoint-driven approach. In fact, only
∼20% of the sampled blades result in objective values better than the baseline. The
optimized solutions are summarized in Table 6.4. The shape of the optimized airfoils
is compared in Figure 6.11 with the baseline airfoil. The Mach number fields are
shown in Figure 6.12.

Figure 6.8: The compressor blade-airfoil case: Convergence of the adjoint-driven
optimization and the DNN-driven optimized solutions, after they are re-evaluated on
the CFD tool.

73

Figure 6.9: The compressor blade-airfoil case: Solutions of the DNN-driven opti-
mizations after they are re-evaluated on the CFD code, and adjoint optimal solution.
∆pt, aexit values are normalized with those of the baseline airfoil respectively.

Figure 6.10: The compressor blade-airfoil case: Initial solutions of the adjoint-driven
optimization and samples generated by LHS.

Comparison of the Optimized Solutions

F
Fbaseline

(%) ∆pt (Pa) aexit (
◦)

∆pt
Reduction (%)

∆aexit (
◦)

Baseline blade - 1.721× 104 15.186 - -

Adjoint solution 92.75 1.597× 104 15.181 7.25 -0.005

DNNA solution 92.71 1.595× 104 15.200 7.30 0.014

DNNB solution 92.77 1.597× 104 15.190 7.23 0.004

Table 6.4: The compressor blade-airfoil case: Comparison of optimized solutions.

74

Figure 6.11: The compressor blade-airfoil case: The baseline (black) is compared to
the optimized solutions obtained using adjoint (blue), DNNA (orange), and DNNB

(red).

Figure 6.12: The compressor blade-airfoil case: The Mach number fields for the
baseline geometry (top left) and the optimized geometries resulting from adjoint (top
right), DNNA (bottom left) and DNNB (bottom right).

75

Chapter 7

Two-phase Flow around a
Hemispherical-Cylinder Body

7.1 Introduction

In this Chapter, the hydrodynamic Shape Optimization of a hemispherical-cylinder
body is conducted. Aim of the optimization is the minimization of the cavitation,
while maintaining the drag below a certain threshold. This study is of high interest
for several navy applications and machines operating underwater, because cavitation
affects their performance and might lead to material erosion, performance deterio-
ration and noise.

A two-phase primal flow solver is utilized to capture the generation of vapor bubbles
and their influence on the flow around the body. Its adjoint variant is used to
compute the SDs, while accounting for the presence of vapor in the water flow. The
proposed method employs a hybrid adjoint and DNN-driven optimization approach.
The ShpO of the body during the initial optimization cycles is driven by adjoint.
The solutions obtained from this initial phase are used to train the Hermite-DNNs,
which, as in the previous cases, are trained to predict both the target objective values
and their SDs. The DNN-driven optimization is then initiated from an intermediate
solution of the adjoint-based process, and from that point relies exclusively on the
DNNs predictions.

76

7.2 Cavitation

Cavitation is a phenomenon in fluid mechanics that occurs when the static pres-
sure of a liquid drops below its vapor pressure, leading to the formation of small
vapor-filled cavities within the fluid. ([33]). The cavitation patterns include the
three following types; transient isolated bubbles, formed in low-pressure regions and
transported by the main flow, attached cavities that develop along the low-pressure
surfaces of blades and foils, and vortex cavities, that are formulated within the low-
pressure cores of vortices in turbulent wakes. Attached cavities are a common type
of cavitation in pumps, that form mainly at the blade edge of the impeller inlet, and
hydraulic turbines. The presence of vapor is highly impactful for the flow, causing
flow acceleration around the bubble, recirculation regions and alternated forces act-
ing on the body. All these vapor structures are unstable, and when subjected to
high-pressure they collapse generating shock waves. These shock waves can produce
erosion on the solid surfaces, worsen system’s performance, noise and mechanical
vibrations.

7.3 Flow Conditions and Parameterization

The geometry consists of a hemispherical head attached to a cylindrical body. The
farfield velocity is aligned with the axis of symmetry. In order to scale the cavitation
phenomena under different flow conditions, a dimensionless parameter known as
cavitation number is introduced:

σ =
p− pv
1
2
ρU2

(7.1)

p stands for an ambient pressure, and pv for the vaporization pressure at the ambient
temperature. The cavitation number describes the probability of a cavitating flow
to accur. A small σ value indicates a higher likelihood of cavitation occurring. The
flow inlet conditions are presented in Table 7.1.

Flow Conditions

U∞ (m/s) 0.144

Re 2 · 105

σ 0.4

pv (Pa) 2300

Table 7.1: The cylindrical hemisphere case: Flow conditions.

77

Figure 7.1: The cylindrical-hemisphere case: Computational mesh of the whole do-
main (top), a meridional section (bottom left), and near the solid boundaries (bottom
right).

Only the hemispherical part of the body is parameterized. In order to preserve the
symmetry of the generated body, the generatrix is parameterized using a Bezier
curve with 10 control points. The revolution of the generatrix around the x axis
produces the axisymetric 3D body. In Figure 7.2 only the red points may move, with
a maximum displacement of 10% their initial values. The control points are allowed
to move only vertically, affecting in this way, the local radius of the axisymetric
body. This results to 8 design variables (b ϵ R8). A grid displacement technique
is employed to adapt the mesh according to CP displacements. As in the previous
cases, the IDW method is utilized.
The flow solver is based an a homogeneous two-phase approach (3.1). Each phase
is distinguished through its volume fraction, which corresponds to the percentage
of the phase’s volume over a computational cell’s volume. Turbulence is modeled
using the Spalart-Allmaras turbulence model.

78

Figure 7.2: The cylindrical-hemisphere case: The generatrix parameterization.

As the flow accelerates along the surface of the hemisphere, a decrease in pressure
is observed. When the local pressure falls below the vapor pressure of water, phase
transition is initiated, leading to the development of a cavitation sheet, as illustrated
in Figure 7.3. At some point downstream, the cavitation sheet detaches, as shown
in Figure 7.4, forming a vapor cloud around the body. At the end of this region, the
cavitation cloud collapses, and the pressure recovers. Due to the rapid recovery, a
recirculation zone is also observed.

Figure 7.3: The cylindrical-hemisphere case: Pressure (left) and av (right) contours
on the solid wall.

79

Figure 7.4: The cylindrical-hemisphere case: The av (left) and negative x-velocity
components (right) contours in a meridional section.

7.4 DNN Configuration and Training

The database is constructed using the first eight solutions of the adjoint-driven
optimization, along with their corresponding SDs. The objective to be minimized in
the SphO of the body is formed by a cavitation and a drag term, that will be analyzed
in the following Section. Since the drag and cavitation SDs differ significantly in
scale, a separate network is constructed for each term. Input to branch of the model
is the [8 × 8] tensor with the y-coordinates of the CPs. The data propagate through
the hidden layers of each branch, whose outputs are combined to form a [8×1] tensor
with the predictions on the outputs. During training, each model is differentiated
to produce a [8×8] tensor containing the predictions on the target derivatives. Since
the networks will be used for minimization of the objective, the minimum bound for
normalizing their outputs is set by 20% smaller than the minimum value encountered
in the database. Additionally, the minimum and maximum bounds used to normalize
the inputs for each design variable are extended by approximately 2% beyond the
respective min and max values observed for each variable.
Both the optimal DNN architecture and the training configuration are determined
by an EA-based optimization process, conducted with EASY. Objective of the op-
timization is the minimization of LHermite, evaluated over the entire database, after
each network has been trained for a small number of epochs. For the EA-based
optimization the second setup introduced in Chapter 4 is used. The optimized
architectures are presented in Tables 7.2 & 7.3.

80

DNN cavitation

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 9 2048-2048-1024-256-64-64-256-8-1 Tanh Tanh

Bgrad 6 1024-512-256-64-8-8 Tanh Sigmoid

Optimizer Loss function Batch Size

Adamax
(lr=0.005)

MSE 8

Table 7.2: The cylindrical-hemisphere case: Optimized architecture of cavitation
DNN.

DNN drag

Layers Neurons
Activation Function

Hidden Layers Final Layer

Bfunc 6 512-2048-64-32-8-1 GELU Tanh

Bgrad 7 32-1024-2048-512-512-8-8 GELU Sigmoid

Optimizer Loss function Batch Size

AdamW
(lr=0.005)

MSE 8

Table 7.3: The cylindrical-hemisphere case: Optimized architecture of drag DNN.

The training loss convergence of each DNN, along with the convergence of each term
that make up the total loss, are shown in Figure 7.5. The SDs loss is composed of
the sum of losses corresponding to each design variable. The DNNs predictions are
illustrated in Figures 7.6 & 7.7. It can be observed that the drag DNN minimizes
the loss, by minimizing mainly the SDs prediction error. Herein the drag predictions
exhibit slight deviations from the target values. However, the network can still be
incorporated in the optimization process, as the constraint imposed on drag is not
strict, and minor discrepancies in drag predictions are acceptable.

81

Figure 7.5: The cylindrical-hemisphere case: Training loss convergence of cavitation
and drag DNNs. Total loss is the weighted sum of the function loss and the SDs loss.

Figure 7.6: The cylindrical-hemisphere case: The cavitation (left) and drag (right)
training patterns computed with CFD and the DNNs predictions. The drag predictions
are normalized with the reference drag value introduced in Section 7.5.

Figure 7.7: The cylindrical-hemisphere case: The cavitation (left) and drag (right)
SDs for the eighth point of the adjoint-driven optimization computed with CFD and
DNN predictions.

82

7.5 ShpO of the hemispherical-cylinder body

Objective of the optimization is the minimization of the vapor volume fraction (av).
Additionally, the drag should not exceed a reference value Dref = 25.86N, equal to
the baseline’s drag. The objective is presented in Eq. 7.2.

F =
1

2

∫
Ω

a2vdV +
10−5D

1 + e−100(D−25.86)︸ ︷︷ ︸
t2

(7.2)

The second term of the objective function (t2) is plotted in Figure 7.8. This term
adds a penalty if the drag value exceeds the reference one.

Figure 7.8: The cylindrical-hemisphere case: Visualization of the second term in the
objective function.

The DNNs are employed to continue the optimization process from the best solution
included in their database, hence the eighth bullet in Figure 7.9. The geometry ob-
tained from the DNN-driven optimization is then re-evaluated using the CFD solver.
The re-evaluation cycles described in the previous cases, are repeated three times,
resulting in a total cost of 34 TUs. The adjoint-driven optimization requires 28 TUs.
However, a comparison between the solutions obtained with each process in Figure
7.10 reveals that the DNN-driven process, despite the slightly higher computational
cost, yields a better solution. This outcome demonstrates the DNNs ability to ex-
trapolate beyond their training region, therefore verifying the effectiveness of this
method.

83

Figure 7.9: The cylindrical-hemisphere case: Convergence of the adjoint-driven op-
timization and the DNN solutions after they are re-evaluated on the CFD code.

Figure 7.10: The cylindrical-hemisphere case: A comparison is presented between the
database’s samples, and the optimized solutions obtained from the adjoint-driven and
DNN-driven optimization processes. All DNN optimized solutions are re-evaluated on
the CFD code.

84

Comparison of the Optimized Solutions

F
Fbaseline

(%) cavitation Drag (N)
cavitation

Reduction (%)
D/Dref

Baseline airfoil - 1.18× 10−5 25.85 - -

Adjoint solution 67.9 8.02× 10−6 25.66 32.1 0.99

DNN solution 65.7 7.75× 10−6 25.25 34.3 0.98

Table 7.4: The cylindrical-hemisphere case: Comparison of optimized solutions.

Figure 7.11 compares the av contours between the baseline and the DNN-optimized
geometry. Vapor bubbles are observed near the inlet region in the optimized ge-
ometry, that collapse downstream. Figure 7.12 shows the CPs displacements in the
optimized geometry. Figure 7.13 illustrates the local diameter’s variation between
the optimized and baseline geometries, and the pressure distribution on the opti-
mized one. In the region where phase change initiates in the baseline, the optimized
geometry exhibits a reduced curvature. This results in slower pressure reduction,
and delays the formation of the cavitation sheet. Overall, the cavitation appears to
be spatially confined and less intense in the optimized design.

Figure 7.11: The cylindrical-hemisphere case: The vapor volume fraction contours
for the baseline geometry (left) and the DNN-optimized geometry (right).

85

Figure 7.12: The cylindrical-hemisphere case: The CPs positions for the baseline
(red) and the DNN-optimized geometry (blue).

Figure 7.13: The cylindrical-hemisphere case: The change in local diameter (left)
and the pressure distribution on the solid boundaries for the DNN-optimized geometry
(right).

86

Chapter 8

Conclusion

8.1 Overview - Findings in the Examined Cases

This diploma thesis investigates the implementation of DNNs as data-driven, cost-
efficient surrogates for both primal and adjoint evaluations in gradient-based ShpO
in fluid dynamics. The DNNs are integrated into the optimization framework
through two distinct approaches. In the first, the entire optimization process is
driven exclusively by the DNNs. In the second, CFD evaluations in selected op-
timization cycles are replaced with calls to the low-cost DNN surrogates. In both
strategies, the developed DNNs approximate not only the objective function values
but also its SDs. The latter are computed via differentiation of the networks outputs
with respect to their inputs. The architecture of the DNNs is inspired by the notion
of the Hermite polynomials and extends their application to high-dimensional input
spaces. The Hermite-DNNs are trained using a gradient-assisted approach, that
incorporates the derivatives in the training process. All implementations concern
applications of either single- or multi-phase flows.
In the first case the ShpO of a turbine blade-airfoil was carried out. Objective
was the minimization of the mass-averaged pt losses of the cascade, while main-
taining the exit flow angle close to the value of the baseline blade. The flow was
single-phase and turbulent. The shape of the blade was parameterized using a 6× 3
NURBS lattice. The CPs were displaced in the pitch-wise and chord-wise direc-
tion, resulting in 32 design variables. In the first approach a database containing
30 blades were generated using LHS. All DNN configurations were optimized using
the in-house Evolutionary-Algorithm software, EASY. Two DNN configuration opti-
mizations were implemented; the first one concerned the network’s architecture and
the second one included also its training configuration. The latter approach demon-
strated improved validation accuracy, and during the ShpO of the airfoil achieved a
similar solution with the adjoint-driven optimization, with a reduction of approxi-
mately 22% on the pt losses of the cascade and a change of 0.02o in exit flow angle.
The pt losses and exit angle networks were pruned resulting in 19% and 24% re-
duction in the network’s storage requirements, respectively. In the second part of
this case, DNNs trained on the initial 5 candidate solutions of the adjoint-driven

87

optimization, substituted the CFD-solver after its first 5 cycles. They achieved a
reduction of 32% in the optimization turnaround time.
In the second case, the ShpO of an isolated airfoil was implemented, under single-
phase transitional flow, aiming to minimize its cd and keep the cl close to the value
of the baseline airfoil. The airfoil’s polar diagram was validated against the experi-
mental data. The airfoil was parameterized using a 10× 9 NURBS lattice, and the
control points were displaced in the normal to the chord direction resulting in 28
design variables. Separate models were built for each coefficient. In the first ap-
proach, the design variable space was sampled using LHS and a database containing
20 airfoils was generated. The outcomes of two DNN configuration optimizations
were compared, the first one involved the network’s architectures and the second one
was enhanced with additional hyperparameters. An improvement was observed par-
ticularly in the SDs validation predictions. In the ShpO the latter network achieved
a better solution than the adjoint-driven optimization though in a higher computa-
tional cost. The network’s optimized solution resulted in a 25.9% reduction in the
airfoil’s cd and a change of −0.2% in the cl, while the adjoint-driven optimization
reduced the cd by 25.4% and maintained the same variation in the cl. The impact
of pruning was explored regarding the network’s size. The reductions achieved were
15% and 24% for the cd and cl networks respectively. In the second approach a
database was formed by the 6 initial solutions of the adjoint-driven optimization,
and network’s trained on that database resumed the optimization process from its
6th point. A reduction of 49% in the optimization turnaround was achieved. The
network resulted in a solution with 26.2% reduced cd and a change of −0.4% in the
cl. Due to the effectiveness of this method, it was adopted in the last two cases.
The second turbomachinery application concerned the ShpO of a compressor blade-
airfoil, so as to minimize its pt losses and maintain the exit flow close to the baseline.
Each term was modeled by a district network. The flow was single-phase and tur-
bulent. The shape of the geometry to be optimized, is parameterized using a 9× 10
NURBS lattice. The active CPs were displaced in the chord-wise and pitch-wise
direction resulting in a total of 40 design variables. A database containing the ini-
tial 5 candidate solutions of the adjoint-driven optimization was constructed. The
optimal DNN configuration was determined by an EA-based optimization of its ar-
chitecture and training configuration. The pt losses and exit angle networks were
also pruned, achieving a 22% and 14% reduction in storage requirements respec-
tively. The DNN-driven optimization achieved a 53% reduction in turnaround time,
yielding the same quality in its optimized solution with the adjoint-based process.
The optimized solutions showed approximately 7.2% reduced pt losses and a change
of 0.01o in exit flow angle.
The last case (hemispherical-cylinder body) was a two-phase hydrodynamic flow
application around a hemispherical-cylinder body. Objective was the minimization
of the cavitation formulation, subject to a constraint that the drag remained below
a reference value. Each term is provided by a distinct network. The generatrix
was parameterized using a Bezier curve with 10 control points. A total of 8 design
variables (the y coordinates of the CPs) were considered in this case. The DNN

88

database consisted of the first 8 points of the adjoint-driven optimization and the
DNN architecture and training configuration was optimized by EASY. The DNN-
driven optimization with a slightly higher computational cost, provided a better
solution; cavitation was reduced by 34.3% in the DNN-optimized solution, and by
32.1% in the adjoint-optimized solution.

8.2 General Conclusions

It is verified that the DNNs are capable of guiding a gradient-based ShpO. The
proposed optimization algorithm (initially driven by adjoint, and then by DNNs),
can substitute both primal and adjoint computations, achieving a reduction up to
50% in the optimization turnaround time. In some cases, the DNN-driven optimiza-
tion yielded solutions with better objective values than the standard adjoint-driven
one, however, it should be noted that the availability of an adjoint solver is nec-
essary for the construction of the Hermite-DNNs. Another notable observation is
the DNNs ability to extrapolate in logical bounds beyond their training domain,
verifying the effectiveness of this method. An additional advantage of the pro-
posed gradient-based optimization algorithm lies in this computational efficiency,
since a DNN-driven gradient descent is of negligible cost relative to a CFD evalu-
ation. Whenever the objective is modified or constraints are relaxed, good quality
solutions can be obtained without the need to restart the costly CFD-based op-
timization process. Regarding the construction of the training database, utilizing
solutions derived from an adjoint-driven optimization, as it was expected, yielded
geometries with improved objective values compared to those generated by LHS and
reduced the number of required patterns. Despite the reduced database size, the
DNN-driven gradient descent remained feasible and was, in fact, conducted at a
substantially lower computational cost.
The Hermite-DNNs delivered reliable predictions not only on the objective function
but also on its SDs, which is of significance importance in a gradient-based ShpO.
Their prediction accuracy was enhanced by optimizing their configuration using
EASY. Expanding its design variable space enabled the discovery of superior models,
that demonstrated improved generalization capabilities.
Finally, pruning revealed that the same level of accuracy can be achieved with a
network up to 25% smaller, as a significant fraction of the weights have a smaller
contribution to the final predictions.

8.3 Future Work Proposals

Based on the implementation of differentiated-DNNs in a gradient-based optimiza-
tion the following future works are proposed:

1. Firstly, the implementation of the proposed gradient-based optimization algo-
rithm could be investigated in applications regarding unsteady CFD compu-

89

tation in single-phase or multi-phase flows. Given the high computational cost
of such problems, the integration of DNN surrogates might offer a reduction
in the computational demands.

2. Further applications of DNN differentiation could be explored, such as the
computation of higher-order derivatives. In particular, DNNs could be used to
approximate the Hessian matrix, avoiding the expensive direct computation,
thereby providing a cost-efficient approach in case the Netwon’s method is
selected to drive the optimization.

90

Bibliography

[1] R. Mukhamediev, Y. Popova, Y. Kuchin, E. Zaitseva, A. Kalimoldayev, A.
Symagulov, V. Levashenko, F. Abdoldina, V. Gopejenko, K. Yakunin, E.
Muhamedijeva, M. Yelis, “Review of Artificial Intelligence and Machine Learn-
ing Technologies: Classification, Restrictions, Opportunities and Challenges,”
Mathematics, vol. 10, no. 15, 2022, https://www.mdpi.com/2227-7390/10/15/
2552.

[2] S. Shalev-Shwartz, S. Ben-David, Understanding Machine Learning: From The-
ory to Algorithms. Cambridge University Press, 2014.

[3] Y. Bengio, Learning Deep Architectures for AI, 2009.

[4] D. Elizondo, E. Fiesler, “A survey of partially connected neural networks,” In-
ternational Journal of Neural Systems, vol. 8, no. 5-6, pp. 535–558, Oct–Dec
1997.

[5] M. Kontou, D. Kapsoulis, I. Baklagis, X. Trompoukis, K. Giannakoglou, “λ-
DNNs and their implementation in conjugate heat transfer shape optimization,”
Neural Computing and Applications, vol. 34, January 2022.

[6] V. Asouti, M. Kontou, K. Giannakoglou, “Radial Basis Function Surrogates for
Uncertainty Quantification and Aerodynamic Shape Optimization under Uncer-
tainties,” Fluids, vol. 8, no. 11, 2023, https://www.mdpi.com/2311-5521/8/11/
292.

[7] Y. Frey Marioni, E.Ortiz, A. Cassinelli, F. Montomoli, P. Adami, R. Vazquez,
“A Machine Learning Approach to Improve Turbulence Modelling from DNS
Data Using Neural Networks,” International Journal of Turbomachinery,
Propulsion and Power, vol. 6, no. 2, 2021, https://www.mdpi.com/2504-186X/
6/2/17.

[8] S. Cai, Z. Mao, Z. Wang, M. Yin, G. Karniadakis, “Physics-informed neu-
ral networks (PINNs) for fluid mechanics: A review,” Acta Mechanica Sinica,
vol. 37, January 2022.

[9] M. Kontou, V. Asouti, K. Giannakoglou, “DNN surrogates for turbulence clo-
sure in CFD-based shape optimization,” Applied Soft Computing, vol. 134, p.
110013, February 2023.

91

https://www.mdpi.com/2227-7390/10/15/2552
https://www.mdpi.com/2227-7390/10/15/2552
https://www.mdpi.com/2311-5521/8/11/292
https://www.mdpi.com/2311-5521/8/11/292
https://www.mdpi.com/2504-186X/6/2/17
https://www.mdpi.com/2504-186X/6/2/17

[10] D. Kochkov, J. Smith, A. Alieva, Q. Wang, M. Brenner, S. Hoyer, “Machine
learning–accelerated computational fluid dynamics,” Proceedings of the National
Academy of Sciences, vol. 118, no. 21, p. e2101784118, 2021, https://www.pnas.
org/doi/abs/10.1073/pnas.2101784118.

[11] J. Hammond, N. Pepper, F. Montomoli, V. Michelassi, “Machine learning meth-
ods in cfd for turbomachinery: A review,” International Journal of Turboma-
chinery, Propulsion and Power, vol. 7, no. 2, 2022, https://www.mdpi.com/
2504-186X/7/2/16.

[12] H. Wang, Y. Cao, Z. Huang, Y. Liu, P. Hu, X. Luo, Z. Song, W. Zhao, J. Liu,
J. Sun, S. Zhang, L. Wei, Y. Wang, T.Wu, Z.H Ma, Y. Sun, “Recent Advances
on Machine Learning for Computational Fluid Dynamics: A Survey,” 2024,
https://arxiv.org/abs/2408.12171.

[13] K. Kovani, M. Kontou, V. Asouti, K. Giannakoglou, DNN-Driven Gradient-
Based Shape Optimization in Fluid Mechanics, June 2023, pp. 379–390.

[14] W. Boulila, M. Driss, M. Al-Sarem, F. Saeed, M. Krichen, “Weight Initial-
ization Techniques for Deep Learning Algorithms in Remote Sensing: Recent
Trends and Future Perspectives,” 2021, https://arxiv.org/abs/2102.07004.

[15] J. Aryan, P. Avinash, J. Shruti, “A Comprehensive Survey of Regression Based
Loss Functions for Time Series Forecasting,” 2022, https://arxiv.org/abs/2211.
02989.

[16] J. Qi, J. Du, S.M. Siniscalchi, X. Ma, C.H. Lee, “On Mean Absolute Error for
Deep Neural Network Based Vector-to-Vector Regression,” IEEE Signal Pro-
cessing Letters, vol. 27, p. 1485–1489, 2020, http://dx.doi.org/10.1109/LSP.
2020.3016837.

[17] D. Rumelhart, G. Hinton, R. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, pp. 533–536, 1986, https://api.
semanticscholar.org/CorpusID:205001834.

[18] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[19] S. Dubey, S. Singh, B. Chaudhuri, “Activation functions in deep learning: A
comprehensive survey and benchmark,” Neurocomputing, vol. 503, pp. 92–108,
2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231222008426

[20] D.P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization,” 2017,
https://arxiv.org/abs/1412.6980.

[21] I. Loshchilov, F. Hutter, “Decoupled Weight Decay Regularization,” 2019, https:
//arxiv.org/abs/1711.05101.

92

https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.pnas.org/doi/abs/10.1073/pnas.2101784118
https://www.mdpi.com/2504-186X/7/2/16
https://www.mdpi.com/2504-186X/7/2/16
https://arxiv.org/abs/2408.12171
https://arxiv.org/abs/2102.07004
https://arxiv.org/abs/2211.02989
https://arxiv.org/abs/2211.02989
http://dx.doi.org/10.1109/LSP.2020.3016837
http://dx.doi.org/10.1109/LSP.2020.3016837
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:205001834
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://www.sciencedirect.com/science/article/pii/S0925231222008426
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101

[22] N. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P. Tang, “On Large-
Batch Training for Deep Learning: Generalization Gap and Sharp Minima,”
2017, https://arxiv.org/abs/1609.04836.

[23] D. Masters, C. Luschi, “Revisiting Small Batch Training for Deep Neural Net-
works,” 2018, https://arxiv.org/abs/1804.07612.

[24] R. Moradi, R. Berangi, B. Minaei, “A survey of regularization strategies for
deep models,” Artificial Intelligence Review, vol. 53, August 2020.

[25] A. Krogh, J. Hertz, “A Simple Weight Decay Can Improve Generalization,” in
Advances in Neural Information Processing Systems, R. L. J. Moody, S. Hanson,
Ed., vol. 4. Morgan-Kaufmann, 1991, https://proceedings.neurips.cc/paper
files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf.

[26] G. Zhang, c. Wang, B. Xu, R. Grosse, “Three Mechanisms of Weight Decay
Regularization,” October 2018.

[27] M. Zhu, S. Gupta, “To prune, or not to prune: exploring the efficacy of pruning
for model compression,” 2017, https://arxiv.org/abs/1710.01878.

[28] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, “Pruning Filters for
Efficient ConvNets,” 2017, https://arxiv.org/abs/1608.08710.

[29] S. Han, H. Mao, and W.J. Dally, “Deep Compression: Compressing Deep Neu-
ral Networks with Pruning, Trained Quantization and Huffman Coding,” 2016,
https://arxiv.org/abs/1510.00149.

[30] X. Ma, G. Fang, X. Wang, “LLM-Pruner: On the Structural Pruning of Large
Language Models,” 2023, https://arxiv.org/abs/2305.11627.

[31] H. Cheng, and M. Zhang, J.Q. Shi, “A Survey on Deep Neural Network
Pruning-Taxonomy, Comparison, Analysis, and Recommendations,” 2024,
https://arxiv.org/abs/2308.06767.

[32] http://velos0.ltt.mech.ntua.gr/kgianna/analysis/distr/book numanal.pdf.

[33] R. Kunz, D. Boger, D. Stinebring, T. Chyczewski, J. Lindau, H. Gibeling,
S. Venkateswaran, T. Govindan, “A preconditioned Navier–Stokes method for
two-phase flows with application to cavitation prediction,” Computers & Flu-
ids, vol. 29, no. 8, pp. 849–875, 2000, https://www.sciencedirect.com/science/
article/pii/S0045793099000390.

[34] V. Asouti, X. Trompoukis, I. Kampolis, K. Giannakoglou, “Unsteady CFD
computations using vertex–centered finite volumes for unstructured grids on
Graphics Processing Units,” International Journal for Numerical Methods in
Fluids, vol. 67, no. 2, pp. 232–246, May 2011.

93

https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1804.07612
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1991/file/8eefcfdf5990e441f0fb6f3fad709e21-Paper.pdf
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1608.08710
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2308.06767
http://velos0.ltt.mech.ntua.gr/kgianna/analysis/distr/book_numanal.pdf
https://www.sciencedirect.com/science/article/pii/S0045793099000390
https://www.sciencedirect.com/science/article/pii/S0045793099000390

[35] L. Piegl, W. Tiller, The NURBS book (2nd ed.). Berlin, Heidelberg: Springer-
Verlag, 1997.

[36] P. Spalart and S. Allmaras, “A one-equation turbulence model for aerodynamic
flows,” AIAA Paper 1992-439, 30th Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, USA, January 6–9 1992.

[37] R. Langtry, F. Menter, “Correlation-Based Transition Modeling for Unstruc-
tured Parallelized Computational Fluid Dynamics Codes,” AIAA Journal,
vol. 47, December 2009.

[38] M. Piotrowski, D. Zingg, “Smooth Local Correlation-Based Transition Model
for the Spalart-Allmaras Turbulence Model,” AIAA Journal, October 2020.

[39] K. Giannakoglou, V. Asouti, E. Papoutsis-Kiachagias, N. Galanos, M. Kontou,
X. Trompoukis, “The Think Discrete-Do Continuous Adjoint in Aerodynamic
Shape Optimization.” pp. 223–238, January 2023.

[40] M. Kontou, “The continuous adjoint method with consistent discretization
schemes for transitional flows and the use of Deep Neural Networks in shape
optimization in fluid mechanics,” Ph.D. dissertation, National Technical Uni-
versity of Athens, 2023.

[41] M.Mckay, R. Beckmanm, W. Conover, “A Comparison of Three Methods for
Selecting Vales of Input Variables in the Analysis of Output From a Computer
Code,” Technometrics, vol. 21, pp. 239–245, May 1979.

[42] K. Giannakoglou, “The EASY (Evolutionary Algorithms SYstem) software,”
2008, http://velos0.ltt.mech.ntua.gr/.

[43] D. Liu, J. Nocedal, “On the limited memory BFGS method for large scale
optimization,” Mathematical Programming, vol. 45, pp. 503–528, 1989, https:
//api.semanticscholar.org/CorpusID:5681609.

[44] L. Hylton, M. Mihelc, E. Turner, D. Nealy, R. York, “Analytical and Experi-
mental Evaluation of the Heat Transfer Distribution over the Surface of Turbine
Vanes,” no. NASA-CR-168015, 1983.

[45] D. Shepard, “A two-dimensional interpolation function for irregularly-spaced
data,” in Proceedings of the 1968 23rd ACM National Conference, ser. ACM
’68. New York, NY, USA: Association for Computing Machinery, 1968, p.
517–524. [Online]. Available: https://doi.org/10.1145/800186.810616

[46] https://www.tensorflow.org/.

[47] S. Leloudas, “Design and optimization of diffuser-augmented wind turbines,”
Doctoral Dissertation, School of Production Engineering and Management,
Technical University of Crete, Chania, Greece, 2024.

94

http://velos0.ltt.mech.ntua.gr/
https://api.semanticscholar.org/CorpusID:5681609
https://api.semanticscholar.org/CorpusID:5681609
https://doi.org/10.1145/800186.810616
https://www.tensorflow.org/

[48] M. Selig, J. Guglielmo, A. Broeren, P. Giguere, Summary of Low Speed Airfoil
Data, Volume 1, 01 1996.

95

96

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Τομέας Ρευστών

Μονάδα Παράλληλης Υπολογιστικής Ρευστοδυναμικής

& Βελτιστοποίησης

Βαθέα Νευρωνικά Δίκτυα και η διαφόρισή τους για

χρήση σε αιτιοκρατική βελτιστοποίηση μονοφασικών και

πολυφασικών ροών

Διπλωματική Εργασία

Εκτενής Περίληψη στην Ελληνική

Ειρήνη-Σωτηρία Κεφαλούκου

Επιβλέπων: Κυριάκος Χ. Γιαννάκογλου, Καθηγητής ΕΜΠ

Αθήνα, 2025

2

Στόχος της διπλωματικής εργασίας είναι η χρήση Βαθέων Νευρωνικών Δικτύων (ΒΝΔ)

ως υποκατάστατων του κώδικα Υπολογιστικής Ρευστοδυναμικής (ΥΡΔ). Η προτει-

νόμενη μέθοδος εφαρμόζεται σε προβλήματα αιτιοκρατικής βελτιστοποίησης μορφής

για την πρόβλεψη των τιμών της συνάρτησης-στόχου και των παραγώγων της.

ΒΝΔ

Για την υλοποίηση χρησιμοποιήθηκαν ΒΝΔ τα οποία προσομοιάζουν τη δομή και τις ιδι-

ότητες των πολυωνύμων Hermite ([32]). Το πολυώνυμα Hermite, μαζί με τις πρώτες
τους παραγώγους, ικανοποιούν τη δεδομένη συνάρτηση και τις τιμές παραγώγων της

στα δεδομένα σημεία. Θυμίζεται ότι το πολυώνυμο παρεμβολής μπορεί να εκφραστεί ως

ένας γραμμικός συνδυασμός ορθογώνιων πολυωνύμων, τα οποία ονομάζονται πολυώνυ-

μα βάσης. Ορίζονται δύο τύποι πολυωνύμων βάσης, το Hj, όπου j=1,..,Νs, το οποίο

συμβάλλει μόνο στην τιμή της συνάρτησης για το σημείο j, χωρίς να εμπλέκεται στην
ικανοποίηση της παραγώγου και το Hj που έχει τον ακριβώς αντίθετο ρόλο. Τα πολυ-

ώνυμα ορίζονται με βάση τα πολυώνυμα Langrage. Η τελική συνάρτηση παρεμβολής
είναι

g(x) =
N∑
j=0

yjHj(x) +
N∑
j=0

y′jHj(x) (8.1)

Για τη γενίκευση της μεθόδου παρεμβολής κατά Hermite σε υψηλότερες διαστάσεις,
προτείνεται η αξιοποίηση ΒΝΔ. Το προτεινόμενο δίκτυο αποτελείται από δύο διακριτούς

κλάδους, καθένας εκ των οποίων μοντελοποιεί έναν από τους όρους της προηγούμενης

εξίσωσης. Ο πρώτος κλάδος καταλήγει σε δύο επιπλέον επίπεδα. Το πρώτο, γνωστό

ως επίπεδο βάσης, περιλαμβάνει αριθμό νευρώνων ίσο με τον αριθμό των δειγμάτων

εκπαίδευσης. Το τελικό επίπεδο αποτελείται από έναν μόνο νευρώνα, του οποίου τα

βάρη αρχικοποιούνται με τις τιμές των yi των δειγμάτων εκπαίδευσης και δεν ανανεώνο-
νται κατά την εκπαίδευση του δικτύου. Η έξοδος αυτού του επιπέδου προσεγγίζει τον

πρώτο όρο της παραπάνω εξίσωσης. Ο δεύτερος κλάδος παρουσιάζει αντίστοιχη αρχι-

τεκτονική, με τη διαφορά ότι στο τελικό επίπεδο περιλαμβάνεται αριθμός νευρώνων ίσος

με τον αριθμό των μεταβλητών σχεδιασμού του προβλήματος. Με αυτόν τον τρόπο,

λαμβάνεται υπόψη η επίδραση κάθε μερικής παραγώγου, μέσω όρων ανάλογων εκείνων

του δεύτερου όρου της εξίσωσης. Η αρχιτεκτονική του Hermite-ΒΝΔ παρουσιάζεται
στο Σχήμα 8.1.

Διαφόριση των ΒΝΔ.

Η εκπαίδευση των ΒΝΔ απαιτεί τον υπολογισμό των παραγώγων της συνάρτησης

κόστους ως προς κάθε παράμετρο του μοντέλου. Αυτό επιτυγχάνεται μέσω της αυ-

τόματης διαφόρισης. Το σφάλμα μεταφέρεται από το τελευταίο επίπεδο του δικτύου

προς τα πίσω, μέχρι την είσοδο. Αντίστοιχα, μπορούν να υπολογιστούν και οι παράγω-

γοι της εξόδου του δικτύου ως προς τις εισόδους του, οι οποίες αντιστοιχούν στις

παραγώγους ευαισθησίας.. Σε επίπεδο ενός νευρώνα, ο υπολογισμός των παραγώγων

βασίζεται στην εφαρμογή του κανόνα της αλυσίδας δύο φορές, όπως παρουσιάζεται στο

Σχήμα 8.2

3

Σχήμα 8.1: Αρχιτεκτονική δικτύου Hermite.

Σχήμα 8.2: Αλγόριθμος Backpropagation.

Αποκοπή κλάδων των ΒΝΔ.

Η αποκοπή κλάδων αποτελεί τεχνική μείωσης της πολυπλοκότητας ενός ΒΝΔ, μέσω

της αφαίρεσης συνδέσεων (βάρων) που θεωρούνται λιγότερο σημαντικές για την τελική

πρόβλεψη. Στο πλαίσιο της εργασίας αυτής, η αφαίρεση επιμέρους βαρών μεταξύ των

νευρώνων πραγματοποιείται με κριτήριο το μέγεθος του βάρους και ενσωματώνεται στη

διαδικασία εκπαίδευσης.

Ο προτεινόμενος αλγόριθμος αιτιοκρατικής βελτιστοποίησης μορφής

Τα Hermite-ΒΝΔ χρησιμοποιούνται για την πρόβλεψη της ροής και τον υπολογισμό
των παραγώγων ευαισθησίας, ως υποκατάστατα του λογισμικού ΥΡΔ. Ο υπολογισμός

των παραγώγων υλοποιείται με τη συζυγή μέθοδο ([39]). Επ΄ αυτού, αξιολογούνται

δύο μέθοδοι, οι οποίες αναλύονται στην συνέχεια.

Στην πρώτη προσέγγιση, για τη δημιουργία της βάσης δεδομένων που θα χρησιμοποι-

ηθεί για την εκπαίδευση των ΒΝΔ, παράγεται ένα σύνολο πιθανών γεωμετριών μέσω

δειγματοληψίας του χώρου των μεταβλητών σχεδιασμού. Η δειγματοληψία γίνεται με

τη μέθοδο LHS, η οποία εξασφαλίζει αντιπροσωπευτικά δείγματα ακόμη και με μικρό
αριθμό δεδομένων. Λόγω του υψηλού υπολογιστικού κόστους αξιολόγησης κάθε γεω-

μετρίας, ο αριθμός των δειγμάτων περιορίζεται. Η αιτιοκρατική βελτιστοποίηση ξεκινά

από την αρχική γεωμετρία και βασίζεται αποκλειστικά στις προβλέψεις των ΒΝΔ.

Η δεύτερη προσέγγιση αρχικοποιεί τη βελτιστοποίηση χρησιμοποιώντας τον κώδικα

4

ΥΡΔ. Κάθε ενδιάμεση πιθανή γεωμετρία προστίθεται στη βάση δεδομένων. Μετά από

τους πρώτους κύκλους, η βελτιστοποίηση διακόπτεται. Τα ΒΝΔ εκπαιδεύονται πάνω

στη νέα βάση δεδομένων και η κάθοδος προχωρά από τη βέλτιστη μέχρι τότε λύση,

χρησιμοποιώντας αποκλειστικά τα ΒΝΔ.

Η βελτιστοποιημένη λύση αξιολογείται ξανά με τον κώδικα ΥΡΔ. Αν πληροί τις α-

παιτήσεις ακρίβειας, η διαδικασία ολοκληρώνεται. Διαφορετικά, η νέα γεωμετρία προ-

στίθεται στη βάση δεδομένων και επαναλαμβάνονται τα βήματα εκπαίδευσης και βελ-

τιστοποίσης, ξεκινώντας από την τελευταία λύση. Η αρχιτεκτονική όλων των ΒΝΔ,

βελτιστοποιείται με το λογισμικό εξελικτικών αλγορίθμων, EASY ([42]). Οι προτει-
νόμενοι αλγόριθμοι αιτιοκρατικής βελτιστοποίησης παρουσιάζονται στο Σχήμα 8.3.

Σχήμα 8.3: Σχηματική αναπαράσταση των προτεινόμενων μεθόδων βελτιστοποίσης.

Τυρβώδης μονοφασική ροή γύρω από αεροτομή πτερυγίου στροβίλου

Η προτεινόμενη μέθοδος εφαρμόζεται αρχικά στην πτερύγωση στροβίλου C3X. Στόχος
της βελτιστοποίησης είναι η ελαχιστοποίηση των απωλειών ολικής πίεσης (∆pt), διατη-
ρώντας τη γωνία εξόδου της ροής περίπου ίση με της αρχικής γεωμετρίας (aexit). Κάθε
ένας όρος μοντελοποιείται με ένα ξεχωριστό ΒΝΔ. Η ροή είναι τυρβώδης με συνθήκες

εισόδου pt=2.44bar, Tt=808Κ. Για την παραμετροποίηση χρησιμοποιείται ένα 6 × 3
κουτί παραμετροποίησης NURBS. Κάθε σημείο ελέγχου μπορεί να μετατοπισθεί έως
0.15 της απόστασης του από γειτονικά σημεία, και στις δύο διευθύνσεις, καταλήγοντας

σε 32 μεταβλητές σχεδιασμού. Η παραμετροποίηση παρουσιάζεται στο Σχήμα 8.4

Σχήμα 8.4: Περίπτωση στροβίλου: Παραμετροποίηση αεροτομής πτερυγίου C3X.

Στη μελέτη αυτή συγκρίνονται δύο διαφορετικές διαδικασίες κατασκευής της βάσης

δεδομένων για την εκπαίδευση των ΒΝΔ. Η πρώτη μέθοδος βασίζεται σε μια σχεδόν

5

τυχαία δειγματοληψία του 32-διάστατου χώρου, χρησιμοποιώντας τη μέθοδο LHS. Ε-
κτελούνται δύο βελτιστοποιήσεις της μορφής των ΒΝΔ. Η πρώτη (ΒΝΔA) αφορά την

αρχιτεκτονική τους και η δεύτερη (ΒΝΔB) συμπεριλαμβάνει και τη διαδικασία εκπα-

ίδευσης τους. Στη δεύτερη περίπτωση παρατηρείται μικρότερο σφάλμα στα δεδομένα

επικύρωσης. Επιπλέον, εφαρμόζεται αποκοπή κλάδων (ΒΝΔC) με στόχο τη μείωση

της πολυπλοκότητας των δικτύων και των απαιτήσεων σε μνήμη για την αποθήκευσή

τους. Επιτυγχάνεται μείωση κατα 19% για το ∆pt ΒΝΔ και 24% για το aexit ΒΝΔ.
Οι τιμές της αντικειμενικής αποτυπώνονται στο Σχήμα 8.5.

Σχήμα 8.5: Περίπτωση στροβίλου: Η σύγκλιση της βελτιστοποίησης με τη συζυγή

μέθοδο, οι βέλτιστες λύσεις με κάθε δίκτυο αφού επαναξιολογήθηκαν με τον κώδικα ΥΡΔ

και η βάση δεδομένων των ΒΝΔ.

Η δεύτερη μέθοδος εκπαιδεύει τα δίκτυα στα πέντε πρώτα σημεία της βελτιστοποίησης

με τη συζυγή μέθοδο. Συνεχίζει την κάθοδο από το πέμπτο σημείο, βασιζόμενη απο-

κλειστικά στις προβλέψεις των δικτύων (ΒΝΔD). Λόγω του περιορισμένου αριθμού

δειγμάτων, ολόκληρη η βάση δεδομένων χρησιμοποιείται για την εκπαίδευση. Για το

ΒΝΔB απαιτούνται 2 επανεκπαιδεύσεις προκειμένου να επιτευχθεί λύση συγκρίσιμη

με αυτή που προκύπτει με τη συζυγή μέθοδο, ενώ για το ΒΝΔD 3 επανεκπαιδεύσεις,

όπως φαίνεται στο Σχήμα 8.6. Και στις δύο περιπτώσεις επιτυγχάνεται παρόμοια τιμή

στη συνάρτηση-στόχο συγκριτικά με τη συζυγή μέθοδο, με μείωση 22% στο ∆pt και
μεταβολή της τάξης των 0.02

o
στην aexit. Η χρήση των δικτύων ΒΝΔD οδηγεί σε

μείωση του υπολογιστικού κόστους, κατά 32%.

6

Σχήμα 8.6: Περίπτωση στροβίλου: Η σύγκλιση της βελτιστοποίησης με τη συζυγή

μέθοδο, και οι λύσεις του ΒΝΔD αφού επαναξιολογήθηκαν με τον κώδικα ΥΡΔ.

Σχήμα 8.7: Περίπτωση στροβίλου: Αριστερά) Γεωμετρίες που παράχθηκαν με τη

μέθοδο LHS (μαύρο), η βελτιστοποιημένη γεωμετρία με τη συζυγή μέθοδο (μπλε) και
το ΒΝΔB (κόκκινη). Δεξιά) Πρώτες λύσεις της βελτιστοποίσης με τη συζυγή μέθοδο

(μαύρο). Σχεδιάζονται επίσης, η αρχική γεωμετρία (πορτοκαλί) και η βέλτιστη χρησιμο-

ποιώντας το δίκτυο ΒΝΔD (πράσινο).

Μονοφασική ροή με μετάβαση γύρω από μεμονωμένη αεροτομή

Η αεροτομή RG15 χρησιμοποιείται σε εφαρμογές χαμηλού αριθμού Reynolds, όπως σε
πτερύγια ανεμογεννητριών. Οι πολικές της αεροτομής συγκρίνονται με τα πειραματικά

δεδομένα στο Σχήμα 8.8, σε αριθμό Re=304.200. Χρησιμοποιήθηκε το μοντέλο τύρβης
Spalart − Allmaras και το μοντέλο μετάβασης SA − sLM2015. Στόχος είναι η
ελαχιστοποίηση του συντελεστή αντίστασης (cd), διατηρώντας το συντελεστή άνωσης
(cl), περίπου ίσο με της αρχικής αεροτομής. Η μελέτη υλοποιείται σε M=0.1 και
Re=1.5·105. Η παραμετροποίηση πραγματοποιείται χρησιμοποιώντας ένα 10×9 πλέγμα
σημείων ελέγχου. Τα σημεία ελέγχου μετατοπίζονται μόνο στην κάθετη στη χορδή

διεύθυνση, με μέγιστη μετατόπιση 0.4 της απόστασης από γειτονικά σημεία.

Συγκρίνονται δύο μέθοδοι κατασκευής της βάσης δεδομένων. Η πρώτη υλοποιείται με

LHS, παράγοντας 20 δείγματα για τις 28 μεταβλητές σχεδιασμού του προβλήματος,

7

Σχήμα 8.8: Περίπτωση μεμονωμένης αεροτομής: Πολικές της αεροτομής RG15 (α-
ριστερά) και η παραμετροποίησης της (δεξιά).

ενώ η δεύτερη (ΒΝΔD) χρησιμοποιεί τις 6 πρώτες πιθανές λύσεις της βελτιστοποίησης

με τη συζυγή μέθοδο. Αναφορικά με την πρώτη μέθοδο, η βελτιστοποίηση του ΒΝΔ

πραγματοποιείται δύο φορές και τα ευρήματα συγκρίνονται. Στο καλύτερο από τα

προηγούμενα δίκτυα (ΒΝΔB) εφαρμόζεται αποκοπή κλάδων (ΒΝΔC), επιτυγχάνοντας

μείωση μεγέθους κατά 15% για το cd ΒΝΔ και 24% για το cl ΒΝΔ.
Τα ΒΝΔB και ΒΝΔD επιτυγχάνουν καλύτερη λύση από τη λύση της βελτιστοποίησης

με τη συζυγή μέθοδο, ωστόσο χρησιμοποιώντας τα δίκτυα ΒΝΔD, υπάρχει μείωση

του κόστους κατά 49%. Η βελτιστοποίηση με τη συζυγή μέθοδο αποδίδει μείωση του

cd κατά 25.4% και μεταβολή στο cl −0.2%, ενώ το ΒΝΔD επιτυγχάνει μείωση 26.2%
και μεταβολή −0.4%, αντίστοιχα. Οι λύσεις παρουσιάζονται στο Σχήμα 8.10 και οι
βελτιστοποιημένες αεροτομές στο Σχήμα 8.9

Σχήμα 8.9: Περίπτωση μεμονωμένης αεροτομής: Αριστερά) Αεροτομές με LHS
(μαύρο) και οι γεωμετρίες που παράχθηκαν με τη βελτιστοποίηση με συζυγή μέθοδο

(κόκκινο) και το ΒΝΔB (μπλε). Δεξιά) Η αρχική γεωμετρία (πράσινο), η βέλτιστη λύση

με τα ΒΝΔD (πορτοκαλί) και οι αεροτομές που περιλαμβάνονται στη βάση δεδομένων τους

(μαύρο).

8

Σχήμα 8.10: Περίπτωση μεμονωμένης αεροτομής: Οι βάσεις δεδομένων για κάθε

δίκτυο, η σύγκλιση της βελτιστοποίησης με τη συζυγή μέθοδο και οι λύσεις που απο-

κτήθηκαν με κάθε ΒΝΔ.

Τυρβώδης μονοφασική ροή γύρω από αεροτομή πτερυγίου συμπιεστή

Στόχος της βελτιστοποίησης στη συγκεκριμένη μελέτη είναι η ελαχιστοποίση των απω-

λειών ολικής πίεσης της πτερύγωσης, διατηρώντας περίπου σταθερή τη γωνία εξόδου

της ροής. Η ροή είναι χαμηλής ταχύτητας και τυρβώδης. Οι συνθήκες εισόδου είναι

pt = 1.15bar, Tt = 288K. Η μορφή της αεροτομής και του πλέγματος ελέγχονται από
ένα κουτί παραμετροποίησης NURBS 9 × 8, όπως φαίνεται στο Σχήμα 8.11. Κάθε
σημείο ελέγχου μπορεί να μετατοπιστεί κατά μέγιστο 0.1 της απόστασης από τα γει-

τονικά του σημεία και στις δύο διευθύνσεις, με αποτέλεσμα ο συνολικός αριθμός των

μεταβλητών σχεδιασμού να ανέρχεται σε 40.

Σχήμα 8.11: Περίπτωση συμπιεστή: Παραμετροποίηση αεροτομής.

9

Σε αυτήν τη μελέτη υλοποιείται η δεύτερη προτεινόμενη μέθοδος αιτιοκρατικής βελτι-

στοποίησης. Η βελτιστοποίηση στους αρχικούς πέντε κύκλους βασίζεται στη συνεχή

συζυγή μέθοδο. Κάθε ενδιάμεση λύση προστίθεται στη βάση δεδομένων και χρησι-

μοποείται για να εκπαιδευθούν τα ΒΝΔ (ΒΝΔA). Η κάθοδος συνεχίζει από την 5η

γεωμετρία, χρησιμοποιώντας αποκλειστικά τις προβλέψεις των ΒΝΔ.

Επιπλέον, εξετάζεται η επίδραση της αποκοπής κλάδων στη σύγκλιση και την ακρίβεια

των προβλέψεων. Το τελικό ΒΝΔ με αποκοπή κλάδων (ΒΝΔB) είναι κατά 22% και
14% πιο ελαφρύ από τα αρχικά δίκτυα ∆pt, aexit χωρίς αποκοπή κλάδων, αντίστοιχα. Η
προτεινόμενη αιτιοκρατική μέθοδος βελτιστοποίησης είναι κατά 53% γρηγορότερη από
τη βελτιστοποίηση με τη συζυγή μέθοδο, καταλήγοντας σε ίδιας ποιότητας λύση, όπως

φαίνεται στο Σχήμα 8.12. Η βελτιστοποιημένη αεροτομή παρουσιάζει μείωση απωλειών

ολικής πίεσης περίπου 7.2% και μεταβολή στην γωνία εξόδου της τάξης των 0.01o. Οι
βελτιστοποιημένες αεροτομές παρουσιάζονται στο Σχήμα 8.13.

Σχήμα 8.12: Περίπτωση συμπιεστή: Σύγκλιση της βελτιστοποίησης με τη συζυγή

μέθοδο και οι λύσεις με τα ΒΝΔ αφού επαναξιολογήθηκαν με τον κώδικα ΥΡΔ.

Σχήμα 8.13: Περίπτωση συμπιεστή: Η βέλτιστη αεροτομή με το ΒΝΔA (δεξιά) και

με το ΒΝΔB (αριστερά).

Διφασική ροή γύρω από ημισφαιρικό κυλινδρικό σώμα

Εδώ μελετάται μία διφασική υδροδυναμική ροή, η οποία βασίζεται στην ομογενή προ-

σέγγιση (3.1). Η μελέτη αυτή αφορά τη βελτιστοποίηση ενός ημισφαιρικού κυλινδρικού

σώματος με στόχο να μειωθεί η σπηλαίωση και περιορισμό η αντίσταση να μην υπερβεί

10

μία τιμή αναφοράς, ίση με της αρχικής γεωμετρίας. Η σπηλαίωση δημιουργείται όταν

τοπικά η στατική πίεση γίνει μικρότερη από την πίεση ατμοποίησης του νερού. Η πα-

ρουσία φυσαλίδων ατμού είναι ασταθής, και σε περίπτωση αύξησης πίεσης της ροής,

καταρρέουν δημιουργώντας κύματα κρούσης, διάβρωση και κραδασμούς. Στη γεωμε-

τρία που μελετάται, η επιτάχυνση της ροής στην επιφάνεια του σώματος δημιουργεί μία

ζώνη σπηλαίωσης, όπως φαίνεται στο Σχήμα 8.14. Μόνο το ημισφαιρικό τμήμα της

παραπάνω γεωμετρίας παραμετροποιείται. Για να διατηρηθεί η συμμετρία του, παραμε-

τροποιείται η γενέτειρα του με καμπύλη Bezier αποτελούμενη από 10 σημεία ελέγχου.
Τα κόκκινα σημεία ελέγχου μετατοπίζονται στην κάθετη διεύθυνση, επηρεάζοντας με

αυτό τον τρόπο την τοπική διάμετρο.

Σχήμα 8.14: Περίπτωση διαφασικής ροής: Πάνω) Κλάσμα όγκου ατμού γύρω από το

στερεό όριο. Κάτω) Παραμετροποίηση του σώματος.

Σε αυτην τη μελέτη υλοποιείται η δεύτερη προτεινόμενη μέθοδος αιτιοκρατικής βελτι-

στοποίησης. Στους οκτώ αρχικούς κύκλους η βελτιστοποίηση βασίζεται στη συζυγή

μέθοδο. Τα δίκτυα εκπαιδεύονται πάνω στις οκτώ πρώτες γεωμετρίες που παράγονται

και συνεχίζουν την κάθοδο από την τελευταία. Κάθε όρος της αντικειμενικής συνάρτη-

σης αποδίδεται από ένα ξεχωριστικό δίκτυο, το οποίο βελτιστοποιείται με τον EASY .
΄Επειτα από 3 επανεκπαιδεύσεις, η προτεινόμενη βελτιστοποίηση, με λίγο μεγαλύτερο

κόστος, οδηγεί σε καλύτερη τιμή της συνάρτησης-στόχου, με μείωση της σπηλαίωσης

κατά 34.3%, σε σύγκριση με τη συζυγή μέθοδο που αποδίδει μείωση 32.1%. Η σύγκλι-
ση παρουσιάζεται στο Σχήμα 8.15. Η μεταβολή διαμέτρου της βελτιστοποιημένης λύσης

που αποκτήθηκε με το δίκτυο παρουσιάζεται στο Σχήμα 8.16.

11

Σχήμα 8.15: Περίπτωση διαφασικής ροής: Σύγκλιση της βελτιστοποίησης με τη

συζυγή μέθοδο και οι προβλέψεις των ΒΝΔ αφού επαναξιολογήθηκαν με τον κώδικα

ΥΡΔ.

Σχήμα 8.16: Περίπτωση διαφασικής ροής: Μεταβολή της τοπικής διαμέτρου στη

βελτιστοποιημένη γεωμετρία.

Συμπεράσματα

Τα ΒΝΔ μπορούν να χρησιμοποιηθούν ως υποκατάστατα του κώδικα ΥΡΔ. Ο προτει-

νόμενος αλγόριθμος οδήγησε σε μείωση κόστους έως και 50%. Σε ορισμένες μελέτες,

απέδωσε καλύτερη λύση σε σύγκριση με τη βελτιστοποίηση με τη συζυγή μέθοδο,

η διαθεσιμότητα της οποίας όμως είναι απαραίτητη για να υπάρξει η μέθοδος αυτή.

Η χρήση των Hermite-ΒΝΔ εξασφάλισε ακρίβεια στις υπολογιζόμενες παραγώγους
ευαισθησίας, η οποία ενισχύθηκε με τη βελτιστοποίηση επιπλέον παραμέτρων των δι-

κτύων. Η δημιουργία βάσης δεδομένων με υποψήφιες λύσεις της βελτιστοποίησης με

τη συζυγή μέθοδο μείωσε το κόστος κατασκευής της και απέδωσε γεωμετρίες με κα-

λύτερη τιμή συνάρτησης-στόχου σε σχέση με τη μέθοδο LHS. Τέλος, η αποκοπή
κλάδων απέδειξε ότι ένα σημαντικό ποσοστό παραμέτρων δεν είναι σημαντικές για την

πρόβλεψη και μπορούν να παραλειφθούν, με στόχο τη χρήση έως και 25% μικρότερου

δικτύου.

12

	Contents
	Artificial Intelligence
	Machine Learning
	Artificial Neural Networks
	Machine Learning in Computational Fluid Dynamics and Optimization

	Deep Neural Networks
	Training Process
	Weight Initialization
	Loss functions
	Differentiation of DNNs and Backpropagation
	Activation Functions
	Optimizers
	Learning Rate
	Batch size
	Generalization capabilities
	Pruning

	Hermite-trained DNNs
	Hermite interpolation
	Hermite DNN configuration

	The Proposed DNN-driven Optimization
	The RANS equations
	The Spalart-Allmaras Turbulence Model
	The –theta Transition Model
	The Adjoint-Driven Optimization Process
	DNNs as surrogates of the CFD-solver
	The L-BFGS Algorithm

	Single-Phase Turbulent Flow around a Turbine Blade-Airfoil
	Introduction
	Flow conditions and parameterization
	DNN Configuration and Training
	First DNN configuration optimization
	 Second DNN configuration optimization
	 Pruning

	ShpO of the turbine blade-airfoil
	Reducing DNN database construction cost

	Single-phase Transitional Flow around an Isolated Airfoil
	Introduction
	Flow conditions and parameterization
	DNN Configuration and Training
	Database constructed with LHS
	Database constructed with adjoint-driven optimization solutions

	Airfoil ShpO

	Single-Phase Turbulent Flow around a Compressor Blade-Airfoil
	Introduction
	Flow conditions and parameterization
	DNN Configuration and Training
	ShpO of the compressor blade-airfoil

	Two-phase Flow around a Hemispherical-Cylinder Body
	Introduction
	Cavitation
	Flow Conditions and Parameterization
	DNN Configuration and Training
	ShpO of the hemispherical-cylinder body

	Conclusion
	Overview - Findings in the Examined Cases
	General Conclusions
	Future Work Proposals

	Bibliography

