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In this Diploma Thesis, Convolutional Neural Networks (CNNs) are used as surro-
gates for traditional turbulence and transition models in aerodynamic analysis and
optimization, aiming to reduce the total computational cost. The CNNs use geo-
metrical and flow data provided by the Reynolds-Averaged Navier-Stokes (RANS)
equations, to predict the turbulent viscosity field µt, effectively closing the RANS
without the use of differential turbulence and transition models.

To train the CNNs, a dataset is created by parameterizing the geometries using
Non-Uniform Rational B-Splines (NURBS) and applying Latin Hypercube Sampling
(LHS) to generate a sufficient number of new geometries, which serve as training
patterns. These new geometries are then evaluated using the in-house GPU enabled
flow solver PUMA, coupled with the turbulence and transition models that the
CNNs aim to replace.

The use of CNNs, as opposed to Deep Neural Networks (DNNs), introduces the
advantage of incorporating information from neighboring mesh elements when pre-
dicting the turbulent viscosity µt field. CNNs operate on entire fields of inputs rather
than individual mesh elements, enabling inter-element communication, potentially
leading to better predictions.

The two optimization cases performed involve the NLF0416 and the S8052 low-
speed airfoils both of which exhibit transitional flow, demanding for the inclusion
of a transition model in addition to the more common turbulence model. Due to
the importance of transition on skin friction and drag, two separate optimization
targets are set. The first target is the direct minimization of the drag coefficient
CD and the second is the maximization of the laminar area on the suction side of
the airfoil by maximizing the distance between the leading edge and the transition
point on the suction side TPSS. This second goal serves as a proxy for reducing CD,
through a different approach.

For both optimizations, two evaluation software are used: PUMA-TM and PUMA-



CNN. PUMA-TM solves the RANS equations coupled with the one-equation Spalart-
Allmaras turbulence model and the two-equation Smooth γ−Reθ,t transition model.
On the other hand PUMA-CNN solves the RANS equations and then uses the
trained CNN to predict the µt field, closing the RANS.

While PUMA-TM incurs no capital cost, as no training is required, PUMA-CNN
has a capital cost associated with the generation of training samples and the actual
training of the CNN. However, PUMA-CNN benefits from a reduced per-evaluation
cost due to not needing to solve the three additional differential equations.

The optimizations are performed by a Metamodel-Assisted Evolutionary Algorithm
within the framework of EASY. The results are compared in terms of the quality
of the final solution and computational cost. Additionally, it is examined whether
maximizing TPSS coincides with minimizing CD.
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Σε αυτήν τη Διπλωματική Εργασία, εκπαιδεύονται και χρησιμοποιούνται Συνελικτικά
Νευρωνικά Δίκτυα (ΣΝΔ) ως υποκατάστατα μοντέλων τύρβης και μετάβασης, στην
αεροδυναμική ανάλυση και βελτιστοποίηση μορφής, με στόχο τη μείωση του συνολικού
υπολογιστικού κόστους. Τα ΣΝΔ χρησιμοποιούν γεωμετρικά και ροϊκά δεδομένα
προερχόμενα από την επίλυση των εξισώσεων RANS, ώστε να προβλέψουν την τυρ-
βώδη συνεκτικότητα µt, κλείνοντας ουσιαστικά τις εξισώσεις RANS χωρίς τη χρήση
διαφορικών μοντέλων τύρβης και μετάβασης.

Για την εκπαίδευση των ΣΝΔ, δημιουργείται μια βάση δεδομένων που περιλαμβάνει
επαρκή αριθμό αεροδυναμικά αξιολογηθεισών γεωμετριών, που χρησιμεύουν ως πρό-
τυπα εκπαίδευσης. Αρχικά, η βασική γεωμετρία παραμετροποιείται με χρήση NURBS
και έπειτα πραγματοποιείται δειγματοληψία με τη μέθοδο LHS. Τέλος, αυτές οι νέες
γεωμετρίες επιλύονται με τη χρήση του επιλύτη PUMA, σε συνδυασμό με τα μοντέλα
τύρβης και μετάβασης που τα ΣΝΔ θα κληθούν να αντικαταστήσουν.

Η χρήση ΣΝΔ, έναντι Βαθιών Νευρωνικών Δικτύων (ΒΝΔ), εισάγει το πλεονέκτημα
της ενσωμάτωσης πληροφοριών από γειτονικά κελιά κατά την πρόβλεψη του µt. Αυτό
συμβαίνει διότι τα ΣΝΔ λειτουργούν χρησιμοποιώντας ολόκληρα τα πεδία εισόδου

και όχι μεμονωμένα τα κελιά του πλέγματος, επιτρέποντας την επικοινωνία μεταξύ
διαφορετικών κελιών, γεγονός που ενδεχομένως οδηγεί σε καλύτερες προβλέψεις.

Οι βελτιστοποιήσεις μορφής πραγματοποιούνται σε δύο αεροτομές χαμηλών ταχυτήτων,
τη NLF0416 και τη S8052, που και οι δύο παρουσιάζουν μεταβατική ροή, επιτάσσοντας
τη συμπερίληψη μοντέλου μετάβασης για την επίλυση της ροής. Λόγω της σημασίας
της μετάβασης στην επιφανειακή τριβή και κατ’ επέκταση στην οπισθέλκουσα, τίθενται
δύο ξεχωριστοί στόχοι προς βελτιστοποίηση. Ο πρώτος στόχος ειναι η ελαχιστοποίηση
του συντελεστή οπισθέλκουσας CD και ο δεύτερος η μεγιστοποίηση της έκτασης της

στρωτής περιοχής στην πλευρά υποπίεσης της αεροτομής, μέσω της μεγιστοποίησης της
απόστασης του σημείου μετάβασης στην πλευρά αυτή από την ακμή πρόσπτωσης της



αεροτομής TPSS. Αυτός ο δεύτερος στόχος αξιολογείται ως μια διαφορετική οπτική
για τη μείωση της οπισθέλκουσας.

Για αμφότερες τις βελτιστοποιήσεις χρησιμοποιούνται δύο λογισμικά αξιολόγησης: το
PUMA-TM και το PUMA-CNN. Το PUMA-TM επιλύει τις εξισώσεις RANS σε
συνδυασμό με το μοντέλο τύρβης μιας εξίσωσης Spalart-Allmaras και το μοντέλο
μετάβασης δύο εξισώσεων Smooth γ −Reθ,t. Από την άλλη πλευρά, το PUMA-CNN
επιλύει τις εξισώσεις RANS και, στη συνέχεια, χρησιμοποιεί το εκπαιδευμένο ΣΝΔ
(CNN) για να προβλέψει το πεδίο µt, κλείνοντας τις RANS.

Ενώ το λογισμικό PUMA-TM δεν έχει αρχικό κόστος, καθώς δεν απαιτεί εκπαίδευση,
το PUMA-CNN έχει αρχικό κόστος που σχετίζεται με τη δημιουργία δειγμάτων εκ-
παίδευσης και την εκπαίδευση του ΣΝΔ πάνω σε αυτά. Ωστόσο, το PUMA-CNN
επωφελείται από μειωμένο κόστος ανά αξιολόγηση, καθώς δεν χρειάζεται να λύσει τις
τρεις επιπλέον διαφορικές εξισώσεις.

Οι βελτιστοποιήσεις πραγματοποιούνται με χρήση εξελικτικού αλγορίθμου υποβοηθού-

μενου από μεταμοντέλα μέσω του λογισμικού EASY. Τα αποτελέσματα συγκρίνονται
ως προς την ποιότητα της τελικής λύσης και το υπολογιστικό κόστος. Επιπλέον,
εξετάζεται αν η μεγιστοποίηση του TPSS συμπίπτει με την ελαχιστοποίηση του CD.
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MAE Mean Absolute Error
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Chapter 1

Introduction

1.1 Laminar-to-Turbulent Transition

The transition from laminar to turbulent flow plays a crucial role in many fluid
dynamic applications, ranging from flight aerodynamics [11] to heat transfer [41]
processes. In aerodynamics, this phenomenon is of particular importance, as it has
a significant impact on drag, since the type of flow, whether laminar or turbulent,
affects the amount of skin friction at the airfoil surface.

Laminar flows exhibit a smooth, streamlined motion, resulting in lower skin friction
and drag forces. In contrast, turbulent flows are characterized by irregular motions,
leading to increased skin friction and higher drag. Therefore accurately predicting
where and how transition takes place, allows for higher accuracy in drag calculations.

The transition from laminar to turbulent flow can be triggered by several mecha-
nisms:

1. Natural Transition, involves Tollmien-Schlichting (T-S) waves, small two-
dimensional instabilities within the boundary layer that can initiate the tran-
sition process [5]. T-S waves are amplified by viscous instabilities and can
eventually break down into turbulent spots. As these spots move downstream,
the grow and merge to create a fully-developed turbulent boundary layer [40].

2. Bypass Transition, occurs when high levels of free-stream turbulence are
present. In this case, the turbulence in the free stream penetrate the, oth-
erwise laminar, boundary layer, leading to the formation of turbulent spots
earlier, bypassing the natural transition process [31]. The process of develop-
ing a turbulent boundary layer continues, following the principles of Natural
Transition.
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3. Finally, in Separation-Induced Transition the boundary layer separates
from the surface due to an adverse pressure gradient or surface curvature [29].
The separated shear layer is highly unstable and can reattach as turbulent.

In the aerospace industry, the development of Natural Laminar Flow (NLF) wings,
wings that maintain laminar flow over a significant portion of the wing surface,
thereby delaying natural transition has seen increasing interest. The continuous rise
in fuel costs, coupled with growing environmental awareness, has been driving the
goal of reducing drag and thereby fuel consumption [7].

1.2 Artificial Intelligence

Although Artificial Intelligence (AI) has been around for a long time, it has recently
resurfaced with a remarkable transformative potential across a wide range of scien-
tific fields. This can be attributed to software progress with the inception of novel
AI architectures that can describe the nature of specific problems and advanced
deep learning frameworks (TensorFlow [1], PyTorch [32]) coupled with hardware
advancements like the utilization of optimized Graphical Processing Units (GPUs)
[44] and the development of specialized Tensor Processing Units (TPUs) providing
exceptional computational power [20]. At the same time the sheer quantity of digital
data available today, coupled with its accessibility and the enthusiasm of the Open
Source community to innovate has further boosted this trend.

To define Artificial Intelligence one must first grasp the concept of intelligence itself.
A simple yet compact definition is the ability to acquire, understand and use knowl-
edge. So by definition AI is the effort to create artificial systems that can mimic
this innate human ability. Data creation and processing encompass the acquisition
of knowledge, while Machine Learning (ML) involves the discovery of patterns and
understanding of information, with fast model deployment ultimately enabling the
use of said knowledge to make an informed decision.

The goal of AI is to create intelligent agents. An agent is anything that perceives its
environment through sensors and acts upon it through actuators [38]. Intelligence
comes to fit between perception and action, to make sure the best course of action
is taken.

1.3 Machine Learning

ML is the branch of AI that capacitates intelligent systems to learn from data
and improve their score on specified metrics autonomously. It comprises of the
algorithms that process the data, evaluate a performance metric and adapt the
system to better perform based on the metric calculated. Based on the nature of

2



these algorithms ML can be categorized into 3 main sub-classes: supervised learning,
unsupervised learning, and reinforcement learning.

1. Supervised learning: In supervised learning a labeled dataset is fed into the
system. This means that each vector of input features (X) is associated with
a corresponding output value vector (Y). The aim then is to create a system
that recognizes the relationships between the input X that drives the output
Y to have the known value. This system should then be able to generalize in
unseen inputs, returning a decent prediction.

2. Unsupervised learning: In unsupervised learning the dataset is unlabeled.
Therefore the focus is to discover underlying patterns and hidden structures
within the data. It is unsupervised in the sense that the model is not forced
to find specific connections but any structures deemed useful within the data.
Unsupervised learning methods are often used in tasks like the detection of
possibly false data (Anomaly Detection) or the highlighting of obsolete or
irrelevant features (Principal Component Analysis).

3. Reinforcement learning: Reinforcement learning is basically the trial and
error method of ML. In reinforcement learning the system is encouraged to
learn in a game-like manner where good decisions are rewarded and bad deci-
sions are penalized. Their interactive ever-learning nature makes them shine
in dynamic environments where each outcome can also be used as feedback to
optimize their performance over time.

1.4 AI in CFD

The integration of artificial intelligence, specifically convolutional neural networks
(CNNs) and deep neural networks (DNNs), into computational fluid dynamics (CFD)
has shown great potential in enhancing simulation efficiency and accuracy.

In [2], a CNN framework was proposed to efficiently predict the velocity and pressure
fields around airfoils. The CNN was trained on Reynolds-Averaged Navier-Stokes
(RANS) simulation data for various airfoil shapes, angles of attack, and Reynolds
numbers. The network employed a shared encoder-decoder architecture with convo-
lutional layers to map the geometry to the flow field outputs. The airfoil geometry
was represented using a signed distance function on a Cartesian grid and was used
as input to the CNN. The angle of attack and Reynolds number were then inserted
into the latent space, and using transposed convolutions, the velocity and pressure
fields were returned. The CNN could predict full flow fields orders of magnitude
faster than RANS solvers, enabling rapid aerodynamic analysis.

In [22], a method to reduce the computational cost of RANS simulations by replac-
ing the differential turbulence and transition model with DNNs was proposed. The
DNN-based surrogate model used flow and geometrical data to estimate the turbu-

3



lent viscosity field required to close the RANS equations. This surrogate model was
then used as the evaluation software in a metamodel-assisted evolutionary algorithm
(MAEA)-based shape optimization problems, demonstrating significant reductions
in computational costs.

In [12], a data-driven approach to improve turbulence and transition modeling for
RANS simulations was presented. Because popular turbulence and transition mod-
els are typically calibrated based on a limited number of simple test cases, dimin-
ished accuracy is frequent when they are applied to complex flows deviating from
the calibration cases. In this approach, case-specific high-fidelity data were used
to infer functional corrections to account for the deficiencies in these turbulence
and transition closure models. Machine learning techniques like neural networks
and Gaussian processes were then applied to reconstruct the inferred corrections as
functional forms based on local flow features. This enabled injecting the improved,
data-driven model forms into RANS simulations to enhance their predictions.

1.5 Thesis Outline

This Diploma Thesis explores the integration of turbulence and transition modeling
with Convolutional Neural Networks (CNNs), a subset of Deep Neural Networks, to
replace traditional turbulence closure models and accelerate Computational Fluid
Dynamics (CFD) simulations.

The chapters are outlined as follows:

➢ Chapter 2: This chapter discusses the fundamental concepts of Artificial
Neural Networks (ANNs). It covers the structure of the artificial neuron, how
neurons are combined to form layers, the activation functions that introduce
non-linearities, and how successive layers create intelligent networks. The
training process of ANNs is also discussed.

➢ Chapter 3: This chapter introduces Convolutional Neural Networks (CNNs)
as a specialized subset of ANNs that excel in domains where spatial depen-
dencies are crucial. It explains the convolutional layer, the building block of
CNNs, and other components that differentiate CNNs from ANNs.

➢ Chapter 4: An introduction to Evolutionary Optimization is provided in this
chapter. It describes the (µ, λ) evolutionary algorithm (EA) and its compo-
nents, and how metamodels can assist in the optimization process, all within
the EASY framework.

➢ Chapter 5: This chapter presents the application of CNNs to replace the
one-equation Spalart-Allmaras (SA) turbulence model and the two-equation
Smooth γ −Reθ,t transition model in a Metamodel-Assisted Evolutionary Al-
gorithm (MAEA)-based optimization of the NLF0416 isolated airfoil. Two

4



objective functions are used: minimization of the drag coefficient and maxi-
mization of the laminar area over the suction side. Two evaluation software
are employed: PUMA-TM, which solves the Reynolds-Averaged Navier-Stokes
(RANS) equations coupled with the SA turbulence model and the Smooth
γ − Reθ,t transition model, and PUMA-CNN, which solves the RANS equa-
tions and then uses CNNs to predict the µt field based on input fields from
the RANS.

➢ Chapter 6: This chapter applies the same methodology as Chapter 5 to the
S8052 isolated airfoil. By using a different geometry under different conditions
and at a different angle of attack, this chapter aims to validate the methodol-
ogy.

➢ Chapter 7: Conclusions are drawn and recommendations for future work are
proposed.
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Chapter 2

Artificial Neural Networks

2.1 Introduction

Artificial Neural Networks (ANNs) are ML components inspired by the structure
of the biological neural networks in the brains of all living organisms. At the core
of ANNs are neurons, gates that given inputs produce outputs. Stacking neurons
together creates a neural layer, a cluster of non connected neurons. Layers containing
different numbers of neurons are sequentially stacked to form an interconnected
network.

The general principle is that any neuron of any layer is connected with all neurons of
the previous layer, as it uses as input a learn-able linear combination of the outputs
of all neurons from the preceding layer. This information flow allows them to capture
complex relationships and establish important representations in the intermediate
(hidden) layers.

The input layer has direct contact with the outside world, providing the data needed
to perform the prediction. At each following layer each neuron receives a unique
weighted sum of the outputs of the neurons from the previous layer and transforms
it using an activation function.

At its essence a neural network operates by constructing linear combinations of
inputs, via highly optimized, therefore fast, matrix multiplications and passing them
through non-linear activation gates at each neuron, introducing the complex physics
needed to describe complex problems.

A significant power of ANNs is the ease with which they can scale. Introducing more
hidden layers or simply using richer in neuron layers provides with more learn-able
parameters, amplifying the representative capabilities of the network. Such multi-

7



layer ANNs are called Deep Neural Networks (DNNs). DNNs often have millions of
these parameters qualifying them for use in challenging tasks [46].

In this thesis, ANNs are used to substitute turbulence models in Computational
Fluid Dynamics (CFD) simulations. They are trained to predict the turbulence
viscosity µt, without solving the expensive differential equations used by turbulence
and transition models.

2.2 Defining the artificial neuron

In nature the neuron is the building block of the nervous system. Its purpose is to
transmit information via electrical signals throughout the body. Neurons consist of
dendrites that propel signals from other neurons into a cell body that homes the
nucleus, where the signals are processed and transformed into a single one that is
carried on by the axon (Figure 2.1). Their ability to communicate with each other
not only allows for information to flow throughout the body, but also for intricate
signal transformations and combinations to take place, enabling the coordination of
complex tasks at a lightning-fast pace.

Similarly the artificial neuron as first defined by McColough and Pitts in 1943 [30]
is an element that receives multiple inputs and returns a single output.

Figure 2.1: A biological neuron. From [38].

The input vector x ∈ Rn is multiplied by a weight vector w ∈ Rn, containing learn-
able values that allow the neural net to adjust to the specifics of the problem it faces.
This multiplication yields a value that is added to the bias b, returning υ ∈ R that
once passed through an activation function f produces the output of the neuron
y ∈ R. This artificial neuron model is illustrated on Figure 2.2.
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υ =
n∑

i=0

wi · xi + b (2.1)

y = f(υ) (2.2)
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bk
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Figure 2.2: Artificial neuron model.

2.3 Selecting the activation function

The activation function f in large defines the neuron and inductively the neural
network. A network where f is a linear function essentially declines into a linear
regression model, where impractical constructions and reconstructions of linear com-
binations of the input parameters are performed at each layer. Furthermore adding
more layers offers no performance boost as the composition of two linear functions is
a linear function itself. This makes creating deeper networks obsolete and limits the
ability of the network to model non-linear physics. Thus it is clear that a non-linear
activation function is generally required.

A key characteristic of appropriate activation functions is their ability to limit the
output magnitude. When the neural outputs are unbounded, instability or satura-
tion during the training of the network might occur degrading the performance of
the network. This happens because during the training process the weights gradients
are heavily influenced by the neuron output values.
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Table 2.1: Basic Activation Functions.

Activation Functions

Rectified Linear Unit (ReLU) f(υ) = max(υ, 0)

Hyperbolic Tangent (tanh) f(υ) = e−u−eu

e−u+eu

Sigmoid (σ) f(υ) = 1
1+e−u

Another aspect to be considered is the derivative of the activation function, as they
play a huge role in the training process, by guiding parameter updates. In general,
the derivative should be smooth to ensure stability and convergence.

Finally, there are particular cases, where the output of the network is a probabilistic
quantity where the activation function must have an output range of 0 to 1.

Some of the most common activation functions are presented in Table 2.1.

Overall, selecting a suitable activation function is significant, as it affects the ex-
pressive power of the model, the range of the output variable and how the training
unfolds.

2.4 Assembling the network

The neuron simple as it is, has little power by itself. But as often witnessed in nature,
power is in numbers. Interconnected neurons exchange information and coordinate
their computations to extract higher-level representations and capture non-linear
physics. It is the collective intelligence of the many that enables the network to act
smart, learning from the data and making sound predictions.

An ANN is constructed of interconnecting layers of neurons. Each neuron in a
layer is connected to every neuron in the previous, allowing for flow of information.
However, within each layer the neurons don’t communicate with each other, acting
independently based on the previous layer output and their respective weights. This
happens primarily for the sake of simplicity and modularity, as it allows the engineer
to view each layer as a separate entity and also the network can be described by
means of simple matrix multiplications, facilitating the scaling of the system.

The connections between neurons, are basically weights that are multiplied to the
output of the neuron it connects to, making the neuron at the receiving end to get
a weighted sum of the outputs from the previous layer.

10



Expanding from Equations 2.1, 2.2 the activations of each layer can be calculated
knowing the activations of the previous layer, and the weights and biases in between
(chosen by the network) as presented in Figure 2.3.
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a(1) = σ
(
W(0)a(0) + b(0)

)
(2.3)

Therefore the output of every layer k is:

a(k) = σ
(
W(k−1)a(k−1) + b(k−1)

)
(2.4)
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Figure 2.3: Combining two layers.

The names of the layers of a network, input, hidden and output reflect their respec-
tive roles.

1. Input Layer: The input layer is in charge of communicating with the external
environment, receiving the decisive features and preparing to forward them to
subsequent layers.

2. Hidden Layers: The hidden layers, remain invisible to the external environ-
ment as no external communication takes place. They are the powerhouse of
the network where most computations take place and they are to thank for
the feature extraction capabilities of the network.

3. Output Layer: The output layer receives the insights of the hidden layers
and produces the output, returning it to the external environment

The difference between ANNs and DNNs is often vague. In general ANNs with
multiple layers and nodes are called DNNs. In Figure 2.4 a small ANN is illustrated,
while in Figure 2.5 a comparatively larger DNN is depicted.
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Figure 2.4: A simple ANN.
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Figure 2.5: A DNN.

2.5 Training the network

Having constructed a network capable to represent complex physics and able to
learn, the following step is to initiate the training process. To train the network a
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training dataset must exist, where the values of the features X of the input layer
and true values Yt of the output layer are known. Based on X the DNN is to make
a prediction Yp that will be compared with the ground truth in order to make the
network perform better.

To be most effective there are some essential concepts of the training method to be
considered. First of all defining the appropriate loss function is crucial as it operates
as a metric based on which the performance of the network is evaluated. Secondly,
computing the gradients of the free parameters (weights) based on the error evalu-
ated allows for weight updates in an informed direction. Lastly, an algorithm must
be deployed to minimize the loss function by adjusting the weight values, in order
to optimize the network for its assigned purpose.

2.5.1 Defining the loss function

Selecting the loss function used to train a network is problem-specific. The loss
function offers a measure of how well the network performs and therefore guides the
optimization process. It must be a metric that quantifies how close the network’s
predictions are in respect to the ground truth.

In general it is a function L(Yt, Yp), where Yt is the ground truth and Yp the predic-
tion, that returns bigger values depending on how far Yt and Yp are. In regression
tasks usually the Mean Squared Error (MSE) and the Mean Absolute Error (MAE)
are used as they are a simple, interpretable quantity, the sum of the errors between
the predicted and the true values passed through either the L1 or the L2 norm.
Mean Absolute Percentage Error (MAPE) takes over when relative errors matter
most.

1. Mean Absolute Error (MAE): The average of the absolute differences
between the predicted and actual values. Gives equal weight to all errors
regardless of the magnitude.

L =
1

N

N∑
i=1

∥Yt − Yp∥ (2.5)

2. Mean Squared Error (MSE): The average of the squared differences be-
tween the predicted and actual values. Larger errors are amplified, as they are
squared before averaging.

L =
1

N

N∑
i=1

∥Yt − Yp∥2 (2.6)
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3. Mean Absolute Percentage Error (MAPE): The average of the abso-
lute differences between the predicted and actual values relative to the actual
values. Tends to infinity when actual values tend to 0.

L =
1

N

N∑
i=1

∥∥∥∥Yt − Yp

Yt

∥∥∥∥ (2.7)

2.5.2 Calculating the gradients

A DNN can be thought of as a continuous differentiable function, where the input
passes through multiple transformative layers to produce an output. With that in
mind, basic calculus rules apply.

The chain rule, a well known calculus technique, allows for the computation of the
derivative of a composition of functions. Starting from the output layer and moving
backwards, using the chain rule, the gradient of the loss function with respect to
each layer’s output can be computed.

By iteratively applying the chain rule and calculating gradients layer by layer in a
backward fashion, we can assume the direction in which weight adjustment should
improve performance. This process, known as backpropagation [37], enables the
network to learn from the training data and improve its performance over time.

2.5.3 Minimizing the loss function

Having the gradients for the free parameters, the weights and the biases, an algo-
rithm that updates them must be deployed.

In gradient-based optimization problems it is common to use variants of the gradient
descent [36]. Gradient descent is the foundational optimization algorithm used for
minimizing the loss function in most machine learning tasks. It involves changing the
weights in the direction of steepest descent, the direction opposite to the gradient,
at a specified step and recalculating the loss and gradients.

It operates on an iterative manner adjusting the model’s parameters multiple times
to reach the minimum of the loss function. The start is made by an initialization of
the free parameters and convergence is agreed upon specified criteria.

In standard gradient descend the entire training set is used to compute the mean
gradient of the loss function at each iteration. This ensures a more precise approx-
imation of the gradient, but is slow since a pass of the whole dataset is required
before performing the weight update. At the same time, due to having a determin-
istic objective function, getting stuck at local minima is all too common.
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wn+1 = wn + ηn · ∇wL(w(n)) (2.8)

where η the learning rate during the n-th step of the algorithm and ∇wL(w(n)) the
newly calculated loss gradient in respect to the old weights.

Stochastic (mini-batch) gradient descent (SGD) on the other hand uses randomly
selected batches, subsets of training data to calculate the gradients and perform
the weight update. In time all samples will be included the same amount in the
optimization process so no bias is induced. It is called stochastic as the batch loss
function becomes probabilistic, since for any different set of samples a different value
and its gradients will be calculated, even if the weights remain the same.

Using a mini-batch allows for weight updates to take place faster. During an epoch,
a full pass of the training set, the gradients are not calculated once but more often,
therefore the optimization is faster and less computationally expensive. Adding
a stochastic component to the equation, acts as noise and enables escaping local
minima, as even if the objective function of a batch B1 reaches a local minimum,
the same objective function for the next batch B2 will have non-zero gradients and
therefore escape the local minimum pitfall.

Adjusting the batch size acts as a lever between stability of the gradient descend
(full pass before updates) and the efficacy of stochastic gradient descent (updates
after every sample).

wn+1 = wn + ηn · ∇wLB(w(n)) (2.9)

where η the learning rate during the n-th step of the algorithm and ∇wLB(w(n))
the newly calculated loss gradient in respect to the old weights for batch B.

In this Thesis the Adaptive Moment Estimation (ADAM) will be used, a variant of
SGD that includes first order momentum calculations [21].

ADAM comes with the best of both worlds. It comes with the stability of momen-
tum methods, that take into account past gradients influence on the current step
and adaptive learning rate methods that dynamically adjust the step size of each
parameter individually based on its own gradients’ history.

ADAM is known for its efficiency and is widely applied due to its adaptive na-
ture, which makes it suitable for a wide range of problems. It typically converges
faster than traditional gradient descent and is user-friendly, requiring minimal hy-
perparameter tuning. Table 2.2 presents the basic hyperparameters of the training
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Table 2.2: Parameters of the training algorithm.

Parameters

Learning rate Base step size for the gradient descent

Epochs Number of full iterations over the training set

Batch size Number of samples seen per weight update

Validation split Subset of the training set used for model validation

algorithms.

2.6 Ensuring generalization

When training a network the aim should never be solely to perform well over the
training set but having adequate performance over the test set as well. The network
is not asked to memorize what it has been presented with, but to make informed
predictions over unseen data. The ability of the network to perform well on unseen
data is called generalization and it remains a fundamental challenge in training
ANNs. Thus many strategies have been developed that can aid in generalization.

2.6.1 Overfitting

A common pitfall, that hinders generalization, when training a network is overfitting.

Overfitting occurs when a model is fit beyond necessity. An overfit model performs
very well during training but when asked to predict on unseen data it underperforms.
An overfit network has learnt the inherent noise in the data and doesn’t actually
understand the underlying physics of the problem. Therefore it can’t perform that
well on unseen data as it takes into account noise that shouldn’t be present.

Overfitting appears in networks that:

1. Are strong enough to learn more than they should

2. Are trained long enough to learn more than they should
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3. Are trained in a static manner that gives them the confidence to learn more
than they should

2.6.2 Small models

An effective approach with a proven impact on aiding generalization is to use smaller
models. Often the simplest explanations that are good enough are explain a phe-
nomenon must be preferred. In the context of ANNs smaller, simpler models are
preferred over more complex models if they perform nearly as well on the given task.

Small models have fewer parameters and are less prone to overfitting during training.
Because they have less learning capacity the are unable to fit all the noise present in
the entire training set to improve their score further and therefore they settle with
capturing the real underlying physics.

Other than aiding in generalization, being less complex allows for faster training
and inference times. At the same time the low computational cost comes in pair
with a lower memory footprint.

2.6.3 Dropout

Dropout is a regularization technique used to improve generalization in DNNs.

A dropout layer has neurons that can randomly be deactivated during training. One
can choose the fraction of neurons that will be off at any training step. By doing this
the network is discouraged from relying too heavily on specific neurons, encouraging
lower weight values and a more uniform distribution accross the many neurons and
creating a more robust network. It is important to note that during inference all
the nodes are on and no dropout is in place, thereby all the predictive power of the
network is unleashed.

2.6.4 Pruning

Pruning is a common technique with the purpose of simplifying and optimizing a
DNN. It involves transforming a fully connected model into a sparsely connected
one, by selectively removing connections from an already trained network. It is
based upon the fact that biological brains are highly sparse [15].

With pruning a fully connected model is transformed into a sparsely connected
one. It involves selectively removing connections from an already trained network
to improve its efficiency, to reduce its memory footprint and accelerate inference
time. Its motivation lays in the fact that many times DNNs appear to be over-
parameterized, meaning that they contain more parameters than needed to describe
the problem at hand. This can result in increased training times and slower inference
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speeds, but also in overfitting. Pruning addresses these issues by identifying and
eliminating redundant components of the network.

Most methods are usually magnitude based. Individual weights in a pre-trained
network are ranked based on their magnitude and the lowest-ranking weights are
removed. This is based on the assumption that the connections with smallest mag-
nitudes contribute the least to the prediction of the network. In this method a
threshold value is selected, below which all weights are pruned.

In other specific cases though, structured pruning techniques are applied, sometimes
even prior to training the network [6].
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Chapter 3

Convolutional Neural Networks

3.1 Introduction

Convolutional Neural Networks are deep learning architectures inspired by the hu-
man visual cortex. They were first used in the realm of image analysis [26], but
their specified processes can be applied to any field where spatial dependencies are
of high relevance in the input data.

CNNs are a subclass of DNNs, and as such, they are similar in a fundamental man-
ner. Where in DNNs there are layers of nodes, in CNNs, there are layers of matrices
(Figure 3.1). In both of them, layers receive a linear combination of the previous
layer output and then apply a non-linear transformation through an activation func-
tion. It is this hierarchical structure that enables both of them to capture intricate
patterns.

Figure 3.1: DNNs operate using nodes and CNNs operate using channels. A DNN
layer takes 3 nodes and returns 4 nodes (left), while a CNN layer takes 3 channels
and returns 4 channels (right).

Unlike traditional DNNs that fully connect each neuron from one layer to the next,
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CNNs use convolutional filters, basically kernels of weights, that scan the input
spatially, capturing local patterns in small receptive fields. By leveraging param-
eter sharing in the convolutional layers, CNNs significantly reduce the number of
learnable parameters, making them computationally efficient [25]. Reducing the
number of learnable parameters introduces a built-in inductive bias that can guide
the CNN to learn a better approximation and generalize better. This bias is pri-
marily characterized by the assumption of spatial and translation invariance. This
means that a certain pattern (kernel) learned in one region of the input is likely to
be relevant and useful in other regions as well. By encoding this prior knowledge
into the model architecture, CNNs have been proven superior in many tasks such
as image recognition, object detection, and semantic segmentation [26, 25, 27].

In this thesis, Convolutional Neural Networks (CNNs) serve as replacements for tra-
ditional turbulence models in Computational Fluid Dynamics (CFD)-based aero-
dynamic optimizations. Their purpose is to predict the turbulence viscosity (µt)
field without the need to solve the computationally expensive differential equations
utilized by conventional turbulence and transition models. Unlike Deep Neural
Network (DNN) approaches [23], which solely rely on information from individual
mesh elements, CNNs integrate flow and geometrical data from neighboring mesh
elements, aiming to enhance prediction accuracy.

3.2 Basics of the Architecture

To gain a first understanding of the CNN architecture, the image processing paradigm
is ideal as it is intuitive and commonplace.

Consider an RGB image with H×W pixels. The image configuration is represented
by three H × W matrices, one for each of the three channels R (red), G (green),
and B (blue). The values range between 0 and 255, reflecting the intensity of the
basic colors in each pixel. In short, the form of the input data consists of tensors,
multidimensional matrices with a shape of (H,W,C), where H is the height of the
image, W the width of the image, and C the number of channels in the input field
(typically 3 in the realm of images).

Let’s take a small 100x100 multicolor image and try to process it through an ANN.
The input tensor has a size of 100× 100× 3, therefore an input layer of 30 thousand
nodes would be required. Even an excessive 10-fold reduction to the next layer,
would require a second layer of 3 thousand nodes, resulting in 9 million free pa-
rameters in just the first 2 layers. That is a prohibitive number for most DNNs,
not to mention the impossibility of creating a 30k × 3k matrix of unique elements.
Therefore, another approach must be investigated.

Two crucial concepts, related to the statistical properties of an image’s pixel values
can be used to our advantage.
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1. Locality of Pixel Dependencies:

• The locality of pixel dependencies underscores that the relationship be-
tween pixels is typically stronger for nearby pixels than for those farther
apart.

• This implies that examining relationships within small local areas is more
valuable for understanding image patterns.

• Therefore connections between far apart pixels are not required.

2. Stationarity of Statistics:

• Stationarity of statistics in the context of images suggests that certain
statistical properties, such as mean, variance, and correlation, remain
relatively constant across different regions of an image.

• Because of that features learned in one part of an image can be applicable
in other parts [25].

• Therefore no different parameters are required to treat different parts of
one image.

Convolutional Layers, layers performing convolutional operations, fully exploit both
of these concepts, as they operate on tensors using kernels, small windows that in-
dicate the neighborhood of a given pixel. These kernels are used as filters sliding
through matrices to produce new matrices, where each new value is a linear combi-
nation of the neighboring values. In the context of image processing, Convolutional
Layers can detect simple features like edges, corners, or textures by convolving over
the picture values. The deeper in the network, the more sophisticated the features
that can be detected. Usually, when referring to a Convolutional Layer, one includes
the convolution operation that, using the layer’s kernel, performs a linear combina-
tion, as well as the activation layer that applies the activation function inserting the
non-linear element in the network.

Most CNNs are employed with some kind of downsampling operators, usually Pool-
ing Layers. These aim to reduce the spatial dimensions of the feature maps by
considering regions and selecting representative values for each one. This not only
reduces the computational burden of the network but also encourages the network
to focus on more high-level features, filtering out minor details and aiding in gen-
eralization. Understanding that there are 4 red pixels in a fine-grained region is no
more helpful than knowing 1 red pixel is in its equivalent downsampled region. At
the same time, since many CNNs only require a low-dimension output (classification
tasks), downsampling allows for a smooth transition.

Occasionally, CNNs may use upsampling operators to invert the dimensionality re-
duction realized by Pooling Layers. These are often used when the network is re-
quired to output higher-dimension outputs (depth maps, segmentation maps, etc.),
therefore restoring the spatial dimensions is necessary [4].
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3.3 Convolutional Layers

Figure 3.2 presents an example CNN. Similar to a DNN, the input layer contains the
inputs that are successively passed through the hidden layers to reach the output
layer. In this illustration, each square represents a matrix A, and each connecting
line represents a convolution C using a trainable kernel K.

Each matrix in a layer is produced as follows: a 2D convolution is performed on each
matrix of the previous layer, and the resulting matrices are summed element-wise.
The resulting matrix is then passed through an activation function f , similar to the
process in DNNs.

Figure 3.2: An example of a Convolutional Neural Network (CNN). Each square
represents a matrix A, and each connecting line represents a convolution C using a
trainable kernel K.

3.3.1 The convolution

The convolution is a fundamental mathematical operation that can be applied in
matrices.

It involves sliding a filter, the kernel, over the input matrix in a systematic manner
and computing the element-wise dot product between that and the region of the
input it overshadows. Performing this process with the same kernel across all loca-
tions in the input matrix results in a feature map that highlights the presence of
specific patterns. The size of the filter kernel is usually much smaller than the input
as it is used to extract localized information. The type of patterns to be highlighted
are determined by the values of the kernel. For example:

• A

 1 2 1
0 0 0
−1 −2 −1

 kernel is used to detect horizontal edges and a
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• A

−1 0 1
−2 0 2
−1 0 1

 kernel is used to detect vertical edges in an image.

In mathematical terms the convolution performed on an input tensor I of size
(H,W,C), where H,W are the spatial dimensions of the input and C the channels, by
a kernel K of size (Hk,Wk,C) produces the a 2-dimensional feature map F as follows:

F (i, j) =
C∑
c=1

(
hk∑

h=−hk

(
wk∑

w=−wk

(I(i+ h, j + w, c) ·K(h,w, c))

))
(3.1)

for i ∈ [hk, H − hk] and j ∈ [wk,W − wk], with hk =
Hk−1

2
and wk =

Wk−1
2

It is interesting that the number of elements in the convolutional kernel is Hk ×
Wk × C, independent of the input’s spatial dimensions W,H.

In Figure 3.3 a convolution is performed on a 2D matrix. In a similar manner the
convolution is performed in 3D.

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

I
(7× 7)

∗
1 0 1

0 1 0

1 0 1

K
(3× 3)

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗K
(5× 5)

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 3.3: The Convolution Operation on a 2D matrix. From [34].

The convolution operator needs access to hk cells below and above and wk left and
right of the cells to be convolved. Therefore in a plain convolution the shape of
the matrix is set to be reduced by (Hk − 1) and (Wk − 1) in height and in width
respectively as to accommodate for the convolution of the boundary cells. This is
often disorienting when successive convolutions take place, so padding techniques
are employed to counteract, as discussed in a following section.

In a convolutional layer, convolutions are performed multiple times using the input to
create multiple feature maps. That is because alternate representations are needed
to grant the necessary representational power to the network. The number of feature
maps, or the size of the output channel axis is a defined parameter similar to the
number of nodes in the hidden layers of a DNN. This number determines the number
of convolutions to take place, or the number of filter kernels to be used therefore it
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can be referred to as filters. So at each convolutional layer the number of weights
incorporated is:

N = Hk ×Wk × Ci × Co (3.2)

where (Hk,Wk) the kernel shape and Ci, Co the depth of the input and output tensor
respectively.

This behavior is presented in Figure 3.4 where kernels of different colors have the
same shape, but use different weights to produce different feature maps.

input image
or input feature map

output feature maps

Figure 3.4: Multiple convolutions in a Convolutional Layer create different feature
maps. From [34].

3.3.2 The kernel weights

In a Convolution Layer the weights of the kernels performing convolutions are learn-
able parameters. That is because we require the network to be intelligent enough to
find the kernels that detect the most representative features and the patterns that
create the most informative maps in regards to the task at hand.

In the same way that weights in a DNN allow the network to learn, in a CNN it is
the kernel weights that possess the required neuroplasticity.

The convolution operation in CNNs leverages the concept of parameter sharing. The
same filter weights are used across the entire input space along the spatial dimensions
H,W . This parameter sharing reduces the number of learnable parameters, making
the network computationally efficient and allowing it to generalize better. Using
the same kernel to slide across the entire matrix, also introduces the invaluable
property of spatial invariance, where patterns are recognized irrespective of their
exact location in the input, a property crucial for image recognition tasks.
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3.3.3 Strides and padding

In practice, the convolution operation can be customized by introducing stride and
padding parameters.

Padding, as mentioned before, is of high importance as it allows to preserve spatial
dimensions after convolution. If no padding is added to the input, the convolutional
kernels are only applied to positions where the kernel can fit entirely around the
pixel. This results in a boundary of dead pixels after each convolution, therefore
decreasing the spatial dimensions of the feature maps, as illustrated in Figure 3.5.
This reduction may lead to the loss of valuable information, especially when there
is such in the edges of the input.

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 0 0

0 0 0 1 1 0 0
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(5× 5) with padding

∗
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1 0 1
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1 1 3 1 1

0 1 1 2 1

0 1 2 2 2
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0 1 1 0 0
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0 0 1 1 0

(5× 5) without padding

∗
1 0 1

0 1 0

1 0 1

=

0 2 0 1 0

1 1 3 1 1

0 1 1 2 1

0 1 2 2 2

0 0 2 1 1

(3× 3)

Figure 3.5: Using padding retains spatial dimension. Convolution without prior
padding results in lower spatial dimensions, as a boundary of dead pixels appears.

Furthermore, when no padding is applied, after each convolution the output map’s
dimensions are determined by the size of the convolutional kernel. Therefore it is
harder to keep track of the feature maps dimensions, especially when multiple layers
are stacked, needlessly hindering the design process.

Padding is applied in a way that the feature map after the convolution retains the
dimensions of the input. For a unit-stride convolution, the padding size can be
determined by just the kernel size as (Hk−1

2
, Wk−1

2
).

There are three main categories of padding:
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1. Zero Padding: Zeros are added around the input feature map.

2. Mirror Padding: The mirrored reflection in respect to the edges is added
around the input feature map.

3. Replicate Padding: The border pixels are duplicated to provide the padding.

Stride determines the step size at which the filter moves over the input. A larger
stride results in smaller feature maps with less overlap, as each pixel belongs in a
smaller number of neighborhoods. Larger strides also reduce the number of compu-
tations proportionally, enabling faster training and inference times.

Finally, non-unit strides reduce the spatial dimensions of the feature maps, effec-
tively downsampling the data. It should be considered that the number of weights
is not affected by the stride size, therefore the representative power of the network
is not affected.

Figure 3.6 showcases how different stride convolutions scan through a matrix.
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Figure 3.6: Showcasing how stride works.
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3.3.4 Stacking convolutional layers

Stacking convolutional layers by itself yields no benefit. As the convolution is a
linear operation, a combination of convolutions is still a convolution. Therefore,
only a linear combination of the input tensor can be produced this way.

The non-linearity is introduced by applying an activation function to each pixel
following each convolutional layer. The activation functions are no different than
the once used in DNNs.

With appropriate non-linearities included, stacking convolutional layers offers an
impactful approach to extracting meaningful features from the input. In one sense
more layers mean more kernel weights, therefore more learning capacity. In another,
the sequencing allows for deeper and deeper representation to take place.

Moreover the accumulation of layers expands the network’s receptive field. With
every convolution the neighborhood of a given pixel is broadened. As a pixel is
influenced by its neighboring pixels defined by the kernel, it then becomes part of a
larger neighborhood that affects subsequent pixels through subsequent convolutions
(Figure 3.7). This progressive widening of the field of view enhances the network’s
perception and enables it to detect large scale patterns.
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Figure 3.7: Stacking convolutions increases the field of view.
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3.3.5 Comparison to a Fully Connected Layer

A convolutional layer can be thought of as a heavily pruned fully connected layer.
Consider a feature map A of shape (4,4) that is convolved into feature map B of
shape (4,4) using a (3,3) kernel K.

During convolutions, different cells (corner, edge or central) use a different number
of cells from the previous layer to perform a crossproduct as seen in Figure 3.8.
The 4 corner pixels of B are connected with 4 of A’s pixels, the 8 edge pixels are
connected with 6 of A’s pixels and the 4 middle pixels are using the entire kernel
being connected with 9 pixels from A. Therefore the total number of connection NC

are:

NC =

mid

4 ∗ 9+
edge

8 ∗ 6+
corner

4 ∗ 4 = 100 (3.3)

But thanks to parameter sharing the number of parameters is even less, just the
number of kernel elements, in this case 9.

NW = 3 ∗ 3 = 9 (3.4)

To fully connect these two feature maps, first they would be flattened and then each
of B’s 16 elements would be connected to each of A’s 16 elements, with distinct
weights acting as connections. So both the number of connections and the number
of weights would be 256, as depicted in Figure 3.9.

Therefore even in this simple example by leveraging the convolution operator there is
a 60% reduction in connections and a 95% reduction in free parameters. Reduction
in connections acts as pruning, allowing for a more coherent flow of information and
aiding in realising better representations. Having less free parameters, in some sense
reduces the design space, the total possible weight combinations and simplifies the
optimization performed by stochastic gradient descent.

3.4 Downsampling and Upsampling

Downsampling and upsampling techniques provide CNNs with the ability to man-
age spatial dimensions effectively, allowing for the modification of granularity and
enabling the network to perceive both local details and global context despite the
local nature of convolutional operators.
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Figure 3.8: Performing cross-products on different cells.

3.4.1 Downsampling

Downsampling is an operation that summarizes over a spatial neighborhood [39]. It
is often executed through Pooling Layers that trim the spatial dimensions of feature
maps by selecting representative values from local regions. The region is defined by
a pooling kernel that works in a way similar to the convolutional kernel. The strides
define how much the kernel moves and the method of selecting the representative
values is user-defined.

1. Max Pooling chooses the largest value in the region as a representative value
to further in the next layer (Figure 3.10).

2. Average Pooling takes the mean of the values within the region, so that
each pixel contributes to the following layer. (Figure 3.11).

In Figure 3.12 a pooling operation over multiple feature maps is presented. Square
regions in the original matrices are mapped to a single point in the downsampled
matrices.

Downsampling offers a dual advantage – it reduces computational load and improves
generalization.
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Figure 3.9: Fully connecting feature maps.
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Figure 3.10: Max Pooling.

By trimming the spatial dimensions the convolutional kernels are required to scan
through a smaller input, therefore reducing the number of calculations required. As
the sum-product is performed at each pixel, reducing the number of pixels to half
reduces the number of calculations to half.

By selecting representative values from local regions it encourages translation in-
variance. It ensures that the network recognizes features irrespective of their precise
positions in the input, as the appearance of said features becomes more important
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Figure 3.11: Average Pooling.

original
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Figure 3.12: Pooling multiple feature maps. From [45].

than the exact pixel region where they appear.

3.4.2 Upsampling

Upsampling techniques are used to reverse the effects of downsampling and restore
lost spatial information. This is of high importance in tasks where high-dimension
outputs are required. In image segmentation [35] and generation [49] the network
should reinstate the initial spatial dimensions as a per pixel prediction is required.
In super-resolution tasks [10] the CNN is asked to produce an even larger image
than the input it received so by definition upsampling is required.

Upsampling methods, like transposed convolution and bi-linear interpolation, ex-
pand the dimensions of feature maps, allowing the network to generate outputs
with higher resolution.

1. Bi-linear interpolation is the most straightforward of the two. It involves
inserting new pixels with values assigned by considering the weighted average
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of the neighboring pixels in the original feature map. It is computationally
efficient and produces smooth feature maps, but since it contains no learn-able
parameters, it struggles where sharp non-linear transitions take place.

2. Transposed Convolution, also known as deconvolution, is the main learn-
able approach to upsampling feature maps. They allow the network to learn
the best way to upsample rendering them superior in tasks requiring precise
spatial information.

In Figure 3.13 an upsampling operation over multiple feature maps is presented.
Small regions in the original matrices are mapped to larger regions in the upsampled
matrices.

original
feature maps

upsampled
feature maps

Figure 3.13: Upsampling multiple feature maps.

3.4.3 Skip connections

Upsampling operations are often accompanied with skip connections, connections
that allow the flow of information from the primitive layers into later layers of the
network without any alteration, addressing some of the more common obstacles
faced during training.

Skip connections are basically shortcuts within the network. Unlike traditional feed-
forward network that use a strictly sequential flow of information, skip connections
connect non-adjacent layers skipping the layers in between (Figure 3.14).

The main motivation for their design was to address the vanishing gradient problem
in very deep networks, where weight gradients start to get incredibly small during
backpropagation, leading to slow or even stagnant convergence. Skip connections,
provide a shortcut for the gradients to flow to these more primitive layers they
connect to, limiting the vanishing gradients and facilitating faster training.

At the same time skip connections encourage feature reuse by enabling earlier layers
to contribute to the final prediction. In a way it allows the network to choose
whether to use lower or higher level features aiding in generalization.
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Figure 3.14: A simple skip connection. From [34].

Residual networks [19], the pioneering architectures that included skip connections
use them, inside the residual block, a block of convolutional layers were the input is
also added to the last layers output.

U-Net [35] is a popular architecture for tasks like image segmentation and medical
image analysis. It employs skip connections to combine low-level feature maps from
encoder layers with high-level feature maps from decoder layers, enabling precise
segmentation.

3.5 Training

The training of a CNN is identical to that of a DNN. The same loss functions can
be used and the network can be considered as a differentiable function. Utilizing
the chain rule the gradients are calculated and using the common gradient-based
optimization algorithms the best weights can be achieved.
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Chapter 4

Evolutionary Optimization

4.1 Evolutionary algorithms

Evolutionary Algorithms (EAs) constitute a class of optimization algorithms in-
spired by the mechanisms of biological evolution. These algorithms are particularly
effective in solving complex optimization problems where traditional methods may
struggle.

The fundamental concept involves mimicking the process of natural selection [8] to
iteratively improve a population of candidate solutions over generations. Starting
with an initial population, randomly or otherwise selected, all individuals are evalu-
ated based on a pre-defined objective function. ”Survival of the fittest” is ingrained
in the process, as the best-performing individuals are selected to reproduce. Re-
production, executed through probabilistic recombination of parents, employs user-
defined functions to generate the next generation. Any offspring might be born with
a mutation, introducing diversity to the algorithm. This process is repeated until
either a certain number of generations is reached, or the best-performing individual
is deemed good enough.

The main advantages of Evolutionary Algorithms are presented below:

1. Global Optimization: Evolutionary Algorithms (EAs), utilizing global pop-
ulations, are capable of exploring the solution space entirely [13], therefore
easily avoiding being trapped in local optima. This wide perspective enhances
the likelihood of finding the best solution across the entire search space.

2. Adaptability: Evolutionary Algorithms exhibit a high degree of adaptability,
as they do not require access to the source code, making them particularly
well-suited for dynamic and changing problem environments [24].
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3. Parallelism: EAs can be easily parallelized since they operate with popula-
tions, where each member can be independently calculated [14]. This allows
for the exploration of multiple solution paths concurrently, making them a
perfect fit for modern parallel computing architectures, tackling large-scale
optimization problems.

4. Versatility: One of the notable strengths of EAs lies in their versatility.
These algorithms are based on low-level math operations and that makes them
applicable to a wide range of problems and domains [48]. That adaptability
makes them a go-to choice for various applications.

5. No Need for Derivatives: Finally, unlike most traditional optimization
methods that rely on derivatives of the objective function to determine the di-
rection of parameter updates, EAs operate without requiring derivatives, using
collective intelligence. This characteristic makes them applicable to problems
with non-differentiable or discontinuous functions or simply functions hard to
differentiate, expanding their utility to a broader class of problems. [13]

4.2 The Evolutionary Algorithm SYstem Software

- EASY

The Evolutionary Algorithms SYstem (EASY) software [18], developed by PCOp-
t/NTUA, serves as a versatile optimization tool for solving single or multi-objective
problems, including constraints. Utilizing a (µ, λ) EA approach, EASY incorporates
both stochastic and deterministic optimization methods, supports various optimiza-
tion schemes and includes distributed, asynchronous, and hierarchical Evolutionary
Algorithms , while granting users a high degree of control through tunable parame-
ters.

EASY introduces the integration of low-cost surrogate evaluation models, such as
RBF Networks, functioning as online-trained metamodels, as well as, the use of
external off-line trained metamodels establishing the framework for Metamodel-
Assisted Evolutionary Algorithm (MAEA) optimization.

4.3 Components of an Evolutionary Algorithm (EA)

Evolutionary Algorithms (EAs) have a complex architecture, consisting of several
different components that grant them the power to tackle complex optimization
problems. Understanding these components is essential for understanding the me-
chanics of EAs and why they are able to improve solutions over generations.
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Encoding

Encoding plays a fundamental role in Evolutionary Algorithms (EAs) as it defines
the language through which the algorithm communicates and represents potential
solutions within the population. In essence, encoding is the method by which can-
didate solutions are translated into a format that the EA can manipulate.

Most common encoding methods are Binary, where the genome is represented as a
string of binary digits, andReal where vectors of real numbers represent individuals.
Binary-Gray on the other hand, is a variant of binary encoding where adjacent
numbers in the encoding scheme differ by only one bit. This can help in preventing
large changes in the phenotype when small changes occur in the genotype.

In this thesis, Real Encoding will be used.

Population

A population in an EA is any set of candidate solutions to the optimization prob-
lem that are evaluated using the objective function [13]. In the (µ, λ) EA, during
each generation, the parent population µ is created by the offspring population λ
by the selection mechanism and in turn produces new offspring through means of
crossover and mutation. An initial offspring population is required, usually created
by randomly sampling the design space.

In this Thesis, the parent and the offspring population will contain µ = 10 and
λ = 24 individuals respectively.

Objective Function

The objective function F , is the metric that evaluates the performance of each
individual solution. Minimizing this objective function acts as the goal, driving the
algorithm toward solutions that fulfill the optimization criteria.

Selection Mechanism

The selection mechanism is inspired by nature’s ”survival of the fittest.” It deter-
mines the individuals from the current population that will be chosen to reproduce
and contribute to the next generation. Choosing the ratio between parents and
offspring determines the selective pressure inside a population.

Selection methods include, rank-based approaches, where only the top N candidates
are allowed to reproduce and probabilistic approaches, where all members of the
population are given a chance to reproduce, but probability is assigned proportion-
ally to the fitness of each individual.

In this Thesis, tournament selection will be used, with a tournament size of three.
For each of the µ parents to be selected, three of the λ offspring will be randomly
chosen to enter a tournament where the fittest of the three will be promoted to the
parent population.
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Crossover

Crossover entails the creation of new individuals by combining genetic material from
selected parents. The crossover mechanism controls how the genetic information of
two or more parents is split and recombined to produce offspring. This process aims
to create more fit individuals by combinining beneficial traits from well-performing
candidate solutions.

In this Thesis, every offspring is produced from 3 parents, using the Simulated
Binary Crossover [9].

Mutation

Mutation is the random alteration of the genetic information of an individual. It is
an element that introduces new characteristics to the population, ensures diversity
and facilitates escaping local optima. At the same time, introducing mutations
disrupts the deterministic nature of selecting the initial population. Regardless of
the initialization, the introduction of mutations ensures that the algorithm is potent
to explore the entire design space.

The mutation rate determines the probability of a mutation occurring in an individ-
ual. Adjusting it, tunes the balance between deterministic and stochastic behavior,
explorative and exploitative nature of the EA.

In this Thesis the initial mutation rate is 5% and it is increased when 10 consecutive
idle generations occur.

Termination Criteria

Termination criteria determine when the population should stop evolving. Common
criteria include reaching a specified number of generations or calls to the evalua-
tion software, often based on available computational resources. Terminating when
reaching a specified number of idle generations or when the population diversity
drops under a given threshold [13], works to avoid incurring further computational
costs when additional improvements become negligible. Finally, termination based
on achieving a satisfactory fitness level might be employed when a ”good enough”
solution is sufficient.

4.4 Structure of an Evolutionary Algorithm (EA)

The structure of an Evolutionary Algorithm follows a series of steps, guiding the
optimization process. Within the (µ, λ) EA three populations coexist in any given
generation g. The population of λ offspring Sg,λ, the population of µ parents Sg,µ

and the population of elite individuals Sg,e, where the e best solutions are stored.
The list below outlines the key steps in the structure of a (µ, λ) EA [17]:
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1. Initialization: Generate an initial population of offspring S0,λ ( randomly or
using a predefined method) and assess the fitness of each offspring F (S0,λ),
according to the objective function.

2. Termination Criteria: Define criteria to determine when the algorithm
should stop evolving and repeat steps 3 to 7 until these criteria are met.

3. Elite Selection: Renew the elite population Sg,e+1, with the best canditate
solutions from Sg,λ∪Sg,e. If no offspring fitter than the elites is presented, the
elite population remains the same.

4. Elitism: Replace candidates of Sg,λ with a number of elites from Sg,e.

5. Parent Selection: Choose individuals from Sg,λ to serve as the parents for
the next generation in Sg+1,µ. Selection methods may include probabilistic
approaches or rank-based methods.

6. Recombination and Mutation: Form the new generation of offspring Sg,λ,
by combining genetic material from members of Sg+1,µ and randomly mutating
some of the produced offspring.

7. Evaluation: Evaluate the fitness of the new offspring population. F (Sg+1,λ)

Figure 4.1 illustrates the basic structure of a (µ, λ) EA.

4.5 Metamodel-Assisted Evolutionary Algorithms

(MAEA)

Metamodel-Assisted Evolutionary Algorithms (MAEA) represent a subset of Evo-
lutionary Algorithms (EAs) that harness metamodels to speed up optimization pro-
cesses. Metamodels, being regressors, can approximate the objective function for
any candidate solution directly from its genome, without calling the often costly
Problem Specific Model (PSM). This addresses the challenge of EAs requiring a
large number of software evaluations to initiate improvements, as most of them can
be performed by the metamodels.

The metamodels can be trained either offline, using examples of candidate genomes
and the corresponding objective function values, or online using candidates from
previous generations evaluated by the PSM.

EASY [18] uses online-trained Radial Basis Function (RBF) metamodels. During a
MAEA optimization, the first couple generations are all evaluated using the PSM,
to form an initial database for the RBF to train on. Then the RBFs approximate
the objective function of new candidate solutions and only the most promising are
accurately evaluated using the PSM, at the same time enriching the database the
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Figure 4.1: Basic Structure of a (µ, λ) Evolutionary Algorithm.

RBFs are trained on. As the optimization progresses and the distribution of candi-
date solutions evolves, the RBF metamodel can adapt by refining its approximation
of the objective function within regions of interest.
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Chapter 5

The NLF0416 Isolated Airfoil

This chapter revolves around the shape optimization of the NLF0416 isolated airfoil,
with the primary objective being to minimize drag. To achieve this, the geometry is
parameterized using volumetric Non-Uniform Rational B-Splines (NURBS), and the
optimization process is conducted using the EASY software of the PCOpt/NTUA.

The uniqueness of this study lies in the adoption of two different evaluation software:

1. PUMA-TM uses PUMA [3], the in-house GPU accelerated flow analysis soft-
ware, to solve the Reynolds-Averaged Navier-Stokes (RANS) equations using
vertex-centered finite volumes, where the turbulent viscosity µt is computed by
solving numerically the one-equation Spalart-Allmaras (SA) turbulence model
[43] and the two-equation Smooth γ −Reθ,t transition model [33].

2. PUMA-CNN uses PUMA to solve the RANS equations, but µt is computed
directly from a CNN using geometrical and flow data as inputs.

Given that the NLF0416 is designed to retain laminar flow as much as possible
over its surface and the effect of transition on the performance characteristics, two
distinct optimizations are conducted with different objectives each. The first aims to
directly minimize drag using it in the objective function. In the second, the distance
between the leading edge and the point of transition over the suction side, is used as
the objective function. Maximizing this quantity aims to extend the laminar area,
anticipating a reduction of drag in the process.

The purpose of using these two objective functions is to assess whether they will
converge on the same or similar airfoil shapes.
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5.1 The NLF0416 Airfoil Case

The NLF0416 airfoil belongs to the NASA Low-Speed Family of airfoils and was
developed as a part of their research into aerodynamic designs. It is applicable in
the subsonic range of speeds. The NLF designation stands for ”Natural Laminar
Flow”, revealing its aim of retaining laminar flow as much as possible over the airfoil.

The profile of the NLF0416 can be seen in Figure 5.1. A 705 × 97 C-type mesh
was generated in a radius of more than 1000 chords around the airfoil to accurately
model the air body. The PUMA code, however, uses the above structured grid as
an unstructured one.

Figure 5.1: The NLF0416 Airfoil.

For this case, the airfoil is simulated under the conditions shown in Table 5.1. To
study the effect of the angle of attack on the transition from laminar to turbulent
flow, the simulations were conducted for α = 0.02◦ and α = 2◦. The RANS equa-
tions are solved, and turbulence is modeled using the Spalart-Allmaras (SA) model
coupled with Piotrowski & Zingg’s Smooth γ −Reθ,t transition model.

The resulting aerodynamic coefficients after convergence are presented in Table 5.2.
The drag coefficient (CD) is broken down to its two components, the friction drag
coefficient CD,f and the pressure drag coefficient CD,P . CD,f accounts for the shear
stresses acting on the surface of the airfoil, due to the viscosity of the fluid, while
CD,P results from the different static pressures around the blade. Notably, CD,f

constitutes almost 80% of the total CD for both angles, highlighting the significant
impact of transition delay on drag reduction.

Table 5.1: NLF0416 Case Conditions.

Flow Conditions
Chord length c 0.609 m
Mach number M∞ 0.1
Reynolds number Re∞ 3.997 · 106
Turbulence Intensity TI∞ 0.0015
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Table 5.2: Aerodynamic Coefficients for the Baseline Geometry.

Angle of Attack α∞ 0.02◦ 2◦

Drag Coefficient CD 5.30 · 10−3 5.80 · 10−3

Friction Drag Coefficient CD,f 4.15 · 10−3 4.31 · 10−3

Pressure Drag Coefficient CD,P 1.15 · 10−3 1.49 · 10−3

Lift Coefficient CL 4.88 · 10−1 7.21 · 10−1

Moment Coefficient CM 1.08 · 10−1 1.10 · 10−1

The pressure and friction distributions along the airfoil blade for α = 0.02◦ and
α = 2◦ are presented in Figures 5.2 and 5.3, respectively.

Figure 5.2: Pressure distribution along the baseline geometry. Cp starts at 1 at the
leading edge, where stagnation occurs, and decreases further along.

Figure 5.3: Friction distribution along the baseline geometry. As the angle of attack
increases, transition begins earlier on the suction side and later on the pressure side.

In the Cp graph, throughout the chord length, the Cp on the pressure side remains
higher than on the suction side, generating lift. For α = 2◦ (red), the gap between
Cp on the pressure side and Cp on the suction side is larger, resulting in increased
lift.
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In the Cf graph, sudden jumps indicate the transition from laminar to turbulent
flow. For α = 0.02◦ transition occurs at approximately 40% of the chord on the
suction side and at approximately 60% on the pressure side. For α = 2◦ transition
begins earlier on the suction side and later on the pressure side.

The friction coefficient in the turbulent regions differs significantly between the two
sides, being nearly twice as high on the suction side, reaching 0.005, compared to
0.0025 on the pressure side post-transition. Thus, delaying transition on the suction
side is considered favorable, as not only more room for delay exist, since transition
occurs earlier, but a transition delay on the suction side results in a more substantial
reduction in total friction than an equal one in the pressure side.

From this point forward, the analysis focuses on the airfoil at an angle of α = 0.02◦.

5.2 Shape Parameterization

The parameterization of the airfoil shape has a dual significance. Initially, it serves as
the introduction of the design variables within stochastic optimization via EASY.
Subsequently, the same design variables can form the basis for the creation of a
database (DBCNN) used to train the CNN to predict the turbulence field µt, re-
placing the numerical solution of the turbulence and transition equations of the
RANS.

To achieve airfoil parameterization, volumetric Non-Uniform Rational B-Splines
(NURBs) were used. Specifically, the box depicted in Figure 5.4 is employed. Red
points are free-to-move, while blue points are fixed. The free points are allowed a
10% range of displacement along the vertical and an 8% range of displacement along
the parallel direction in respect to the chord. Thus, 30 design variables are utilized,
two for each of the 15 control points.

To create the training database, the Latin Hypercube Sampling (LHS) is used.
Using LHS the design space is explored to generate 80 different geometries. The
corresponding flow fields are computed using PUMA to solve the RANS, the SA
and the γ − Reθ,t transition model, to form DBCNN . The 80 airfoils, depicted in
Figure 5.5, surround the baseline geometry denoted in red.

Having access to DBCNN provides insights into the design space of the optimization
algorithm. Figure 5.6 displays the values of the six quantities of interest for all
geometries within the database. The values are sorted from small to large, with
the corresponding value for the baseline geometry denoted in red, and some of the
constraints later imposed on the optimization filled in gray.

As about 20 out of the 80 airfoils have a lower CD than the baseline, it appears
that although the baseline is relatively well-optimized concerning drag, room for
improvement still exists. In regards to CL and CM , the baseline falls right in the
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Figure 5.4: Parameterization of the NLF0416 airfoil. The free-to-move control
points are marked in red and are allowed to move ±10% vertically and ±8% hori-
zontally, within the gray boxes.

Figure 5.5: The 80 airfoil profiles from DBCNN (in black) surrounding the baseline
geometry (in red). The parameterization can create an airfoil profile roughly within
the area in black. This plot is not in scale.

middle, with approximately 40 blades having higher and 40 blades having lower
values. Regarding the transition point on the pressure side, it is evident that prior
optimization has taken place, as fewer than 10 of the 80 geometries transition later
and even then, only slightly. For the suction side, less than half of the geometries
transition later, indicating a potential increase. Regarding the area of the blades,
the baseline occupies a central position, as anticipated, given its role as the baseline
of the NURBs lattice used to generate the other geometries. Simultaneously, the
smaller blade is no more than 5% smaller than the baseline, affirming that the
parameterization can only produce blades within the area constraints.

The possible inputs to the CNN include geometrical information, nodal coordinates
xk = (x, y) and wall distances Wd as well as flow data, the density field ρ, the
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Figure 5.6: Distribution of quantities of interest in DBCNN . For each plot the
database is sorted based on the specific quantity plotted. As a result, there is no direct
correspondence between the plots based on the geometry number.

pressure field P , the velocity vector field uk = (u, v). The strain rate S and the
vorticity magnitude Ω are also included, acknowledging their significance in turbu-
lence modeling. While these last two quantities, related to the gradients of the flow
data, can be directed produced from the flow fields, including them aims to provide
valuable intel to the CNN, to understand the underlying physics faster. It should
be emphasized that the CNN operates on entire fields, using the complete flow and
geometrical fields across the entire grid as inputs and producing the µt field as out-
put. This approach contrasts with DNNs that operate on an element-wise basis,
receiving values for individual nodes and returning the corresponding µt value for
each node separately.

Table 5.3: Pool of inputs and output of the CNN.

Inputs Output
•Nodal coordinates xk •Turbulent Viscosity µt

•Density ρ
•Pressure P
•Velocity vector uk

•Vorticity Ω
•Wall distance Wd

•Strain Rate S

It is a standard practice to scale the input and output quantities before provid-
ing them to any artificial network. Given that different input parameters operate
at different scales, combining them effectively can prove challenging unless scaling
precedes. Scaling also plays a role in safeguarding against issues like vanishing or
exploding gradients during the training phase.
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Min-Max scaling (Equation 5.1) was chosen to scale the inputs and the output, as it
is simple, efficient and preserves the original relative relationships, unlike standard-
ization which distorts the inputs. This scaling method linearly adjusts data to a
range of 0 to 1, in contrast to standardization, which transforms data into a normal
distribution centered around 0 with a standard deviation of 1.

x =
X −Qmin

Qmax −Qmin

(5.1)

Here, Qmin and Qmax represent the minimum and maximum values of the input
fields Q present on DBCNN .

5.3 CNN configuration

The CNN was developed using python’s TensorFlow [1], a tensor manipulation
framework with a focus in Deep Learning. The CNN will be trained to predict
the µt field, based on the available from the solution of the RANS flow fields and
the geometrical data.

Due to its numerous parameters the number of distinct CNN architectures is prac-
tically limitless, therefore, to navigate the realm of possible architectures, certain
assumptions were made:

1. The number of channels at any hidden layer should be a power of 2.

2. The number of channels at a given hidden layer is either double (during ex-
pansion) or half (during compression) that of the previous layer.

3. All convolutions are performed using a uniform kernel size.

4. All layers follow the same principal format (Conv-ReLU-BatchNorm)

5.3.1 Preprocessing data from PUMA

As previously mentioned, the mesh utilized in this study adopts a C-type structured
configuration, comprising quadrilateral elements. A structured mesh is logically
rectangular [47], exhibiting a grid-like pattern and can be conveniently represented
through a (i, j) annotation (or (i, j, k) in three dimensions). Although PUMA treats
the mesh as unstructured, the structured representation is required for the CNN to
operate, as it can then consider the mesh as an image, where each node corresponds
to a pixel. The mesh is formed by 97 iso-η lines along the stream-wise direction
and 705 iso-ξ lines along the span-wise direction. Therefore the input tensor for the
CNN takes the form of a (97, 705, c) tensor, where c is the number of utilized flow
fields.
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Figure 5.7 illustrates an example C-type mesh surrounding the NLF0416 airfoil and
the equivalent rectangular mesh in the ξ − η coordinate system. Green highlights
the split-line, blue represents the outflow, gray corresponds to the airfoil, and red
signifies the far-boundary. Iso-ξ lines are dashed, and iso-η lines are continuous.

Figure 5.7: C-type mesh around the NLF0416 airfoil in the physical (x− y) and the
computational (ξ − η) system. Green: split-line, Blue: outflow, Gray: airfoil, Red:
far-boundary. Dashed lines: Iso-ξ, Continuous lines: Iso-η.

This transformation converts every node in the physical x − y coordinate system
to another in the computational ξ − η system and is applicable to any flow field to
create the equivalent rectangular representation. Figure 5.8 displays the pressure
field in both domains. In the ξ − η system, moving from left to right, increased
pressure occurs at the trailing edge of the pressure side, with a slightly decreased
pressure following on the rest of the pressure side. The maximum pressure occurs
at the leading edge, while the minimum pressure is observed over the entire suction
side, followed by pressure recovery afterward.

The same transformation is applied to the µt field as seen in Figure 5.9.

Transforming all nine potential input fields and the output field, as illustrated in
Figure 5.10, clarifies the CNN’s objective: to predict the turbulent viscosity across
the entire mesh at once, leveraging the nine available flow and geometrical fields.

5.3.2 Kernel size comparison

This analysis investigates the impact of varied kernel sizes—1, 3, 5, and 7—within
two consistent CNN architectures of different depth. Figure 5.11 illustrates one of
them, reaching a depth of 128 channels on the fourth hidden layer. The core elements
of the CNN (activation functions, batch normalization etc.) remain uniform, while
the training method remains consistent, to ensure a fair comparison.
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Figure 5.8: Pressure field transformation between physical and computational do-
mains.

Figure 5.9: Turbulent viscosity field transformation between physical and computa-
tional domains.

Figure 5.12 illustrates how kernel sizes of 1, 3 and 5 operate on a matrix. A kernel
with a size of 1 considers only the corresponding input value, not allowing inter-pixel
communication. Kernels of size 3 and 5 incorporate neighboring input values in a
square region around the reference element. For a 3×3 kernel, the central element
and its 8 nearest neighbors contribute to the output, while a 5×5 kernel involves
the central element and its 24 nearest neighboring elements.

The use of a 1 × 1 kernel presents a unique case, as it does not allow for inter-
pixel communication, essentially functioning like a DNN being applied to each mesh
element separately. This equivalent DNN, containing nodes instead of channels and
receiving/providing values instead of fields, with the same architecture is also tested.

Figure 5.13 illustrates the training progress for the different model configurations.
The increase in kernel size from 1 to 3 exhibits notable reductions in both training
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Figure 5.10: Input and output fields for the CNN.
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Figure 5.11: One of the standardized architectures used for all 4 configurations.
Studying the influence of a certain parameter in isolation from all others is crucial in
research and development.

and validation losses. However, further increases to 5 and 7 yield marginal improve-
ments in training loss, but noisier validation losses. Additionally, the deeper network
model demonstrates slightly smaller losses overall.
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Figure 5.12: Kernel sizes of 1, 3 and 5 operating on a matrix. Each element in a
layer is computed by applying the kernel to the corresponding region around it, (red
area) in the previous layer.

Figure 5.13: Training losses across kernel sizes. Increases from 1 to 3 kernels show
notable decreases in losses, but further increases to 5 and 7 exhibit minor improve-
ments.

Comparing the DNN and the CNN using 1×1 kernels, it is evident that they follow
similar but not identical loss curves. Given their shared architecture, the differences
observed can be attributed to variations in initialization, batch partitioning, and
other related training nuances.
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Figure 5.14 presents the relationship between free weights and training times across
various configurations. The number of parameters grows quadratically concerning
kernel size, while training time exhibits a more exponential increase.

Notably, the CNN with a 1× 1 kernel and the DNN exhibit different training times,
with the former being trained approximately 30% faster. This can only be attributed
to inherent differences in computational efficiency, including diverse performance
characteristics in matrix multiplication and GPU utilization, between the DNN and
the CNN architecture.

Figure 5.14: Number of free weights and training times. Number of free weights grows
quadratically with kernel size, while training time exhibits an exponential increase. The
CNN with a 1 × 1 kernel requires 30% less training time compared to the equipotent
DNN.

Table 5.4 provides detailed metrics, showcasing the resulting losses, the free weights,
and the training times for the CNN models utilizing different kernel sizes.

Table 5.4: Losses, number of free weights and training times for CNNs using different
kernel sizes.

Model CNN128 CNN256

Kernel
Size

Losses Free
Weights

Time
per
epoch

Losses Free
Weights

Time
per
epoch

1 3.18/5.47 23k 0.98 2.49/5.22 91k 1.62
3 1.70/3.32 198k 1.48 1.29/3.06 789k 3.30
5 1.27/3.33 546k 5.10 1.24/3.31 2.2m 13.3
7 1.27/2.71 1,07m 7.69 1.55/2.91 4.3m 24.0

Model DNN128 DNN256

4.13/4.10 23k 1.34 3.58/3.47 91k 2.45
Corresponds to Kernel Size 1 in CNN
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5.3.3 Final Architecture

Based on the insights from subsection 5.3.2 the kernel size of the CNN is 3. This
combined with the assumptions made earlier, narrowed down the possible architec-
tures. Through trial and error the final architecture was derived, as described in
Table 5.5.

Table 5.5: Training and Architecture Parameters.

Architecture
Inputs x, y, ρ, u, v,Ω, S,Wd

Hidden layers 12
Channels per layer 16 - 32 - 64 - 128 - 256 -

512 - 256 - 128 - 64 - 32 - 16 - 8
Kernels 3× 3
Activation, Padding, BatchNorm ReLU, Zero, Yes

Training Parameters
Loss Function Mean Absolute Error
Optimizer Adam
Learning Rate 1e-4
Batch Size Dynamic (1 to 5)
Validation Split 10%

The CNN was trained using the 80 geometries in DBCNN in three steps, incorporat-
ing progressively larger batch sizes. As suggested by recent studies [42], an increased
batch size can have a similar effect to lower learning rates, potentially aiding in the
model’s generalization capabilities.

In Figure 5.15, the progression of the training loss across the three training steps
is visually depicted. The first 500 epochs utilized a batch size of 1, followed by the
next 500 epochs with a batch size of 3, and the final 300 epochs with a batch size of
5. Larger batch sizes were unattainable due to memory limitations. The observation
reveals that after increasing the batch size, the gap between validation and training
losses decreased. The transition from a batch size of 3 to 5 did not bring about
dramatic changes, but the curves became less noisy.

Evaluating CNN performance traditionally involves comparing its output with ac-
tual values over a test set. However, in this scenario, accurately predicting only the
µt field isn’t sufficient. With the CNN integrating with PUMA for shape optimiza-
tion, ensuring the generalization performance of the entire system (PUMA-CNN),
that solves the RANS using PUMA and produces µt using the trained CNN, becomes
crucial.

Evaluating the performance on the baseline geometry is critical, as it not only rep-
resents the midpoint of the Latin Hypercube Sampling, but also serves in the ini-
tialization of the optimization algorithm. PUMA-CNN predicted a CD 5.4% lower
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Figure 5.15: Progression of training loss across three training steps with increasing
batch sizes. The training was performed on a GeForce RTX 2070 GPU with the total
cost amounting to approximately 3.5h.

than the actual and CL and CM 1.4% and 1.1% higher. The actual coefficients and
the errors can be seen on Table 5.6.

Table 5.6: Comparison of Drag, Lift, and Moment coefficients: PUMA-CNN vs
PUMA-TM.

Metric PUMA-CNN PUMA-TM Relative Error

Drag 0.00503 0.00532 −5.4%
Lift 0.49537 0.48821 +1.4%
Moment 0.10947 0.10833 +1.1%

Figure 5.16 illustrates the µt field surrounding the baseline airfoil, as computed by
both PUMA-TM and PUMA-CNN, along with the errors between the two evalua-
tions. No errors are apparent on the suction side, while some error appears on the
pressure side. The most significant differences accumulate in the wake region behind
the airfoil.

Recognizing that performance on a single geometry might not suffice, a set of 9
additional geometries was generated similarly to how DBCNN was formed. For these
geometries, the prediction errors in CD and the discrepancies between produced and
actual Cf curves were assessed. In Figure 5.17 the actual and predicted values of
drag are compared for the 9 geometries. PUMA-CNN consistently underestimates
drag by an average of 5.5%.
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Figure 5.16: Comparison of µt field between PUMA-TM (top) and PUMA-CNN
(middle), highlighting the differences (bottom).

In evolutionary optimization, the ranking of solutions is more important than the
actual values, thus showing how well PUMA-CNN ranks the potential solutions is
equally or more important. Figure 5.18 presents the ranking comparison between
PUMA-TM and PUMA-CNN. Figures 5.19 and 5.20 depict the Cf distributions
produced by PUMA-TM (in red) and PUMA-CNN (in blue).

For the suction side (Figure 5.19), the point of transition is accurately predicted
in all but one geometry. Before transition, in the laminar area, the error between
predicted and actual Cf is minimal, while after transition PUMA-CNN struggles
more as it produces an oscillating curve, a token of the more complex turbulent
physics.

For the pressure side (Figure 5.20), although transition is predicted earlier using the
CNN, both in the laminar and in the turbulent area the Cf values are accurately
predicted by the CNN.

5.4 Shape Optimization

The shape optimization utilized MAEA-based optimization via EASY. Two opti-
mizations with distinct objectives were conducted: one aimed at minimizing drag,
while the other focused on maximizing the laminar area, by maximizing the distance
between the leading edge and the transition point on the suction side (TPSS). The
latter served as a surrogate objective for the evolutionary algorithm, acting as a
proxy for the primary goal of reducing drag.
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Figure 5.17: PUMA-CNN underestimates the drag for all test geometries. The Mean
Relative Error is 5.52% over the 9 geometries.

Figure 5.18: Comparison of solution rankings between PUMA-TM and PUMA-CNN.
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Figure 5.19: Comparison of Cf over the suction side for the 9 test geometries.
PUMA-CNN in blue vs PUMA-TM in red.

Figure 5.20: Comparison of Cf over the pressure side for the 9 test geometries.
PUMA-CNN in blue vs PUMA-TM in red.

Each of the two optimizations will be performed using, two different evaluation soft-
ware, the original PUMA-TM and the AI-driven PUMA-CNN, which has a lower
computational cost. So, in total, the 4 optimization schemes of Table 5.7 are con-
ducted.

Table 5.7: The 4 optimization schemes.

Objective Using TM Using CNN
Min. Drag PUMA-TM-DRAG PUMA-CNN-DRAG
Max. Lam. Area PUMA-TM-TRANS PUMA-CNN-TRANS

The same settings are imposed on EASY for all 4 schemes as described in Table 5.8.
As for the constraints, retaining approximately the moment and at least the lift of
the reference airfoil was imposed; next to them, an additional inequality constraint
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was to not reduce the area of the airfoil below 90%.

As presented in Section 5.2, in the 80 patterns the CNN was trained on, approxi-
mately 25% of them displayed a lower CD value than the baseline. However, when
considering all the imposed constraints (moment, lift, and area), only 4 of the train-
ing patterns (5% of the total) actually outperformed the baseline, and these improve-
ments were marginal, with CD values no more than 2% lower than the reference.
Therefore, employing an EA to optimize the airfoil becomes necessary to achieve
substantial improvement.

Table 5.8: Settings and Constraints for the evolutionary algorithm.

Settings
Coding Real
Parents 10
Offspring 24
Number of Elites 5
Principal Component Analysis (PCA) Yes

Meta-Model Assistance — Inexact Pre-Evaluation
Type RBF IFs
Minimum DB entries to start 50
Minimum not failed DB entries 30
Patterns for training 35− 55
Exact evals. per generation 2− 3
Extrapolate prediction No
Non-dimensionalize prediction Yes
Idle generations for IPE pause 5

Constraints
CM ≥ CM,base − 0.04, CM ≤ CM,base + 0.04
CL ≥ CL,base

A ≥ 0.9 · Abase

TP-Specific Constraints
TPPS ≥ 0.32m

Objective Function
max. TPSS to maximize the laminar area
min. CD to minimize drag

5.4.1 Optimization with the PUMA-TM software

The PUMA-TM software handles the complete set of RANS equations: the 4 mean
flow equations, 1 turbulence equation, and 2 transition model equations. Each
evaluation using PUMA-TM is referred to as a Time Unit (TU). Both optimization
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schemes, PUMA-TM-DRAG, and PUMA-TM-TRANS terminate after reaching 500
TUs.

Figure 5.21 illustrates the evolution of various quantities across the two optimiza-
tion schemes. Blue indicates optimization aimed at delaying transition, while red
indicates optimization focusing on drag reduction. All data points respect the set
of constraints. Both optimizations achieve a substantial reduction in drag, with
PUMA-TM-DRAG exhibiting a slight advantage. Interestingly, despite no incen-
tive for PUMA-TM-DRAG to increase TPSS, it is increased by the same amount as
the transition-focused PUMA-TM-TRANS.

Figure 5.21: Evolution of relevant metrics throughout the optimization using PUMA-
TM. Drag is reduced and transition is delayed on the suction side. Lift and area respect
the set of constraints. An optimization aimed at delaying transition on the pressure
side (green) shows decreased performance.

In the same plot, an optimization aimed at delaying transition on the pressure side,
instead of the suction side, is also included in green. This optimization achieved no
decrease in CD despite increasing the laminar area on the pressure side by approx-
imately 5% of the chord. This is because the transition point on the suction side
moved closer to the leading edge, so any decrease in CD,f on the pressure side was
offset by an increase in CD,f on the suction side.

Elitism within the evolutionary algorithm enforces a monotonic evolution of the
goal quantity. In the PUMA-TM-DRAG scheme, a consistent decrease in CD is
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anticipated, while the PUMA-TM-TRANS scheme is expected to exhibit a constant
increase in TPSS. Despite these expectations, both CD and TPSS evolve almost
monotonically for both schemes. Reductions in drag appear to be accompanied by
delayed transition.

Exploring these behaviors involved generating normalized plots for CD and TPSS,
where both quantities decreases, as −TPSS is plotted. Figure 5.22 illustrates the
hand to hand evolution of the two quantities.

Figure 5.22: Progression of CD and TPSS.

The scatter plot of CD against TPSS, as depicted in Figure 5.23, was created, and
linear regression was performed. The results highlight a linear relationship (R2 >
0.9) between the two quantities for both optimization schemes. This encourages the
idea that TPSS can indeed work as a proxy to reduce drag.

Figure 5.24 shows the Cf distribution for the best solutions compared to the baseline.
Both optimized geometries experience delayed transition on the suction side. How-
ever, on the pressure side, only PUMA-TM-DRAG achieves a later transition. It’s
worth reminding that the transition point on the pressure side holds less influence
on drag, as explained earlier.

Figure 5.25 displays the profiles of the three airfoils. PUMA-TM-TRANS barely
alters the pressure side, retaining it nearly identical to the baseline, aligning with
its objective to delay transition solely on the suction side. Conversely, PUMA-TM-
DRAG appears to refine the airfoil by thinning the pressure side. Both schemes
expand the suction side, particularly in the middle section.

5.4.2 Optimization with the PUMA-CNN software

The purpose of implementing PUMA-CNN is to reduce the computational cost. Un-
like PUMA-TM, which requires solving three additional differential equations (one
for turbulence and two for transition modeling), PUMA-CNN utilizes a convolu-
tional neural network (CNN) to calculate turbulence µt.
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Figure 5.23: Correlation between CD and TPSS values for all generations. A cor-
relation coefficient above 0.9 proves a linear relationship between the two variables
across both schemes.

Figure 5.24: Friction coefficient along the baseline and the optimized blades. Transi-
tion is delayed significantly in the suction side of both optimized blades. The pressure
side of the blade produced by PUMA-TM-TRANS, transitions earlier than the baseline
and the blade produced by PUMA-TM-DRAG.

PUMA-CNN demonstrates computational efficiency by completing an evaluation
in approximately 5.5 minutes, which is only 63% of the required by PUMA-TM 9
minutes. This aligns with the expected improvement, given the reduction in the
number of differential equations solved, from 7 to 4 (4/7 = 57%).

Certainly, this efficiency gain comes with costs. The CNN underwent training on
a dataset consisting of 80 airfoils and was further validated with an additional 10,
all solved by PUMA-TM. The training of the network took a total of 3 hours and
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Figure 5.25: The profile of the optimized blades in comparison to the baseline. Both
optimized blades have a ”bloated” suction side. PUMA-TM-DRAG thinned the pres-
sure side, while PUMA-TM-TRANS barely changed it at all. This plot is not in scale.

18 minutes, equating to 22 PUMA-TM evaluations. Therefore any optimization
using PUMA-CNN starts with a capital cost of 112 TUs. Table 5.9 summarizes the
computational costs of the two softwares.

Table 5.9: Computational costs for PUMA-TM and PUMA-CNN.

Software Cost for DB Cost to train Cost per run
PUMA-TM 0 0 1 TU = 8m 55s
PUMA-CNN 90TUs 3h 18m 5m 36s
CNN/CFD 90TUs 22TUs 0.63TUs

Maximizing Laminar Area

PUMA-CNN-TRANS is called to delay transition on the suction side, maximizing
the laminar area. The scheme ran for 500 evaluations using PUMA-CNN, reaching
a cost of 427TUs, including the training cost settled at 112 TUs.

The optimization progress is presented in Figure 5.26, in comparison with the equiv-
alent optimization using PUMA-TM. During the optimization, four solutions of the
AI driven PUMA-CNN were reevaluated using PUMA-TM, to guarantee that no
large errors appear. The drag was underestimated by approximately 5% through-
out the evolution, as anticipated based on validation results. TPSS was predicted
accurately for all but the final solution, where PUMA-TM unveiled an even later
transition.

The optimized airfoil created by PUMA-CNN outperformed that of PUMA-TM and
was reached 15% faster, utilizing 75 fewer TUs, over the course of the optimization.
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Figure 5.26: Optimization progress for maximizing laminar area using PUMA-CNN-
TRANS compared to PUMA-TM-TRANS. PUMA-CNN-TRANS achieved later tran-
sition (goal) and lower drag coefficient. All data points respect the set of constraints.

Minimizing Drag

PUMA-CNN-DRAG in employed to minimize CD, in contrast to PUMA-CNN-
TRANS that was used to maximize TPSS. The scheme run for 500 evaluations
using PUMA-CNN, to cost a total of 427TUs.

The optimization progress (if no retraining was planned) is presented in Figure
5.27. Unfortunately, the prediction errors of PUMA-CNN grew significantly, reach-
ing 10%. Despite that, thanks to the regular re-evaluations of the best-so-far solu-
tions, the increase in errors was detected as early as 6 generations in, at approxi-
mately 170 TUs (including training costs). Therefore, the optimization was halted,
and retraining was performed. An optimization branch where no retraining is per-
formed is also presented, to highlight the profit gained from halting, retraining and
restarting the optimization. This branch, as presented in Figure 5.27 reaches an
optimized airfoil with a CD of 0.00502, 5.2% lower than the baseline.

The objective of the retraining procedure starting at 170 TUs is to enhance the
performance of PUMA-CNN over the five best candidate geometries.The original
CNN tested over these five best canditate geometries (at 170 TUs) exhibited a
Mean Absolute Relative Error of 10.9%.

To assess whether it was just a matter of insufficient training on the original dataset,
the CNN was initially retrained for an additional 300 epochs using the original train-
ing method over DBCNN without including the five new geometries, something that
did not bring any improvement. Afterwards, an alternative approach was tested,
where the CNN was retrained on the original dataset for 300 epochs, but using
MAPE as the loss function over MAE. This approach, led to a decrease in the av-
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Figure 5.27: Optimization progress for minimizing drag using PUMA-CNN-DRAG
compared to PUMA-TM-DRAG. All data points respect the set of constraints.

erage error over five geometries to 3.7%, despite not conducting actual training on
them.

Following this, a second retraining was performed, this time including the five new
geometries, using MAPE as the loss function. Unlike many approaches that rely
on database enrichment for retraining, here the network was trained solely on the
new geometries, to limit computational cost. To ensure that the network does not
deviate significantly from the weights that initially showed good performance over
the original database, a very low training learning rate (1e-7), compared to the
original (1e-4) was used. 1500 epochs were performed and the error over the new
geometries was reduced to 2.1%.

The error for each geometry, for the original and the models produced after the first
and second stages of the retraining are presented in Figure 5.28.

The total cost of retraining amounts to just less than 10TUs. The cost of gener-
ating the five geometries, was not considered, as they were produced during the
optimization, making the solved flow fields readily available.

In Figure 5.29, the optimization progress, with and without retraining is presented,
along with the PUMA-TM-DRAG scheme. The results highlight the improvement
achieved through the retraining process, as the retrained branch finds a solution on
par with the one PUMA-TM reached.

5.4.3 Comparison of the 4 optimization schemes

This section goes into a detailed analysis of the performance exhibited by the baseline
and the five optimized airfoils. The key metrics include the two objectives, CD and
TPSS.

In Figure 5.30, the CD and TPSS values for each optimized airfoil are presented
in comparison to the baseline results. Reductions in drag, ranging from 5.2% to
9.6%, and delays in transition by 10% to 21%, are observed. PUMA-CNN-TRANS
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Figure 5.28: Error comparison for each geometry during the retraining stages.

Figure 5.29: Optimization progress for minimizing drag using PUMA-CNN-DRAG-
Retrained compared PUMA-CNN-DRAG and PUMA-TM-DRAG.
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emerges as the top-performing scheme, both in minimizing drag and maximizing
laminar area. The comparison is more than fair, as PUMA-CNN-TRANS required
427 TUs to finish the optimization, in comparison to 490 TUs for PUMA-CNN-
DRAG and 500 TUs for the PUMA-TM optimizations.

Figure 5.30: Comparison of CD and TPSS for each optimized airfoil relative to the
baseline. Significant reductions in drag and delays in transition are evident. PUMA-
CNN-TRANS demonstrates superior performance.

In Figure 5.31 the drag components are deconstructed in bar charts. All optimiza-
tion schemes successfully reduced both friction and pressure drag. Friction Drag
witnessed reductions of up to 0.4 · 10−3 for PUMA-CNN-TRANS and pressure drag
was reduced by a maximum of 0.14 · 10−3 for PUMA-TM-DRAG. This chart also
highlights the big percentage of friction drag in the total drag (around 80%), and
therefore the importance of delaying transition to reduce drag.

Figure 5.32 depicts the best airfoil, generated by optimization using PUMA-CNN
with the objective of maximizing laminar area, and the baseline airfoil. The Cf

curves for both the pressure and suction sides are also presented. The optimized
airfoil appears thicker after the midpoint on both sides, and the start of the suction
side is noticeably thinner. Additionally, transition is delayed on both sides, with a
more pronounced delay on the suction side, aligning with the optimization objective.

Figure 5.33 presents the intermittency γ contours for the baseline (top) and the
optimized airfoil (bottom). Yellow represents a γ value near 1, indicating turbulent
flow, while purple and blue hues indicate laminar and transitional flow. Yellow
regions dominate the contour, indicating that the flow is turbulent everywhere except
in the boundary layer just above the airfoil, where the flow remains laminar before
transition. It can be observed that the optimized geometry achieves a later transition
compared to the baseline geometry, as was the goal of the optimization.

In Figure 5.34, the pressure contours are shown. The pressure distribution just
above the suction side has changed, with the area of minimum pressure decreasing
in height but increasing in length. The pressure distribution on the pressure side
and at the leading and trailing edges remains largely unchanged.
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Figure 5.31: Breakdown of drag components for all optimization schemes. Both
friction and pressure drag were reduced in all schemes.

Figure 5.32: Comparison between the geometries and the Cf curves of the best and
the original airfoils. The optimized geometry appears thicker after the midpoint on
both sides and thinner at the start of the suction side. Transition is delayed on both
sides, more notably on the suction side.

5.5 Optimization with different RNG

5.5.1 PUMA-TM

To assess whether maximizing the laminar area can reliably surrogate minimizing
drag, the optimization experiments were repeated using different random number
generator (RNG) seeds for the EASY algorithm. The original optimization with
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Figure 5.33: Intermittency γ contours for the baseline (top) and optimized (bottom)
airfoils. Yellow (γ ≈ 1) indicates turbulent flow, while purple and blue ( γ < 1) indi-
cate laminar and transitional flow. The optimized geometry shows a delayed transition
compared to the baseline, on the suction side.

Figure 5.34: Pressure contours for the baseline (top) and optimized (bottom) airfoils.
The suction side shows a change in pressure distribution, with a decreased height and
increased length of the minimum pressure area. The pressure side and the leading and
trailing edges remain largely unchanged.

RNG1 was compared against two additional runs, RNG2 and RNG3 using both the
|max.TPSS| and the |min.CD| objective functions.

Figure 5.35 illustrates the progress of drag (CD) and transition point (TPSS) for the
three RNGs. The blue line represents the original RNG1, while the red and green
lines correspond to RNG2 and RNG3, respectively. The top part of the Figure shows
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the evolution of CD, while the bottom part illustrates TPSS. The left side contains
the |max.TPSS| schemes, while the right side the |min.CD| schemes.

It is evident that RNG1 yielded sub-optimal solutions for both goals, drag and
transition, as both RNG2 and RNG3 outperformed it. Comparing based on CD,
setting the objective function to |max.TPSS| proved superior. Although it reached
a slightly worse solution in the RNG1 run, for RNG2, it achieved a significantly
better solution and performed equally well for RNG3.

Interestingly, the evolution of TPSS using the drag-focused scheme for all RNGs is
almost monotonic. The clear elitism in the evolution of CD is also evident in TPSS,
confirming that drag reduction is typically accompanied by transition delay.

Figure 5.35: Evolution of CD and TPSS for different RNGs. Using |max.TPSS|
as the objective function (left) leads to better solutions than using |min.CD| (right).
Final CD (top) is lower for RNG2, RNG3 and slightly worse for RNG1. As for TPSS

(bottom) using it as the goal leads to a later transition for all 3 RNG runs.

In Figure 5.36, the same optimizations are presented separately based on the RNG
run. The top part shows CD, and the bottom part shows TPSS. The plots are
arranged from left to right, representing RNG1 to RNG3. Continuous lines denote
|max.TPSS|, while dashed lines represent |min.CD|. For RNG1 the best solution
for both CD and TPSS in the initial population coincides, so the same second gen-
eration is produced. The elite on the second generation is also shared, but for the
third generation a better individual is produced in the |max.TPSS| scheme. For
the RNG2, even from the random initialization the elites differ. Interestingly in
RNG3, the elite selection returns the same individual for the 8 first generations, and
only after 87 evaluations the evolution plots start to diverge, as an elite that is not
best in both CD and TPSS is produced.

In Figure 5.37 the correlation between CD and TPSS is further validated. Both
quantities are normalized using the minimum and maximum values observed in all 3
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Figure 5.36: Optimization results for different RNGs. Maximizing TPSS (con-
tinuous) proves superior to minimizing CD (dashed). For RNG1 (left) |min.CD|
achieves an 8.7% reduction compared to 7.4% from |max.TPSS|. For RNG2 (mid-
dle) |max.TPSS| outperforms, reaching a 13% reduction compared to 9.6%. For
RNG3 (right) both schemes produce a 12.5% reduction.

RNG runs. The x axis represents the normalized CD and the y axis the normalized
TPSS. The data points for the elites of all generations are linearly fitted. For
all six optimizations strong linear behavior is observed. The |min.CD| oriented
optimizations (bottom) present a higher correlation than the |max.TPSS| runs
(top).

Figure 5.37: Scatter plot showing the correlation between normalized CD and TPSS

for different RNGs and objective functions. Top: |max.TPSS|, Bottom: |min.CD|.

Additionally, the resulting flow coefficients and transition points for the three RNGs
and both schemes are summarized in Table 5.10.
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Table 5.10: Flow coefficients and points of transition for best solutions for all dif-
ferent RNGs and objective functions.

RNG Goal CD CL CM TPSS TPPS

1 ↑ TPSS 4.90 4.91 1.06 0.452 0.593
1 ↓ CD 4.83 4.90 1.04 0.456 0.608
2 ↑ TPSS 4.60 4.99 1.09 0.501 0.623
2 ↓ CD 4.78 4.96 1.04 0.462 0.612
3 ↑ TPSS 4.62 4.94 1.10 0.503 0.609
3 ↓ CD 4.63 4.91 1.04 0.496 0.614

In conclusion, this analysis suggests that using transition delay as a surrogate goal
for drag reduction, within a shape optimization, can lead to equal or even superior
solutions in terms of drag minimization.

5.5.2 PUMA-CNN

To ensure that PUMA-CNN can reliably perform as an evaluation tool for an opti-
mization using EASY, the same numerical experiments were repeated using PUMA-
CNN.

In Figure 5.38, the three optimizations with CD as the objective functions are pre-
sented, along with the reevaluations using PUMA-TM. In Figure 5.39, the three
optimizations with TPSS as the objective are presented, along with the reevalua-
tions using PUMA-TM. Finally, in Table 5.11, the resulting CD and TPSS values
are presented for all optimizations, with the three different RNG values, using both
PUMA-TM and PUMA-CNN as the evaluation software and with the goal function
being either CD or TPSS.

Figure 5.38: Comparative analysis of optimizations with CD as the objective func-
tion, re-evaluated using PUMA-TM.
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Figure 5.39: Comparative analysis of optimizations with TPSS as the objective func-
tion, re-evaluated using PUMA-TM.

Table 5.11: Flow coefficients and points of transition for best solutions for all dif-
ferent RNGs and objective functions, using both PUMA-TM and PUMA-CNN.

PUMA-TM PUMA-CNN
RNG Goal CD TPSS CD TPSS

1 ↑ TPSS 4.90 0.452 4.79 0.475
1 ↓ CD 4.83 0.456 4.89 0.457
2 ↑ TPSS 4.60 0.501 4.79 0.472
2 ↓ CD 4.78 0.462 4.78 0.469
3 ↑ TPSS 4.62 0.503 4.74 0.478
3 ↓ CD 4.63 0.496 4.61 0.502

5.6 Conclusions

The findings of this analysis can be summarized in the following.

• CNNs can be used as turbulence closures to replace the Spalart-Allmaras tur-
bulence and the γ−Reθ,t transition model effectively, reducing the evaluation
time by approximately 40%, during a shape optimization of the NLF0416 air-
foil. In cases where no retraining was required, PUMA-CNN completed 500
evaluations in approximately 425 TUs which is 15% less than the budget of 500
evaluations allowed for PUMA-TM-based optimizations, including the costs of
initial training and database generation. Notably, the best-performing airfoil
(9.6% drag reduction) was produced by a PUMA-CNN-based optimization,
demonstrating that this method can yield superior results at a lower compu-
tational cost.

• CNNs incorporating information from neighboring mesh elements showed im-
proved accuracy in predicting µt compared to DNNs that work in an element-
wise manner. The use of 3×3 kernels in CNNs enabled effective inter-element
communication, halving the training loss compared to equivalent DNNs while
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only marginally increasing training time.

• Larger kernel sizes (5× 5 and 7× 7) do not provide the expected performance
gains relative to 3× 3 kernels. The disproportionate increase in training time
outweighs minor improvements in accuracy, making 3 × 3 kernels the best
choice.

• Implementing regular re-evaluations using PUMA-TM during PUMA-CNN-
driven optimizations enables early detection of increasing errors, allowing for
targeted retraining on best-so-far solutions. This restores the CNN perfor-
mance allowing the optimization to proceed effectively.

• When using PUMA-TM across three RNG seeds, having TPSS as the objective
function consistently yielded equal or superior results in terms of both CD and
TPSS. This suggests that maximizing TPSS can serve not only as an effective
surrogate for minimizing CD, but potentially as a superior objective function,
capable of discovering even better solutions.
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Chapter 6

The S8052 Isolated Airfoil

6.1 The S8052 Airfoil Case

The S8052 is an airfoil, developed and tested by the University of Illinois at Urbana
Champaign Low-Speed Airfoil Tests (UIUC LSATs) team, as part of their endeavor
to achieve performance improvements in airfoils used on powered remote control
aircraft [28].

The profile of the S8052 can be seen in Figure 6.1, along with the camber line, at
an angle of 2o. The airfoil is modelled using a 705× 97 C-type mesh and the flow is
solved by the PUMA code, that handles the structured grid as an unstructured one,
solving the RANS and 3 additional differential equations from the Spalart-Allmaras
turbulence model and the Piottrowski&Zingg’s Smooth γ − Reθ,t transition model
[33].

Figure 6.1: The S8052 Airfoil.

For this case, the airfoil is simulated under the conditions shown in Table 6.1. The
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initial simulations are conducted for the airfoil on two different angles of attack,
α = 0◦ and α = 2◦, and the resulting coefficients after convergence are presented in
Table 6.2.

The friction drag coefficient CD,f , the drag component accounting for the shear
stresses on the surface of the airfoil, is approximately 80% of the total drag coefficient
CD, highlighting the expected benefit of delaying transition.

Table 6.1: S8052 Case Conditions.

Flow Conditions
Chord length c 1 m
Mach number M∞ 0.1
Reynolds number Re∞ 2.29 · 106
Turbulence Intensity TI 0.005

Table 6.2: Aerodynamic Coefficients for the Baseline Geometry.

Angle of Attack α∞ 0◦ 2◦

Drag Coefficient CD 4.76 · 10−3 5.37 · 10−3

Friction Drag Coefficient CD,f 3.98 · 10−3 4.28 · 10−3

Pressure Drag Coefficient CD,P 0.78 · 10−3 1.09 · 10−3

Lift Coefficient CL 1.72 · 10−1 3.99 · 10−1

Moment Coefficient CM 3.01 · 10−2 3.10 · 10−2

The friction distributions along the airfoil blade for α = 0◦ and α = 2◦ are presented
in Figure 6.2. For α = 0◦ transition occurs at approximately 60% of the chord both
on the suction side and on the pressure side. Increasing the angle to 2o results in
earlier transition on the suction side (approximately 40%) and later transition on
the pressure side (approximately 70%).

Figure 6.2: Friction distribution along the baseline geometry. As the angle of attack
increases, transition begins earlier on the suction side and later on the pressure side.

From this point forward, the analysis focuses on the airfoil at an angle of α = 2◦.
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6.2 Shape Parameterization

NURBS were utilized for airfoil parameterization, employing the box shown in Figure
6.3. Red points are movable, while blue points remain fixed. Movable points have a
10% range vertically and horizontally, resulting in 24 design variables, two for each
of the 12 control points.

Figure 6.3: Parameterization of the S8052 airfoil. The free-to-move control points
are marked in red and are allowed to move ±10% vertically and horizontally. This
plot is not in scale.

Other than introducing the design variables for the optimization, the parameteriza-
tion allow for the creation of the training database for the CNN. LHS explores the
design space and produces 50 unique geometries as displayed in Figure 6.4 surround-
ing the baseline geometry highlighted in red. PUMA is then employed to compute
the corresponding flow fields, solving the RANS, the Spalart-Allmaras turbulence
model, and the γ −Reθ,t transition model, forming DBCNN .

The geometrical and the flow data that are available as CNN inputs are the same
as in the previous case, as presented in Table 5.3. The selected inputs are scaled
before feeding them to the network, to safeguard against challenges arising from the
presence of different scales within the input data.

6.3 CNN Comparison

In this section, starting with a CNN architecture using exclusively size 1 kernels
(C0 in Figure 6.5), the effect of increasing the kernel size of each layer to 3 will be
investigated. For C0, no layer uses a size 3 kernel, meaning no information about
neighboring elements is utilized for prediction. In C1, only the first layer uses a 3×3
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Figure 6.4: The 50 airfoil profiles from DBCNN (in black) surrounding the baseline
geometry (in red). The parameterization can create an airfoil profile roughly within
the area in black. This plot is not in scale.

kernel, with the rest retaining a size of 1. In C2 and C3, the first 2 and the first 3
convolutional layers respectively employ a 3× 3 kernel.

The CNNs use 8 input fields to produce one output, the µt field. The input fields
are: the nodal coordinates xk and the wall distance Wd, the pressure field P , the
velocity vector field uk, the strain rate S and the vorticity Ω. All four CNNs were
trained using the same configuration on the same 50 training geometries and were
validated on the 10 validation geometries. Figure 6.6 illustrates the training and
validation losses for the four networks.

C0 achieves a training loss of 1.1 · 10−5 and a validation loss of 1.5 · 10−5. On the
other hand, C1, C2, and C3 all reach a training loss of approximately 0.6 ·10−5, while
the validation curve oscillates around 1 · 10−5, with no clear winner among them.

It is evident that using a non-unit kernel has a significant impact even from the first
layer. The networks that contain at least one layer using a 3× 3 kernel, account for
neighboring elements in their predictions, leading to better performance over both
training and validation geometries.

The fact that even C1, a network that includes a 3 × 3 kernel in just first layer,
displays such an immense improvement, suggests that this improvement stems from
the inherent physics of utilizing neighboring information rather than an increase in
representational power coming from a minimal increase in free weights-parameters.

Moreover, using a non-unit kernel in all subsequent layers can be ineffective, con-
sidering increases in training and inference costs.
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Figure 6.5: CNN architectures used for comparison. C0 utilizes only 1 × 1 kernels,
while C1, C2, and C3 progressively incorporate 3× 3 kernels in the initial layers.

Figure 6.6: Training and validation losses for the four CNN architectures.

6.4 CNN Validation

From the four architectures mentioned in the previous section, C3 will be used in
coordination with PUMA to replace the turbulence and transition models, as it
achieved the lowest validation loss.
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As the CNN predicts the µt field, and not the relative to the optimization metrics,
its performance over the µt predictions is not as important as the performance of
the whole PUMA-CNN system, in predicting TPSS and CD.

Comparing the computed by PUMA-CNN baseline flow fields, to the corresponding
of PUMA-TM is of high importance, as the baseline represents a midpoint of the
design space and also an initial solution for the optimization algorithm.

In Figure 6.7, the µt fields surrounding the baseline computed by PUMA-TM and
PUMA-CNN are depicted. Small errors are apparent on the suction side and the
pressure side where separation occurs, while larger errors in the wake region.

Figure 6.7: Comparison of µt field between PUMA-TM (top) and PUMA-CNN (mid-
dle), highlighting the differences (bottom).

As for the flow coefficients, PUMA-CNN overestimates CD by 0.5% and underesti-
mates CL and CM by 1% and 1.2% respectively, as shown on Table 6.3.

Table 6.3: Comparison of Drag, Lift, and Moment coefficients for the baseline:
PUMA-CNN vs PUMA-TM.

Metric PUMA-CNN PUMA-TM Relative Error

Drag 0.00539 0.00537 +0.5%
Lift 0.39543 0.39949 −1.0%
Moment 0.03067 0.03104 −1.2%

To validate the performance of PUMA − CNN in predicting CD and generating
accurate Cf curves, PUMA-CNN was run on the same 10 validation geometries used
during the CNN’s training.
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In Figure 6.8 the actual and predicted values of drag are compared for the 10 ge-
ometries. PUMA-CNN consistently underestimates drag by an average of 3.8%.

Figure 6.8: PUMA-CNN underestimates the drag for all test geometries. The Mean
Relative Error is 3.8% over the 10 geometries.

6.5 Shape Optimization

To optimize the airfoil, two MAEA-based optimizations were conducted, with dis-
tinct objectives: minimizing drag and maximizing laminar area, each using two
evaluation software: the original PUMA-TM and the cost-effective PUMA-CNN.
Thus, a total of four optimization schemes, as shown in Table 6.4, were executed.

Table 6.4: The 4 optimization schemes.

Objective Using TM Using CNN
Min. Drag PUMA-TM-DRAG PUMA-CNN-DRAG
Max. Lam. Area PUMA-TM-TRANS PUMA-CNN-TRANS

All four schemes had the same settings imposed on EASY, as outlined in Table
6.5. Constraints included maintaining the original moment and initial lift, as well
as avoiding excessive reduction in airfoil area.

6.5.1 Optimization with the PUMA-TM software

The PUMA-TM software handles the complete set of RANS equations: the 4 mean
flow equations, 1 turbulence equation, and 2 transition model equations. Each
evaluation using PUMA-TM is referred to as a Time Unit (TU). Both optimization
schemes, PUMA-TM-DRAG, and PUMA-TM-TRANS terminate after reaching 500
TUs.
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Table 6.5: Settings and Constraints for the evolutionary algorithm.

Settings
Coding Real
Parents 10
Offspring 24
Number of Elites 5
Principal Component Analysis (PCA) Yes

Meta-Model Assistance — Inexact Pre-Evaluation
Type RBF IFs
Minimum DB entries to start 50
Minimum not failed DB entries 30
Patterns for training 35− 55
Exact evals. per generation 2− 3
Extrapolate prediction No
Non-dimensionalize prediction Yes
Idle generations for IPE pause 5

Constraints
CM ≥ CM,base − 0.0007, CM ≤ CM,base + 0.0007
CL ≥ CL,base

A ≥ 0.9 · Abase

Objective Function
max. TPSS to maximize the laminar area
min. CD to minimize drag

In Figure 6.9, the evolution of various quantities across the two schemes is depicted.
Blue indicates optimization aimed at delaying transition, while red indicates opti-
mization focusing on drag reduction.

Both optimizations achieved a substantial drag reduction. The best solution from
PUMA-TM-DRAG has a CD equal to 4.79 ·10−3, while that of PUMA-TM-TRANS
reaches 4.80 · 10−3. Therefore a reduction of approximately 11% was made from
both optimizations.

The transition point on the suction side moved from 0.39m on the baseline to 0.49m
on PUMA-TM-TRANS’s best and 0.47 on PUMA-TM-DRAG’s best.

Drag reduction appears to coincide with delayed transition, as highlighted in Figure
6.10. In Figure 6.11, the values of CD and TPSS for all 500 individuals within
the two optimizations are scattered and linear regression is performed. The results
highlight a linear relationship between CD and TPSS encouraging the idea that the
decreasing TPSS can work as a proxy for increasing CD.

Figure 6.12 shows the Cf distribution for the best solutions compared to the baseline.
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Figure 6.9: Evolution of relevant metrics throughout the optimization using PUMA-
TM. Drag is reduced and transition is delayed on the suction side. Lift and area respect
the set of constraints.

Figure 6.10: Progression of CD and TPSS.

Both schemes achieve a substantial delay in transition for the suction side, while
on the pressure side, the transition point is shifted less by PUMA-TM-TRANS and
more by PUMA-TM-DRAG.

Figure 6.13 displays the profiles of the three airfoils. The optimized airfoils generated
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Figure 6.11: Correlation between CD and TPSS values for all 500 individuals.

Figure 6.12: Friction coefficient along the baseline and the optimized blades. Tran-
sition is delayed in both sides of the two optimized airfoils.

by PUMA-TM-DRAG and PUMA-TM-TRANS exhibit remarkably similar suction
sides, with a thicker profile in the middle section and a thinner profile towards
the end, effectively delaying transition. PUMA-TM-DRAG deliberately thins the
pressure side to reduce drag, while PUMA-TM-TRANS, lacking the incentive to
modify the pressure side, barely does so.

6.5.2 Optimization with the PUMA-CNN software

Implementing PUMA-CNN aims to reduce computational costs. Unlike PUMA-TM,
which involves solving three additional differential equations (one for turbulence and
two for transition modeling), PUMA-CNN utilizes a CNN to compute turbulence
µt.

PUMA-CNN is computationally efficient, completing evaluations in around 6 min-
utes, 29% faster than PUMA-TM, which takes 8.5 minutes. However, the CNN un-
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Figure 6.13: Comparison of the optimized airfoil profiles with the baseline. Both op-
timized airfoils exhibit a suction side that is thicker in the middle and thinner towards
the end. While PUMA-TM-DRAG thinned the pressure side, PUMA-TM-TRANS
largely preserved the original shape. This plot is not in scale.

derwent training on a dataset of 50 airfoils and was validated with an additional 10,
all solved by PUMA-TM. Training the network took 2 hours and 5 minutes, equiva-
lent to 14 PUMA-TM evaluations. Therefore, any optimization using PUMA-CNN
incurs a capital cost of 74 TUs. Table 6.6 summarizes the computational costs for
the two softwares.

Table 6.6: Computational costs for PUMA-TM and PUMA-CNN.

Software Cost for DB Cost to train Cost per run
PUMA-TM 0 0 1 TU = 8.5m
PUMA-CNN 60TUs 2h 5m 6m
CNN/CFD 60TUs 14TUs 0.71TUs

Minimizing Drag

PUMA-CNN-DRAG is employed to minimize CD, running for 500 evaluations and
costing a total of 429 TUs. Figure 6.14 shows the optimization progress compared
to the equivalent optimization using PUMA-TM. Throughout the process, several
PUMA-CNN solutions were reevaluated using PUMA-TM to ensure accuracy. The
drag was underestimated by approximately 6%.

PUMA-CNN-DRAG’s final solution was reached in 429 TUs and resulted in an 8.8%
reduction in drag, from 5.37 · 10−3 to 4.90 · 10−3, while PUMA-TM-DRAG achieved
a 10.8% reduction.
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Figure 6.14: Optimization progress for minimizing drag using PUMA-CNN-DRAG
compared to PUMA-TM-DRAG. All data points respect the set of constraints.

Maximizing Laminar Area

Because the performance of PUMA-CNN in predicting TPSS was deemed inadequate
for an optimization where TPSS is the objective, DBCNN was enriched with an
additional 30 geometries and the CNN was retrained. Retraining the network and
generating the new geometries cost an additional 40 TUs. The retrained network
coupled with PUMA (PUMA-CNN-RT) managed to predict TPSS accurately, with
an average error of 3%, as depicted in Figure 6.15.

Figure 6.15: Accuracy of TPSS predictions by PUMA-CNN and by the retrained
PUMA-CNN-RT. All data points respect the set of constraints.

PUMA-CNN-TRANS aims to delay the transition on the suction side, maximizing
the laminar area. Running the optimization for 500 evaluations amounts to a cost
of 469 TUs, accounting a training cost of 114 TUs.

As displayed in Figure 6.16, the algorithm reached the same CD as PUMA-TM-
TRANS but higher TPSS. Transition on suction side occurs on approximately 0.5m,
25% later than on the baseline geometry. Throughout the optimization, CD was
constantly underestimated and TPSS slightly overestimated.
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Figure 6.16: Optimization progress for maximizing laminar area using PUMA-CNN-
TRANS compared to PUMA-TM-TRANS. PUMA-CNN-TRANS achieved later tran-
sition (goal) and lower drag coefficient.

6.5.3 Comparison of the 4 optimization schemes

In this section the baseline airfoil and the four best solutions from the four opti-
mization schemes are compared.

In Figure 6.17, the CD and TPSS values for each optimized airfoil are presented
in comparison to the baseline results. Drag was reduced by 8.8% to 10.9% and
transition was delayed by 19% to 27%.

Figure 6.17: Comparison of CD and TPSS for each optimized airfoil relative to the
baseline. Significant reductions in drag and delays in transition are evident.

In Figure 6.18 the two drag components are plotted. All optimization schemes
successfully reduced both friction and pressure drag. Pressure drag was reduced
from 1.09 · 10−3 for the baseline up to about 0.95 · 10−3 for all optimized airfoils.
Further decreases in total CD stemmed from decreases in the friction component,
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as CD,f in the optimized airfoils ranges from 3.83 · 10−3 to 3.94 · 10−3, compared to
4.28 · 10−3 for the baseline geometry.

Figure 6.18: Breakdown of drag components for all optimization schemes. Both
friction and pressure drag were reduced in all schemes.

The best airfoil in terms of CD was generated in an optimization using CD as the
objective function, with PUMA-TM being the evaluation software. The geometry,
and the Cf curves compared to the baseline are presented in Figure 6.19

Along the suction side, the optimized airfoil is thinner at the beginning, gets thicker
after 40% of the length and thins down again at the end. As for the pressure side,
the start and the end of the remain unchanged with the middle getting thinner.
Transition is delayed on both sides, with a more pronounced delay on the suction
side, where the largest gain in terms of friction drag is made.

Figure 6.19: Comparison between the geometries and the Cf curves of the best and
the original airfoils.

Figure 6.20 presents the intermittency γ contours for the baseline (top) and the

88



optimized airfoil (bottom). Yellow represents a γ value near 1, indicating turbulent
flow, while purple and blue hues indicate laminar and transitional flow. Yellow
regions dominate the contour, indicating that the flow is turbulent everywhere except
in the boundary layer just above the airfoil, where the flow remains laminar before
transition. It can be observed that the optimized geometry achieves a later transition
on both sides as the hues remain darker for longer over the airfoil.

Figure 6.20: Intermittency γ contours for the baseline (top) and optimized (bottom)
airfoils. The optimized geometry retains laminarity (blue hues) for longer, especially
on the suction side.

In Figure 6.21, the pressure contours are shown. The pressure distribution just
above the suction and the pressure side has changed, with the area of minimum
pressure decreasing in height and increasing in length.

Figure 6.21: Pressure contours for the baseline (top) and optimized (bottom) airfoils.
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6.6 Conclusions

The findings of this analysis can be summarized in the following.

• As observed in the NLF0416 case, CNNs can effectively surrogate the Spalart-
Allmaras turbulence and the γ − Reθ,t transition model in a MAEA-based
shape optimization. The evaluation cost was reduced by approximately 30%
for the S8052 case, compared to 40% for the NLF0416 case. This difference
is due to the distinct CNN architectures used, resulting in varying inference
costs.

• The CNN, initially trained on 50 samples, demonstrated good performance
in predicting CD and was successfully used for optimization with CD as the
objective function. However, to achieve comparable performance in TPSS

predictions for an optimization targeting TPSS, the CNN required additional
training on an enriched database of 80 samples. Despite this, both PUMA-
CNN optimizations remained cost-effective: the CD-focused optimization cost
429 TUs, while the TPSS-focused optimization cost 469 TUs, both below the
500 TU budget allowed for the PUMA-TM-driven optimizations.

• Unlike the NLF0416 case, PUMA-TM with CD as the objective produced the
best airfoil in terms of CD. However, PUMA-CNN optimization with TPSS

as the objective achieved a nearly equivalent solution (10.8% vs 10.9% CD

reduction) in 6% less time.

• Consistent with NLF0416 findings, maximizing laminar area by delaying tran-
sition proved an effective surrogate for minimizing drag. A strong correlation
between CD and TPSS was demonstrated, validating this approach across dif-
ferent airfoil types.

• Similar to the first case, using 3 × 3 kernels in the CNN layers provides a
significant performance boost compared to using only 1× 1 kernels. However,
in contrast to the previous case, this study examined whether all layers require
3× 3 kernels. It was found that using 3× 3 kernels only in the first few layers
of the network provides the same performance improvement as using them in
later layers as well, suggesting that early capture of local spatial correlations
is sufficient.
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Chapter 7

Conclusions

7.1 Overview

In this Diploma Thesis, a novel approach was explored to reduce the computational
cost associated with aerodynamic analysis and shape optimization by employing
Convolutional Neural Networks (CNNs) as surrogate models for traditional turbu-
lence and transition models.

The research focused on two low-speed airfoils, the NLF0416 and the S8052, both
exhibiting transitional flow. The two airfoils were subject to a MAEA-based opti-
mization using EASY. Two optimization targets were considered: minimizing the
drag coefficient (CD) and maximizing the laminar area on the suction side of the
airfoil by delaying the transition point (TPSS). Two evaluation software packages
were utilized: PUMA-TM, which solved the RANS equations coupled with the one-
equation Spalart-Allmaras turbulence model and the two-equation Smooth γ−Reθ,t
transition model, and the proposed PUMA-CNN, which employed a trained CNN
to predict the turbulent viscosity field µt, thereby closing the RANS.

The CNNs used by PUMA-CNN were trained to predict µt, using geometrical and
flow fields obtained from the RANS. Training was performed on datasets created by
parameterizing the baseline geometries of the two airfoils, generating new geometries
through LHS and computing the actual flow fields using PUMA-TM. The CNN of
the first case was trained on 80 geometries, while the CNN of the second was trained
on 50.

During the research about the CNN architecture, for the NLF0416 case, the effect
of the kernel size of the convolutional layers was investigated. A CNN using 1 × 1
filters proved inferior to CNNs using 3 × 3 filters or larger. This was attributed to
the lack of inter-element communication in 1× 1 CNNs, which essentially function
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similarly to DNNs treating each mesh element separately. On the other hand CNNs
using any non-unit filter incorporate neighboring mesh elements to make predictions
and achieve better accuracy. Filters larger than 3 × 3, showed minimal decreases
in accuracy but high increases in computational cost, leading to the decision to use
3×3 kernels. For the S8052 case, it was determined that not all convolutional layers
need 3×3 filters, as having just the first few layers with 3×3 filters proved sufficient.

As for the optimizations, both goals - minimizing CD and maximizing TPSS -
achieved equivalent decreases in CD showing that delaying transition can indeed
serve as a proxy to decreasing drag. The PUMA-CNN evaluation software lead to
equally good solutions in comparison to PUMA-TM in less time. Even in cases were
retraining was required due to exploding errors in PUMA-CNN predictions, the op-
timization cost (including retraining) did not exceed the 500 Time Units required
for PUMA-TM. In both cases it was proven that the CNN can indeed substitute the
traditional turbulence and transition models to accelerate a shape optimization.

7.2 Conclusions

Based on the works performed during this Diploma Thesis, the following conclusions
were drawn.

➢ CNNs demonstrated their capability to effectively surrogate the Spalart-Allmaras
turbulence and the γ − Reθ,t transition models in MAEA-based shape opti-
mization for both airfoils. The evaluation cost reduction varied between cases,
with approximately 40% for NLF0416 and 30% for S8052. This difference can
be attribute to the distinct CNN architectures employed, resulting in different
inference costs.

➢ PUMA-CNN consistently outperformed PUMA-TM in terms of computational
efficiency, even when the training and database creation costs are included.
For the NLF0416 case, PUMA-CNN completed the optimization, in the case
where no retraining was required, in approximately 425 TUs, 15% less than
the PUMA-TM budget of 500 TUs. In the case were retraining was performed
the optimization was still finished before 500 TUs. Similarly, for the S8052
case, both CD-focused and TPSS-focused optimizations (429 TUs and 469
TUs respectively) remained under the evaluation budget of the PUMA-TM
optimizations.

➢ Both cases demonstrated a strong correlation between CD and TPSS, validat-
ing the approach of maximizing TPSS as an effective surrogate for minimizing
CD across different airfoil types. For the NLF0416, optimizations with TPSS

as the objective consistently yielded equal or superior results in terms of both
CD and TPSS. In the S8052 case, while PUMA-TM with CD as the objective
produced the best airfoil, PUMA-CNN with TPSS as the objective achieved a
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nearly equivalent solution in less time. These findings indicate that optimizing
for TPSS may not only effectively substitute for CD minimization, but could
also be a preferable objective, capable of discovering superior designs.

➢ By incorporating information from neighboring mesh elements, CNNs exhib-
ited improved accuracy in predicting µt compared to Deep Neural Networks
(DNNs). This advantage stems from the nature of CNNs that allow inter-
element communication and therefore include information of neighboring mesh
elements to make the µt field prediction.

➢ The CNN architectures employed in this research exhibited optimal perfor-
mance when utilizing 3×3 convolutional kernels only in the initial layers. Ex-
tending the use of larger kernels throughout the entire network did not yield
further improvements, suggesting that the observed benefits arise from cap-
turing local spatial dependencies rather than an increase in representational
power due to additional trainable parameters.

7.3 Future Work

Based on the findings of this Diploma Thesis, the following future works and im-
provements are proposed:

➢ Extension to 3D Flows: The application of Convolutional Neural Networks
(CNNs) can be extended to three-dimensional (3D) flow problems. CNN archi-
tectures employed in video processing, which leverage 3D convolutions, enable
inter-pixel and inter-frame communication. These 3D convolutions can be
adapted to consider 3D neighborhoods of mesh elements for predicting the
turbulent viscosity field (µt). The anticipated speed up is expected to be more
pronounced in 3D flows due to their inherent computational complexity and
higher per-evaluation cost.

➢ Adaptation to Unstructured Meshes: CNNs are currently limited by their
requirement for a regular structure, typically found in structured meshes. To
overcome this limitation, Convolutional Graph Neural Networks (CGNNs) can
be employed. CGNNs perform convolutions using graph convolutional filters,
which can be applied to any structure that can be represented as a graph
[16]. This capability allows for the extension of the proposed approach to
unstructured grids, expanding its applicability to a wider range of problems
and mesh types.
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Εισαγωγή

Ο πρωταρχικός στόχος αυτής της Διπλωματικής Εργασίας είναι να διερευνηθεί η

δυνατότητα χρήσης Συνελικτικών Νευρωνικών Δικτύων (ΣΝΔ) ως υποκατάστατων
του μοντέλου τύρβης μιας εξίσωσης Spalart-Allmaras [43] και του μοντέλου μετάβασης
δύο εξισώσεων γ−Reθ,t [33], στην αεροδυναμική ανάλυση και βελτιστοποίηση μορφής.

Τα ΣΝΔ εκπαιδεύονται σε μια βάση δεδομένων με στόχο την ακριβή πρόβλεψη του

πεδίου της τυρβώδους συνεκτικότητας, χρησιμοποιώντας ως εισόδους γεωμετρικά και
ροϊκά πεδία από τις εξισώσεις μέσης ροής που λύνει το οικείο λογισμικό Υπολογιστικής

Ρευστοδυναμικής PUMA [3]. Η αντικατάσταση των διαφορικών μοντέλων τύρβης και
μετάβασης από τα ΣΝΔ περιορίζει τις προς επίλυση διαφορικές εξισώσεις στις τέσσερις

εξισώσεις της μέσης ροής, οδηγώντας σε σημαντική μείωση του υπολογιστικού κόσ-
τους ανά ρευστοδυναμική ανάλυση.

Η μεθοδολογία εφαρμόζεται στη βελτιστοποίηση δύο μεμονωμένων αεροτομών: της
NLF0416 και της S8052, με στόχο την ελαχιστοποίηση της οπισθέλκουσας CD. Κα-
θώς η ροή και στις δύο περιπτώσεις είναι μεταβατική, σημαντικό μέρος του CD εί-

ναι η συνιστώσα τριβής CD,f που είναι υψηλότερη όταν η ροή είναι τυρβώδης. Για
τον λόγο αυτό, θεωρώντας το σημείο μετάβασης από στρωτή σε τυρβώδη ροή εξίσου
σημαντικό χαρακτηριστικό με το CD, πραγματοποιούνται παράλληλες βελτιστοποιή-
σεις με στόχο τη μεγιστοποίηση της τετμημένης του σημείου μετάβασης στην πλευρά

υποπίεσης TPSS. Αυτή η προσέγγιση επιτρέπει τη μελέτη του κατά πόσον οι δύο
διαφορετικοί στόχοι βελτιστοποίησης οδηγούν σε ίδιες ή παρόμοιες λύσεις, κάτι που
αποτελεί έναν δευτερεύοντα στόχο της Διπλωματικής Εργασίας.

Τεχνητά Νευρωνικά Δίκτυα

Η Τεχνητή Νοημοσύνη (ΤΝ) και η Μηχανική Μάθηση (ΜΜ) αποτελούν σήμερα δύο
από τους ταχύτερα αναπτυσσόμενους τομείς της επιστήμης και της τεχνολογίας, με
εφαρμογές σε πολλούς κλάδους, συμπεριλαμβανομένης της μηχανικής. Η σημασία τους
έγκειται στην ικανότητά τους να επεξεργάζονται τεράστιους όγκους δεδομένων, να
αναγνωρίζουν πολύπλοκα πρότυπα και να παρέχουν λύσεις σε προβλήματα που παρα-

δοσιακά απαιτούσαν ανθρώπινη νοημοσύνη. Η ΜΜ, ως υποπεδίο της ΤΝ, επικεντρώνε-
ται στην ανάπτυξη αλγορίθμων και μοντέλων που επιτρέπουν στους υπολογιστές να

μαθαίνουν από δεδομένα ώστε να εκτελούν συγκεκριμένες εργασίες, χωρίς να προ-
γραμματίζονται ρητά για τον σκοπό αυτό.

Τα Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) αποτελούν μια κατηγορία αλγορίθμων ΜΜ,
εμπνευσμένη από τη δομή και λειτουργία των βιολογικών νευρωνικών δικτύων. Αποτελούν-
ται από διασυνδεδεμένους κόμβους (νευρώνες) οργανωμένους σε επίπεδα: το επίπεδο
εισόδου, ένα ή περισσότερα κρυφά επίπεδα και το επίπεδο εξόδου. Κάθε νευρώνας
λαμβάνει σταθμισμένες τις τιμές όλων των νευρώνων του προηγούμενου επιπέδου, τις
επεξεργάζεται μέσω μιας συνάρτησης ενεργοποίησης και παράγει μια έξοδο. Η εκ-
παίδευση των ΤΝΔ περιλαμβάνει την προσαρμογή των βαρών των συννάψεων μεταξύ

των νευρώνων, ώστε το δίκτυο να μπορεί να αποδίδει στο ζητούμενο πρόβλημα.
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Τα ΒΝΔ έχουν εφαρμοστεί ευρέως σε διάφορους τομείς, συμπεριλαμβανομένης της
Υπολογιστικής Ρευστοδυναμικής [22], λόγω της ικανότητάς τους να μοντελοποιούν
πολύπλοκες μη-γραμμικές σχέσεις.

Συνελικτικά Νευρωνικά Δίκτυα

Τα Συνελικτικά Νευρωνικά Δίκτυα (ΣΝΔ) αποτελούν μια εξειδικευμένη κατηγορία
ΤΝΔ, σχεδιασμένη για την αποτελεσματική επεξεργασία δεδομένων με ισχυρές χωρικές
εξαρτήσεις, όπως εικόνες ή πεδία ροής. Βασική δομική μονάδα των ΣΝΔ είναι το συνε-
λικτικό επίπεδο, το οποίο εφαρμόζει την πράξη της συνέλιξης στα δεδομένα εισόδου. Η
συνέλιξη πραγματοποιείται με τη χρήση πυρήνων που ολισθαίνουν πάνω στα δεδομένα

εισόδου, εξάγοντας τοπικά χαρακτηριστικά. Αυτή η διαδικασία επιτρέπει στα ΣΝΔ να
αναγνωρίζουν και να διατηρούν τη χωρική συσχέτιση των δεδομένων, καθώς κάθε
νευρώνας συνδέεται μόνο με μια τοπική περιοχή της εισόδου. Η ιδιότητα αυτή καθιστά
τα ΣΝΔ ιδιαίτερα αποτελεσματικά στην επεξεργασία εικόνων και την ανάλυση χωρικά

συσχετισμένων δεδομένων.

Στην εργασία αυτή, τα ΣΝΔ χρησιμοποιούνται για την πρόβλεψη του πεδίου της τυρ-
βώδους συνεκτικότητας. Βασική διαφορά με τις αρχιτεκτονικές ΤΝΔ είναι ότι το ΣΝΔ
λαμβάνει ως εισόδους ολόκληρα τα πεδία ροής και καλείται μία φορά για να προβλέψει,
ολόκληρο πάλι, το πεδίο µt. Αυτή η καθολική επεξεργασία των πεδίων επιτρέπει την
ενσωμάτωση πληροφορίας ροής και γεωμετρίας από γειτονικά κελιά του υπολογιστικού

πλέγματος, στοχεύοντας στη βελτίωση της ακρίβειας πρόβλεψης.

Εξελικτικοί Αλγόριθμοι

Οι Εξελικτικοί Αλγόριθμοι (ΕΑ) αποτελούν μια οικογένεια στοχαστικών μεθόδων
βελτιστοποίησης, εμπνευσμένων από τις αρχές της βιολογικής εξέλιξης. Βασίζονται
στην ιδέα της φυσικής επιλογής, όπου οι καλύτερες λύσεις ”επιβιώνουν” και αναπαρά-
γονται, ενώ οι λιγότερο κατάλληλες απορρίπτονται. Οι ΕΑ λειτουργούν με πληθυσμούς
πιθανών λύσεων, οι οποίες εξελίσσονται μέσω επαναλαμβανόμενων κύκλων επιλογής,
διασταύρωσης και μετάλλαξης. Ξεκινώντας με έναν αρχικό πληθυσμό, οι λύσεις αξιολ-
ογούνται βάσει μιας συνάρτησης-στόχου, και οι καλύτερες επιλέγονται για αναπαραγ-
ωγή, δημιουργώντας νέες γενιές λύσεων.

Τα βασικά πλεονεκτήματα των ΕΑ περιλαμβάνουν την απλότητα των μαθηματικών

τους, τη δυνατότητα παράλληλης επεξεργασίας διαφόρων λύσεων, την προσαρμοστικότητά
τους σε διαφορετικά προβλήματα και τη βεβαιότητα ότι, χάρη στο στοχαστικό τους
χαρακτήρα, έστω και μετά από πολλές αξιολογήσεις αναμένεται να εντοπίσουν σίγουρα
τη βέλτιστη λύση. Στο πλαίσιο της αεροδυναμικής βελτιστοποίησης, οι ΕΑ χρησι-
μοποιούνται αποτελεσματικά για την αναζήτηση βέλτιστων γεωμετριών που ικανοποιούν

συγκεκριμένα κριτήρια απόδοσης.

Χρήση ΣΝΔ ως Υποκατάστατα Μοντέλων Τύρβης και Μετάβασης

στην Αεροδυναμική Ανάλυση και Βελτιστοποίηση της Μεμονωμένης

Αεροτομής NLF0416

Η αεροτομή NLF0416 αναλύεται αρχικά υπό συνθήκες ροής: M∞ = 0.1, Re∞ =

3



4 × 106, TI∞ = 0.0015 και σε γωνίες πρόσπτωσης 0.02◦ και 2◦. Αυτό επιτρέπει τη
μελέτη της επίδρασης της γωνίας πρόσπτωσης στον συντελεστή τριβής Cf και στο

φαινόμενο της μετάβασης. Παρατηρείται ότι με την αύξηση της γωνίας πρόσπτωσης,
η μετάβαση επιταχύνεται στην πλευρά υποπίεσης και καθυστερεί στην πλευρά πίεσης.
Η ανάλυση στη συνέχεια εστιάζεται στη αεροτομή σε γωνία πρόσπτωσης 0.02◦.

Η γεωμετρία της αεροτομής παραμετροποιείται χρησιμοποιώντας ογκομετρικές NURBS
με 15 ελεύθερα σημεία ελέγχου, τα οποία μπορούν να κινηθούν οριζόντια και κατακόρ-
υφα. Αυτό οδηγεί σε 30 μεταβλητές σχεδιασμού, οι οποίες αξιοποιούνται τόσο για τη
δημιουργία της βάσης δεδομένων (ΒΔ) εκπαίδευσης του ΣΝΔ, όσο και ως μεταβλητές
σχεδιασμού για τη βελτιστοποίηση που ακολουθεί.

Η δημιουργία της ΒΔ πραγματοποιείται μέσω της μεθόδου Latin Hypercube Sampling
(LHS), παράγοντας 80 νέες γεωμετρίες. Αυτές επιλύονται από το λογισμικό PUMA,
το οποίο συνδυάζει τις εξισώσεις μέσης ροής με το μοντέλο τύρβης SA και το μον-
τέλο μετάβασης γ − Reθ,t. Το ΣΝΔ εκπαιδεύεται να προβλέπει το πεδίο τυρβώδους
συνεκτικότητας µt, χρησιμοποιώντας ως εισόδους γεωμετρικά δεδομένα (x, y,Wd) και
ροϊκές ποσότητες (ρ, p, u, v,Ω, S) που προκύπτουν από την επίλυση των εξισώσεων
μέσης ροής.

Αν και ο PUMA χειρίζεται το πλέγμα ως μη-δομημένο, το ΣΝΔ απαιτεί δομημένη
τοπολογία για τη λειτουργία του. Το πλέγμα είναι δομημένο και αποτελείται από 97
ίσο-η και 705 ίσο-ξ πλεγματικές γραμμές. Συνεπώς, το ΣΝΔ λειτουργεί με πεδία που
αντιστοιχούν στο ισοδύναμο ορθογωνικό πλέγμα στο υπολογιστικό σύστημα συντε-

ταγμένων ξ-η, όπως αυτό προκύπτει από το φυσικό σύστημα x-y μέσω του γνωστού
μετασχηματισμού (Σχήμα 7.1).

Σχήμα 7.1: Τα πεδία εισόδου και εξόδου για το ΣΝΔ (αριστερά) στο υπολογιστικό
σύστημα ξ-η, όπως προκύπτουν από το μετασχηματισμό (δεξιά).

Το μέγεθος του πυρήνα συνέλιξης σε ένα ΣΝΔ αποτελεί καίρια παράμετρο, καθώς
καθορίζει το εύρος της γειτονιάς που συνεισφέρει στην πρόβλεψη του µt για κάθε κελί,
αλλά και τον αριθμό των εκπαιδεύσιμων βαρών του δικτύου. Για τη διερεύνηση της
επίδρασης του μεγέθους του πυρήνα, πραγματοποιείται σύγκριση δικτύων με ταυτόσημη
αρχιτεκτονική, εκπαιδευμένων στις ίδιες 80 γεωμετρίες και υπό τις ίδιες ρυθμίσεις
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εκπαίδευσης. Η μοναδική διαφοροποίηση μεταξύ των δικτύων έγκειται στο μέγεθος
του πυρήνα, με εξεταζόμενες διαστάσεις 1× 1, 3× 3, 5× 5 και 7× 7.

Ιδιαίτερη περίπτωση αποτελεί το ΣΝΔ που χρησιμοποιεί αποκλειστικά συνελίξεις με

πυρήνα 1× 1. Αυτή η διαμόρφωση δεν ενσωματώνει πληροφορίες από γειτονικά κελιά,
λειτουργώντας κατ’ ουσίαν όπως ένα ΒΝΔ ίδιας αρχιτεκτονικής που επεξεργάζεται
τιμές για κάθε πλεγματικό στοιχείο μεμονωμένα και προβλέπει το µt. Για λόγους
πληρότητας, το ισοδύναμο ΒΝΔ συμπεριλήφθηκε επίσης στη σύγκριση.

Το Σχήμα 7.2 απεικονίζει την αρχιτεκτονική των συγκρινόμενων δικτύων και παρουσιάζει
πως το μέγεθος του πυρήνα επηρεάζει τη διαδικασία της συνέλιξης.

Σχήμα 7.2: Αρχιτεκτονική δικτύων που συμμετείχαν στη σύγκριση (αριστερά). Πως
λειτουργούν διαφορετικοί πυρήνες συνέλιξεις (δεξιά).

Στο Σχήμα 7.3 φαίνεται η πορεία εκπαίδευσης των πέντε διαφορετικών δικτύων. Η
ανάλυση αναδεικνύει ότι το δίκτυο με πυρήνα k = 3 παρουσιάζει σημαντικά μικρότερο
σφάλμα συγκριτικά με αυτό που χρησιμοποιεί πυρήνα k = 1 και το αντίστοιχο DNN,
γεγονός που υποδεικνύει τη σημασία της ενσωμάτωσης πληροφοριών από γειτονικά

κελιά στην πρόβλεψη του µt. Ωστόσο, η χρήση μεγαλύτερων πυρήνων δεν επιφέρει
ανάλογη μείωση του σφάλματος που να δικαιολογεί το αυξημένο υπολογιστικό κόστος

κατά την εκπαίδευση. Συνεπώς, λαμβάνοντας υπόψη τη βέλτιστη ισορροπία μεταξύ
ακρίβειας πρόβλεψης και αποδοτικότητας, επιλέχθηκε το μέγεθος πυρήνα k = 3 για
την τελική αρχιτεκτονική του ΣΝΔ.

Το ΣΝΔ που τελικά επιλέχθηκε έχει την αρχιτεκτονική που περιγράφεται στον Πίνακα

7.1. Η εκπαίδευσή του πραγματοποιείται στη ΒΔ των 80 επιλυμένων γεωμετριών,
χρησιμοποιώντας τον αλγόριθμο βελτιστοποίησης Adam με ρυθμό εκπαίδευσης 10−4

και ως συνάρτηση απώλειας το μέγιστο απόλυτο σφάλμα.

Η αξιολόγηση της απόδοσης του ΣΝΔ δεν περιορίζεται μόνο στο σφάλμα πρόβλεψης

του µt. Κρισιμότερη είναι η επίδοσή του όταν ενσωματώνεται στο σύστημα PUMA-
CNN, το οποίο επιλύει τις εξισώσεις μέσης ροής χρησιμοποιώντας το ΣΝΔ ως υπ-
οκατάστατο μοντέλο τύρβης και μετάβασης. Το Σχήμα 7.4 παρουσιάζει τις καμπύλες
Cf για 9 άγνωστες γεωμετρίες, συγκρίνοντας τα αποτελέσματα του PUMA-TM και του
PUMA-CNN. Στην πλευρά υποπίεσης, το σημείο μετάβασης προβλέπεται με ακρίβεια
σε 8 από τις 9 περιπτώσεις. Ωστόσο, στην πλευρά πίεσης, το PUMA-CNN τείνει να
προβλέπει πρωιμότερη μετάβαση στις περισσότερες περιπτώσεις.
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Σχήμα 7.3: Πορεία σφαλμάτων εκπαίδευσης, αριθμός ελεύθερων βαρών, κόστος εκ-
παίδευσης και τελικό σφάλμα.

Πίνακας 7.1: Αρχιτεκτονική ΣΝΔ

Είσοδοι x, y, ρ, u, v,Ω, S,Wd

Κρυφά επίπεδα 12
Κανάλια ανά επίπεδο 16 - 32 - 64 - 128 - 256 -

512 - 256 - 128 - 64 - 32 - 16 - 8
Πυρήνας Συνέλιξης 3× 3
Συνάρτηση Ενεργοποίησης ReLU

Σχήμα 7.4: Κατανομές συντελεστή τριβής στις γεωμετρίες επικύρωσης για PUMA-
TM (κόκκινο) και PUMA-CNN (μπλέ)

΄Οσον αφορά το CD το PUMA-CNN σταθερά υποεκτιμά την τιμή του όπως φαίνεται
στο Σχήμα 7.5, με μέση τιμή σφάλματος 5.5%.

Αρχικά, διεξάγονται τρεις βελτιστοποιήσεις χρησιμοποιώντας το λογισμικό αξιολόγησης
PUMA-TM, με τρεις διαφορετικούς στόχους: ελαχιστοποίηση του συντελεστή οπισθέλκ-
ουσας (min. CD), μεγιστοποίηση του σημείου μετάβασης στην πλευρά υποπίεσης
(max. TPSS), και μεγιστοποίηση του σημείου μετάβασης στην πλευρά πίεσης (max.
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Σχήμα 7.5: Προβλέψεις CD για PUMA-TM και PUMA-CNN.

TPPS). Η τελευταία βελτιστοποίηση, αν και πραγματοποιήθηκε για λόγους πληρότη-
τας, δεν επέφερε μείωση στο CD και δεν θα αναλυθεί περαιτέρω στην περίληψη.

΄Ολες οι βελτιστοποιήσεις πραγματοποιούνται με εξελικτικούς αλγόριθμους υποβοηθού-

μενους από μεταμοντέλα μέσω του EASY. Οι περιορισμοί που τίθενται είναι: διατήρηση
ή αύξηση του συντελεστή άνωσης (CL), διατήρηση σχεδόν σταθερού συντελεστή
ροπής (CM), και διατήρηση του εμβαδού (A) τουλάχιστον στο 90% της αρχικής τιμής.

Το Σχήμα 7.6 απεικονίζει την πορεία των δύο κύριων βελτιστοποιήσεων. Η μπλε
γραμμή αντιπροσωπεύει τη βελτιστοποίηση με στόχο max. TPSS, ενώ η κόκκινη αυτή
με στόχο min. CD. Το άνω διάγραμμα δείχνει την εξέλιξη του CD, ενώ το κάτω την
εξέλιξη του TPSS. Παρατηρείται ότι και οι δύο ποσότητες μεταβάλλονται με παρόμοιο
τρόπο, ενισχύοντας την υπόθεση ότι η καθυστέρηση της μετάβασης μπορεί να οδηγήσει
σε μείωση της οπισθέλκουσας. Συγκεκριμένα, η βελτιστοποίηση max. TPSS επέφερε

μείωση του CD κατά 6.6% και καθυστέρηση της μετάβασης στην πλευρά υποπίεσης
κατά 18.1%. Αντίστοιχα, η βελτιστοποίηση min. CD πέτυχε μείωση του CD κατά

8.7% και καθυστέρηση της μετάβασης στην πλευρά υποπίεσης κατά 16.1%.

Σχήμα 7.6: Πορεία βελτιστοποίησης με στόχο το CD (κόκκινο) και με στόχο το TPSS

(μπλε). Εξέλιξη CD πάνω και TPSS κάτω για τις δύο βελτιστοποιήσεις.

Οι ίδιες βελτιστοποιήσεις επαναλαμβάνονται χρησιμοποιώντας το λογισμικό PUMA-
CNN, το οποίο αξιοποιεί ΣΝΔ αντί των συμβατικών μοντέλων τύρβης και μετάβασης.
Μία αξιολόγηση με το PUMA-CNN απαιτεί 0.63 χρονικές μονάδες (όπου 1 χρονική
μονάδα αντιστοιχεί σε μία αξιολόγηση του PUMA-TM). Ωστόσο, σε κάθε βελτιστοποίηση
με το PUMA-CNN προστίθεται ένα αρχικό κόστος 112 χρονικών μονάδων, για την
εκπαίδευση του ΣΝΔ και τη δημιουργία της βάσης δεδομένων.

Το Σχήμα 7.7 απεικονίζει τη βελτιστοποίηση με στόχο τη μεγιστοποίηση του TPSS.
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Παρατηρείται ότι το PUMA-CNN επιτυγχάνει καλύτερη λύση σε σύγκριση με το
PUMA-TM, τόσο ως προς το TPSS όσο και ως προς το CD. Οι τακτικές επαναξ-
ιολογήσεις (απεικονίζονται με διακεκομμένη γραμμή) επιβεβαιώνουν την εγκυρότητα
των αποτελεσμάτων του PUMA-CNN. Τελικά, επιτυγχάνεται μείωση του CD κατά

9.6% σε 425 μονάδες χρόνου, που είναι 15% ταχύτερα σε σύγκριση με το PUMA-TM.

Σχήμα 7.7: Μεγιστοποίηση TPSS με PUMA-CNN και PUMA-TM.

Το Σχήμα 7.8 παρουσιάζει τη βελτιστοποίηση με στόχο την ελαχιστοποίηση του CD.
Κατά την πρώτη επαναξιολόγηση, διαπιστώθηκε αύξηση του σφάλματος του PUMA-
CNN στην πρόβλεψη του CD, οδηγώντας σε επανεκπαίδευση του CNN. Το σχήμα
απεικονίζει δύο σενάρια βελτιστοποίησης με το PUMA-CNN: με επανεκπαίδευση (σκούρες
αποχρώσεις) και χωρίς (ανοιχτές αποχρώσεις). Ακόμη και χωρίς επανεκπαίδευση,
επιτυγχάνεται μείωση του CD, ωστόσο, το σενάριο με επανεκπαίδευση αποδίδει καλύτερα
αποτελέσματα, καθώς το σφάλμα μειώνεται σημαντικά και η βελτιστοποίηση οδηγεί σε
λύση εφάμιλλη αυτής του PUMA-TM σε περίπου ίδιο χρόνο.

Σχήμα 7.8: Ελαχιστοποίηση CD με PUMA-CNN και PUMA-TM.

Δεδομένης της στοχαστικότητας των εξελικτικών αλγορίθμων όλα τα πειράματα επαναλαμ-

βάνονται για άλλες δύο (τρεις σύνολο) διαφορετικές αρχικοποιήσεις της γεννήτριας
τυχαίων αριθμών. Τελικά επαληθεύεται πως οι βελτιστοποιήσεις με στόχο το TPSS

οδηγούν συστηματικά σε εφάμιλλα ή και καλύτερα αποτελέσματα όσον αφορά το CD,
συγκριτικά με τις βελτιστοποιήσεις που στοχεύουν απευθείας στο CD. Επιπλέον,
το PUMA-CNN αποδεικνύεται αξιόπιστο ως λογισμικό αξιολόγησης. Σε όλες τις
περιπτώσεις, επιτυγχάνει ικανοποιητική μείωση του CD και αύξηση του TPSS, με τα
αποτελέσματα να επικυρώνονται μέσω επαναξιολογήσεων από τον PUMA-TM.

Χρήση ΣΝΔ ως Υποκατάστατα Μοντέλων Τύρβης και Μετάβασης
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στην Αεροδυναμική Ανάλυση και Βελτιστοποίηση της Μεμονωμένης

Αεροτομής S8052

Η αεροτομή S8052 μελετάται στις ακόλουθες συνθήκες ροής: M∞ = 0.1, Re∞ =
2.3× 106, TI∞ = 0.005 και σε γωνία πρόσπτωσης 2◦.

Η γεωμετρία της αεροτομής παραμετροποιείται χρησιμοποιώντας ογκομετρικές NURBS
με 12 ελεύθερα σημεία ελέγχου, τα οποία μπορούν να μετακινηθούν οριζόντια και
κατακόρυφα. Αυτό οδηγεί σε 24 μεταβλητές σχεδιασμού. Με τη μέθοδο δειγματολ-
ηψίας Latin Hypercube Sampling (LHS) δημιουργούνται 50 γεωμετρίες, οι οποίες θα
χρησιμοποιηθούν για την εκπαίδευση του ΣΝΔ. Οι διαθέσιμες είσοδοι για το ΣΝΔ και
η μορφή που δέχεται (ορθογωνικά πεδία στο μετασχηματισμένο σύστημα ξ-η) παραμέ-
νουν ίδιες με την περίπτωση της αεροτομής NLF0416.

Με βάση τα συμπεράσματα από την προηγούμενη μελέτη, όπου διαπιστώθηκε ότι το
βέλτιστο μέγεθος πυρήνα είναι 3, στην παρούσα ανάλυση διερευνάται κατά πόσον εί-
ναι απαραίτητο όλα τα συνελικτικά επίπεδα να πραγματοποιούν συνελίξεις με πυρήνες

3 × 3. Εξετάζονται τέσσερις αρχιτεκτονικές (C0, C1, C2, C3) όπως φαίνονται στο
Σχήμα 7.9, ξεκινώντας από ένα δίκτυο που χρησιμοποιεί αποκλειστικά πυρήνες 1 × 1
(C0) και σταδιακά αυξάνοντας τον αριθμό των επιπέδων με πυρήνες 3 × 3. Τα ΣΝΔ
χρησιμοποιούν 8 πεδία εισόδου, τα : x, y, u, v, p, S,Ω,Wd, για να παράγουν το πεδίο
µt.

Σχήμα 7.9: ΣΝΔ προς σύγκριση. Το C0 χρησιμοποιεί μόνο 1 × 1 πυρήνες, ενώ τα
C1, C2, C3 προοδευτικά εισάγουν πυρήνες 3× 3.

Τα αποτελέσματα δείχνουν ότι η χρήση μη μοναδιαίου πυρήνα έχει σημαντική θετική

επίδραση ακόμη και από το πρώτο επίπεδο. ΄Οπως φαίνεται από την πορεία της εκ-
παίδευσης στο Σχήμα 7.10, τα δίκτυα που περιέχουν τουλάχιστον ένα επίπεδο με
πυρήνα 3 × 3 παρουσιάζουν καλύτερη απόδοση τόσο στις γεωμετρίες εκπαίδευσης
όσο και στις γεωμετρίες επικύρωσης. Η σημαντική βελτίωση ακόμη και για το C1 υπ-
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οδεικνύει ότι αυτή προέρχεται κυρίως από την εγγενή φυσική της χρήσης γειτονικών

πληροφοριών.

Σχήμα 7.10: Πορεία εκπάιδευσης των ΣΝΔ.

Από τα 4 δίκτυα, για τη συνέχεια επιλέχθηκε το C3 καθώς εμφάνισε το μικρότερο

σφάλμα επικύρωσης, υποδεικνύοντας την καλύτερη ικανότητα γενίκευσης σε νέα δε-
δομένα. Αυτό συνεργάζεται με τον PUMA (λογισμικό αξιολόγησης PUMA-CNN) και
πραγματοποιεί κάθε αξιολόγηση σε 0.7 χρονικές μονάδες.

Στη συνέχεια πραγματοποιούνται οι 4 βελτιστοποιήσεις για τους δύο στόχους: min.
CD και max. TPSS, και τα δύο λογισμικά αξιολόγησης: το PUMA-CNN και το
PUMA-TM. Το σύστημα PUMA-CNN εξετάζεται ως προς την πρόβλεψη των CD και

TPSS πάνω σε 10 γεωμετρίες επικύρωσης, όπως φαίνεται στο Σχήμα 7.11. Η απόδοση
όσον αφορά το CD είναι εξαιρετική (μέσο σφάλμα 3.8%) οπότε η βελτιστοποίηση με
στόχο το CD μπορεί να πραγματοποιηθεί. Επειδή όμως η απόδοση στην πρόβλεψη του
TPSS δεν είναι εξίσου καλή η βάση δεδομένων εμπλουτίζεται με 30 επιπλέον γεωμετρίες
και το δίκτυο επανεκπαιδεύεται με κόστος 40 χρονικών μονάδων, οπότε και επιτυγχάνει
εξίσου καλή απόδοση (μέσο σφάλμα 3%). Η βελτίωση αυτή είναι κρίσιμη για την
αξιοπιστία της βελτιστοποίησης με στόχο τη μεγιστοποίηση της στρωτής περιοχής.

Στο Σχήμα 7.12 παρουσιάζεται η βελτιστοποίηση με στόχο min. CD για τα δύο

λογισμικά αξιολόγησης. Και τα δύο λογισμικά επιτυγχάνουν σημαντική μείωση του
CD, με το PUMA-CNN να τερματίζει σε 429 χρονικές μονάδες, 14% γρηγορότερα
από το PUMA-TM, και να βρίσκει σχεδόν ισάξια λύση.

Στο Σχήμα 7.13 παρουσιάζεται η βελτιστοποίηση με στόχο max. TPSS για τα δύο λο-

γισμικά αξιολόγησης. Τα δύο λογισμικά καταλήγουν σχεδόν στην ίδια λύση, τόσο ως
προς το CD και ως προς το TPSS. Το PUMA-CNN τελειώνει σε 469 χρονικές μονάδες,

Σχήμα 7.11: Σφάλματα CD και TPSS στις 10 γεωμετρίες επικύρωσης
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Σχήμα 7.12: Πορεία βελτιστοποιήσεων με στόχο min. CD για τα δύο λογισμικά

αξιολόγησης.

Σχήμα 7.13: Πορεία βελτιστοποιήσεων με στόχο max. TPSS για τα δύο λογισμικά

αξιολόγησης.

6% γρηγορότερα από το PUMA-TM. Σε σχέση με τις λύσεις των βελτιστοποιήσεων
με στόχο min. CD, οι λύσεις με στόχο max. TPSS δεν υστερούν ως προς το CD.
Αυτό υποδεικνύει ότι και εδώ, η μεγιστοποίηση της στρωτής περιοχής φαίνεται να είναι
ένας αποτελεσματικός εναλλακτικός στόχος για τη μείωση της οπισθέλκουσας.

Συμπεράσματα

Τα ΣΝΔ απέδειξαν την ικανότητά τους να υποκαθιστούν αποτελεσματικά τα μοντέλα

τύρβης SA και μετάβασης γ−Reθ,t στη βελτιστοποίηση μορφής αεροτομών. Η μείωση
του κόστους αξιολόγησης κυμάνθηκε μεταξύ 30% και 40%, ανάλογα με την περίπτωση
και την αρχιτεκτονική ΣΝΔ που χρησιμοποιήθηκε. Το PUMA-CNN ξεπέρασε σταθερά
το PUMA-TM σε υπολογιστική αποδοτικότητα, ακόμη και όταν συμπεριλήφθηκαν τα
κόστη εκπαίδευσης, ολοκληρώνοντας τις βελτιστοποιήσεις σε λιγότερο χρόνο.

Και στις δύο περιπτώσεις αεροτομών παρατηρήθηκε ισχυρή συσχέτιση μεταξύ CD και

TPSS, επικυρώνοντας την προσέγγιση της μεγιστοποίησης του TPSS ως υποκατάστατο

για την ελαχιστοποίηση του CD. Σε αρκετές περιπτώσεις, η βελτιστοποίηση με στόχο
το TPSS οδήγησε σε ισοδύναμα ή ακόμη και καλύτερα αποτελέσματα σε σύγκριση με

τη βελτιστοποίηση με στόχο το CD, υποδεικνύοντας ότι η μεγιστοποίηση της στρωτής
περιοχής ενδεχομένως είναι ένας προτιμότερος στόχος βελτιστοποίησης.

Τα ΣΝΔ έδειξαν βελτιωμένη ακρίβεια στην πρόβλεψη του µt σε σύγκριση με τα ΒΝΔ,
λόγω της ικανότητάς τους να ενσωματώνουν πληροφορίες από γειτονικά στοιχεία του

πλέγματος. Η βέλτιστη απόδοση επιτεύχθηκε με τη χρήση πυρήνων συνέλιξης 3 ×
3 μόνο στα αρχικά επίπεδα του δικτύου, υποδηλώνοντας ότι τα οφέλη προέρχονται
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κυρίως από την καταγραφή τοπικών χωρικών εξαρτήσεων παρά από την αύξηση της

αναπαραστατικής ισχύος λόγω επιπλέον εκπαιδεύσιμων παραμέτρων.
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