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Abstract

This thesis deals with Uncertainty Quantification (UQ) through the use of the in-
trusive Polynomial Chaos Expansion (iPCE), in a painless manner, for the purpose
of applying it in aerodynamic shape optimization cases for robust design. The iPCE
is generally considered as a computationally efficient method for UQ), in comparison
with other UQ methods which are in use. However, it requires restructuring the
original CFD code in the case without uncertainties, which makes its application
specific to the governing equations and cumbersome in terms of the programming
investment required for its development.

An approach for applying the iPCE without the additional programming investment
is presented, by rendering the method independent of the PDE used. The method
requires only minor software modifications to the original problem, while enjoying
the benefits of the iPCE in terms of the computational efficiency. The proposed
approach is shown to enjoy a lower memory footprint and computational cost than
the iPCE method.

Even though the method is applicable to any PDE, applications are focused on the
Navier — Stokes equations and their adjoint counterpart for optimization purposes.
For the computation of the gradient of the objective function, the continuous adjoint
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method is used, with the Enhanced Surface Integral formulation for the sensitivity
derivatives. This method is, then, combined with the iPCE approach in order to
conduct robust design in aerodynamic shape optimization.

The new, painless iPCE method is applied and validated in various cases for UQ
and robust design purposes and it is shown to outperform the non-intrusive PCE
in terms of computational cost while being straightforward in its application.
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EoNIKO METZOBIO IIOAYTEXNEIO
Y XOAH MHXANOAOIQON MHXANIKON
TOMEAY PEYSTON

EPrASTHPIO OEPMIKON Y TPOBIAOMHXANON
ITAPAAAHAHY YPA & BEATISTONOIHELHE

SEXNE]

Egoapuoy? tou Encpfatinod Avantdyuatog
ITorvwvupxol Xdoug TNV AcpoduVaULXT
BeAtiotonoinon Mopgrg pe tn Xuveyn Xuluy

MéJdooo

Amhopotin Epyootia

Kupldxog Anurterog Kaviapdxiog

Enpiénwv: K.I'. Tavvéxoyrou, Kadnyntic

ITepiindn

To x0po éua e dimhwpatxhc epyaciog eivar 1 tocotxonoinor aefoudtnroc e
™ yeYon Tou ETEPPaTIX0OU AVUTTOYUATOS TOAUWYUULXOU Ydoug. AUuTé EmTUYYAVETOL
UE TNV ovamTudn WG Gxomng, omd TAELRAS avamTuing Aoyiouixol, Yedddou, v ot
EQUQUOYES ETUXEVTOOVOVTUL OTNV AEEOOLVALXY| BEATioTOTOINGT LOPPYIC UE OXOTO TOV
ouPBapd oyedaoud. To emeufutind avdmtuypo ToAUWVLUIXOU Ydoug Yewpeiton EUpEwe
OC UlaL ATOBOTIXY, (S TEOC TO UTOAOYLOTIXO x00TOC, UEY0d0C Yol TocoTixoTolnon o-
BefardtnTog, oe olyxplon pe dAleg Yetddoug Tou yenowonotouvia. dotéco, 1 uedo-
00¢ amoLTEL EXTEVY| EMEVOUDT] O TROYRUUUATIONS, XadiS YeeldleTon ETOVIOOUNOT) TOU
%O AELOAGYNONG UTOAOYIC TIXHG PEUC TOBLVAUIXY|S Olywe ofeBardTnTeg, To onolo Ty
xohoTd BUGKONY WS TEOS TNV EQPUPUOYT).

Y1 Simhoyoticd oauth epyaoia clodyeTton uiot uEYodoC Yol TNV EQUQUOYY| TOU ENEU-
Boatxol moALGVLULXOU Ydoug Blywe ToV EMTEOCVETO TEOYEUUUATIONS TOL GUVIHDWLS
amouteltan, xahoTtOviag T pédodo aveldptnTn TG ueprc dlapophc e&lowaong mou
pehetdran. H uédodog auth| amoutel eEAdyloTES TEOYPUUUATIO TIXES TUREUBAOELS OTOV dp-
YXO XOOWXAL €V amoAoBAveL Tar 0QENT) TOU EMEUPATIXO) AVATTUYUUTOS TOAUWVUUIXOD
Y4oUC ¢ TEO¢ To umoloyloTixd x6cToc. IlapdAinia, mapoucidletar véa mpooEyyi-
on oTNY AvATTUEN TwV EEICMOEWY ETEUBATIXOY OVATTOYUATOS TOAUWVUUIXOY YEOUS UE
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OTOYO TNV PEICT TV aVayX®Y UVAUNG %ol TOU UTOAOYLO X0V XOOGTOUG TN HEYOB0U.

Ov egapuoyéc emxevipovovton otig edlonoelc  Navier—Stokes xou tic ouluyelc Toug
ue oxond 1 Bertiotonoinon. O UTOAOYIoUOS TWY TURAYOYWY TNG AVTIXEWEVIXNG CU-
VAPTNONG WG TEOG TiC UETUPANTES oyedlaouol yiveton e 0 ouveyy ouluyr pédodo,
OUUQWVA UE TNV EVIOYUPEVT OLoTOTIWOT TOU 00NYEl O TAPOYWYOUS TOU EXPEAlovTo
HOvo pe emipovelond ohoxinewuato. IlopdAinie, yeietdton 1 e@apuoyr Tng Yedodou
ToU eMEUPoTiNol avaTTOYHATOC TOAUGVLULXOL Ydoug ot cuveyY) ouluyT| uédodo ue
o%0TO TOV GTBURO TYEBLUCUS AEPOBUVIULXDY HORPHOV.
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Chapter 1

Introduction

1.1 Aerodynamic Optimization

One of the greatest achievements in modern CFD is having discovered a set of
mathematical laws, in the form of some PDEs, such as the Navier—Stokes equations
that describe the physics of fluid flows and developing powerful numerical techniques
for their solution in a discretized domain. However, merely solving these equations
is usually not enough for design purposes in large industrial problems. Modern CFD
applications require the optimization of an aerodynamic object, which is a heavier
problem computationally.

There are two main approaches regarding aerodynamic optimization. A common
approach, which was the one employed in this thesis, is the deterministic or gradient—
based optimization. These methods require the computation of the gradient of an
objective function w.r.t. the design variables b that control the shape to be designed
and use it for the maximization/minimization of the objective function, namely

oF OF OF oF
— = (=, —, ..., — 1.1
ob <8b1’ 8b2’ ’ 8bN) ( )

For instance, it is of high technological interest to seek the optimal shape of a com-
pressor cascade with maximum static pressure rise or the shape of the wing that
minimizes the drag coefficient while maximizing the lift coefficient. These types of
problems are known as optimal design or shape optimization problems. Alterna-
tively, in inverse design problems, it is desirable to find the aerodynamic shape of
an object with a pre — specified performance. An example of this would be seeking



the shape of an airfoil that has a desirable pressure distribution along its contour.
In both cases, it is necessary to compute the gradient of the corresponding objective
function w.r.t. the design variables b that control the aerodynamic shape.

Another approach to aerodynamic optimization is the stochastic optimization, usu-
ally in the form of Evolutionary Algorithms (EA), [§]. These methods don’t require
the computation of the gradient of the objective function and their formulation is
derived mostly on a heuristic level. They require software that solves the field flow
equations and produces values of the objective function for specific values of the de-
sign variables b. The main idea is to mimic the process of the evolution of systems
in biology, by generating populations (or generations) of aerodynamic shapes that
are defined in the domain of the design variables l;, evaluating their objective func-
tion and ranking them accordingly. Then, the ones with the optimal behavior are
kept, (along with a few with likely a non—optimal performance, selected at random)
and are selected to mate and produce offspring through the application of evolution
operators such as crossover and mutation. The convergence of this method can be
accelerated with various techniques, such as the use of surrogate models [12].

Regarding differences between the two methods, deterministic optimization is gener-
ally known to converge much faster but may result to a local rather than the global
optimal solution. Also, they usually require an extensive investment in method and
software development, that is highly dependent on the type of PDEs used. On
the other hand, it is heuristically known that stochastic optimization converges to
the global optimum after an infinite number of evaluations, however it doesn’t re-
quire additional software development and, in its standard form, can be considerably
slower than its deterministic counterpart. In large scale problems this method can
be prohibitively expensive in terms of its computational cost.

1.2 Methods for Computing the Gradient

The most commonly used methods for computing the gradient of eq. are the
following.



Finite Differences

In the Finite Differences (FD) method, the gradient of eq. is computed by the
following formula,

a_F_F(bl,bg,...,bi—FE,...,bN)—F(bl,bg,...,bi—E,...,bN>
85;_ 2¢

(1.2)

The FD method is simple in terms of its application, since it doesn’t require changes
in the evaluation software, which only needs to be called for different values of
the design variables. However, for large, industrial scale problems, this method
becomes computationally intractable, since the number of evaluations required for
the computation of derivates increases linearly with the number of design variables.

Complex Variable Method

The Complex Variable (CV) method [24] is of high mathematical interest. Firstly,
the objective function must be defined in the complex field. If that’s the case, it’s
derivative w.r.t. b is given by the formula

(9_1;7 — lim imag(F (b; + i€)) (13)
8(% e—0 €

Notice that in this case, the computation of the derivative requires only one call
of the objective function per design variable; this call, however, is more expensive
since the code handles complex rather than real variables. Due to this, this method
is superior to Finite Differences, where two calls per design variable are required.
Another advantage is that the computed derivatives are very insensitive regarding
the selection of the e value. A disadvantage of the method is the extra programming
it requires.

Automated Differentiation

The Automated Differentiation [4] method is a set of techniques that utilizes the
fact that every numerical solver of a PDE, regardless of its mathematical complexity,
executes sequentialy the elementary arithmetic operations of addition, subtraction,
multiplication etc, as well as the elementary functions (exponential, sinus, cosinus
etc). The main idea of the method is to apply the chain rule to each of these
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operations sequentially by restructuring the original CFD code which, if done prop-
erly, allows for the computation of the derivative in a computationally efficient and
precise manner.

The Adjoint Method

As it was previously mentioned, the main advantage of the adjoint method [0] is its
independence for the number of the design variables that control the geometry of the
problem, which is a crucial property in aerodynamic problems in which the design
variables could be of the order of thousands or even millions. The adjoint method
can be distinguished to two main approaches, the discrete adjoint, where the pri-
mal equations (such as the Navier—Stokes Equations) are discretized first and then
differentiated, and the continuous adjoint, where the inverse procedure is followed,
namely the equations are first differentiated and then discretized. The two meth-
ods but can produce differences in the values of the gradient, if the computational
grid is not coarse enough. At the Parallel CFD & Optimization Unit of NTUA, a
great part of the past and current research is directed towards the development of
continuous adjoint methods, with emphasis being laid at its different formulations
that result in various expressions for the Sensitivity Derivatives (SD), namely the
derivatives of the objective function w.r.t. b.

In the first formulation of the continuous adjoint published [6], named the Field
Integral-FI Adjoint, the expressions of the SD include among other, volume inte-
grals of the grid sensitivities. This adjoint formulation computes the exact values
of the SDs, but it may have a high computational cost since they require the com-
putation of grid sensitivities §z/ 8b. Their computation with finite differences leads
to a linear scaling of the computational cost with the number of design variables
[T0], which is acceptable for a small number of uncertain variables but prohibitive
as their number increases.

In the second formulation [19], named the Surface Integral-SI Adjoint (or reduced
adjoint, in some publications), the expressions of the SD only includes surface inte-
grals, which vastly reduces the computational cost, in comparison to the FI Adjoint
while compromising the accuracy of the formulation.

At the Parallel CFD & Optimization Unit of NTUA, a new formulation named
the Enhanced Surface Integral (E-SI) Adjoint [I0] was developed that enjoys the
computational cost of the SI with the accuracy of the FI adjoint, by avoiding the
computation of §Z/ 5b by solving a new set of PDEs named adjoint grid displacement
equations, that eliminated the field integrals of the FI formulation.

Each of the aforementioned methods, for the evaluation of each solution, requires
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a grid generation or grid adaptation procedure that will affect the geometry at
each optimization cycle. The simple approach of re-generating the grid at each
optimization cycle can be prohibitively expensive and, as a result, methods for
adapting the grid between the solutions of each cycle should be considered.

1.3 Uncertainty Quantification

In the early stages of computational methods, when computational power was lim-
ited both in terms of availability and capability, the solution of a PDE or a system of
PDEs in some 2D spatial domain usually was sufficient for design purposes. However
as the capabilities of computing systems grew, so did the demands of technological
applications. CFD methods every year demand more complex models, finer grids
and high order discretization schemes in order to better approximate the physical
world and meet the demands of design applications. As these capabilities became
larger and larger, deterministic optimization methods started to emerge that aimed
at the maximization/minimization of some Qol, such as the total pressure loss co-
efficient of a compressor, through the computation of its derivatives.

One of the most recent developments are methods for the quantification of uncer-
tainties that occur in real-world applications. At the earliest stages, UQ was consid-
ered computationaly expensive for CFD applications, since most techniques relied
on some form of a stochastic sampling approach, such as the Monte—Carlo (MC)
method [13]. These techniques usually require thousands of evaluations of the prob-
lem without uncertainties in order to make fair predictions regarding the mean value
and the standard deviation of the Qol and in the modern CFD this is prohibitively
expensive. However in the past few years, based on the early work done by Wiener
[25] and generalized by Karniadakis and Xiu [28], methods that rely on the spectral
representation of uncertain quantities in a stochastic orthonormal basis have started
to emerge and are being generally referred to as the Polynomial Chaos Expansion
(PCE). These methods vastly outperform stochastic sampling techniques in terms
of computational cost however, in their standard form, they are much more complex
mathematically and usually require, to varying degrees, a noticeable investment in
terms of research and programming work. As a result, a lot of research has been
directed towards that area, where this thesis is focusing on. On the next few pages,
the most commonly implemented methods for UQ), along with their advantages and
disadvantages are discussed.



Monte—Carlo and Stochastic Sampling

The simplest and most accurate method for computing statistical moments is the
Monte—Carlo technique, since it is a direct implementation of the definitions of the
statistical moments. It is based on stochastic sampling, by randomly choosing the
stochastic inputs to the PDE in a manner that follows the assumed PDFs of the
inputs, and solving them enough times so that an estimate can be made for the
mean value and the standard deviation of the Qol. This method is accurate, since it
is based directly on the definition of the statistical moments of a quantity, however,
in its standard form, it is prohibitively expensive in heavy CFD applications, since
it requires thousands of evaluations for a single uncertain variable.

In order to overcome this problem, attemps towards more efficient stochastic sam-
pling techniques have been developed. The quasi-Monte Carlo method [I8] uses
quasi-random sequences of uncertain inputs, which greatly increases the convergence
rate of the method, and therefore making it more affordable. Another approach is
to have the stochastic samples satisfy constraints, which makes the method inde-
pendent of the number of uncertain variables. This method is referred to as Latin
Hypercube sampling [I7] . However, even with those benefits, those methods are
not cost effective enough for CFD purposes and they mostly find applications in
other areas.

Stochastic Collocation

The computation of statistical moments in the Stochastic Collocation method is
based on an interpolation scheme for the Qol, which is sampled on a set of nodes
in the stochastic space of the uncertain variables, with a Lagrangian interpolation
being the most commonly implemented [5],[3],[26]. The proper selection of nodes is
crucial to lowering the computational cost while maintaining reasonable accuracy in
the computation and several relevant methods have been suggested [5],[3].

Method of Moments

The main idea of the Method of Moments is to approximate the Qol with its Taylor
expansion around its mean, w.r.t. to the uncertain variables [27], and to truncate
this expansion. In its most commonly implemented version, the Qol is approximated
from the moments of the expansion. This method uses a second-order truncation,
which makes the method accurate for small variations in the stochastic variables,
and it requires the computation of first and second—order derivatives of the Qol
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w.r.t. the uncertain variables. Various alternatives have been deployed, such as a
higher order truncation scheme in [20], which allows for the computation of larger
values of uncertainties.

Polynomial Chaos Expansion

The PCE, which is the main subject of this thesis, is a method based on the spec-
tral representation of uncertain quantities, through the use of polynomials that are
orthogonal to the PDFs of the uncertain variables [211 [14], 2 [T1]. This was originally
developed in [25] for normal distributions and generalized in [28] for any PDF. This
method is discussed in detail in this thesis, so it won’t be analyzed in this section.

1.4 The Concept of Robust Design

Most modern design techniques that rely on optimization usually distinguish the
variables that affect the primal problem (such as the Navier-Stokes) into two cat-
egories, the enviromental variables and the design variables. The design variables,
denoted by I;, are controlled by the designer and their values in CFD applications
usually controls the aerodynamic shape. The enviromental variables are usually
quantities, such as the flow conditions, that the designer can’t control. This dis-
tinction is crucial in uncertainty quantification, since in real world applications the
effects of uncertainty appear in the enviromental variables of the problem, and it
is desirable to quantify the effect of these uncertainties in the optimization process
in order to select the proper set of design variables that takes into account the un-
certainty of the enviromental variables. In this diploma thesis, the design variables
include the boundary conditions of the PDEs, the various constants in turbulence
models etc.

It is imporant to note that, in robust design, the goal isn’t necessarily to find the
global optimum of the Qol, but to find a point around which the value of the Qol
isn’t affected by slight changes in the values of the enviromental variables. For prac-
tical purposes, in the case of an optimization problem where the maximization of
the lift coefficient C';, of an airfoil is desirable, a robust design process wouldn’t nec-
essarily seek the airfoil that produces maximum C7, for specific values of the Mach
number and the inlet flow angle. It would seek for the airfoil that maintains a high
C, even if slight changes in the values of the boundary conditions occur.



In this thesis, robust design is based on the use of the PCE and new methods
regarding its theory and implementation are developed and discussed.

1.5 Overview

Lets take a look at the contents of each chapter of this thesis.

In chapter 2 an overview of both the univariate and multivariate orthogonal poly-
nomials, which is a necessary component of the PCE method is given. Also, an
introduction to the PCE method is made, with an extended mention to the niPCE
and iPCE variants, and several of their intricacies are discussed.

In chapter 3 the mathematics associated with the iPCE are reformulated in order
to fit the non—intrusive operations required for the method. The Galerkin projection
is generalized to an operator and used to prove that the homogeneity property of
linear systems holds in the case where uncertainty is modeled with the PCE. With
those tools, the iPCE equations for a general linear system are derived, and their
Jacobian is proven to correspond to the exact Jacobian of the iPCE equations. Also,
the stability properties of the iPCE and the niPCE are thoroughly discussed. It is
proven that the iPCE equations are stable given that the background solver of their
deterministic counterpart converges.

In chapter 4 a method for reducing the computational cost and the memory foot-
print of the method is developed, while detailed algorithms for actualizing it are
provided.

In chapter 5 the UQ method introduced is validated against commonly used UQ
methods, such as the Monte-Carlo and the niPCE. Useful conclusions are made for
the accuracy, the stability and the computational cost of the method.

In chapter 6 the E-SI variant of the continuous adjoint 2D Euler equations is
presented, as a necessary background solver for the robust design process to follow.
The method is derived from the SI adjoint and is based on in—house developed
software at the Parallel CFD & Optimization Unit.

In chapter 7 The continuous adjoint method is applied to the iPCE equations.

In chapter 8 A robust design test case is presented, in order to validate the method
presented in chapter 7.



Chapter 2

Theory of the Polynomial Chaos

Expansion

In this chapter the fundamental theory behind the PCE is discussed and a math-
ematical framework and research conducted for the development of this thesis is
presented.

2.1 Orthogonal Polynomials

A fundamental building block of the PCE theory is the use of orthogonal polynomials
as an orthonormal basis to a stochastic multi-dimensional space [25].

2.1.1 Univariate Orthogonal Polynomials

For a function w(§) defined on 1 [a,b], which for the purposes of this thesis will
correspond to a probability density function, such as the normal or the uniform
distribution. For two polynomials f and g, their inner product is defined by the
integral < f,g >= fabf(g)g(S)w(f)df and is referred to as the inner product of f
and g w.r.t. the function w.

In the use of the PCE, it is important for the polynomials defined to be orthogonal,
which is defined in the following sense: the set of polynomials p,(§) with n €
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0,...,00) is called orthogonal for ¢ € [a,b] w.r.t. the weight function w(§) if the
following property holds,

/ D) (EV0(E)IE = b < Dros P > (2.1)

where 0,,, is Kronecker’s delta. In orthonormal polynomials

< PpypPn >=1,n€0,...,00 (2.2)

2.1.2 Multivariate Orthogonal Polynomials

In cases where the stochastic space that models the uncertainty introduced to the
PDEs is multidimentional, the corresponding basis used for the PCE is described
by a multidimensional orthonormal stochastic polynomial basis with a well-defined
tensor product [28]. This practically means that, for many uncertain variables, a
multidinmensional polynomial basis must be defined, that properly describes the
stochastic space in which the problem is solved. Such polynomials and their prop-
erties are discussed in this section.

Firstly, m sequences of univariate orthogonal polynomials p* = {pF(&,)}5%,, k =
1,...,m are assumed, each of which is orthogonal to a weight function wy (&), where
m corresponds to the dimensionality of the stochastic space. The tensor product of
two such sequences @ = {¢,(&1)}52, and W = {w, (&)}, can be defined in the
following sense.

QW = {qm (f1)wn2 (fz)}fﬁ,m:o = {QOw07 q1Wo, GoW1, g1W1, g2Wo, GoWa, - . . } (2-3)
which is a widely used definition of the tensor product of such sequences. Through

that, the following multidimensional sequence can be defined as the full factorial
combination of m univariate orthogonal polynomials, namely,

Z=AZu}oe = 4L 2" ={Z,,(6) 20, (&) - 20 (&) om0} (24)

An important property of such polynomials is their orthogonality expressed by inner
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products, which in mathematical terms can be expressed as

< f,g >:/€fng§ (2.5)

with W = H;”zl w;(&;). The proof of this property is beyond the scope of this
thesis. In practical terms, the above multidimensional formulation of an orthonor-
mal basis is crucial for the application of the PCE. Firstly, in terms of uncertainty,
one—dimensional problems are of great academic interest but of little practical inter-
est, since the modelling of uncertainty usually involves a large number of uncertain
variables, which necessitates the use of a multidimensional basis. Secondly, the
aforementioned process for the production of a polynomial basis is flexible not only
in terms of the dimensionality of the problem but also the Probability Density Func-
tion (PDF) that corresponds to each variable, since each PDF corresponds to a set
of univariate orthogonal polynomials.

2.1.3 Commonly used Orthogonal Polynomials

In the following section various commonly used orthogonal polynomials and their
properties are discussed.

Legendre Polynomials

1
29
with their orthogonality domain being £ € (—1,1). They can be produced, as most

The Legendre polynomials L, (§) correspond to the uniform distribution w(§) =

polynomial sequences, through a recursive formula, namely

(2n + 1)ELn(E) — nLn1(8)

L, = , L =1 2.6
() Ea 0(6) 26
Their inner product is analytically written as
/1L () L) = (2.7)
. n m 9 — 2n + 1 mn .

11



Hermite Polynomials

The probabilistic Hermite polynomials He,(£) correspond to the most commonly
found PDF, the normal distribution for which w(¢) = ;Le~¢/2, with their orthog-
onality domain being ¢ € (—o0,+00) and can be generated through the recursive
formula

Hen1(§) =€&Hen(§) —nHe,—1(€), Hep(§) =1 (2.8)

Their inner product is analytically written as

+°0 Hen(f)Hem(f)%e_ggﬂdf = 10y, (2.9)

—0o0

Laguerre Polynomials

The Laguerre polynomials La,(£) correspond to the exponential distribution for
which w(§) = €%, with their orthogonality domain being ¢ € (0, +00) and can be
generated through the recursive formula

(2n+1—¢&)La, (&) —nLa,—1(§)

La, — 2.10
any1(§) n+ 1 ( )
Their inner product is analytically written as
oo 1 _62/2
Hen(f)Hem(f)Q—e d¢ = nlémn (2.11)
o s

2.2 Polynomial Chaos Expansion

The usefulnes of a multidimentional orthogonal polynomial basis can be seen in the
following section, where the basic concept of the PCE is discussed. In the PCE,
uncertainty is introduced through a vector £, each component of which corresponds
to a PDF w;(&;) with domain &;. The PDF and the domain of é’, are respectively
calculated by the product W = [[%, w;(&) and € =[]}, &. The PCE of a scalar
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quantity ¢ = ¢(§) is
— 3 oY) (2.12)
=0

Note that the polynomials Y;, as it was previously discussed, are orthogonal to
W(€) = [I;L, w;(&;) and constitute a stochastic orthonormal basis of £. This
expression can also be referred as the spectral representation of ¢(£) in the stochastic
space &, and it was proven to converge with a truncation error e — 0 as j — oo [25].
The spectral coefficients of the expansion can be computed through the Galerkin
Projection of ¢ onto Y}, namely

¢ =< (€),Y; > (2.13)

The Galerkin projection of any scalar function ¢ w.r.t the polynomial Y} is defined
as

<0(0).Y; >~ [ ovwag (2.14)

A result of this representation is that the mean value and the standard deviation of
the uncertain quantity ¢(§) are given by the following expressions

= /g PYoWdE = pug (2.15)

and for the standard deviation,

- /g (6 — o) Wil€ = /g (Zw@(g)—w) Wdg =

DD 0 / EYi()WdE = ZZ@SJ b <Y, (2.16)

7=1 k=1 j=1 k=1

which simply yields
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05 = (<Y;,Y;> ) (2.17)
j=1

To sum up, for orthonormal polynomials where < Y}, Y, >= 1. the mean value and
standard deviation of ¢(£) are, respectively,

fig = ¢° Ui:Z(Wy
j=1

Further statistical moments, such as skewness, curtosis etc. can be calculated by
similar formulas. Therefore, knowledge of the spectral coefficients is sufficient to
fully determine the statistical behavior of a function of the uncertain variables &.

2.3 Truncation, Chaos Order and Error

For practical purposes, the PCE expression of eq. [2.21] is truncated to a finite
number of terms, denoted by ¢ + 1, which is determined by the dimension m of the
stochastic space and the highest order C' of polynomials Y; kept in the expansion,
in the following way

(m+C)!

10 (2.18)

q+1=

In the literature, C' is commonly referred to as the chaos order of the expansion
and is defined by the user. Through that truncation, for an application to a single
PDE or a system of PDEs, a system of ¢ + 1, coupled PDEs or ¢ + 1 coupled
systems of PDEs are produced, with its unkowns being the spectral coefficients ¢’
of the flow field variables. This system will be referred to as the PCE equations. It
is important to note that the stochastic nature of £ is modelled through the basis
polynomials [28] and thus the governing PCE equations that model uncertainties are
in nature deterministic. As a result, discretizations in either space x and time ¢ are
carried out by conventional deterministic techniques without the need for stochastic
modifications.
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In [28], the truncation error of the expansion e, which is defined as

e= > V(6 (2.19)

j=q+1

tends to zero, namely, ¢ — 0 as ¢ — oo, for ¢ > 2, although in the literature the
approximation of ¢ for ¢ = 1 is usually sufficient.

2.4 Application to PDEs

In this section, various ways of applying the PCE to PDEs are discussed. The set
of the PDEs under investigation is symbolically written in its discrete form as

R({U)=0 (2.20)

with U denoting the field flow variables. This notation is used to indicate the flexi-
bility of the PCE in terms of different sets of PDEs. A practical example would be
in the case of aerodynamics, where eq. is the Navier—Stokes equations and U
the array with the conservative variables at each grid node.

In the deterministic version of the problem (i.e. in the absence of uncertainties),
eq. would be solved for the field variables U for a specific value of boundary
conditions, and the Qol would be computed as some integral quantity of the entire
flow field. In aerodynamics, a Qol can be the lift coefficient of an airfoil.

In the stochastic version of the problem, uncertainty would be introduced through
the boundary conditions of the PDEs and/or other uncertain parameters such as
gas constants, turbulence parameters etc, propagate through the entire flow field
by means of the PDEs and introduce uncertainty into the Qol. The purpose of the
PCE is to quantify and propagate this uncertainty.

A practical example of this would be the study of an airfoil, where the uncertain
parameters are the infinite Mach number M., and the infinite flow angle a.,. In
this case, the goal would be to quantify uncertainty in the lift coefficient C'p by
computing not only its mean value but also its standard deviation and its PDF,
that is skewed by the non-linearity of the problem.

There are two main ways of applying the PCE to such a problem, the non—-intrusive
PCE (niPCE) and the intrusive PCE (iPCE), to be discussed in the following sec-
tions.
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2.4.1 Non—Intrusive Polynomial Chaos Expansion

The most commonly implemented method for uncertainty quantification in PDEs is
the niPCE variant [16]. In this approach, the Qol, denoted by @, is expanded as in
eq. [2.21] namely

q

Q) =) _QY;(¢) (2.21)

J=0

Note that the expansion is truncated, as determined by the chaos order. The poly-
nomial basis is produced with the aforementioned means, with the univariate poly-
nomials used corresponding to the PDFs of the uncertain variables vector &, and
considered uncorrelated. The goal is to compute the spectral coefficients of this
expansion. These are computed through Galerkin projections as in [2.14] namely

Q7 =< Q(O).Y; >= / QY Wde (2.22)

13

Therefore, the niPCE requires the computation of the spectral coefficients of the
Qol and, as a result, the integral f ¢ QY;WdE. This integral is approximated either
through Gaussian Quadrature (GQ) or some form of sparce grid integration. Pro-
vided that the spectral coefficients have been computed, the mean value and the
standard deviation of the Qol are given by

o = QO 022 — Z(Q])Q
j=1

The application of the niPCE involves the numerical computation of the integral of
eq. This is done by running the deterministic version of the solver at specific
integration nodes &;, and computing the integral with the proper integration weights
w;, namely

/g QViWdE = 3 wiQ&)Y; (&) (2:23)
=1

This approach greatly simplifies the application of the PCE to PDEs. Given a
software capable of solving eq. in the absence of uncertainties, UQ) can be
conducted by calling this software at the GQ nodes without any modifications. This
practically means that the niPCE merely requires the programming of hard-coded
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values of the GQQ weights and nodes and a simple, managing software for calling the
solver of eq. at these nodes.

The simplicity of the niPCE method is a great advantage, since it doesn’t require
extensive software development, it doesn’t depend on the type of PDE and is flex-
ible in terms of the chaos order. However, the method suffers from the curse of
dimensionality. The number of evaluation nodes required is given by a = (C' + 1)™,
which scales exponentialy with m. This is not an issue for a small number of un-
certain variables, however in industrial applications, where the number of uncertain
variables can range from thousands to even millions, this becomes computationally
intractable very fast.

2.4.2 Intrusive Polynomial Chaos Expansion

Contrary to the niPCE, in the iPCE the governing PDEs are altered by introducing
the PCE through the field flow variables. This, fundamental in its nature, difference,
implies the need for reprogramming the PDE solver without uncertainties, so that
it can handle the altered PDEs. Also, as it will be demonstrated later, this method
produces results with a lower computational cost, but requires a possibly great
investment in development.

Instead of expanding the Qol, the PCE is applied to the flow field variables at each
node, in the following way

U= Xq: U7y (€) (2.24)

In this variant, the unkowns of the problem are not the spectral coefficients of the
Qol, but the spectral coefficients of the flow variables. This increases the mem-
ory requirements of the method which grow linearly with the number of uncertain
variables.

In order to produce the iPCE, the field flow variables of the deterministic equations
are expanded with the PCE, namely

R (Zq: ﬁ]Y(g)) =0 (2.25)

The iPCE equations are derived by applying g+ 1 Galerkin projections at each node,
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yielding the iPCE eqs.

/R (Z UjY(§)> V,Wdé =0 ,k=0,...,q (2.26)
£ ey

It is important to note that eq. is merely a symbolic representation of the
iPCE eqs. Their actual form depends heavily on the type of PDE, the chaos order
and the number of uncertain variables and usually requires an extensive derivation
by hand. The straigtforward implementation of eq. is tedious and requires
extensive mathematical development for any different chaos order and number of
uncertain variables.

For the solution of eq. an implicit (or point-implicit) method along with
an iterative linear system solver can be used. This implicit approach requires the
application of the PCE to the Jacobian of the PDE, along with the AU vector and
the RHS of the equation, namely

OR -
(ﬁ) AU = —Ryq4 (2.27)
OU / oid
following by the updating formula

ﬁnew - _"old + Aﬁ (228)

which would require the formulation of the equations in their expanded form,

OR (Y, U7 :
R( J:()_‘U Y(£)> Aﬁ _ (—R (Z U'Jy(g))) (2.29)

ou

old =0
From now on, subscript old will be omitted. Also, eq. is projected onto the
stochastic basis Y, through the so—called Galerkin projections technique. Through
that approach, eq. is written as

[ OR (S1, 'Y (6)

q
P AU Ydeg:/g—R (Z UJY(g)) Y,Wdg  (2.30)

Jj=0
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Notice that the Galerkin projection is applied to the product %Aﬁ and not sep-

arately to its components giU} and AU. This doesn’t allow for a straightforward

implementation of an implicit method as in eq. for the linearization and solu-
tion of eq. Such a scheme would require the LHS of eq. [2.30 to be written

as

/ OR (Z?;%ﬁjy(s)) A | e - / OR ( Eggﬁjy(ﬁ)) Y WdeAT,
< &
(2.31)

with Aﬁj being the spectral coefficients of AU in eq. [2.31] It isn’t straightforward
that this property holds true, however it is crucial for the application of an implicit
or point — implicit scheme. As a result, it is thoroughly discussed, proved and
validated in this thesis. Most of the mathematical work done is developed so that
this statement holds true.

2.5 On the Differences of the Two Variants

The two variants of the PCE, namely the niPCE and iPCE, have radical differences
in terms of their application, adaptability and computational cost.

The niPCE method is superior to the iPCE in terms of simplicity, since it is rela-
tively simple to apply. The niPCE doesn’t require any changes in the deterministic
version of the software, can easily be implemented for various chaos orders and num-
bers of uncertain variables. Also, it doesn’t depend on the type of PDE used for
uncertainty quantification. In constrast, the iPCE in its straightforward application,
is a problem specific method that is strongly related to the intricacies of the PDE
used. Extensive mathematical work is required for its application, along with a total
restructuring of the deterministic solver. It isn’t easily adaptable to various chaos
orders and the number of uncertain variables and requires extensive development
for modifications in the code. For example, if a 3D CFD software is using a specific
turbulence model for the quantification of turbulence effects, the PCE of the model
would have to be developed and programmed and, if a different turbulence model
was desirable, that would take a similar, tedious effort for its development.

In terms of computational cost, the niPCE suffers greatly from the curse of dimen-
sionality, as it was previously discussed, to the point where its application can even
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become computationally intractable. This problem can be appeased with the use of
sparse grid integration methods [22,[7]. In contrast, the iPCE is much more efficient,
since as the number of uncertain variables grows, the corresponding linear system
grows at a much slower rate and, as a result, significant gains are made in terms of
efficiency.

In this thesis, a new method, [9], that enjoys the benefits of the iPCE in terms of
its computational cost and the benefits of the niPCE in terms of its adaptability
and programming simplicity is introduced. The method is formulated with a proper
mathematical background and discussed in detail in section
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Chapter 3

Mathematical Formulation of the

iPCE

In this chapter, a rigorous mathematical framework regarding the application of the
iPCE is developed and discussed. Various useful definitions and proofs related to
the iPCE are presented and the intricacies of their application are discussed.

3.1 The Galerkin Operator

The notion of a Galerkin projection of a scalar quantity can be extended to vectors
and matrices, through a proper formulation of the Galerkin operator.

Firstly, the Galerkin projection of a scalar function ¢(€) to the polynomial Y; is
defined as

Qg =< $(€),Y; >= /g oYW dg (3.1)

with ¢ denoting the truncation order, and it is given by eq. In our case, &
is a vector of m stochastic variables with uncorrelated PDFs wy (&), each in the
appropriate domain &, with their common domain being £ = [[,~, &.

This definition can be extended to include the Galerkin projection of vectors. The
Galerkin projection of order ¢ of a vector U(&)=[Uy(€), ..., Un(&)]T € R" is defined
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as
qa [(7} = [0°, 01, ..., 09T (3.2)

with the block matrix k& being denoted by ﬁk:[Ulk, U, . UM eR", k=0,...,q.
Vector G1 [lj ] will be referred to as the vector of order ¢, and is consisted of ¢
such blocks. This definition is a structural reordering of the terms that result from
the Galerkin projections of each of the individual components of the deterministic
vector. Notice that, in the definition of the Galerkin projection of a vector in eq.
3.2) if U is a scalar quantity defined as a one—dimensional vector, then the definition
trickles down to that of the Galerkin projection of a scalar, as in eq. [3.1]

A similar generalization can be made in the case of matrices. The Galerkin projec-

tion of order ¢ of a square matrix A of dimension n with components A;;=A4;;(§) is
defined as

A 401 A%
A0 A1 Al

GlAl = . . (3.3)
A At pm

where the (i, j) element of AM € R™ " is given by
AY = /g AV, Wdg =) Al < Vi, Y3, Y, > (3.4)
k=0
with < Yk,Y)\, YM >= ff,‘ YkY)\YMWdé .

This definition is also a structural reordering of terms resulting from the Galerkin
projections of each of the individual components of the deterministic matrix. Notice
that, in the definition of the Galerkin projection of a matrix in eq. , if Uis a
vector quantity defined as a matrix of dimension n x 1, then the definition trickles
down to that of the Galerkin projection of a vector, as in eq.
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3.2 The Homogeneity Property

These definitions were developed with the homogeneity property of eq. in mind.
Although the intricacies of the process are irrelevant to this thesis, a short proof of
this property will be provided, in its most general form. The goal is to show that,
for a matrix A and a vector U , whose components are expanded using the PCE and
truncated to g terms, the following property holds

Qe [A(?] — Q4[A] GO [(ﬂ (3.5)

For the purpose of proving the above property, all expressions are expanded using
the PCE and truncated in the following manner,

A=Y ALYi(€) and U= UMYi(€)
k=0

k=0

note that i,5 = 1,...,n. The PCE of the individual elements of the matrices are
truncated to a finite number of terms. To prove it, let f=AU or f;=A;;U;. Then,
for any p,0 <p <¢q

fE = (AU = /gAz‘jUjYdeﬁ =Uj /gAUYAYde& = U} A7

which is in fact the pt! element of Gd [A] G4 [(j } This proves the general form of
eq. namely

OR (X0, 07V (¢))
v ' U

|Gi[AT]  (3.6)

This property is critical for the application of a general and flexible iPCE method
that isn’t dependent on the type of PDEs solved. It allows for the discretization
schemes used to be generalized in the stochastic version of the problem and also,
allows for Galerkin projections to be made directly to the residuals of the discretized
form of the equations. Namely, if the residual form of the PDE, in the form of eq.
[2.25) can be written as a sum of products of matrices and vectors, it allows for
the Galerkin projections made to trickle down to the individual matrices that the
equation is consisted of.
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3.3 Deriving the iPCE Equations

The aforementioned definitions and properties are given with the purpose of creating
a framework that allows for the automation of the iPCE, without the need for the
cumbersome research and programming work that is required for the straightforward
application of the method. Again, the equations are symbolically written in their
deterministic, discrete form as a function of their field flow variables U at each node
of the solution grid,

R({U)=0 (3.7)

A prerequisite for the application of the method described in this section is the
existence of software for the solution of the deterministic PDEs (such as the Navier —
Stokes equations; in this case, this software pre—exists and is made available in open—
source for the purpose of this diploma thesis) that employs the following iterative
scheme

(aif) AU = =Ry (3.8)
oU / oa

Eq. is solved for AU followed by an updating step, Unew = Uya + AU at each
grid node. Then, the LHS and RHS are recomputed and the system is solved again,
until convergence (sufficiently small value of || R||) is reached.

As was the case in the standard iPCE, the field flow variables U are expanded using
the PCE. Appropriate Galerkin projections are made to eq. and with the use
of the homogeneity property of eq. [3.6] the new stochastic iterative scheme for the
solution of the iPCE equations is

Qe {z—gl Qe [AU‘} — QY[R (3.9)

For notation purposes, subscript old is ommited from eq. 3.9} Similarly to the case
of the deterministic iterative scheme, eq. is solved for the PCE spectral coef-
ficients of the field flow variables, namely G4 [A[j ] followed by an updating step,
G4 [ﬁnew} =G4 [Uold] + G4 [A[ﬂ at each grid node.

Uncertainties are introduced through the boundary conditions of the problem by

modeling them as a function of the vector of uncertain variables &.
The RHS of eq. namely G9[R] can be computed through a non-intrusive
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aproach, by computing the value of the deterministic residual R at values of £ that
correspond to the quadrature nodes indicated by the stochastic polynomial tensor
space Y. A similar approach can be used for the computation of the LHS G4 [‘;—g]

of eq. by computing the values of the deterministic LHS, i.e. the Jacobian %
of the iterative scheme at specific values of & that correspond to the quadrature
nodes used.

This approach is crucial for the automation of the iPCE, because it produces the
iPCE equations without the cumbersome task of deriving them by hand and without
the need for major reprogramming. The only evident prerequisite is the existence of
software that solves the deterministic version of the PDEs through a linearization
scheme in the form of eq. [3.8] This allows for the development of an iPCE method

that is flexible in terms of the chaos order and the number of uncertain variables.

3.4 On the LHS and the System Jacobian

The method described in the previous section enjoys the advantages of flexibility and
simplicity in terms of programming and application. In this section, it is proved that
the method doesn’t produce a different LHS than the straightforward iPCE does,
by proving that the Jacobian produced by the method is the exact Jacobian of the

G4]] to the LHS of eq. [3.8, namely G4 [%] is equal to the Jacobian that is the

product of the derivative of the RHS G9[R] w.r.t. the spectral coefficients G4 [[7 ]

of the spectral coefficients of the stochastic field flow variables, namely

iPCE equations. More sﬁcally, it is proved that the application of the operator

ol

ou
Recall the PCE of U as U = q 'Y; (the Einstein summation convention is implied

for i=0,...,q), which yields g—ﬁUi = Y;I, with I the identity matrix. Therefore,

0 _ ., 9

a5 = Vo (3.10)
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for any scalar ¢. Because of eq. the (7, 7) element of the (A, i) block of matrix
G1 [g@} is
7

OR R aRi i
(aU) /.sYAY((’)vU)Wd£ /”aUAde (Tz@)

O(GA[R]) | o g OR!
a(Ga[])’ Y v

which is equal to the corresponding element of

Technically, the aforementioned relations allow for the solution of the iPCE equa-
tions as these result from the application of non—intrusive operators. Therefore, it
requires minimal changes in the background software that solves the problem with-
out uncertainties; it merely asks for a way to evaluate R and % at some values of
& or, equivalently, for some value—sets of boundary conditions and/or input parame-
ters. We, thus, avoid the tedious mathematical development and extensive software
programming associated with the application of the iPCE method. It is also flexible
whenever the chaos order and/or the number of uncertain variables change; alter-
ing any of them solely requires the use of new GQ nodes and weights, in contrast
to standard iPCE approaches calling for the mathematical development of the new
governing PDEs and extensive re-programming. It is also important to note that
the new system of equations described by eq. is ¢ + 1 times larger than the
original system.

3.5 Stability of the niPCE

Stability is an issue that can play a crucial role when it comes to its efficiency and
accuracy. As it was previously mentioned, the main idea of the niPCE is to ex-
pand a Qol with the PCE and to compute the spectral coefficients of the expansion
with appropriate Galerkin projections. Numerically, this is implemented through
a numerical integration formula that requires the evaluation of R(U(€)) at specific
values & = &, with k£ denoting the quadrature nodes and, therefore breaking down
the iPCE to a series of deterministic runs and computations of the stochastic phe-
nomena at a post—processing level.

At this point, the stability of the code plays a crucial role, in the following sense.
Depending on the type of PDE investigated and the numerical solver used and nu-
merous other parameters, the solver that solves R(U(£)) = 0, for different values of
& (and as a result for different values of the boundary conditions of the problem),
must be a rigorous solver from a stability point of view. More specifically, the nu-
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merical scheme used must be stable for £ € £, with £ = [[;~_, & being the domain
of the stochastic variable &.

If the numerical scheme of the deterministic solver indeed happens to be stable for
the entirety of the domain &£, then the niPCE method will lead to a succesful com-
putation of the spectral coefficients of the Qol. However, if the numerical scheme is
either unstable or conditionally stable for specific values of &, then the two following
cases are possible.

The most optimistic scenario is that the numerical scheme is conditionally stable
and, therefore, a percentage of the evaluations of R(U(£)) take longer than normal
to complete, with the entire calculation of the niPCE being delayed. This case will
be displayed later on in the application section of this thesis, and it absolutely pos-
sible to occur in CFD. As it is common in CFD solvers, certain evaluations require
longer time than others and, therefore, may delay the entire computation.The least
optimistic scenario is that the code becomes unstable in certain areas of domain &,
in which case the entire computation fails.

3.6 Stability of the iPCE

The stability of the numerical scheme for the solution of the iPCE equations is an
important topic of discussion, since in the intrusive case, the Jacobian of the system
is altered and a new Jacobian is produced. In this section, it is proved that the
numerical stability of the iPCE method solely depends on the numerical stability
of the iPCE solver. This practically means that when eq. is numerically solved
in its linearized form through a stable iterative scheme in the form of eq. the
corresponding numerical scheme of eq. that solves for G4 |U (&) is also stable.
In order to prove this property, it is assumed that the integrals in the involved
Galerkin projections are computed by a numerical integration in through GQ, either
full or sparse grid, that involves a set of quadrature weights B and the corresponding
quadrature nodes Q that define ¢ value—sets of the uncertain variables &. These
weights and nodes are denoted respectively by

Bi={bi,....b.} , Q:={€1,.... &)} (3.11)
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where ¢ = (C' + 1)™. It is also assumed that the chosen chaos order is such that
U (&) is well approximated by the truncated expansion of U with ¢ terms, namely,

0 =3 0ie) (312

In what follows, G4 [U(”)} = [(UN®, ... (U9)®]T denotes the PCE coefficient
fields at the k—th iteration of the iterative solver, eq. It is also assumed that an
existing solver of eq[3.7)is used ¢ times, one for each € € Q, in order to evaluate the
value of R(U(£)) at each integration node. Upon completion of the x—th iteration of
each run, U and R fields at each GQ node of Q are computed, and these are denoted
by U'(%) (&) and R'™(&;) respectively. As it was discussed in the previous chapter,
the PCE coefficients of U and the iPCE equations residuals can be computed, in a
non—intrusive manner, by the formulas

U’g ZbY U (&)
(R'9)" ZbY &)R'™(&;) (3.13)

In order to correlate the stability of the iPCE numerical scheme with the stability
of the deterministic solver, it suffices to show that

(U)W = (09" implies (T9)"+) = (09D, g=0,....¢q (3.14)
The solution of eq. for each € € Q leads to

ﬁ/(nﬂ)(&) _ (j/(n)(&) — T 'R™(&) (3.15)

where J = ggs:s and R (§;) denotes the computed residuals at each Gaussian

node. Assuming (79(”) = U';(F”), which also results to

(Rg)(ﬁ) — (R/g)(li)’ g — O7 . 7q (316)
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the application of eq. for all £ € Q, by considering eq. leads to

(T'9) (D) Zb Y, ()T (&) R™ (&) (3.17)

Moreover

—;

G |0t+0] = o |00 - Ga [71] G [R™] (3.18)

From egs. |3.17| and |3.18|, it can be seen that in order to prove that ((jg)(”ﬂ) =
([7’9)(”“), g=20,...,q, it suffices to show that

Z bY€) T (&) RW(E) = G [T'] G [RW)]

Thus,

GTGIRY], = Y (7R =

k=0

Db &Y (&) Y Yi(&) D bRY(E)Yi(&) =

k=0 j=1

Z bz’jil(gl €z Z Yk sz Z b; j €1 £z)R(H (51)

Eq. expresses the fact that the only prerequisite for the convergence of the iPCE
equations is to use a solver for the problem without uncertainties that converges for

all £ € Q.

Note that egs. and are both approximate in the sense that they both
underwent truncation. Therefore, it is expected that the results of the proposed
iPCE formulation will tend to those of the corresponding niPCE (which, of course,
also undergoes truncation), as the chaos order increases. It also implies that the
iPCE and the niPCE converge to the same solution as the chaos order ¢ increases.
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Chapter 4

Numerical Solution the iPCE

Equations

4.1 Comparison of the Computational Cost

In the previous chapter regarding the stability of the method, it was shown that
the iPCE converges in as many iterations as the background solver. Therefore a
theoretical comparison can be made between the cost of the iPCE and the niPCE,
on a per iteration basis. The iPCE method, per iteration, includes the computation
of the LHS and RHS terms of the iPCE equations, namely

G [gi;] Ga [Az?] — _GY[R] (4.1)

This is achieved through Gauss Quadrature based Galerkin projections of the Jaco-
bians. After the computation, the cost of computing the residuals and numerically
solving the resulting system, eq. is also taken into account.

On the other hand, the niPCE method requires ¢ distinct solutions of the back-
ground PDEs the cost of which on a per iteration basis includes ¢ computations of
the LHS and RHS terms of the deterministic equation

R \G__R (4.2)
oU

30



one for each £ € Q and ¢ solutions of the resulting systems, eq. one for each £ € Q.

Up to this point in both the iPCE and the niPCE variants, the computational cost
of forming the LHS and RHS terms within each iteration is considered, for practical
purposes, to be equal in either method. This has a great practical importance in the
proposed iPCE approach, where the residuals of the equations are computed in a
non—intrusive manner, by computing the values of the RHS and the LHS at specific
integration nodes.

4.2 Cost Reduction in the iPCE

The system of eq. is (¢ + 1)? times larger than its counterpart without uncer-
tainties in which makes it more expensive both computationally and from a
memory consumption viewpoint. A method for appeasing these disadvantages can
be formulated if eq. is rewritten in block form, namely

R0 9RO1 A N RO

ou ou oou %

R0 9Rll OR1a| | A1 R!

ou ou o oU _ 4.3
: : . : == (4.3)

In industrial CFD applications, where the mere solution of eq. can require
extensive computational and storage power, the system of eq. [£.3]| presents difficulties
in both aspects. It is important to notice that the LHS of eq. is heavily coupled,
a problem which can be appeased if the first spectral coefficient of the field flow
variables U is approximated by U (& =¢&,), with &, denoting being the root vector
of the first order polynomials Y;. This is done by running the software without
uncertainties once. The error of this approximation is given by

> UYi(E) (4.4)

. (m42)!
="t

with m denoting the number of uncertain variables. Now, assuming that U%is well
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approximated, eq. can be written for C' =1

ORM - OR’
—— — ey < )/pa Y)\, YN > (45)
oU ij oU ij

p=0

since < Y,, Yy, Y, >= dp,0y, for 1 < A, p < W and 0 < p < (mﬂ)!, eq. is

m!

written as

ORM OR"

oty "ol
Eq. eliminated all off-diagonal elements of the LHS of eq. except for those
in the first row and collumn. As a result, the LHS is rewritten as

(4.6)

- 3_1100 8_1101 8_1?.02 a_Rqu 'A[jo— - 10
oU oU oU T 8U R
oR10  OR% 0 AT R!
ou 20 ou 00 o 7
gz o 2 .. 0 AU? | = — | R? (4.7)
oR1O g o . 0RO | AT | R |
L 50 oo 4 L .

At this point, the appoximation that U0 ~ ﬁ(& = &,) implies that AU°~0. This
allows for the first row and the first collumn of eq. [£.7]to be eliminated and therefore
only keeping the diagonal blocks of the LHS. As a result, eq. is rewritten as

%00 0 ... o0 AT R!
o 2™ AT R?
ou S (4.8)
‘ ' " 9R0 Far "
0 o .. & AT R

The system of eq. is comprised of (W + 1), decoupled, linear systems with
LHS %00 and a different RHS. Due to this, only one of these diagonal block matrices
needs to be computed and stored per iteration, which greatly reduces the storage

requiremets and the computational cost of the method. Also, the block %9, is well

ij
approximated by the solution of the problem without uncertainties, in the beginning
of the previous iteration, and as a result reducing the computational cost of the
method on a per iteration basis even further.

If a chaos order higher than C' = 1 is desirable, the method is followed similarly with
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%J(FC—C__II)),' spectral coefficients

of the expansion are computed using the aforementioned process, while the next
<(m+C)! (m+C—1)!

Ot T I C— ) ) are computed with the use of eq. In this case, even though

the one described in the previous paragraph. The first

m+C—1)!
mI(C—1)!

been computed, it holds that AU' ~ 0. This practically means that the off-diagonal
blocks of eq. can be neglected for those high order terms. Also,

the off-diagonal elements are not zero, because the first of U’ have already

Rkk R” ROO
a—_, = a—_, < Y:o, Y, Y >~ a—_, (49)
U ij oU ij oU ij

In eq. no summation for k£ is implied. Also the blocks that correspond to the
spectral coefficients of C' > 2 can be neglected in comparison with g—g?j. This means
that the system for C' > 2 trickles down to the one of eq. [4.8

It is important to note that in the computation of the LHS of eq. there is no need
to re-compute the diagonal elements of the decoupled version at each iteration, since
those remain constant and equal with each other. As a consequence, the memory
requirements for the storage of the LHS of the iPCE equations are exactly the same
with the storage requirements for the LHS in the absence of uncertainties. This also
reduces the computational cost, merely by avoiding the part of the iteration where
the LHS is built again.

This property is also convenient in terms of programming, since the block matrices
involved in the system of eq. are built similarly with the LHS of eq. This
means that for the solution of the iPCE equations, the same solver that was used
in the problem without uncertainties can be used without any modifications.

4.3 Flow Model and Numerical Solution

In the applications to follow, the 3D Reynolds—Averaged Navier—Stokes (RANS)
equations are written in vector form for compressible flows as

8(7 af;mv aﬁvis B

with the flow variable vector being denoted as U= (p,p w, )T, in which p is the
density, u = [uq, ug, ug] the velocity vector. E; = % — 15 w? the per unit volume
total energy. Also p denotes the pressure, while the inviscid and viscous fluxes are
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given by

PU; 0
1= pusu+ pd; ) fim = T; (4.11)
u;(Ey + p) UjTij + i

where ¢; the thermal flux components, 7; = [7;1, Tiz, Tig]T are viscous and turbulent
stresses respectively and 6; is the Kronecker symbol. ’

In the following applications, the flow model used is the one described in this section.
In order to simplify notation, the Galerkin operator will be denoted by its deter-
ministic counterpart, namely below, A and U denote G[A], and G[U] respectively.
The homogeneity property of the iPCE equations implied by eq. is crucial for
the application of an upwind discretization scheme that is similar to the one used
in the deterministic model. By integrating the equation

G [gﬂ Qe [Aﬁ] — QY[R (4.12)

over the finite volume (2p, the steady flow analysis yields

Uli—i-l ﬁlfg .
Qp (A—tp> +Q€Z(P[)<I>IDQ} O0po =0 (4.13)

where x denotes the pseudo—time step counter, P pq 1s the inviscid numerical flux
crossing the interface (0Q2pg) between two adjacent finite volumes (pointing from P
to Q); nei(P) stands for the set of neighbouring finite volumes of node P

The inviscid fluxes are computed using the flux vector splitting technique [15], ap-
plied between P and @), as follows

Opo = ApoUby+ AL Uk (4.14)
where Apg = = Abg + Apg and Af,, Ap, are defined using the positive and

negative elgenvalues of the Jacobian matrix. For second—order spatial accuracy,
U ﬁQ and U }@Q (where L and R denote the two states on both sides of the interface
between Qp and ) are computed from (jp, UQ, VUp and V(?Q as follows

—

1 - 1,
Uby=Up+ 2 (PQ) VUP, Uy =Uqg — 3 (PQ)-VU,
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The so—computed fluxes are limited using the van Leer-van Albada limiting function
[15]. Spatial gradients are computed using the Green—Gauss integration formula.

The discretized egs. are solved at each pseudo-time step using the point—implicit
Jacobi which is written as

DRAUSHY + 3 Z5AUS™ = —Ry”
Qenei(P)
Ustt = AUEM 4+ UE (4.15)

where k is the pseudo—time counter, v the Jacobi internal iteration counter, Dp,
Zg stand for the diagonal and non-diagonal matrices respectively and ﬁ;"’ is the
residual array. Each Jacobi iteration comprises one iteration to solve the equations
corresponding to one of the statistical moments by freezing the other terms. This
flow model described above is used in the following flow cases.

4.4 Turbulence Model

In this thesis, closure is defined by the state equation of perfect gases and the
Spalart—Allmaras (SA) turbulence model, [23], which in its compressible form solves
the following equation for f,

Opit)  Opuy) 1|0 _ Of i\
ot + 8% N ; Oxz (M—i_'u)@xl +Cb2 6_1'2

~\ 2
Cp o
- Cnta= %10 (5) +ohae (4.10)
with
S fi X
S=| W+ —dsfor fon=1—
’w’+y2l€2f2 f2 ].+va1
1+ch3 1/6 " il
w = —_ , =T+ Culr —r), 7T==
f 9( - +ng) g o ) oy

Also note that u the fluid’s dynamic viscosity and that w is the vorticity vector
defined as w = V x wu. Also, y denotes the distance of a grid node from the closest
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solid wall. The eddy viscocity is given by

X3
:U’t_ﬂfvu fvl_m7 X =

= =

(4.17)

values

Also, Ax is the grid spacing along the wall at this point. At the solid walls, i = 0
is imposed. The constants used in the turbulence model are assigned the following

oc=2% k=041, Pr,=09, ¢, =71, ¢, =0.1355, ¢, =0.622,
oy =+ %2 0 =03, ey =2, =1, =2, =11, ¢, =2
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Chapter 5

UQ Applications in Aerodynamics

In this chapter applications of the method presented for Uncertainty Quantification
to aerodynamic problems are presented and compared with the niPCE.

5.1 Inviscid Flow in the SC10 Compressor Cas-

cade

This case deals with a Standard Configuration 10 (SC10) cascade that is consisted
of the NACAO0006 profile , staggered at an angle of 45°. Solidity is equal to 1 and
the 2D profile is extruded spanwise to form a 3D cascade, since the background
solver needs to read 3D domains. The flow around the cascade is inviscid and
transonic, with the uncertainty being introduced through the boundary conditions
of the cascade, namely the inlet angle a; =58° and outlet isentropic Mach number
My ;s=0.4425 with the Qol being the static pressure rise (ps/p1) between the inlet
(1) and outlet (2). At the nominal point, ps/p; =1.2967. The outlet isentropic Mach
number is normally distributed with Ms ;s ~ N(0.4425,0.005) and the inlet angle is
uniformly distributed, a; ~ U(57°,59°).

The mean value and the standard deviation of the static pressure rise, table[5.1 have
been computed by the niPCE and iPCE variants. The results of the two methods are
in very good agreement. Regarding the computational cost comparison between the
two methods, for C'=1, the proposed iPCE method outperforms the niPCE, being
faster by ~20%. In the C'=2 case, the iPCE outperforms the niPCE by ~10%. As
described in chapter [3, the problem without uncertainties is solved first and then

37



used to initialize the mean flow field U for the iPCE method as well as each run of
the niPCE one, in order to allow for a fair comparison of the two methods.

For the iPCE, the resulting fields of the mean Mach number and standard deviation
for C'=1 can be seen in fig. A shockwave appears in the mean Mach field, and
a noticeable increase in the values of the standard deviation of the Mach number
appears at the same position, which indicates that uncertainties in its position are
caused by the uncertain flow conditions. Note that the fields resulting from the
niPCE solver are identical to that of the iPCE, which is expected if the discussion
in chapter [3| is recalled. For this reason, the corresponding figures are the same,
as it can be seen in figures [5.1] and The niPCE fields are computed at a post-
processing phase and are presented, for comparison purposes, in figure[5.2] although
this isn’t a common practice in the niPCE method.

iPCE niPCE | iPCE niPCE
C=1 C=2

lpa/or | 1.2933 1.2936 | 1.2938 1.2937

Opojm | 0.0257  0.0254 | 0.0251 0.0253

| time (sec) | 1 1.231 | 3.900  4.308 |

Table 5.1: Flow in the SC10 compressor cascade. Uncertain flow conditions. Mean
value and standard deviation of the static pressure rise values, comparison of iPCE
and niPCFE results for C=1 and C=1 and computational cost.

Notice that the iPCE is in agreement with the niPCE in terms of the mean value
and the standard deviation, with the results being closer in the case of C' = 2, than
in case C' = 1. However, the increase in computational time from C' =1 to C' = 2 is
small enough that the selection of C' = 2 isn’t justified by the added computational
cost. No Monte—Carlo comparisons were made, since the computational demands
were too high.

5.2 Flow around a 2D Isolated Airfoil

This case deals with the turbulent flow around a 2D isolated airfoil, for which an
unstructured grid of 11K nodes per slice is used; as in the previous case, this is
extruded in the third direction. In the absence of uncertainties, the flow conditions
are the infinite flow angle a,, = 2° the Mach number M., = 0.3 and the Reynolds
number based on the length of the chord Re = 10°. The Qols are the lift and
drag coefficients of the airfoil. In this case, uncertainties are introduced through
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Figure 5.1: Flow in the SC10 compressor cascade, with uncertain flow conditions.
Mean field (left) and standard deviation (right) fields of the Mach number (iPCE,
C=1). Comparison with niPCE in fig.

the coefficients of the Spalart—Allmaras model, which are arbitrarily assumed to be
uniformly distributed, centered at their values proposed in [23]. Arbitrarily, each
coefficient is assumed to take on a maximum value of 105% and a minimum value
of 95% of its mean value; the assumed distributions are

k= K"+ 0.05K°&, o= 0" +0.050%,
Coz = oy + 0.05¢05&4 Co1 = € +0.05¢%, &3
Chr = Cjy + 0.05¢h586 o = ¢y + 0.05¢h, &5
Cuwsz = €y 4+ 0.05¢2 .65 Cwz = Coy 4+ 0.05¢ 167
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Figure 5.2: Flow in the SC10 compressor cascade, with uncertain flow conditions.
Mean field (left) and standard deviation (right) fields of the Mach number (niPCE,
C=1). Comparison with iPCE in fig

with &~U(=1,1),i=1,...,8 and 6°=2/3, k=041, &, =7.1, ), =5, I, =0.1355,
Ay =0.622, ?,=0.3 and ?;=2.

It is important to note that in this case where m = 8, i.e. there are eight uncertain
variables, the niPCE is asking for 256 evaluations of the flow equations (for C'=1),
for the complete grid of Gauss nodes. In this case, instead of the full GQ grid,
sparse grids as in [22] are used. As a result 17 integration nodes are required and
96% less CFD evaluations are carried out for the niPCE. For a fair comparison, the
iPCE method employed the same sparse grid to compute the residuals. In table|5.2]
a comparison of the statistical moments as computed by the two variants, as well
as their computational cost can be found .

The computed PCE coefficients of the turbulence model coefficients are given in
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iPCE niPCE
C=1
ey 0.095645 0.095642
oo, 0.000074  0.000087
oy 0.029479  0.029481
oo, 0.000031 0.000149
\ Time Units \ 1 1.374 \

Table 5.2: Turbulent flow around an isolated airfoil, with eight uncertain turbulence
model coefficients. Statistical moments of Cr and Cp computed using iPCE and
niPCE for C=1 and computational cost.

table 5.3l A comparison of the results of the iPCE and niPCE demonstrates the
fact that the spectral coefficients of the (', are, for numerical purposes equal. This
isn’t the case for the C'p PCE coefficients. Once again, the CFD runs for the niPCE
didn’t converge to the same extent as in the case of the iPCE code. For this reason,
the niPCE failed to properly propagate the uncertainty introduced to the flow field
by uncertain values in the turbulence model coefficients to the drag coefficient. This
is an intrinsic problem of the niPCE method. If the solver without uncertainties
fails to converge at some of the integration nodes, the method is made vulnerable to
numerical instabilities and may be slow to converge and, sometimes, may diverge.
On the other hand, as was shown in chapter [3] the iPCE method is stable provided
the solver without uncertainties is stable at the nominal point. Here, their difference
was even greater, since the iPCE was much more effective in modelling even these
small changes that are by several orders of magnitude smaller than the mean value
of the Cp. In this case, the iPCE equations converged smoothly and without any
problems. In the C, case, the differences are much less pronounced. This is mainly
affected by the equations of the mean flow, the residuals of which are similarly small
in both the iPCE and niPCE variants.

In this case, given that some niPCE runs failed to converge adequately, the compar-
ison of the computational cost of the two methods demonstrates the superiority of
the iPCE method in terms of convergence and stability. Thus, for a qualitatively fair
comparison of the two methods, 7000 iterations were performed by both methods,
which is the number of iterations the iPCE method required to converge. Even with
this criterion, the latter is ~30% faster.
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iPCE niPCE iPCE niPCE
C? | 0.095645 0.095642 | C% [ 0.029480 0.029482
Cl| —8147-107% —8223-107% | C} | 6.13-10°7  2.99-107°
C% | 5457-107°  5.643-107° | C% | 246-10°  1.01-107*
C3 ] 4951-107°  6.581-107° | C% | —1.71-107° —8.92-107°
Ct| 7806-107%  7.757-107% | C} | —1.78-107% —8.59 1076
C? | 3.588-1075  3.356-1076 | C} | 9.23-1075 5.48-107°
CS | 2758-107%  2.782-10°% | C% | 880-107%  1.76-10°°
Cl| —342-1077 —-382-1077 |ChL | 1.82-107% 8.44-107F
c%| —4.0-10%  —43-.10° | C%| 7.0-100%  3.26-1077

Table 5.3: Turbulent flow around an isolated airfoil, m = 8. PCE coefficients of Cr,
and Cp are computed using iPCE and niPCE, for C=1.

0.001 0.004 0.007 0.01 0.013

Figure 5.3: Turbulent flow around the airfoil, with uncertain flow conditions. Com-
puted mean (left) and standard deviation (right) fields of the Mach number (iPCE,
C=1).
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Chapter 6

Continuous Adjoint with the E—SI

Formulation

In this chapter, an overview of the Continuous Adjoint method is presented in the
absence of uncertainties, for the 2D Euler equations. Their adjoint counterpart is
developed for the Surface Integral (SI) formulation . This SI formulation is later
on extended for the Enhanced SI (E-SI) method [10] for handling the sensitivity

derivatives.

6.1 The Three Variants

In shape optimization problems, the continuous adjoint method can be formulated
in three different ways, each of which leads to the same Field Adjoint Equation and
Adjoint Boundary Conditions, but different expressions for the sensitivity derivatives
of the objective function with respect to the design variables.

The first formulation, [6], referred to as the Field Integrals (FI) adjoint, leads to
expressions for the sensitivity derivatives that are comprised of field integrals of the
variations in the grid coordinates Z w.r.t. the design variables b. This formulation is
expensive since it requires integrating over the entire field and also due to the need
of computing 67. This is commonly done using finite differences, which requires
two grid displacement PDEs solutions per design variable. This leads to a cost that
scales linearly with the number of design variables, that eventually dominates the
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time needed for computing the sensitivity derivatives. This formulation is out of the
scope of this thesis.

The second formulation developed, the Surface Integral (SI) adjoint, excluded the
field integrals from the computation of the sensitivity derivatives by only involving
surface integrals and, as a result, reduced the computational cost of the method.
However, if the grid isn’t sufficiently fine, the SI adjoint may lead to inaccuracies.
This holds true in some cases where the grid is coarse enough to solve the flow
equations with a high accuracy, which has been shown multiple times [10].

The third formulation [I0], is based on the SI adjoint and introduces an alternative
expression for the sensitivity derivatives by solving the adjoint grid displacement
PDE, and introducing those terms into the augmented objective function. This
method has been shown to enjoy the advantages of the FI in terms of its accu-
racy with a computational cost that is comparable to the SI formulation, and it is
discussed thoroughly in this thesis.

Herein, existing software which implements the SI adjoint method is adapted to
use the theory of the E-SI method. This was later on used as a basis code for
the application of the iPCE to continuous adjoint. As a result, a similar process
is followed, with the SI Adjoint for the Euler equations being presented first and,
then, modified for the E-SI adjoint formulation.

6.2 SI Adjoint to the Euler Equations

First the SI Adjoint for the 2D Euler equations is presented. Even though the
applications of this thesis are focused on the E-SI, the SI adjoint consitutes a good
basis for the presentation of the E-SI adjoint.

It is assumed that it is desirable to optimize an aerodynamic object under a criterion,
expressed mathematically as the minimization of a function F', which for a 2D aifoil
could be the lift coefficient, namely

F=L= / (N2 COS Qoo — N SIN Ao )dS (6.1)
Sw

It is also assumed that the geometry is the result of a parameterization through any
relevant technique (such as the Bezier-Bernstein Polynomials, b—Splines, NURBS
etc). The parameterization determines the vector of design variables b, of dimension
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N (5 e RN > which practically means that the values of b define the geometry of the
aerodynamic object in a unique manner. Function F' can be expressed as a function
of the design variables b and the field flow variables U in the following manner,

-

F=F(U,b) (6.2)

For optimization purposes the derivative of the objective function w.r.t. the design

variables, namely , is of high interest and it can be written as
F F
0F = 8—(5 U+ a—db (6.3)
ou 0b

For notation purposes, the operator ﬂ[ | has been abbreviated to d[.]. The field flow
equations can be written as

-

R=R(U,b)=0, in Q

The derivative of the field flow with respect to the design variables is similarly
expressed as

sr— s+ B (6.4)
oU ob

Note that 0 R = 0, since the field flow equations have been satisfied in the initial
geometry as well as the geometry that has been affected by 8b. Therefore, eq.
can be multiplied with a vector ¥ and added to eq. The result of that operation
will be referred to as the augmented objective function, which is defined as

oU
a.ﬁL’i

Fog=F+ / o Yigo _p + / Wl A ——df (6.5)
Q Oz; Q

The derivative of this expression w.r.t. the design variables is written, with the help
of the Leibniz rule, as

o [ Of;

T 2 T

5Faug_(5F—|—/\I’ —a (a )dQ+/‘I’ 8xznl(51:ld5 (66)
GG ’ SD
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Term SD becomes a part of the sensitivity derivatives of the problem, while term
GG can be expanded with the use of the Green—Gauss divergence theorem as

of; afz 0w’ Of;
T T
/\IJ = <8x1> dQ = /\I! de e (6.7)

-~

A

The surface integral A is written, along the solid wall, as

A= [ ©T§fndS — r O, Szn;dS =
Sy SW 8$l
T/ TF afz
Sy Sy SW Oy
T T 8fz
= W, 0(pndS) — W' §(ndS) — 5 dxn;dS =
Sy Sw SW L1
T T T afz
= W n;0pdS + W 6(ndS) — W §(ndS) — dxn;dS =
Sy Sw Sw sW Oy
T T T 7 T 8ﬁ
= W nopdS + (Wi p— ¥ fi)0(ndS) — v dxn;dS (6.8)
Sy Sw Sw L1
Therefore, Fy,, can be written as
owT of; o Of;
O0Fqug = 0F + \ O ( % )dS2 + - v l ox;dS+
T T T afz
Wi n;0pdS + (P p— O fi)0(ndS) — drn;dS  (6.9)
Sw Sw SW £

In case the objective function is given by eq. its variation 0F is given by

0F = 6Fsp +/ dp(n2 COS sy — My SIN A0 )dS (6.10)
Sw
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for a 6 Fsp equal to

0Fsp = / P(0ng €OS A — 0Ny SiN A )dS + / P(Ng COS oy — Ny SIN G, )0 (dS)
SW SW

Note that so far, in eq. no assumptions have been made regarding the vector
W. The purpose of the selection of ¥ is to make the expression of the derivative
of the augmented objective function 0 F,,, as shown in eq. uncorrelated to the
derivative of the flow variables w.r.t. the design variables b. This is achieved by
solving the Field Adjoint Equation (FAE), and satisfying its boundary conditions,
namely

v
R} = AT 0 =0, inQ
axi
Ng COS Uoo — N1 SiN s + ¥ip1n; = 0, along S (6.11)

In order to make the linearized version of the above system of equations more diag-
onally dominant, a pseudo-time term is added, with the final expression of the FAE
being

(6.12)

Note that this term will only be added to the diagonal elements of the Jacobian
o
aa%, and it will not affect the value of the residual RY. The final expression of the

sensitivity derivatives is

§F g = 5F+/ v’ gfl moxdS + [ Wl nopdS+

Sw Li Sw

/ (T p — U7 £)5(nidS) — / o Wisnas [ w955, 45

Sw Sw 8:):; SI,O ab
(6.13)
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6.3 E-SI Adjoint to the Euler Equations

The SI formulation for the Euler equations at section [6.2] can be expanded to the
E-SI formulation that was previously described.

If, between each optimization cycle, a Laplace type grid displacement system of
PDEs (gdPDE) is solved as a grid displacement method. This is expressed mathe-
matically as

RM==""'=9 (6.14)

with m; denoting the grid displacements of the grid nodes between the optimization
cycles. In the boundary, m; denotes the displacement of the boundary nodes. In
order to derive the adjoint gdPDE, eq. must be included in Fy,,, by adding
the following term

—

W 10+ / m? RS (6.15)
Ox; Q

Flaug =F+/\IIT %dQ:FJr/\IITAi
Q Ox; 0
The total derivative of eq. is written as

o of of;
_ T2k T 2 @ R
6Fau9—(5F+/Q\II 6b<8xi)d9+/slp axinlaxldsszgm@ Q. (6.16)

B

The first two terms of eq. are expanded as in section 6.2 Term B is expanded
by applying the Green — Gauss theorem twice

5 / miRMdQ) = / man, 202 4g / o SwidS+
Q s sw 0T;

Oz, T,

an? a pPm
Q 7 S

At this point it is important to note that the extra term added to the objective
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function only includes variations at the grid coordinates w.r.t. the design variables,
which means that the FAE and their boundary conditions remain the same. The
expression of the sensitivity derivatives is the same as with eq. [6.21] with the addition
of terms resulting from eq. . The system of the adjoint gdPDE (agdPDE) is
written as

o 0? mk 8&
R; 52 &Uk 0 (6.18)

J

The boundary conditions are obtained by zeroing the coefficients of ‘?% along all
J
boundaries which leads to the zero Dirichlet conditions,

me =0 (6.19)

After solving the system of the agdPDE, the extra term added to the sensitivity
derivative of the objective function, according to the SI adjoint formulation, is

. / oM 53:dS (6.20)
S

v 0T

The FAE and the adjoint boundary conditions remain exactly the same, since no
terms that include variations of the field flow variables w.r.t. the design variables
have been added to the expression of dF,,, as a result of the E-SI. Thus, the final
expression for the sensitivity derivatives becomes

(SFauQ =0F +/ \IIT afz nléxldS + \Ilglrlni(;pds—k
Sw T Sw
T TF afz
(Wi p— ¥ f)0(ndS) — oxyn;dS+
Sw SW X
wt amedS / njéxzdS (6.21)
Sr.o Oz,

Regarding the computational cost of the E-SI adjoint, the optimization loop would
require the extra cost of solving the system of agdPDE, which is negligible compared
to solving the primal and adjoint problems, as is the computation of term [6.20]
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6.4 Objective Functions

In this section, objective functions F' which are used in this work are discussed.

6.4.1 Inverse Design Problems

In inverse design problems, the goal is to achieve a desired pressure distribution
along the solid wall of the aerodynamic object. This is achieved by defining the
objective function as

F=y | 0-pu)as (6.22)

w

where S, is the solid wall that is controlled by the design variables vector 5, Dtar
is the desired target pressure distribution along S, and p is the static pressure
distribution of the current solution. The derivative of the objective function w.r.t.
b is given by

OF = / (p — Prar) OpdS + %/ (p — Prar)’ 0(dS) (6.23)

w

6.4.2 Minimization Problems

In the case of minimizing the drag of an isolated airfoil while the lift coefficient
(', should be kept as close as possible to a user defined value C1,, , the objective
function is defined as

F = (Cl - Cltar)2 + ﬁc?i (624)

where 3 is a user — defined weight that quantitatively relates the emphasis on the
drag and the lift coefficients. In that case, the derivative of the objective function

1S
oF = 2(01 — Clmr)écl + 2ﬁcd50d (625)

with .
cay = — | (qrcosas + gasinas) dS (6.26)
w Js,

Note that as is the infinite flow angle, @ = 1p|iZ |c with ¢ denoting the chord

50



of the airfoil and (q1,¢2) = (f1, f2) for the Cp and (q1,q2) = (f2, —f1) for the Cp,
where fi, fo are the forces on the airfoil at the x; and x5 directions respectively. For
inviscid flows, these forces are due to the pressure distribution around the airfoil,
and as a result eq. for the lift and drag coefficients is rewritten as

1
cag = — | p (qrcosas + gasinas) dS (6.27)
w Sw
its derivative is
1 )
dcay = — [ Ip (qicosas + qasinas) dS
() Sw
1 1 )
+ — [ pcosas 0(1dS)+ — | p sinas 6(qdS)
w Suw w S

where (q1,¢2) = (n1,n2) for the Cp and (q1,q2) = (t1,t2) for Cp, with (¢1,ty) =
(na, —ny) denoting the unit vector tangent to .S,,.

6.5 Discretization and Numerical Solution

For the discretization of the continuous adjoint equations a finite volume technique
with a cell — centered formulation is used, as in the primal problem. After integrating
the adjoint eqgs, the discrete form of the scheme is written as

QP = 2V inv W vis
At ATp Z EZ( ;@PQ + 0P AL =0 (6.28)

where P is a node at the control volume €2 in which the adjoint equations are
integrated, and () is a neighbouring node connected to P with a vertex. The inviscid
flow vector for the adjoint equations (f%gw is written using a Roe type discretization
scheme similar to the one for the primal problem, and is written as

(.I)'\Il,im) _

- - 1 - - -
PO (—ALUp — AlWg) — 3 AL (Bg — Wp) (6.29)

N —

The pseudo — time step used for the solution is the same as in the primal problem and
the solution of the system is done with the same scheme as in the primal problem.
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Chapter 7

iPCE to the Adjoint Euler

Equations

In this chapter, the iPCE method described in chapter [J]is applied to the formulation
of the adjoint presented in chapter [0}

7.1 E-SI Adjoint to the iPCE

For the solution of the primal problem, the Galerkin Operator G9[.] is applied
directly to the Euler equations, [I] in the following manner,

ou ou
LA
or + A ox;

GYun;) =0, in Sy

ou  of;
L of

q -
G or ox;

—

=0,in 2

(7.1)

The solution of eq. is necessary in order to obtain values for the spectral coeffi-
cients of the field flow variables ﬁi, which are required for the adjoint method.
Now, in the presence of uncertainties, the augmented objective function is defined
as the weighted sum of the spectral coefficients of F', as follows

J=> (Y (7.2)
§=0
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The augmented Qol is similarly defined as

of:
8%2'

Jaug = J+/ Ga @] ga [
Q

d0 + / me R0 (7.3)
Q

Note that the Galerkin operator has not been applied to the term fQ m¢ RdS), since
uncertainties do not affect the geometry of the problem in any step of this process.
The variation of J,,, is given by

o of
— q Tl ya | == ?
wwg_(su/ge T ar | 250 | ag
+ / o [wr) co | Yinse| ds (7.4)
S 8%

+0 / m? R dS)
Q

with

6] = Ga¢]" QI

7.5
= Gi[¢]" G {/S 0p(ng cos as — Ny sin aoo)dS} +Ga¢]" G [6Fsp) (7.5)

Here, Fsp is defined as in eq. [6.10} Similarly to the development followed in chapter
[6] for the E-ST adjoint, the first field integral of eq. can be written, with the help
of the Green—Gauss theorem, as

of;
0xi

A
_ q q
/QG { aﬂfi}G

2 Ok

/Q a [w7] g

Q) = / Gl e’ Ga
S

of;
86] s (7.6)

Therefore, it follows that
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of; f
ob

%

83:2-

GH 7115113[ dS+

g =6+ [ 2SI
aug — +/Q ('3332

/ G [ @7, ] G [nidp] dS + /
Sw

Sw
—/ Ge[w™] gu | 2
Sw

Xy

d + / Ga [®7] G9
(G [w]] G p) - G [97] G | i]) G° [3(nidS))

afinl] ds — / oM 53:dS
Sw

oxn;

q T q
dS+/SLOG[\I'}G 2l 5

(7.7)

Similarly, the spectral coefficients of G4 [\I’T] are selected so that expression is
independent of variations of the spectral coefficients of the field flow variables w.r.t.
the design variables. This is achieved by satisfying the iPCE FAE

ow ow
q AT =0 .
and its boundary conditions
GY[¢(ngcoste — Ny sinan) + ¥ip1n;] =0 (7.9)

Note that in eq. the pseudo-time term has been added to the FAE. The final
expression of the sensitivity derivatives is

5.7 = Ga[c)" Ga[Fsp] + Ga [5E%,) T Ga 1] - %mi n;o,dS (7.10)
Sy O

where

G [5Fdp)" G = / (G [@i11] GO [p) — GO (@] G | ] )o(nias) (711
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7.2 Programming the E-SI iPCE

Programming the iPCE with the E-SI formulation of the Continuous Adjoint re-
quires, at each optimization cycle, the solution of the primal PDE in its iPCE form
in order to obtain the spectral coefficients of the field flow variables G4 [(j } , namely,

GYR]=0, inQ
(7.12)

The solution of the FAE in its iPCE form is required to compute the adjoint field
flow variables G4 [¥], as in

ow ow
a| Z= 4 AT =0 d
G[ar+ 18@} (7.13)
Then, the agdPDE must be solved for m{,
a ana aR
R = Epw, — =0 7.14
k ox? + 0xy, (7.14)

J

Having obtained values for the spectral coefficients of the field flow variables G4 [[j } ,

the adjoint field variables G4 [¥] and the adjoint grid displacements m, the sensi-
tivity derivatives are computed through the formula

57 = GO [()" G [6Fsp] + GO [6FE,]) T GO 1] - %nj&pids (7.15)
J

Sw

and the design variables are updated through the formula

- . dF
bnew — bold —n (E) (716)

There are numerical details for solving the Primal and the Adjoint equations sum-
marized in the next few paragraphs.
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Primal Problem

The system of the primal PDEs is solved in accordance with those mentioned in
chapter [3] More specifically, a delta—formulation scheme is applied for the lineariza-
tion of the iPCE equations, as in

Qa [z—g} Ga [Aﬁ} — _GQ9[R] (7.17)

The linear system of eq. [7.17]is solved for G4 [Aﬁ } with a Jacobi solver and the
spectral coefficients of the field flow variables are updated at each iteration through
the formula G4 [U}Lew} = @G« [ﬁold] + G4 [A[j } . This scheme is straightforward in its
implementation and the Galerkin projections required in eq. are found through

the non — intrusive operations of chapter [3]

Adjoint Problem

The system of the iPCE FAEs is solved similarly to the system of the iPCE Primal
equations, by employing the iterative scheme

i Radj di
GH GIATP] = - G4 [R“ ]] (7.18)
ow
Note that the pseudo—time term will be added to the LHS of eq. [7.18] as shown in
section [6.5] Similarly to the solution of the iPCE Primal equations, the Galerkin
projections required for the computing the components of eq. are computed
through non — intrusive operations. Also, as was the case in chapter in the
Jacobian G4 [aRadJ} of the iPCE FAE, only the diagonal blocks are kept in the

0w
solution, in order to reduce the memory requirements and the runtime of the solver.

Regarding the choice of the coefficients (;, they must be selected by the user,
depending on the desired outcome of the optimization. Since E[¢] = ¢° and
Var[¢] = Zgzl(qﬁj )2, the relative magnitude of the weights determines which spec-
tral coefficient will be minimized with emphasis, and they must be selected with
that feature in mind.
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Chapter 8

Validation of the iPCE Adjoint

For the purposes of validating the iPCE adjoint method, an in—house code, developed
at the Parallel CFD & Optimization Unit of NTUA, that materializes the SI-Adjoint
is modified in order to employ the E-SI formulation. In this chapter, the E-SI adjoint
is applied to the 2D Euler equations, in order to optimize the geometry of an airfoil.
The parameterization used for the geometry of the airfoil is based on two Bezier
curves, one for the pressure side and one for the suction side, as seen in figure [8.1}
The coordinates of the control points of each curve are the design variables of the
airfoil, with the first two and the last two control points being kept fixed.

o7



0.2

Control F"oints o
Airfoil

0.1F

0.05 /_—_—___—U_\.
0.05 \ ____,__—/>

_01 L

0.4 0.6 0.8 1
% Chord

=]
o
3]

Figure 8.1: Shape optimization of a 2D airfoil based on NACA0012. Initial airfoil
geometry and control points used to create the two Bezier curves. Azes are mot in
scale.

8.1 Optimization without Uncertainties

In the first case, an optimization without uncertainties is conducted for comparison
purposes, with the objective function for minimization being the drag coefficient Cp
of the airfoil, namely

F=Cp (8.1)

The infinite flow conditions of the free stream flow of the airfoil are,

Mo =055 , as =25 , Re=5000 (8.2)

20 optimization cycles were performed, as a basis for comparison. The resulting
geometry yielded an airfoil with about 27% reduction in the drag coefficient, figure

B2
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Figure 8.2: Drag optimization without uncertainties of a 2D airfoil, history of the
objective function in each optimization cycle.

In figure the Mach Number around the optimized airfoil without the presence of
uncertainties is presented.

0.02 008 0.14 02 026

Figure 8.3: Mach Number around the optimized airfoil geometry.
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8.2 Optimization under Uncertainties

Uncertainty is introduced through the boundary conditions of the airfoil, which
follow the following PDFs,

Mo ~ N(0.55,0.05) , as ~U(2.0°,3.0° , Re ~ N(5000,200)

with the objective function being defined similarly as in chapter [7], namely
q .
=Y or
j=0

The weights of the objective function are such so that the minimization of the
spectral coefficients of the PCE is achieved, namely

G=-1,¢=3

These weights are by no means restrictive and depending on their values, emphasis
is laid on the appropriate spectral coefficient of the objective function.

Three runs were conducted for comparison purposes, for three different values of C,
namely C' = 1,2, 3, with ¢ being ¢ = 3,9, 19 respectively in each case (see eq. .
Recall that ¢ is depends on the chaos order C' selected and the number of uncertain
variables. The geometry produced from the optimization without uncertainties was
evaluated with uncertainty quantification, using the same boundary conditions used
in the case without uncertainties. The results are summarized in table 8]

| | w/oUQ [ with UQ, C=1 | with UQ, C=2 | with UQ, C=3 |
fep | 6.81-1072 [ 6.89-1072 6.86 - 102 6.84 - 1072
oc, | 1.17-1073 | 1.09-1073 1.05-1073 1.02-1073

Table 8.1: Comparison of optimization without uncertainties and under uncertain-
ties, for C =1,2,3

As expected, the UQ that was applied on the geometry that resulted from the opti-
mization without uncertainties results in lower mean value but has higher standard
deviation of the drag coefficient compared to the mean value and standard deviation
that resulted from the optimization under uncertainties. As we see, the chaos order
affected the optimization results, by giving a smaller standard deviation as the chaos
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order increased, for the same number of optimization cycles.

In figure B.4], the airfoil produced from the optimization under uncertainty is pre-
sented and compared with the result of the optimization without uncertainties, as
well as the original, symmetric airfoil.

0.08 '

|
: : _ without Uncertainties
006 - e———— Symmetric =
= —___under Uncertainties

T - . -

0.04

0.02 1

-0.02 :\\\.
-0.04 - .\\.\._. U SR ﬁ T

006 o T e ]

0.08 i i | |
0 0.2 0.4 0.6 0.8 1

Figure 8.4: Comparison of the airfoils produced by the optimization w/o uncertainties
(purple), under uncertainties (blue) and the original airfoil (green)

A visual comparison of the non — dimensional adjoint flow field between the case
without uncertainties and the case of optimization under uncertainties is made in
figure 8.5] . Notice that, consistently with the adjoint methodology, the direction of
the adjoint flow runs opposite to the flow field, with the wake of the airfoil being is
at its trailing edge.
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Figure 8.5: Non-dimensional adjoint velocity field, comparison w/o uncertainties
(top), and the mean value (middle) and standard deviation (bottom) of the adjoint

velocity from the design under uncertainties for C = 3
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In figure the same mean value fields of the non — dimensional adjoint velocity
field, for C' = 1 and C' = 2 can be seen, for comparison purposes. The figures are
presented in order to illustrate the similarity with the field resulted for C' = 3, for
which no visual difference is evedent.
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Figure 8.6: Mean value of non—dimensional adjoint velocity field for C = 1 (top)
and C =2 (bottom)

In figure 8.7 the mean value and the standard deviation of the Mach number around
the optimized geometry for C' = 1 is presented. Results for C' = 2 are presented
in figure [8.8] Notice that, in the Mach fields of the mean value and the standard
deviation, no visual difference can be observed between C' =1 and C' = 2.
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Figure 8.7: Mean value (top) and standard deviation (bottom) of Mach number
around the optimized airfoil geometry, for C = 1.
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Figure 8.8: Mean value (top) and standard deviation (bottom) of Mach number
around the optimized airfoil geometry, for C = 2.
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Chapter 9

Overview, Conclusions and Future

Research

9.1 Overview

In this diploma thesis, a method for applying the intrusive PCE method was in-
troduced and mathematically formulated. The method is based on non—intrusive
operations and as a result it is independent of the governing PDE used, while enjoy-
ing the benefits of the intrusive PCE in terms of computational cost. Tthe method
is based on non—intrusive operations for producing the iPCE equations, therefore
rendering its application painless, both in terms of the mathematical development
and programming investment required. Practically, the method doesn’t require sig-
nificant changes in the software without uncertainties and, in terms of applicability,
it is similarly simple to the niPCE. This was made possible by establishing a proper
mathematical framework for the method, that generalized the notion of the Galerkin
projection in order to prove the homogeneity property, produce the numerical so-
lution scheme of the iPCE equations and to establish their stability properties. In
terms of stability, the presented iPCE method is found to be stable, provided the
stability of its counterpart without uncertainties, and, as a result, it is regarded
superior to the niPCE.

In order to test the validity of this method, a RANS solver for unstructured grids was
modified in order to employ this method. This software which is an in—house one,
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developed at the Parallel CFD & Optimization Unit. For validation purposes, this
is later applied to various 2D and 3D test cases, for viscous and turbulent flows and
the results are compared with other UQ techniques, such as the non—intrusive PCE
and the Monte-Carlo method. The results indicate that this method accurately
predicts the statistical moments of commonly used Qols, while it outperforms its
non-intrusive counterpart in terms of computational cost, with the difference ex-
pected to rise as the number of uncertain variables increases. More specificaly, for a
small number of uncertain variables, the iPCE is shown to be between 10% and 40%
faster than the niPCE, for a number of uncertain variables m < 8. Since the two
variants, with the painless method presented in this thesis, require a similarly min-
imal programming investment for their development, the iPCE method is regarded
as superior to the niPCE in terms of computational cost.

Having obtained a valid method for UQ), this is applied for optimization purposes
with the goal of conducting robust design with the use of the E-SI continuous adjoint
formulation. Firstly, a software developed by the PCOpt/NTUA that employed the
SI adoint is modified in order to handle the E-SI adjoint formulation. With this
software as a basis, the iPCE method developed in this thesis is applied for the
computation of the sensitivity derivatives of a Qol. This approach produced the
set of the continuous adjoint iPCE equations for the 2D Euler equations, as well
as explicit expressions for the sensitity derivatives that is consistent with the iPCE
methodology. The E-SI software without uncerainties is, then, modified in order to
employ this method. The resulting software was used in order to conduct robust
design to a 2D airfoil.

9.2 Conclusions

Basic conclusions derived from this thesis are:

1. The iPCE, as formulated by this, painless approach, can be easily applied to
any type of PDE.

2. The iPCE method can be applied in a painless manner. This is an important
aspect of this method, since it solves its biggest drawback i.e. the painful and
expensive, in terms of programming investment, implementation.

3. The method presented can be implemented with memory requirements that
are very close to the requirements of the CFD solver without uncertainties,
which is crucial since memory footprint of UQ methods can be prohibitive in
large problems.
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4. The solver produced through the painless iPCE method has good stability
properties that are superior to the stability properties of the niPCE variant.
The solver of the iPCE equations is stable, given the stability of the solver
without uncertainties.

5. For a number of uncertain variables m < 8, the iPCE method was shown to
be up to 40% faster than the niPCE. This difference is expected to rise as the
number of uncertain variables increases.

6. This method can be extended to the Continuous Adjoint, requiring minimal
mathematical and programming work

7. For the extension to the Continuous Adjoint, minimal interventions are re-
quired to the software without uncertainties.

9.3 Potential Future Research

There are various areas where further research could potentially provide fruitful
results. The continuous adjoint method for the iPCE equations can be applied to a
3D problem. This is true for both the Euler equations, as well as the Navier—Stokes
equations. Also, it is of high mathematical and technological interest to formulate
the adjoint if there is uncertainty in the geometry of the aerodynamic object under
investigation.
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Appendix A

The 2D Euler Equations

The 2D Euler equations for a steady state flow can be written as

f; oU
=A —=0,inQ
a.’lﬂ'i (9:1:1 ln A
u;n; = 0, along Sy (A1)
U="Us, along Sy
with the Jacobians A; = g{; being
0 1 0 0
A |3l =3)ud + (v = Dud] (3 —7)us (1—7u y-1
! —UilUz Ug U1 0
—’YU1% + (v = Duy w? ’V% — Wi +3u) 1—7)uwue  yw
0 0 1 0
—UrlU2 Uz Uy 0
Ay = A2
-t -] -u Bopw g1
—7U2% + (v = Duz u? (1= y)urus ’Y% - A’Tfl(u% +3u3)  yu
with Sy denoting the solid wall boundary, n = [n1,ns]7 the unit normal vector

and ﬁoo being the infinite flow conditions in S. In the case of an airfoil with an
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infinite flow angle a.,, the objective function will be the lift of the airfoil, namely
F=L= / P(ng COS Ay — N SIN A0 )dS (A.3)
Sw

These equations will constitute the basis for the development of the continuous
adjoint, and will be referred to as the primal equations.
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Appendix B

Orthonormal Polynomials through
the Gram—Schmidt

orthonormalization

In order to produce a series of orthonormal polynomials, a zero order polynomial
po is arbitrarily chosen. Then, each polynomial of the sequence can be obtained
recursively, using the formula

k-1

< gkupj >w
pr(€) =€ = Y = Epi(¢ B.1
=€ e (B.1)
It is easy to see that eq defines a polynomial p; that is orthogonal to all p;, j =
0,...,k—1, since

k—1

<P i >u=<Epi >w =Y
7=1

< fkvpj >w

5ij:O
<pj7pj >w

Also, note that degree[p,] = n implies that the polynomials generated this way are
linearly independant and hence form a basis of R.

71



Appendix C

Eigen—Decomposition

The implementation of the FVS scheme requires the solution of the correspondlng
eigenproblem. Starting point is the characteristic equations An; gt;v 0 where W =
[wA wP w® wP wP]T are the characteristic variables, A—dzag(u(”), ) 4™ ™ 4
c,ul® )—c), u™ =u,;n; and ¢ is the speed of sound. By applying the iPCE followed

by Galerkin projections, we get

OG[W]

G[A]n; =0 C.1
A 1)
Egs. can also be written as
d,G,[YoYo] d;G[YoVi] ... 4GV )] [Wo
dej[.Yly()] dej[‘YlYl] - dej[.Yqu] Wl _; ©2)
4GV Yo] GV . dGYY ] LW,
where
dzag( uj )’ gn)ﬂén)’ gn) +eu 5 )—Cj)
V[7i = [wfvwiB7wicvwiD7wiE]T
and u , 3-4, c; denote the j-th term of the PCE of @-7, w® and of ¢, respectively.

Note that Gy[Y;Y;] is equal to <Y;,Yj, Yy >= [, YiY;Yiwdé.
The spectral components of ¢; can be found through the Galerkin projections of the
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expression of ¢, written as a function of the conservative variables, as follows

o= Gd - | \/ IR (Etkyk_ <pium><pkum>)wd5 ©3)

CvpiY; QPlYl
In eq. [C.3] 7 is the specific heat ratio, R the specific gas constant and ¢, the specific

heat capacity at constant volume. Note that a similar procedure can be used for the
PCE of any quantity expressed in terms of the conservative variables. By re-ordering

eqs. we get
diag[(Z(u™), Z(u™), Z(u™), Z(W™ + ¢), Z(u™ — )i =0 (C.4)

where

W= [wg .. wiwd . wlwd . wSwd . wlwg . wh]T
AiGYoYol A\GIYovi] o A GG[YeYY]
200 = /\jGjPﬁYO] /\jGjDﬂG] - AjGjsz] (©.5)
AGYaYol AGIYaYal - AGGYYY]

Thus, the solution of an eigenproblem corresponding to a (5x (¢+1)) x (5% (g+1))
matrix is now reduced to one corresponding to the (¢+1)x (¢+1) matrix Z. The
diagonalization of Z yields the desired eigenvalues and eigenvectors of G[A;].
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Kegpdiowo 1

Eiwcaywyn

1.1 Aecpoduvouixny BeAtiotoroinon

Ytov o0y yeovo TOHEO( ™e Trcokoytowmg Peuoro@uvapmnq (TPA), éva psycx)\o TUAU
NG £PEUVIC GTEEPETOL YUPW OO TO avuxapevo ™me Bekﬂoronomong UE oxomb 10 o)e-
Lo AEPOBLVOIXADY LoP(WY (A.)Y. AEPOTOUMOY, TTEPUYIMY GTEOBLAOUNYAVKY) KOTE
VoL amodidouy xoAUTERY e BAoT TIg EMAEYEIC CUVPTATE-GTOY0UG (. OUVTEAEC TG
Gvwong, CUVTERESTAC avTioTooNEC XAT).

YNy agpoduvouxy fehticTonolnom o oTtdyog elvon Vo oviy VEUTEL, UE OXOVOUIXO TEOTO,
0 Y®EOg ToV LTOPAPLHOY ADCEWY — GYNUATLY TOU UTOREL Vor AdBEL To UTO eEETAOT AERO-
BLVOXO COUA, XAl O EVIOTIOUOC AUTAC PE TIC XUAVTERES WOLOTNTES. AUTH 1) amaltnom
UTOONAGYVEL TNV ovay %1 xadoplonol evog 1 TEPLECOTERWY GUVILTACEWV-GTOY MY Ol O-
Toleg mpénel va ehaylo ToTololy, IXAVOTOLOVTAC THUTOY POV £Va GUVONO TEQLOPIGUMY
Tou TEoPAUaTog. Kotd tn dduactio aviyveuong tou yoeou twv utogipuwy Aicewy
elvon omapod TN 1) utoo TheEn g Sadixaciog and éva unohoylotxd epyoreio (oyt-
oo a€loAdynong), o omolo Aivel Tig e€loMoELC PORC X Vo a&lohoYel TiC uToPhgLeS
AOGELC WC TEOC TOUG OTOYOUG oL TEVNXAY.

Yny agpoduvouxr, Tieton cuyvd To TEéAnu TN BeATio ToToNoNS LOPYPY|C, TOU GTO-
YEVEL OTOV TPOGOLOPIOUO TN YEWUETEIOC EVOC aEEOBLVAULXOL Gy uaTog To omolo Va
€YEL BEATIO TN GUUTEPLPOPG (S TPOC XAmotol GUVHUT aepoBUVOXY LBLOTATAL (A.). CUVTE-
Aeo ¢ dvwong, avtioTaong ). T TOEABELY A, 0TO TEOBANUY TnS BehtioTonoinong
HLag aepOTOUNG, elvon emtuunTy| 1) €DPECT TNG AEQOTOUTC TTOU, Yid DEBOUEVO CUVTEAECTN
veoTg, EYEL TOV ENEYIGTO BUVUTO GUVTEAEG TH| avTio TOOT.

Avaréomacto Tua Tng BeAtioTomoinong, etvan 1) Sloxpitonoinom Tou yweiou uTtoloyi-
OUOU PECK XATUAANAOU UTONOYLOTIXO) TAEYUATOS, XU 1) EToxOhovdn dlaxpttonolnon
v Mepxdv Atopopxidv E€iodoewy (MAE) tou npofAfuatog xon 1) avorywyr Toug oe
EVOL YRUUUIXOTIOMNUEVO TTEOBANUL, To oTtofo unopel vo emthuiel ye yvwotég podnuotixég
uedo6d0uC.

‘Ocov agopd tov TpéTo BedtioTtonolnong, autr Utopel Vo YIVEL UE YPNOT CTOYUCTIXDY
HeVEBwWY 6T oL eZehxtixol ahyopriuot [II, 2, B, 4 [5]. Tétotor ohydpriuor a&iohoyolv
TANYUoUOUC AVGEMY, TOUC XUTATACCOLY UE BEoT TNV TN TNG CUVEETNONG—OTOYOC Xl
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Toedyouv Véoug TANUCUOOE AIGEWY (G YOVOUS TV TRONYOUUEVWY TANJUCUGY, Ue
TI¢ ouvrielg dadixaoies dlaoTadPWOoNS Xt UETHAAXETS.

Ev avtidéoel, éva evahhaxtind cOvoro uedodwy otnelleton oTov UTOROYIoUS TNG To-
PUYWYOU TNG AVTIXEWEVIXTG CUVERTNONS WS P0G TIG UETUBANTES oyedtacuov. Tetoleg
uEYodoL ovoudlovTon AUTIOXPATIXES XAl OUTT) TTOU YENOULOTIOLELTAL OE AUTHY T1) OLTAWUO-
x| epyaoio eivon 1 ouluyhc (adjoint) pédodoc [6, [7].

1.2 ABeadtnta xouw XTiBapdg Xyedlacuog

O olyypovol xwoixeg TPA €youv tnv ixavotnta va TeohéYouv pogC UE UEYAAN a-
xp(Beta, oe TEPITTOOELS OTOL 1) ABEPAULOTNTA TOU UTERYEL GTOV QUOIXO XOOUO AENE(TOL.
(061600, o€ TOAEC TEQITTMOOEIC TROBANUATOWY, 1) ENBEAUCT) TOU €YEL 1] GTOYAC TIXOTT-
ot TV ABEBueV TapauETEmY EVOS TEOBAAUATOS GTNY Amdd0CT) EVOS UG THUNTOS elvol
OEXETE UEYAAT OTE Vo uny unopel var aeiniel. Tar mopddetypor, wa wixer ahhayr tng
Ywviag TNg pofg oty €lc0d0 EVOE CUUTIECTY| UTOREL VO TPOXUAETEL UEYUAT, UETABOAN
oTNV anddoct| Tou.

[o autdy ToV AdYO, Tor TEREUTALOL YEOVLAL, AEXETT EpEuva el OTEAUEL TEOC TN UEAET
xou TNV avdmTuln uedddwy yio TNV mocotonoinoy tne enidpaone e offefoudtnToc
TOU PUOWOU X6OUO OTA agEOdLVOULXS cucThApata. O o6Téyog TETOWWY PEVOdWY &-
fva, GEBOPEVNE TNG OTATIO TIXAG CUUTERLPORAS TwV UBEBAULMY TUPUUETEWY TV POWY, VA
rtocotxornoinlel 1 enidpact Toug o€ xdmota TocHTNTA EVOLAPEEOVTOS, OIS A.)Y. O Ou-
VIEAEG THS dveomg Wiag agpoTouns. Lty epyacio avantiooeta pia pédodog Bactouévn
oto Polynomial Chaos Expansion (PCE), oty eneyfatixf tne (intrusive) exSoy.
H intrusive PCE (iPCE) pédodoc yuwr v Ilocotxonoinon ARefadtnroc (Uncer-
tainty Quantification 1 UQ) efvor amodotiny|, omd mheupds UToAoyo ol x6GTOUC,
oe olyxpelon pe dhheg uedodoug yia UQ, odhd eivon e€onpeTind 500X0AN 0TNY EQUQUOYN
™G, LNy OmAeUTXr auTh gpyacia, slodyeTon o véa exdoyr| Tng pedodou iPCE,
émou eopudlet v uédodo e évav dxono (Painless) tpdmo.

H Onopln autodv twv offeBoutotAtwy, UTOSNAMYVEL TNV oveyxT YLol TNV oavamTuln SLodi-
xoowwy LtiBapol Yyediaopol. TEtoleg dladixacieg oToyelouy GTOV GYEBLACUO UG T
HdTwV pE amddoor 1 omolo dev YetoBdAAeTan o onuavTixd Padud dtav o cuvirixeg
TEPYBEANOVTOS TOU GUC TAUATOS ATOXAIVOLY OO TO ONUEID GYEBLUGUOU TOU, aXOUOL Xl
av €YOLY EAXPEWS YEWOTERT) UTOBOCT) GTO OVOUACTIXG oNueio oyediaouol. O oxondg
e DImAwUaTXrG epyacioc etvon 1 avdmTudn YeVddmy Yo oTiBupd oyeEdoUd, 1 Yo
Behtiotonolnon und ofefoundTnTeg.



Kegpdhaio 2

OpVdoywvia IToAvwvupa xaw PCE

Y10 %e@dhato auTd cLLNTOLVTAL OL IBLOTNTES TWY 0pYOYWVILY TOAUWYOUWY, Xo)ME Xal
1 egapuoyn Toug ot pédodo tou PCE.

2.1 Movoosiactata Opgdoywvia IToAvwvupa

"Evo 6Ovoho moluwviuey {p,(§) }o2, xareiton opdoymdvio we mpog pa ouvdptnon w(§)
Tou optletan oto ddotnua (a,b) av woylel N mopaxdto WBLOTNTA,

b
(Pos P} = / PP (E)w(E)AE = S (prs o) (2.1)

oto dotnua (a,b) 6mou Oy, elvar To déATar Tou Kronecker. Xtnv nepintwon 6mou
< Pn, Pn >= 1 yia xdde N, 16T Tot TOALGOVLUA AEYOVTOL 0pTYOXAVOVIXA.

2.2 lloAludidotata OpYoyovia IToAvwvupa

O oploudg 1wV TOAUBIAG TUTEOY 0pYoY®VIWY TOAKVIUGY Bacileton éva chvolo m yo-
vodLdotatmy 0pdoywviey Tohuwvipwy p* = {pk (&)} k = 1,...,m , To xadéva
ond T omola efvon opBoydvia k¢ TEog UL cuVEETNET Wk (k).

Yuvenwg, unopel va opiotel 1 oxdhovdn oelpd TOAUWYOUKOY M PETUBANTOY OS TO o-
XOAoUYO TAVUGTIXG YIVOUEVO

Y ={Ya}nso = @i’ = {pn, (€000, (&2) - i (§a) 105 oo (2.2)

.....

Me [don authv TV WBLOTNTA, aUTE To TOALOVLUA Elval 0pJ0YOVLYL, UE TO ECKTEPXO
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ywouevo vo optletal we

j=1

2.3 H pevodoroyia tou PCE

Ye authv TV evotnta oulnteiton 1 évvota tou PCE, nou etvor Baocind mpoamontoluevo
Yl TV Tocotonoinor tng offefadtnroc. 1o cuyxexpwéva, yia pla cuvdptnon ¢ =
P(&), pe to & va €yl didotoon m, 1o PCE tou ¢(§) opileton we 1 oelpd

56 = > #Y(®) (24

To moAucyvuua Yj, Omwe avagépinxe xol 6Tny TEoNYoLUEVr evoTnTa, livon optoymvia
w¢ mpoc tr ouvdptnon W(E) = [}, w;(§;). Ytn pédodo tou PCE oxondc eivay
0 UTOAOYLOHOC TWV CUVEAECTWY NG OVWTER®W OELRAS, ol ontofol urtohoyilovton amd T
oyéon .

¢’ = (6(8),Y)) (2.5)

Av 1 ouvdptnon W(E) = [[[L, w;(§;) amoteheion amd ouvoptioelc muxvoTnToC M-
Yavotnrac yrog petofintrc, tote ot auvteheotéc tou PCE tou ¢(§) txavorotolv tig
OYEOE

E[¢] = pg = ¢°

Varlp] = 03 =) (<Y}, Y; > ¢) (2.6)
j=1

Anhadh 1 p€on Tn xou 1 TUTX oamoxhio Tne ouvdpTnone ¢(&) diveton and ohyeBpixéc
CLVAPTAHCELS TV cLYVTEAEGTOY Tou PCE trn¢ (Blag tne ouvdptnong. Hpogpavae to PCE
TEENEL Vo omoxoTel yiar aprdunTixole oxomoUC OE €VaV TETEQUGUEVO dPlUUO OpWV.

2.4 Non—Intrusive PCE

Y7o non—intrusive PCE (niPCE), 1 TOGOTNTA EVOLUPELOVTOS TNG OTOlAS 1) OTATIOTIXY
ouUTEPLPORd TEETEL Var pEAeTNIEl YodpeTan wg

P =) FY(g) (2.7)



omou Ue Bdon ta 6oa avapEpUnXoy OTNV TEONYOUUEVY EVOTNTA, 1) UECT) TWTH XoU 1)
TUTUXY| ATOXALCT] AUTAC TNG TOoOTNTOS divovTan avTioTolyo and TIC OYECELS

E[F] = F"
Var[F] = i(< Y;,Y; > F7)? (2.8)

j=1

To mopamdve avamTuyUo TEETEL, Yio TEAXTIXOUS AGYOUS UTOAOYIGUOU, VoL amoXOTEL OE
TENEQUOUEVO aptdud ¢+1 dpwv. Autdc o aprdude e€optdtar and TNy eTAOYY Hlag T8ENC
ydouc C, 1 omolo xadopileton amd Tov yernotn avdroya ye Ty emduunts axpifeio tne
uedod0u xan TN dard€oiun UTOAOYIOTX Loy Xou BiveTon oo

_ (C+m)!
Me Bdon autd, oy lel 6T
q .
F =Y FY&) (2.10)
3=0
‘Apal, 0L CUVTEAEGTEG PO UTOAOYLOUOG BivovTon amd Tr oyéon
FJE<F,YJ->E/FYJ-Wd£ j=0,....q (2.11)
£

oUTO EMTUYYAVETOL UE aptIUNTIXY| OAOXANPWOT), OTWS .. 1) OhOXAPwoT) xatd Gauss.
Avth 1 pédodoc BaciCetan otny xhfon g F' otoug xouBoug tng apiuntixfc olo-
xhApwong, To omolo yiveton Ye empépou Teediuata Tou hoylouxol alloAdynong diywe
ToEEUPOAT| oE aUTO.

2.5 Intrusive PCE

Y10 iPCE (iPCE) ypdgoupe

q
U=> UY(¢) (2.12)

5=0
Yy nepintwon auth, ot gaopatixol cuvteheotec UY , j =0,..., ¢ ebvor ot dyveotot

¢ TEo¢ Toug onofoug Yo Audel To TeéBAnua. Me Bdon authy 0 Aoyixy|, 1) Exppact Tou
U unaiver xotevdeiay oty eiowon R(U) = 0, 6nou eivor 1 e€lomon Tou mpoBAiuatog
oTay 6ev povreronotolvTal ol aflefoudTnreg,

R (i: UJ'Y(g)) =0 (2.13)



Me yerion twv mpoformv xoatd Galerkin, mpoximtouv ou enepfatinéc ediowoelg, ot
omoleg ypdpovTon omhd wg

/R(ZUjY(§)> V,Wdeé =0 ,k=0,...,q (2.14)
£ =0

Me apriuntiny| entluon tov e&lomoewy auToy, Bploxovtoa oL gacuaTiol GUVTEAEOTES
tou PCE twv powxav yetoffantoyv U. T va yiver autd, amoutolvton extevels odloryég
07O AOYLOULXO a&LOAGYNOT.



Kegpdrouo 3

Nea Ilpoceyyion oto iPCE

Ye autd To xe@dharo oculnteiton wa véa mpocéyylon otny egapuoyr tou PCE. H
uédodoc mou mapativetan avarTUyInxE Yo Toug oxomolg TG SimAwUaTiXC epyaciog
xou €yl To mAeovéxTnua 6Tl epopudlel To iPCE ue tn yerjon non-intrusive npdéewv.
Auté amiomolel onuovTxd TV e@appoyY| TN PEVOBOU, XohoTWVTISG THY AXOTT OTNY

EQPOpUOYT) TS

3.1 Baowd Madnuatixd TroBadeo

Yt mopondTe, yiveton ) Yewpenon nwe n ofeBardtnTa elodyetan p€ow EVOC BLaviCHATOS
aPéBarwyv petaffantoyv & € R™, xdlde pa and Tic omoleg axoloudel pla cUXEXPWEVN
ouvlptnon tuxvotntoe mavotnrac wi(éy). Ta modvdvuga Y = {Y,}22, mou du
avapépovton etvan optoydvia wg Teog Ty cuvdptnon W = HT:1 wj, Ue Bdon ta bou
avopERUMUOY GTNY TEONYOVUUEVT) EVOTNTO Yidt ToL 0pYOYDOVLO TOAUMVUUAL.

Me Bdiorn autd, umopel va oplotel 1 mpoBoir Galerkin evég Baduwmtol peyédoug, wg
axohovln ToooTNTY

o= /g oY, W dg (3.1)

Autéc o oploude unopel va yevixeulel and ta Boduntd ueyédn oe dlaviouata xaL oe
TVOXES, UE OXOTO TN YPNOT TOUC OE UTOAOYLOTIXES pedbdouC. TTio cuyxexpluéva, yia
éva didvuopa U (&) = [U(€), ..., Un(€)]T, 1 mpoPor; Galerkin opileton ¢

GiU] .= [U° U, .., UY" (3.2)
émov 1o UX = [UF, US, ...UM k=0,...,q.

AZ{Zer va onpeiwdel o 6Tov Tapardve opopd, av ¢ = ¢(£), tote G4 [p] = [¢°, ..., 1T,
Autod onuatvel tog 1 tepintwon wog Baduwthc TocdTnToC Elvon UToTERITTWSOT TOL OpL-
ouoU yia to dtavoopota. H (Bl dadixacta propetl vor oxohovdniel xan otny nepintwon
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evoe mivaxa A € R™ ™ tou ontolou ta atovyelo etvar A;;=A;;(§). Tote, opolne e mow,
n mpoPolr) Galerkin opileton w¢ To TaPOXATL UNTEWO.

A% AL Qb
A0 AL Al
GilAl=| . C (3.3)
A0 Ad A
6mou To (i, j) otoyelo tou AM € R™ ™ diveton amd Tn oyéon
A= /gAinAYquE =Y AL <Y, V)Y, > (3.4)

p=0
omou <Y, Y)Y, >:= fg Y, Y\Y, Wd§ .

Yny nepintwon 6mou dAeg oL oféBateg TocdTNTES Eyouv anoxoTel ot ¢+ 1 bpoug, ToTE
umopet vo amodetytel 6T yiar Evar mivaxar A xon €var Sdvuopo U oylel 1 opotoyévela
TeoTou Boduol ya Tov teheoth Galerkin, dmwe €yel fon oplotel. Anhadn

q q
Ay=_ AEYi(€) b Uj=d UMYi(€) o i j=1,....n
k=0 k=0

TOTE ATOOEXVOETAL OTL
GI[AU| = GY[A] GY U] (3.5)

Anéoadn. 'Eotww f=AU 1 fi=A;;U;. Tote, yia xdde 0 < p < ¢

Tou ebvor 1o p otoyeto tou G4 [A] G [U]. O

H w86tnto e opotoyévelag etvar ToAD onuavTixny yior TNV eQopuoyy| Tng Uedddou Tou
PCE oe apriunmixd oyfuata enthuone Mepwov Awogopixev Elionhoewy.  Auth 7
YENOWOTNTU QaveTon TNV ENOUEVY) EVOTT T

3.2 Apwiuntixn Eniivon twv EncsuBoatixony E&u-

OCWOEWY

Mo éva mpdBinua To omolo meptypdgeTon, ot dtaxpelty| Tou pop@n and MAE, ol onoleg
YedpovTar GUUBOAXS K
RU)=0 (3.6)
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Ipénel va ypnowomoiniel Eva oyfua yeouuxonolnong yio tn Ador toug. To chotnua
ETLAVETOL UE TO TOUPOXATE ETAVOANTTING Oy ol

OR
— AU =—-(R),,;, , AU =U,ew — Usa (3.7)
ou old ’
Auté 1o ypopuxd cbotnuo Abvetan pe aryvootoug ta AU xon oxohoudeiton amd tnv
axohovln evnuépwon

Unew = Uold + AU (38)
TV TWov ov U oe xdie x6ufo tou mhéyuatog. Xe x«dlde Aoor, To cloTnue utolo-

7 4 /. z 7 4 7, z z
yiCeton Eavd xon emhleTon, €wg 6Tou To R vor AdfEl emopnmdc UXEES TYIEC.

Ye autrv T dwdixacio, umopel vo epoappootel xateulelay o TeAeotic I'naiépny, ue
Tov axolovdo TeoTO.

G'[R] =0 (3.9)
H eqopuoy?| Tou tekeots| oto apriuntixd oyruo enthuong divel axorhoviwe
OR
a| ZZ| QY[AU] = — Q4 1
G {aU]G[ U] GY[R| (3.10)

Auth 1 1B16TNTA 1oy VEL ETELDY), OTWEC ATODELY TNXE OTNV LOLOTNTA TN OUOLOYEVELXS, UTTO-
eoVUE vau ypddouue 6Tt

OR (Y1, U7Y (€))
oU

OR (L1, U7Y(€))

Gil ouU

AU =G|

1Gi[AU] (3.11)

3.3 Eowovounon MvAung xa Ymoloyiotixon
Kdbortouc

‘Evag evohhaxtindg tpémog enthuone tov eneuBatidy eEI6OOEWY, UE o%0T6 TNV €0l
XOVOUNOT] UVAUNG XAl UTOAOYLO TIX0U x00ToUg, elvan va YiveEL 1) Tpoceyyion

q1 o) [e%¢}
UE)-U=> UYil€)+ Y UYig)= Y UYig=¢£) (312
i=1 i=q1+1 i=q1+1

Anhad To medlo Twv paouoatix®y cuvteheotov Uy vo mpooeyylotel and wa Abon Tou
oLoTHUATOS Blywe afeBaundtnTec. Autod elvon ypriotuo, av 1 €. CavarypapTel 6T
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YEVIX TNG LOPYPY| 0C

oR00 B_ROI a_ROq

au . oU. ' oU AU R’
8_R10 @11 ﬂlq AUI Rl
ou ou ttooou ) - ) (313)
a_}.qu ai:gql ' @qq AUQ Rq
oUu ou " aU
‘Ouwg, ya C = 1 woydet ot
ORM <~ OR’
— = — <Y, VY, >=0,,J% 3.14
oU i ng U, N i (3.14)
"Apa To choTnua YedpeTaL 0
[ 0R00  HROL  HRO2 OR Va1’
Wy W, 00 00| A R’
OR OR
ﬁm K 000 o 0 AU; R;
R R
o8 0 &, .. 0 AUZ = | B (3.15)
oR N0 0 0 C o0 | AU R%
| U U

Adyw g mpocéyylone oty ediowon B.12] to pn-Sorydvior otowyeiar Tou ousTAUATOC
umopolV vo oeAnloly, xou Vo amoUnxeuTolY HOVO Tal SLory®via oTotyela Tou
CUCTAUATOC.

3.4 EuvotdVeia Encsufoatinedyv ESicwoswy

Eivou evolagépov va amodetytel otL av 1 e€lonor yoouuxonotnUel pe €va oy
™G HopYhC xou To oyfua emilvong mou mpoxUel elvon evoTadée, TOTE xaL TO
avtioTtoryo oapuiunuixd oyfua tng eiiowong elvar evotadée. [ va yiver autd,
Yewpolpe 6Tt T ohoxhnpouata tou tekeot| Galerkin urohoyiCovrtan apriuntixd yéow
Gauss Quadrature (GQ), pe Bden B otouc x6uBouc Q, yio oaféPfouec petafintéc &.

Bi={b1,....b.}, Q:={&1,....&} (3.16)

émou ¢ = (C'+1)™. Enlone Yewpeiton nwg 1 w6&n ydoug apxet dote 1 1o U(E) v éyet
TEOGEYYLOTEL ETUEUWS amd TO amoxouuevo avimtuypa Tou U ue g dpoug, dnhad

Uzzwme (3.17)

S 6oa axohovdoly G4 [UW] = (U)W, ... (U?)W]THa cuuPohiler Toug poouati-
x00¢ cuvtereotég Tou PCE oty k-100Th enavdhndn tou emiit g ediowong [3.10]

10



Erniong urotétovue 6t o emhitne e e€iowoncB.6 yenowonoweiton ¢ gopée, wa yu
x&e € € Q wote vo aroroynoet 1o R(U(§)) oe xdde x6uBo. Ov pooyatixol cuvte-
Aeotéc Tou U vnoloyiCovton w¢ e€ig

U™ Z bipy(£)U" (&)

(R9)" szpg &R™M (&) (3.18)
Apxel va dellouye OTL
(U)W = (U™ urovoel (U?)"HD = (U')=H) g=0,....¢q (3.19)
H Moon e e€iowonc v xde € € Q Bivel
U'eti(g) =U" &) - T TR (&) (3.20)

6rouv J = 838 xou R'(5 (SZ) ouuPBoiiCouv o unohoyilduevo undroino g e&lowong

oe x&de xopfo Gauss. Trodétovtac 6 U = UM | radovouue 6

(R = (R)W ¢g=0,...,q (3.21)
X0, CUVETIWC,
(U)H = (U)W =Y 1Y, (6)T (&) R™(&) (3.22)
=1
Enilonc
G4 [U(““)] =G [U(")} ~GlgGe [R(*’”)] (3.23)

[o Ty evotddeio Tou oyfuatoc, apxel vo dellouue OTL

Z biY,(€)T (&) R (&) = G [T G [RW)]

Ol GUVETOC

GITGIR™]|, = i (S (RN =

k=0

> 0T HEIYE) D W6 IR =

=0 j=1

Z bijil 51 éz Z Yk 52 Z b j €z £z)R(H (51)
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Kegdhawo 4

Eoapuoyn tng Meddooou iPCE

Ye autd 10 xePdhao, 1 wEYodog iIPCE eqopudletar otny atelf3r tedidotatn por yhew
am6 o ttépuyo cuumieotr TOnou NACA0010. H pot| etvan Sunynter. Xty nepintoon
dlywe afefandtnTeg, N yovia tpdontwong elvar a; =58° ue woevtpomxd apriud Mach
otnv €€odo va eivon My ;s = 0.4425. H noooétnra evigépovtog eivon 1 adénon tng
otauxic tieong (p2/p1) YeTo€d g eto6dou (1) xon e e€6dou (2). IMa v tepintwon
TOU ovopooTXol onueiou Aettovpyioc, pa/p1 = 1.2967. O afeBoudtnrec ewodyovton
HEOW TV 0ptoxdy ouvinxdy, 6mou My ;s ~ N(0.4425,0.005) xou a; ~ U(57°,59°).

To omoteléopata goivovtar otov mivaa [4.1] énou yiveton xau oOyxpion ue ) pédodo
tou niPCE

Yo oyfue 1] goiveton n uéon T tou apruot Mach .

iPCE  niPCE | iPCE niPCE
C=1 C=2

lps/o | 12933 1.2936 | 1.2938  1.2937

Opojpn | 00257 0.0254 | 0.0251  0.0253

| time (sec) | 2600 3200 | 10140 11200 |

ITivaxag 4.1:  Porj otov ovumeotn), pe aféfaies oprakés ouvinkes. Xtatiotikés pomés
s avénong otatikng mieons, vrodoyildpeves e to iPCE ka1 to niPCE ka1 oUykpion
KOO TOUG

To anoteréopoata TV 600 YeVOOWY LOLELOLY Vo CUUPELYOLY UETAEY TOUC.

12



Mach: 0.1 0.3 0.5 0.7 0.2 11

0.02 006 01 0.14

Yxhua 4.1: Porj otov ouumieaty, ue apéfaies oprakés ovvnkes. Méon nun (tdvw)
ka1 Tumikr) andkAion (kdtw) touv tediov tou apiipoy Mach
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Kegdhawo 5

2uCuyne Mebooog oTic e§lowoELg

Euler

Y autd 10 XePAIato TapouctdlovTon oL cLLUYElS EElOWOELS TwY edlowoewy Euler xan

epopuoleton o autég o iPCE

5.1 Xvuveyre Xuluyrec Medodog Emgpaveltaxold

OloxAnpopatog yio tnv Atef3rn Pov

Mo tic eCioddoeie BEuler, 1 emauénuévn cuvdptnon optleton o

Fog=F+ / v’ %d@ = F+/\IITAZ» U 10
Q Q

T 0x;

H mopdywyds e wg mpog Tig PEToBANTES oy edlacuol diveton

af ofi
Faug = 0F wr O iyie [ gr O Q
0Fug =0 —I—/ 8b c%vl )d / nl(Sajld

ue to 0 va Blveton omod

oF = 5F5D+/ dp(ng COS sy — My SIN A0 )dS
Sw

(5.1)

(5.2)

(5.3)

0Fsp = / p(dng COS Aoy — 0Ny SiN Ay )dS +/ P(Ng COS Ao — Ny 8IN a6 )I(dS)(5.4)
Sy S

w

14



O 6poc [, ®7 8 6'fz)alQ YpdpETOL OC

) 8]} of; owt 8fz
/\PT ob 3x )it = /\IJT ax nidS = / Ox; 8() (5:5)

Me 7o empavelaxd oroxhhpwuo A vo yedpetar g

A= Ul népdS + / (Tl p— P £)0(n;dS) — r Of; dxm;dS (5.6)

Sw Sw Sw O

LUVETOC, 1) ETAVENUEVT GUVEETNGT 0Ly,

owT of; 0
0F,,, = O0F 2)dS) Ol L 6x,d
g = +ani(ab) +/SW » dS+
r Ofi
\I’;ﬂlniépdeL/ (Tl p— O £)0(n;dS) — 8£ dxn;dS (5.7)
Me v medanr| ouluyt| e€lowon
v
AT 0 =0, otof
o0x;
N9 COS U — N1 SN s + Vi 1n; =0, 070 S (5.8)

H el éxgpaon tov Topayedyny evacinctiog eivo

5Fpy = 6P+ | 0" inseas + [ w7 nispds+
Sw Ty Sw
r Of;

/ (W, p— W £)5(nidS) —
Sur sW Oz

dxn;dS (5.9)

5.2 Xvuveyrg Xuluyng Evioyvuevn Medodog E-
nupaveloaxol OhoxAnpouatog yio TNy Atetl-

5% Pod

[Mor v moporydet 1 Slotdnworn evioyuuévn Slatinmaon yio Tny cuveyr) culuyn pédodo,
apywd vrotidetan oL petald xde xixhou BedtioTomoinong Abvetan éva oOvoro Ao-
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mhaotoaveoy MAE yia Ty petatonion tou TAéyuotog, To onolo expedleton Yardnuotixd
Qs

*m;

R™ = ¢

’ (’33332

To ohoxhfpwuo 6Tov dYxo Tou dpou TNne edicwong TOMATAAGLOCOUEVO UE TNV
avtioTtolyn ouluyr TocOTNTA, TEOCTIIETOL OTNY EMAUENUEVT AVTIXEWEVIXT) GUVEETNOT)

=0 (5.10)

oUu
ox;

Faug—F+/\I:T af’dQ F+/\IJTA dQ+/ng;“dQ (5.11)
Q

xou Topory wylleTon

0 ﬁfz
ob" Ox;

6 F g = §F+/\IJT dQ+/\IIT %nléazld9+5/ miRdQ  (5.12)
S X Q

B

Mo tov emmiéov bpo B ypnoyomoleiton o Yemprnuo tou Gauss 800 @opéc,

5/m?RZ’-"dQ :/mffnj a((Sgci)dS—/ %ng‘5$z‘d5+
Q 893']' Sw al'j

2
/ 8837 d 5x]dQ+/m“Rmnk(53:de (5.13)
Q

Mo Tov utoloyioud tou emnpdodetou dpou Tng €€. amouteiton 1 Aoon tng oulu-
youg medloxhc e&lowong UETATOTIONG TAEYPOTOS, 1 omtola expedleTal we

a a2mz aR

—0 (5.14)

Emivovtoc tnyv e€iowon [5.14], 1 mapdywyoc e emaudnuévng avTIXEUEVIXNC CUVIRTT-
ONG YPAPETAUL WG

v Ofi

OFug =0F + [ W7 =2

Sw

/S (T p — W £)5(nidS) —

nox;dS + Wl n;6pdS+
Sw

o Migpnas - / Omy
SW ax Sw ax]

“n;0x;dS  (5.15)
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5.3 PCE o7tic Xuluyeic ESwowoesic Euler

[a va opaydolv o emeufBatinég elowoelg atpBolc porig, o teheotrhg G [] eQap-
uoletan xateudelay oTic eELIOWOELS POTIC, UE TOV oxohoudo TedTO

GH {afl} =G4 [A- 8U] =0, 010

c%ci ! 890,
G%[u;n;) =0, oo Sy (5.16)
GiU] = G U] , 010 S
H avtixeuevinr cuvdptnon opileton o¢
q .
J=> (I (5.17)
j=0
Me tnv enaugnuévn avTIXEWUEVIXY CUVEETNOT VoL BIVETOL O
T ofi
Jaug = J + | GI[P]" G* dQY+ [ miR"dQ (5.18)
Q Ox; Q
Me v nopdywyod g va ebvan
0, 0f;
= AT Ga | (=) dQ
0 Jaug = 0J + /QG (e’ G {81)( axi)} d
T ofi
+ [ Gi[e']Ge 0y | d (5.19)
Sw 8%
+0 / my R;"dS)
Q
omou oy Vel OTL
6J = Ga¢]" GI[6F]
(5.20)

~ G lq" 60| [ aplnscosan — msinan)as| + 6o (6] 67 [5Fu
Sw

LUVETOS, TEOXVTTEL OTL
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0G1 ‘I’T of; a e a | Ofi
Jaug = /Q {ab}dmL/SWG v G {axi 54 dS+

/ G [W7,,] G [nidp] dS + / (G [WT, ] GY[p] — Go [®7] G4[f]) GO [6(niddS))]

Sw
Oms
0z

afi
095;

[ e { £ n62,dS

(5xlnz} ds —
Sw

Sw

(5.21)

‘Apa, 1 ouluytic edtoxy eicwon yedgeTan, ue N Bordeia Tou tereotr Galerkin,

ow
q T
o 22

UE TIC OpLaXEG TG CUVUNXES VoL YRAPOVTUL WG
G9[¢(ngcos s — Ny SiNGn) + ¥irn;] =0
H tehun| éxgpaon tov Tapayeyny evacinotiog etvo

om¢
Oz,

5.J = G[¢)" G [6Fsp) + G [FE,] " Ga1] — LndridS

Sw

OTOU

G (R Gl = / (GO [Wisa] GO[p] — G [®]" GO [fi])d(nidS)

Sw

(5.22)

(5.23)

(5.24)

(5.25)
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Kegpdhowo 6

Aptduntixec Egopuoyec

Yl auTO TO XEPAAUO TaPOLGIALoVTOL APLIUNTIXES EQUPUOYES TNG EVIOYUUEVTS PeVOBOU
ETULPAVELAXO) OAOXANPOUATOS.

0.2 .
Control Points °
Airfoil
0.15
0.1f

0.4 0.6 0.8 1
% Chord

o
=
]

YyAua 6.1: Belniotonoinon popens aepotouns. Apxikn aepotoun) kar onueta eAéyyouv
Bezier.

6.1 BeAtiotonoinon diywg ofSefondtnete

Yy mpon TeplnTwor, BeATioTonolElTo agpOTOUN PE OXOTO TNV EAXyLIoTOTOINCT TOU
ouvteheoth omovérxoucag Cp

F=0p (6.1)
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UE optaxég cuVITeg

My =055 |, as =2.5° , Re= 5000

Ta anoteréopoto TapovotdlovTal CUVOTTIXG 0TO Gy AU

(6.2)

oosf N\

0.85 -

F/Fsymmetric

0.8 -

0.75 b

A I S S T N
2 4 6 8 10 12

Optimization Cycles

14

16

18

20

YyAue 6.2: Edayiwotonoinon ovvteleotn) omoUédkovoas. Ilopeia tng avtikeiperikng

owvdptnon.

Y70 oxf]pa mopouctdleton o apriudg Mach yOpw amd tnv agpotoux.
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0.02 008 014 02 0.26

YyAue 6.3: Elayiotornoinon ovvtedeotn omolékovoas. Apiducs Mach ylpw amd
THY a€POTOu).
6.2 BeAtiotonoinorn und afieBandtnTteg

Ye authy TNV TEpinTwoT), N oABeBUdOTNTA EIGEYETOL HECE TWV OPLIXWY CUVITXGY,

Mo ~ N(0.55,0.05) , as ~U(2.0°,3.0° , Re ~ N(5000,200)

Tao anoteréopoto TapovotdlovTal CUVOTTIXG OToV Ttivaxa

| | yoplc TA |peTTA, C =1 pe A, C =2 | ue ITA, C' =3 |
pe,, | 6.81-1072 6.89 - 1072 6.86 - 1072 6.84 - 1072
ocp, | 1.17- 1073 1.09-1073 1.05-1073 1.02-1073

IMTivaxag 6.1: Méon nun xkar tumknf andkAion tov ovvtedeotn omolédkovoas ya
=123

Y10 csxr’]pa TOEOUGLACETOL 1) aEyLXT) AEQOTOUT OE GUYXQLOT| UE TO OY O TOU TPO-

éxule and 1N fehtioTonolnon
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0.08 '
0.06
0.04

0.02 -

-0.02
-0.04

-0.06

T
without Uncertainties
Symmetric

————___under Uncertainties

-0.08 i L

0.8

YyAue 6.4: XUykpon aepotoudy, diyws apefaidtnta (uop), vnd afePadtnta (umAe)

ka1 apx1kT) (npdowo)

Eve oto mopoxdte oyfua tapovotdleton 1 adtdototn oLluyhc ToyTNTO TNG AEEOTO-

UAc, Omwe mpoéxule and TN BehticTomoinom
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0.065
0.055
0.045
0.035
0.025
0.015
0.005

ExApa 6.5: Adidotatn ovluyng taxyvtnta, oUykpion diyws afefaidtntes (tdvw), péon

uun (néon) kar tumikry andkhion (kdtw) yia C =3
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Kegpdhouwo 7

YIVUTEQACUATA

drota Baoxd cuUTERIoUATO TToU UToeolY va e€ayVoUy eivar Tol axdhouda
K Eayd

1.

Ewdydnxe wo véa, dxomn pédodog, n omolo etvan aveldotntn tne MAE mou
MEAETHTOL.

H pédodog auty| unopel vo egopuootel dxoma, diywe extevels napeuPdoeg otov
Tnyofo x@do Tou ADvel To TeOBANUa dlywe afeBadtnTe. Auto elvar onuovTINd
XS PELOVETOL O YPOVOS VATTUENC KOl TTROYPUUUATIONOU TTOU amanTelTon yior Ty
EQaPUOYT) TNS.

H pédodog unopel vo egapuootel ue anartAoelg uviung ot onoleg ebvar cuyxploueg
UE aUTEC TOU xWOLxa dlywe ofeBondtnrec. AuTd UEWOVEL CNUOVTIXG TIC AVEYXES
UVAUNG TOU Xm0, oL ontoleg efvan oLV iwe ToAD onuavTiég oe uedddoug UQ

Arnodelytnxe ot 10 iIPCE  elvan euctadée, av 1o apriunmind oyrfua Tou xo)dixa
obywe afefondtnTeg oTov onolov otnpiletan eivon eucTaéc.

ot aprdpd aBéBorwv petoPhntey m < 8, 1o iPCE frav and 10% péyet xon 40%
ToyUTtepo amd v avtiotoryn niPCE pédodo.

H uédodoc iPCE , émwe egapudotnxe, umopel vo emextadel yio ypron ot
ouveyr| cuCuyr pédodo, ue oxomd 1N Beitiotonoinon. T awtd, amoutovvTon
eNyoTeg TOREUPAOEIC OTOV apY IO WX, xou 1) PéVodog eivon e&icou dxomn

OTNV EPUPUOYT TNG
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