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Abstract

The objective of this Diploma Thesis is the implementation of Artificial Neural

Networks (ANNs), combining Convolutional Neural Networks (CNNs) and Deep

Neural Networks (DNNs), as local data-driven surrogate models in the early stages

of the automobile design process, to substitute costly steps followed in the estab-

lished conventional CFD-based approach, and guide the design space exploration

toward a more sensible direction.

In this work, Convolutional Neural Networks are employed to predict automobiles’

aerodynamic drag directly from their sketch-like representations, thus bypassing

the costly stages of 3D modeling, meshing and simulation. Starting from a pre-

existing design, the models can assess geometric changes imposed on it, helping

stylists to rapidly accept or reject potential modifications, based both on aesthetics

and aerodynamic criteria. As a result, they can allow designers to narrow down the

exploration domain early in the design process, and steer it in a sensible direction,

thus preserving computational resources for high-fidelity optimization in later stages

of the design.

The developed models derive from a sequence of applications of different objectives

and ascending complexity. Since the 3D car geometries are going to be evalu-

ated by their 2D representations, a key prerequisite is the development of an ad-

vanced CNN architecture that outperforms the equivalent conventional network in

cost-effectiveness for 2D aerodynamic applications. This backbone configuration

is developed through a foundational application concerning airfoils. Architectural
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adaptations to extend this configuration to 3D car geometries are then examined,

specifically three distinct approaches, differing either in their input shape or their

architectural symmetry. The superior configuration is then selected and evaluated

on a challenging dataset of automobiles and their corresponding drag force values.

The studies propose that statistically-driven adaptations and affordable fine-tuning

can successfully lead to the development of local CNN surrogate models that eval-

uate cars with great precision in a cost-efficient manner, within a constrained space

of the design domain.
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Περίληψη

Ο στόχος αυτής της Διπλωματικής Εργασίας είναι η εφαρμογή Τεχνητών Νευρωνικών

Δικτύων (ΤΝΔ), συνδυάζοντας Συνελικτικά Νευρωνικά Δίκτυα (ΣΝΔ) και Βαθειά

Νευρωνικά Δίκτυα (ΒΝΔ), ως τοπικά μεταμοντέλα στα πρώιμα στάδια της διαδικα-

σίας σχεδιασμού αυτοκινήτων, με σκοπό την αντικατάσταση κοστοβόρων βημάτων που

ακολουθούνται κατά την συμβατική -βασιζόμενη στην ΥΡΔ- προσέγγιση, και την κα-

θοδήγηση της εξερεύνησης του χώρου σχεδιασμού προς μια πιο ουσιώδη κατεύθυνση.

Κατά την προτεινόμενη προσέγγιση, τα συνελικτικά νευρωνικά δίκτυα χρησιμοποιο-

ύνται για την πρόβλεψη της αεροδυναμικής αντίστασης αυτοκινήτων απευθείας από

διδιάστατες αναπαραστάσεις τους σε μορφή σκίτσου, παρακάμπτοντας έτσι τα κοστο-

βόρα στάδια της μοντελοποίησης, πλεγματοποίησης και προσομοίωσης με ΥΡΔ. Ξε-

κινώντας από ένα προϋπάρχον σχέδιο, τα μοντέλα μπορούν να χρησιμοποιηθούν για

την αξιολόγηση γεωμετρικών αλλαγών που του επιβάλλονται, επιτρέποντας στους σχε-

διαστές να αποδεχθούν ή να απορρίψουν ταχέως πιθανές τροποποιήσεις, με γνόμωνα

τόσο την αισθητική όσο και τα αεροδυναμικά κριτήρια. Ως αποτέλεσμα, η χρήση τους

δύναται να περιορίσει τον σχεδιαστικό χώρο από τα πρώιμα στάδια, διατηρώντας έτσι

υπολογιστικούς πόρους για πιο υποσχόμενα σχέδια σε επόμενα στάδια του σχεδιασμού.

Τα αναπτυχθέντα μοντέλα προκύπτουν μέσα από μία ακολουθία εφαρμογών διαφορε-

τικών στόχων και αυξανόμενης πολυπλοκότητας. Δεδομένου ότι οι 3Δ γεωμετρίες

των αυτοκινήτων πρόκειται να αξιολογηθούν μέσω των 2Δ αναπαραστάσεών τους,
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βασική προϋπόθεση είναι η ανάπτυξη μιας προηγμένης αρχιτεκτονικής που να υπερι-

σχύει των συμβατικών αρχιτεκτονικών σε αποδοτικότητα και ακρίβεια, για δισδιάστα-

τες αεροδυναμικές εφαρμογές. Αυτή η βασική αρχιτεκτονική αναπτύσσεται μέσω μιας

θεμελιώδους εφαρμογής που αφορά αεροτομές. Στη συνέχεια, εξετάζονται αρχιτεκτο-

νικές προσαρμογές της ώστε να επεκταθεί σε εφαρμογές 3Δ γεωμετριών αυτοκινήτων,

συγκεκριμένα τρεις διαφορετικές προσαρμογές, οι οποίες διαφέρουν είτε στο σχήμα ει-

σόδου είτε στη συμμετρία της αρχιτεκτονικής. Η υπερισχύουσα διαμόρφωση επιλέγεται

και αξιολογείται σε ένα απαιτητικό σύνολο δεδομένων αυτοκινήτων, ως προς τις τιμές

της αεροδυναμικής τους αντίστασης.

Οι μελέτες δείχνουν ότι στατιστικά καθοδηγούμενες προσαρμογές και υπολογιστικά

προσιτές διερευνήσεις μπορούν να οδηγήσουν στην ανάπτυξη εξειδικευμένων τοπικών

διαμορφώσεων ΣΝΔ, ικανά να αξιολογούν γεωμετρίες αυτοκινήτων με ικανοποιητική

ακρίβεια και χαμηλό υπολογιστικό κόστος, εντός ενός προκαθορισμένου πλαισίου του

χώρου σχεδιασμού.
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Chapter 1

Introduction

1.1 Artificial Intelligence and Machine Learning

The field of Artificial Intelligence (AI) has evolved from a theoretical concept into

a transformative force that is now integrated in nearly every aspect of modern en-

gineering and industrial design. AI, broadly defined as the capability of machines

to perform tasks that typically require human intelligence, includes a vast array of

computational techniques designed to solve complex problems, recognize patterns,

and make informed decisions [38]. Within this domain, Machine Learning (ML)

has emerged as one of the most powerful and practical subfields, enabling systems

to automatically learn and improve from experience without being explicitly pro-

grammed for every application [33].

The automotive industry, in particular, has witnessed a paradigm shift in how

design processes are conceived, executed, and optimized. Traditional engineer-

ing approaches, while robust and well tested, often rely on iterative prototyping

and extensive computational simulations that can be both time-consuming and

resource-intensive. The integration of AI and ML techniques into automotive de-

sign workflows represents a significant opportunity to accelerate innovation, reduce

development costs, and enhance the overall quality of vehicle systems.

Machine Learning, as a subset of AI, focuses on the development of algorithms that

can identify patterns in data and make predictions or decisions based on them.

The fundamental premise of ML is that systems can be trained to perform specific

tasks by analyzing large datasets, extracting meaningful features, and developing

mathematical models that generalize well to unseen data [6]. In a time of increased

availability of computational power and exponential growth in data generation and

storage capabilities, ML techniques can be applied to increasingly complex engi-

neering problems. In the context of automotive design, this translates to the ability

to process vast amounts of simulation data, experimental results, and operational

feedback to develop more accurate and efficient design tools.
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1.2 Types of Learning in Machine Learning

Machine Learning algorithms can be broadly categorized into three fundamental

types of learning, each suited to different problem domains and data availability

scenarios, summarized in Fig. [1.1].

Supervised Learning represents the most common and intuitive form of machine

learning, where algorithms learn from labeled training data to make predictions on

new, unseen examples. In supervised learning, the system is provided with input-

output pairs during the training phase, allowing it to learn the mapping function

that connects the two [16]. This approach is particularly well-suited for problems

where empirical data with known outcomes is available.

Unsupervised Learning addresses scenarios where only input data is available

without corresponding target outputs. These algorithms seek to discover hidden

patterns, structures, or relationships within the data without explicit guidance

about what to search [34]. Common unsupervised learning tasks include clustering,

dimensionality reduction, and anomaly detection.

Reinforcement Learning takes a different approach by focusing on learning op-

timal actions through interaction with an environment. Rather than learning from

static datasets, reinforcement learning agents receive feedback in the form of rewards

or penalties based on their actions, gradually improving their decision-making ca-

pabilities through trial and error [44].

Figure 1.1: The different types of learning in ML.

5



1.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) represent one of the most versatile and power-

ful classes of supervised machine learning algorithms, inspired by the structure and

function of biological neural systems [15]. The fundamental building block of a neu-

ral network is the artificial neuron, which receives multiple inputs, applies weights

to these inputs, sums them together with a bias term, and passes the result through

an activation function to produce an output [37]. This simple computational unit,

when combined with many others, organized in layers in complex architectures, can

approximate virtually any continuous function given sufficient data and appropriate

training [22]. The structure of an ANN is graphically presented in Fig. [1.2]

ANNs are associated with either Regression or Classification tasks. Regression

problems involve predicting continuous numerical values based on input features.

In regression, the goal is to learn a mapping function that can estimate real-valued

outputs with minimal error. Classification problems, in contrast, involve assigning

input examples to discrete categories or classes. The objective is to learn decision

boundaries that can accurately separate different classes in the feature space [6].

Figure 1.2: Typical architecture of an ANN.

The universal approximation capabilities of neural networks make them particu-

larly effective in developing surrogate models in engineering applications. Neural

networks can adapt their trainable parameters during training to capture the under-

lying physics and relationships present in the data and produce accurate estimations

[28].
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1.4 Motivation

The motivation for this Diploma Thesis stems from the inherent inefficiencies and

substantial costs associated with the conventional design methodology employed

throughout the automotive industry. This traditional approach follows a sequen-

tial, multi-stage process that has remained largely unchanged for years, despite its

recognized limitations in terms of time consumption and resource allocation.

The conventional automotive design workflow can be characterized by the following

sequential phases and graphically presented in Fig. [1.3]:

• The styling team initiates the process by developing a comprehensive set of

design concepts, with primary emphasis placed on aesthetic appeal and visual

impact rather than functional performance characteristics.

• The digital modeling team is tasked with translating these conceptual designs

into detailed three-dimensional CAD models while incorporating necessary ge-

ometric constraints.

• An extensive CFD preparation phase follows, during which the 3D models un-

dergo further geometric modifications to ensure computational compatibility.

This stage involves geometric refinement and complex meshing procedures.

• Finally, high-fidelity high-cost CFD solvers are deployed to simulate the com-

plex flow phenomena around the proposed vehicle geometries, extracting aero-

dynamic performance quantities such as drag coefficient, downforce character-

istics and pressure distributions.

Figure 1.3: Schematic representation of the conventional automotive design process workflow.
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This established methodology requires repeating the entire workflow for each design

variant, creating significant bottlenecks in development timelines. The complexity

increases when additional stakeholders such as marketing teams, project managers,

and regulatory specialists contribute their requirements, extending evaluation pe-

riods and adding procedural overhead. Additionally, each team operates with dif-

ferent objectives and criteria, often creating conflicting requirements that demand

iterative modifications. According to [4], (re)meshing accounts for approximately

25% of total CFD project time, while model pre-processing (including geometry

cleanup) constitutes 35% of the workload. Moreover, the substantial computa-

tional resources needed for high-fidelity CFD simulations require careful planning,

naturally limiting the frequency of design iterations. Additionally, communication

delays and coordination difficulties further slow down design evaluation.

Notably, the automotive industry holds a valuable but underutilized resource: ex-

tensive databases containing conceptual designs, production vehicle geometries, and

their aerodynamic performance data. This accumulated knowledge spans decades of

design experience and experimental validation, offering an excellent foundation for

advanced supervised machine learning approaches. These comprehensive datasets

present an opportunity to develop predictive models that can accelerate the de-

sign process while maintaining acceptable accuracy, particularly during preliminary

phases where absolute precision is less critical.

This Diploma Thesis proposes the integration of CNNs as sophisticated data-driven

surrogate models for aerodynamic quantity regression. The approach aims to bypass

the steps of 3D modeling, mesh generation, and numerical simulation by directly

predicting aerodynamic properties from 2D design sketches.

Implementing such a methodology would enable real-time aerodynamic evaluation

within styling workflows. This approach would provide immediate feedback on

design modifications, allowing rapid exploration of the design space while preserving

computational resources for detailed analysis on the most promising candidates.

1.5 Thesis Outline

Following the Introduction, this Thesis is organized as follows:
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• Chapter 2: This chapter covers the fundamental architectural components

and operating principles of DNNs, including their gradient-based optimization

processes. Additionally, it presents advanced building blocks and techniques

that significantly enhance model predictive accuracy and interpretational ca-

pabilities used throughout this work.

• Chapter 3: It provides a comprehensive overview of the software tools and

methodologies employed to generate the working datasets (both input and

output) for subsequent applications, as well as an algorithmic description of

their application in recurring processes. Additionally, it introduces Evolution-

ary Algorithms, which are consistently utilized to fine-tune the architectural

composition and component parameters of the developed models.

• Chapter 4: It is the first application of this work, focusing on predicting aero-

dynamic and geometric properties of 2D airfoils. It aims at the development of

a superior CNN architecture that balances the trade-off between cost-efficiency

and accuracy, serving as the foundational structure for models in Applications

II and III. Additionally, it identifies ineffective regions within the evolutionary

search domain, enabling their systematic exclusion to reduce computational

requirements for subsequent, more complex applications.

• Chapter 5: This chapter investigates adaptive modifications to the estab-

lished architecture from Application I, extending its application to aerody-

namic 3D automotive geometry problems. It evaluates three distinct network

configurations that differ primarily in input data structure and architectural

symmetry. Through comprehensive analysis and performance comparisons, it

identifies the optimal configuration for implementation in the final Application

III.

• Chapter 6: Builds upon Application II with the primary distinction being

increased dataset complexity. The objective of this Application is the accurate

prediction of automobiles’ aerodynamic Drag Force. The conducted studies

emphasize the importance of implementing statistically-informed modifications

within the training process to avoid excessive computational costs and address

fundamental challenges in applications with limited (and statistically poor)

datasets.

• Chapter 7: Synthesizes key findings from previous chapters and emphasizes

on the adaptability of the selected configuration. Demonstrates that CNNs can

effectively function as local surrogate models in automotive design applications,

provided a proper architectural and compositional fine-tuning.

9



Chapter 2

Deep Neural Networks

2.1 Introduction

Neural Networks have emerged as a fundamental tool in modern ML, capable of
approximating highly complex phenomena across diverse applications. The present
chapter examines the core architectural components of a NN as well as their pa-
rameters, and offers a compact presentation of its working principle. Additionally,
it presents the main working component exploited in this Thesis, the Squeeze and
Excitation Block, which allowed the development of accurate and cost-efficient net-
works in the challenging subsequent implementations.

2.2 Network Architecture and Working Principle

Deep Neural Networks (DNNs) are a subcategory of ANNs. In order to be classified

as a DNN, a network must have multiple hidden layers. The complexity of a DNN’s

architecture and neural computations allows for the better interpretation of complex

patterns in the input data, making them successful in various tasks where shallow

networks fail. The number and types of hidden layers in a DNN can vary, depending

on the nature of the objective, the shape of the input data, the type of the desired

output and the complexity of the task. Two of the most common categories of

layers used in DNNs are dense layers and convolutional layers.

In dense (or fully connected) layers, each neuron receives information from all the

neurons of the immediately preceding layer(s) and passes it on to all the neurons of

the subsequent layer(s), through connections called synapses. For a single neuron,

each synapse’s information is multiplied by a weight uniquely associated with the
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synapse, and then summed up. A unique bias associated with the neuron is added

and an activation function is then applied, forming the output of the neuron, as

shown in Fig. [2.1].

Figure 2.1: Working principle of a neuron.

Convolutional layers are the fundamental components of Convolutional Neural Net-

works (CNNs), a subcategory of DNNs, used in tasks associated with computer

vision and image recognition. They are designed to adaptively identify spatial hi-

erarchies of features present in their input data, which is typically an image or a

set of feature maps. They operate by applying a set of learnable filters or kernels

to their inputs. The fixed-sized filter slides across the input, overlapping regions

of the data. The dot product of the filter and the local region is then computed,

and this process continues until the entire input has been altered. This transformed

representation of the input is then passed through an activation function to intro-

duce non-linearity, forming the output of the layer, a feature map, extracting a

specific pattern (Fig. [2.2]). Multiple filters result in multiple output feature maps

(channels).

Figure 2.2: Operation of a 2D convolutional layer.

For a convolutional layer with C filters and input X ∈ RH′×W ′×C′
(where H ′,W ′

denote the input height and width respectively, and C ′ denotes the input channels),

let V = [v1, ...,vC ] be the filter bank where each vc ∈ Rk×k×C′
is composed of 2D

kernels vs
c ∈ Rk×k. The output channel uc ∈ RH×W is computed as:
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uc = σ ·

(
C′∑
s=1

vs
c ∗ xs + bc

)
,

where ∗ denotes cross-correlation (commonly - and herein - implemented in deep

learning frameworks instead of the traditional convolution operator), bc ∈ R is

the bias term, σ denotes the activation function and · denotes its element-wise

application. The layer’s full output is formulated

U = [u1, ...,uC ] ∈ RH×W×C (2.1)

Multi-dimensional inputs naturally pose a risk to the model’s accuracy, as images

or videos often contain noise, which obstructs the feature extraction process of the

convolutional layers. In addition, the produced feature maps can be large in size,

increasing the complexity of the model and posing a risk of overfitting. In order

to address these challenges, convolutional layers are often used in conjunction with

max pooling layers, which perform a downsampling operation on the data. The

input of a max pooling layer is divided into non-overlapping regions of a predefined

size, greater than a data unit, and the contained data points are replaced by the local

region’s maximum value. As a result, the spatial dimensions of the data are reduced

while retaining the most prominent features, thus improving generalization and

reducing the computational load. A demonstration of the max pooling operation is

depicted in Fig. [2.3].

Figure 2.3: Operation of a Max Pooling layer.
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2.3 Neural Network Training process

2.3.1 The gradient-based optimization problem

The training process of a Neural Network is an iterative gradient-based optimization

problem, in which the trainable parameters of the network’s components (weights,

biases etc.) are adjusted in order to minimize a defined loss function’s output. A

typical Network’s training process comprises the following steps:

1. Trainable Parameters’ Initialization: The trainable parameters to be op-

timized are initialized. Proper initialization can potentially prevent the model

from sticking at local minima in the training process [30].

2. Forward Propagation: The input data is fed into the input layer, and prop-

agates through the various layers, transformed according to the current train-

able parameters’ values. This process continues until information reaches the

output layer, where the final prediction is generated.

3. Loss Value Calculation: The output of the model is computed and com-

pared to the true value with the use of a pre-selected loss function.

4. Back Propagation: After computing the loss value, the gradients of the loss

w.r.t the network’s trainable parameters are calculated using the chain rule of

calculus. The calculated gradients indicate the direction and magnitude of the

adjustments necessary to reduce the loss [6].

5. Gradient - Based Optimization: The adjustment of the trainable param-

eters is achieved through an optimization process based on the calculated gra-

dients. Typically, gradient based optimization algorithms are used, with the

most common being the Adam optimizer [18]. Optimizers have their own

hyperparameters, such as the learning rate or the momentum, which play a

crucial role in the convergence’s speed and stability [15].

6. Update of parameters: The trainable parameters of the model are then

updated accordingly.

The presented process is also called Forward Feed - Back Propagation.
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Steps 2 to 6 are repeated for a number of iterations, called epochs, in which the

entire training dataset is processed in batches. The batch size is a significant hy-

perparameter of the training process, referring to the number of training samples

processed simultaneously in a single forward and backward propagation, and can

greatly affect both the computational efficiency and the accuracy of the calculated

gradients. Larger batch sizes can lead to steadier gradient estimates, but require

more memory and often slow down convergence [43]. Smaller batch sizes can po-

tentially prevent the model from sticking at local minima [19], but lead to more

frequent updates on the trainable parameters, reducing the generalization of the

tuning process and making convergence more unstable [8].

Concerning the effectiveness and quality of the model’s training, there are two

common problems that need to be monitored.

The first is the vanishing gradient problem; during the back-propagation process,

the gradients of the loss function can become exceedingly small, resulting in minimal

updates of the trainable parameters, and therefore impeding the network’s ability

to learn and adjust to the training dataset. This typically occurs when certain

activation functions, such as sigmoid or tanh, are employed. Both functions resize

input values into small ranges, but, most importantly, they saturate at extreme

input values, and the calculated gradients from the training process are approaching

machine precision. This problem can be prevented by applying activation functions

without saturated regions, such as ReLU [14].

The second challenge concerns two major performance issues in ML; the phenomena

of underfitting and overfitting. Overfitting can be described as critical lack of

generalization during training, indicating that the network failed to recognize the

essential features of the input, but rather captures noise and random fluctuations

[50].

An overfitted model performs well on the training data but fails to adjust to unseen

data. On the contrary, an underfitted model is either too simplistic or inadequately

trained to capture the necessary patterns in the input data, resulting in high errors

both in the seen and unseen data [Fig. 2.4].

14



Figure 2.4: (left) Performance of an underfitted model that fails to predict data. (middle)
Performance of a well fitted model that captures the patterns in the dataset. (right) Performance of

an overfitted model that captures training data but fails to generalize on unseed data.

Traditionally, to overcome these issues, the validation technique is implemented,

according to which a chunk of the dataset is isolated and not fed into the network

except for when a complete pass of the training dataset has been performed (end of

each epoch). The goal is to monitor how well the model generalizes to unseen data

by observing the validation loss [35].

2.3.2 Activation Functions

Activation functions are crucial components of ANNs, introducing non-linearity into

the model. Without them, a network would perform similar to a single-layer linear

model, and fail to predict complex phenomena [21]. Let a neural network be defined

as a function f : Rk −→ Rm. For a neuron in layer ℓ, with input x(ℓ) ∈ Rnℓ−1 (where

n0 = k), weights w(ℓ) ∈ Rnℓ−1 , bias b(ℓ) ∈ R and activation function ϕ : R −→ R, its
output is computed as:

y(ℓ) = ϕ
(
(w(ℓ))⊤x(ℓ) + b(ℓ)

)

Below follows a presentation of the most common activation functions used in NNs,

which are included in the parametric explorations in the subsequent Applications.
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· ReLU : Rectified Linear Unit is a piecewise linear activation function commonly

used in machine learning tasks. It maps all negative inputs to zero, reducing unnec-

essary computations. However, this introduces the risk of neurons being inactive

and not contributing to the learning process, often referred to as the ”Dying ReLU

Problem”

ReLU(x) =

0 for x < 0

x for x ≥ 0

· GELU : Gaussian Error Linear Unit is a smoother approximation of ReLU, filtering

the neuron’s input by its probability under a Gaussian distribution rather than its

sign. Additionally, GELU has a continuous gradient in comparison to ReLU’s, which

has piecewise continuity. All in all, GELU outperforms ReLU in deep architectures.

GELU(x) =
x

2
(1 + erf(

x√
2
)) =

x

2
(1 +

2√
π

∫ x/
√
2

0

e−t2 dt)

· Leaky ReLU : Leaky ReLU is nearly identical to ReLU, with the only difference

being the presence of a non-zero slope for negative input values. The latter addresses

the dying ReLU problem and prevents dead neurons, while retaining most of ReLU’s

advantages. Parameter α is set to a small value, typically 0.01.

Leaky ReLU(x) =

αx for x < 0

x for x ≥ 0

· ELU : The Exponential Linear Unit activation function behaves identically to

ReLU and Leaky ReLU for positive inputs. Unlike them, ELU maintains its smooth-

ness everywhere, improving optimization and training stability. Additionally, ELU

pushes the mean activation closer to zero, which can reduce vanishing or exploding

gradients and improve learning speed. Parameter a is typically set to 1.
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ELU(x) =

x for x > 0

α(ex − 1) for x ≤ 0

· Sigmoid : The Sigmoid activation function is a smooth, differentiable function that

projects all inputs to the range (0,1). However, it is prone to the vanishing gradient

problem, since it saturates near the boundaries of it’s domain of definition.

σ(x) =
1

1 + e−x

· Tanh: The Hyperbolic Tangent activation function maps any real inputs to the

range (0,1). Compared to the sigmoid function, tanh is often preferred due to its

steeper gradients, which can accelerate training and allow better weight optimiza-

tion. However, it is still prone to the vanishing gradient problem.

tanh(x) =
ex − e−x

ex + e−x

Figure 2.5: Behavior of the presented activation functions (left) and their derivatives (right).
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2.3.3 Loss functions

Loss functions are mathematical functions quantifying the discrepancy between the

prediction provided by the model to the ground truth. Essentially, they serve as

the objective function of the training process optimization problem, whose gradient

indicates how the trainable parameters should be adjusted to improve accuracy. The

most common loss functions in regression problems are the the Mean Absolute Error

loss function (MAE) and the Mean Squared Error loss function (MSE), formulated

below accordingly.

MAE =
1

N

N∑
i=1

|yi − ŷi|

MSE =
1

N

N∑
i=1

(yi − ŷi)
2

N is the total number of samples, yi with i = 1, 2, ..., N is the target value of each

sample and ŷi is the corresponding prediction of the network.

MAE is less sensitive to outliers and anomalous points [48], treating all errors

equally, and provides a measure that is easy to interpret in terms of the actual units.

However, its undefined gradient at zero can pose challenges to the optimization

process of training. On the other hand, MSE has a smooth gradient at all points,

allowing for a more stable optimization. It penalizes large errors heavily due to the

squaring of the error, which is often desirable in regression tasks. On the downside,

this leads to increased sensitivity to outliers, sometimes sabotaging the model’s

ability to generalize properly. The selection between MAE and MSE depends both

on the dataset and the nature of the problem [9]. When working with a noise-

free dataset with few outliers, MSE can often aid the construction of an accurate

(and efficient) model. When the working dataset is of moderate size and noise and

contains outliers, selecting the MAE loss function will allow for a more robust and

accurate model.

In this Diploma Thesis, two additional loss functions are employed, the Mean Rela-

tive Error (MRE ) and the Mean Absolute Relative Error (MARE ), defined respec-

tively as:
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MRE =
1

N

N∑
i=1

yi − ŷi
yi

(2.2)

MARE =
1

N

N∑
i=1

|yi − ŷi|
|yi|

(2.3)

These metrics are particularly advantageous when the target values exhibit small

variance, as relative errors normalize deviations by the target magnitude [7].

2.3.4 The Adam Optimizer

The Adaptive Moment Estimation Optimizer (Adam Optimizer) [25], is an adap-

tive gradient-based optimization algorithm that combines the benefits of two earlier

optimization methods, the Adaptive Gradient Algorithm (AdaGrad) [10] and Root

Mean Square Propagation (RMSProp) [45]. It is a versatile optimization algorithm

that offers several advantages over conventional gradient-based optimization meth-

ods, by balancing adaptivity and convergence speed. Adam is used throughout this

entire Thesis as the optimizer of the models’ training.

The fundamental principle of Adam is the computation of individual adaptive learn-

ing rates for different parameters, based on estimates of both first-order and second-

order moments of the gradients.

Let f(θ) be the objective function to be minimized, where θ denotes the (vector of)

parameters to be optimized, herein the model’s trainable weights. At each timestep

t, the gradient of the function w.r.t θ is computed:

gt = ∇θft

Adam maintains and updates the exponential moving averages of the gradient mt

(estimate of the first moment of the gradient) and the squared gradient υt (estimate

of the second moment of gradient) as follows

mt = β1mt−1 + (1− β1)gt
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υt = β2υt−1 + (1− β2)g
2
t

β1, β2 ∈ [0, 1) are the hyperparameters controlling the exponential decay rates of

the gradient and squared gradient moving averages respectively. Typically, β1 is set

to 0.9 and β2 is set to 0.999. Since the moving averages are initialized at zero, they

are biased toward zero, particularly during the initial training steps. To counteract

this, the Adam optimizer calculates the bias-corrected moment estimates m̂t and

υ̂t.

m̂t =
mt

1− βt
1

υ̂t =
υt

1− βt
2

Finally, the trainable parameters θ are updated:

θt = θt−1 − α
m̂t√
υ̂t + ϵ

where α is the learning rate and ϵ is a small value (typically set to 10−8) to prevent

division by zero and enhance numerical stability. Division by the term
√
υ̂t ensures

an appropriately scaled parameter update based on the past gradients, allowing for

an adaptive step size across different parameters.

Adam is computationally efficient and requires only first-order derivatives, mak-

ing it well-suited for large-scale optimization problems. In addition, the inclusion

of momentum accelerates convergence in the direction of consistent gradient de-

scent, preventing oscillations in curved loss surfaces. It is the most commonly used

optimizer for machine learning tasks and neural networks’ training.

2.4 Squeeze-and-Excitation Blocks

Squeeze-and-Excitation Blocks (SE Blocks) [23], are building units that mimic bio-

logical vision, in which more attention is given to more salient stimuli [47]. They are

designed to enhance the representational power of CNNs, configuring channel-wise

feature responses and thus allowing the network to emphasize on informative fea-

ture maps and suppress less useful ones. SE Blocks are the fundamental component
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of this Thesis’s networks and played a critical role to their accuracy and efficiency.

Consider the output of a Convolutional Layer of Eq. (2.1). An SE block enhances

conventional convolution by forming channel-wise feature responses through three

consecutive operations: squeeze, excitation, and scale, collectively denoted as FSE.

• Squeeze Operation: This stage is responsible for aggregating global spatial

information across each channel. It employs Global Average Pooling (GAP)

to generate channel-wise statistics, contained in a channel descriptor. The

squeeze operation Fsq : RH×W×C → RC transforms the feature tensor U into

the channel descriptor z ∈ RC :

zc = Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j)

where uc(i, j) represents the value at position (i, j) in the c-th channel of

the block’s input. Each statistic zc ∈ R possesses a global receptive field

and provides a representation of the entire spatial extent of the corresponding

channel.

• Excitation Operation (Adaptive Recalibration): After the squeeze op-

eration, the goal is to capture inter-channel dependencies and generate a set of

modulation weights. This is achieved through a gating mechanism parameter-

ized by a two-layer Multi-Layer Perceptron (MLP) with a bottleneck structure.

The excitation transformation Fex : RC → RC is formulated:

s = Fex(z,W) = σ(W2δ(W1z+ b1) + b2)

where W1 ∈ RC
r
×C and W2 ∈ RC×C

r are the weight matrices of the first and

second fully connected layers respectively, b1 ∈ RC
r and b2 ∈ RC are the cor-

responding bias vectors, δ refers to a non-linear activation function (typically

ReLU), σ denotes the sigmoid activation function and r ≥ 1 is the reduction

ratio hyperparameter controlling block capacity and computational cost (typ-

ically set to 16). The first transformation W1z reduces dimensionality from

C to C
r
, constraining model capacity and computational complexity. The sub-

sequent expansion via W2 restores the original channel dimensionality. The

ReLU activation δ allows for the capture of non-linear inter-channel dependen-

cies and the sigmoid activation σ ensures that the weights sc ∈ [0, 1], where

sc ≈ 0 indicates channel suppression and sc ≈ 1 indicates channel emphasis.

• Scale Operation: Finally, the scale operation applies the learned channel-
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wise weights to the original feature maps through element-wise multiplication.

x̃c = Fscale(uc, sc) = sc ⊙ uc

where uc ∈ RH×W is the original feature map, and x̃c ∈ RH×W represents the

recalibrated feature map.

The complete SE block transformation can be expressed as the composition:

X̃ = FSE(U) = Fscale(U,Fex(Fsq(U)))

where X̃ = [x̃1, x̃2, . . . , x̃C ] ∈ RH×W×C represents the final recalibrated feature

tensor.

The SE block introduces little computational overhead while providing substantial

performance improvements. Briefly, the additional trainable parameters introduced

are:

PSE =

W1︷ ︸︸ ︷
C × C

r
+

b1︷︸︸︷
C

r︸ ︷︷ ︸
FC1

+

W2︷ ︸︸ ︷
C

r
× C +

b2︷︸︸︷
C︸ ︷︷ ︸

FC2

=
2C2

r
+

C

r
+ C (2.4)

The additional floating-point operations (FLOPs) per forward pass are:

FLOPSE = C ×H ×W︸ ︷︷ ︸
GAP

+C × C

r
+

C

r︸ ︷︷ ︸
FC1

+
C

r
× C + C︸ ︷︷ ︸
FC2

+C ×H ×W︸ ︷︷ ︸
Scale

= 2× C ×H ×W +
2C2

r
+ 2C (2.5)

Figure 2.6: Configuration of a Squeeze-and-Excitation Block. Image taken from [23]
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This series of operations allows models to focus on the most informative feature

maps and controls the influence of those less relevant. Integrating SE blocks into

existing CNN architectures has been shown [23] to significantly improve perfor-

mance while imposing minimal additional computational cost, leading to more ro-

bust and efficient performances. As a result, it is common to integrate SE Blocks

in pre-existing model schemes, e.g. the ResNet module [17], forming the SENet

or SE-ResNet model (Fig. [2.7]) which achieved 1st place in the ILSVRC 2017

classification competition [24].

Figure 2.7: Integration of SE Blocks in the original Inception module (left). The ResNet module,
forming the SENet or SE-ResNet module (right). Image taken from [23].
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2.5 Regularizers

Regularization is a fundamental technique in ML applications, implemented to pre-

vent overfitting and aid generalization on unseen data [6]. Regularization is often

employed in complex applications with large sets of trainable parameters, to ensure

a robust performance.

Consider a network with weights w ∈ Rd. Regularization modifies the model’s loss

function, introducing a regularization term that penalizes large weight magnitudes.

Lreg(w) = L(w) + λ · Ω(w)

where L is the original loss function, Ω is the regularization term and λ ≥ 0 is a hy-

perparameter called regularization strength. In this Thesis, the two most common

regularization techniques are presented and implemented, Lasso or L1 Regulariza-

tion and Ridge or L2 Regularization. Both introduce a penalty term derived from

the norms of the model’s weights [15].

• L2 Regularization (Ridge Regression / Weight Decay) penalizes the

squared magnitude of weights, with the regularization term:

Ω(w) = ||w||22 =
d∑

i=1

w2
i with ∇w(λΩ) = ∇w(λ||w||22) = 2λw

During optimization in the training process, say with the gradient descent, the

weights are updated:

wt+1 = wt − η(∇L(wt) + 2λwt)

where η is the learning rate. This update shrinks the trainable weights propor-

tionally to their magnitude. Application of L2 drives the network to distribute

learned information across more parameters, leading to a reduced sensitivity

to noise and a better ability to generalize.

• L1 regularization (Lasso Regression) penalizes the absolute magnitude of

the weights, with the regularization term:
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Ω(w) = ||w||1 =
d∑

i=1

|wi| with ∇w(λΩ) = ∇w(λ||w||1) = λ · sign(w)

where sign(w) is undefined at zero. During optimization in the training process

with the gradient descent, the weights are updated:

wt+1 = wt − η(∇L(wt) + λ · sign(wt))

Due to the non-differentiability at zero, proximal methods or soft-thresholding

operators are employed at wi = 0.

Unlike L2, L1 regularization can drive some weights exactly to zero, performing

feature selection, which is particularly useful in high-dimensional problems

where many features could be irrelevant.

In practice, it is common to implement a hybrid approach, combining both regu-

larizations (Elastic Net) [51], modifying the loss function according to:

Lreg(w) = L+ λ1||w||1 + λ2||w||22
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Chapter 3

Implementation Practice

3.1 Introduction

This chapter outlines the methodology employed in all three subsequent Applica-

tions. Initially, it introduces the in-house software and techniques employed across

the case studies for dataset generation, flow simulation and model fine-tuning (in

this order). It then provides a comprehensive description of the procedural pipeline

followed, and presents fundamental setups that are consistently reapplied and im-

plemented, thereby eliminating redundancy and ensuring legibility.

3.2 Free-Form Deformation and Morphing Boxes

Free-Form Deformation (FFD) is a geometric modeling technique that allows the

manipulation of shapes through the control of an underlying lattice structure [41].

A set of Control Points (CPs) is arranged in such a way that a cubical grid is

defined, fully enclosing the geometry to be deformed. This control grid serves as a

parameterization framework for the geometry; the initial positions of the CPs define

the undeformed state of the geometry, while displacement of the control points is

linearly propagated to the underlying geometry, altering its shape.

In [41], the working scheme parameterizing the deformation is based on trivariate

Bernstein polynomials. Consider a point p = (x, y, z) in the original (undeformed)

space. It’s deformed position p′ = (x′, y′, z′) is calculated using a trivariate tensor

product of Bernstein polynomials as:

p′ =
n∑

i=0

m∑
j=0

l∑
k=0

Bn
i (u)B

m
j (v)Bl

k(w)P
CP
ijk

where PCP
ijk are the CPs forming the FFD regular control grid, (u, v, w) are the local

coordinates of p within the unit cube of the control lattice and Bn
i denotes the
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Berstein polynomial of degree n:

Bn
i (u) =

(
n

i

)
ui(1− u)n−i

Movement of a control point only affects the embedded geometry locally, to an

extent dictated by the Bernstein basis. Specifically, if a CP PCP
ijk is moved, the

change in the geometry is restricted to the region where the corresponding basis

functions are non-zero. This locality of the propagated influence makes Free-Form

Deformation a very powerful tool in engineering applications like shape optimization

and design exploration. Additionally, FFD can be extended beyond cubic lattices

and incorporate more sophisticated basis functions for greater control and precision

[29].

Figure 3.1: Stages of Free-Form Deformation. [A] Pre-deformation stage, depicting the object
fully enclosed in the control lattice in its undeformed state. [B] Post-deformation: Displacement of

the CPs caused a local deformation to the inset object. Image taken from [12]

In this Thesis, Morphing Boxes are employed. Following the core concept of FFD,

Morphing Boxes use splines to parameterize the deformation and do not necessarily

require the geometry-to-be-deformed to be fully embedded within the control grid.

Specifically, in Applications II and III of this Thesis, only predefined regions of the

geometry are enclosed by the lattice.

The method of morphing boxes is implemented through the PUMA software [2],

which offers an application of the FFD methodology based on Non Uniform Rational

B-Splines (NURBS). Each time the NURBS lattice’s control points are displaced,

the geometry encapsulated by the grid is deformed and the CFD mesh is adapted

to it. This allows for a time-efficient creation of a diverse dataset.

The displacement of the control points is performed using the Latin Hypercube

Sampling (LHS) method. LHS is a popular statistical method used in Design of

Experiments (DOE) applications to generate near-random samples from a mul-
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tidimensional space, ensuring a uniform and representative distribution of points

[32]. In a n-dimensional problem, the core concept of LHS is to divide each di-

mension of the n-dimensional design space into equal, non-overlapping intervals

(strata) and ensure that each stratum is sampled exactly once, creating a stratified

sampling scheme that minimizes clustering of the sample points and guarantees a

well-distributed sample set. Application of the LHS method allows for the creation

of a representative dataset without the need for excessive sampling. It has been

demonstrated [31] that applying LHS allows for more efficient sampling of the design

space, relative to other popular methods like the Monte Carlo sampling.

Figure 3.2: Comparison of the Monte Carlo and LHS Sampling techniques with the same sample
size, demonstrating LHS’s ability to cover the design space more evenly. Image taken from [40]

3.3 The PUMA CFD Solver

All flow simulations are performed employing the in-house GPU-accelerated Parallel

Unstructured Multirow Adjoint (PUMA), an advanced CFD solver developed by the

PCOpt/NTUA [2], [46]. It is designed to leverage the computational capabilities

of GPUs, allowing for efficient and accurate simulations of complex fluid flows,

particularly in turbomachinery applications.

PUMA solves numerically the 3D Reynolds-Averaged Navier-Stokes equations (RANS)

for compressible and incompressible fluids. In this work, the incompressible variant

is used (the pseudo compressible for Application I). The flow and the RANS adjoint

equations are discretized on unstructured/hybrid meshes using the vertex-centered

finite volume method.

The steady residuals of the viscous flow for an incompressible fluid read

Rn =
∂f inv

k

∂xk

− ∂f vis
k

∂xk

= 0
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where f inv
k and f vis

k are the inviscid and viscous fluxes respectively, formulated:

f inv
k =


ρυk

ρυkυ1 + pδ1k

ρυkυ2 + pδ2k

ρυkυ3 + pδ3k

ρυkht

 f vis
k =


0

τ1k

τ2k

τ3k

υlτlk + qk


In this notation, ρ, p, υk and ht are the fluid’s density, pressure, velocity components

and total enthalpy respectively. δkkm denotes the Kronecker symbol. The viscous

stress tensor is given by:

τkm = µ(
∂υk
∂xm

+
∂υm
∂xk

− 2

3
δkm

∂υl
∂xl

)

where µ is the fluid’s bulk viscosity and qk is the heat flux. PUMA includes the

inviscid, laminar and viscous flow models, with all computations performed with a

second-order accuracy. In the case of a turbulent flow, PUMA allows the application

of a variety of turbulence models; herein the Spalart-Allmaras turbulence model is

employed.

PUMA offers a high parallel efficiency in both the flow and the adjoint solvers by

using the Mixed Precision Arithmetics (MPA) [2], which reduces memory usage

and memory transactions between the GPU threads and the device memory with

no effects on the code’s accuracy.

3.4 Evolutionary Algorithms and the EASY Soft-

ware

Evolutionary Algorithms (EAs) are population-based optimization methods in-

spired by biological evolution. These algorithms iteratively improve a set of can-

didate solutions (chromosomes) by evaluating their performance against an objec-

tive function. The best-performing solutions are selected for reproduction through

crossover operations, while mutation introduces controlled variations to explore new

regions of the design space [11]. This stochastic approach allows EAs to escape lo-

cal optima, making them particularly effective for complex, nonlinear optimization
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problems where gradient-based methods often struggle.

EASY (Evolutionary Algorithms System) is a versatile optimization framework de-

veloped by the PCOpt/NTUA [1]. It implements these evolutionary principles

while incorporating advanced features such as distributed computing and surro-

gate modeling [27]. These capabilities make EASY well-suited for computationally

demanding engineering optimization tasks, including cases where explicit mathe-

matical formulations are unavailable or impractical.

In this Thesis, EASY is employed for single-objective, unconstrained optimization,

specifically for (hyper)parameter tuning of the developed models and their train-

ing. Its adaptive search strategy ensures efficient convergence while maintaining

flexibility across different problem configurations.

3.5 Procedural Pipeline

The first part of this subsection concerns the established methodology that is fol-

lowed across the subsequent Applications, to generate the corresponding working

datasets. Essentially, it comprises two steps; the generation of a dataset from a

baseline geometry, and (in Applications II and III) the pre-processing of the sam-

ples to match a desired style for the context of this Thesis.

The second part regards the EASY software’s design space and general setup in the

parametric studies conducted in each case, concerning the shape and composition

of the examined network configurations.

A major downside of data-driven models is the restriction of their output predictions

within a constrained design space established by the training dataset’s bounds.

This constraint introduces an inherent locality to these models; regardless of their

accuracy and computational efficiency, their utility is restricted to specific regions of

the design space. This limitation establishes a practical ceiling on the computational

resources that can be justifiably expended to model development and training,

creating a cost-effectiveness trade-off that must be taken into consideration before

establishing any recurring processes.

A surrogate model’s total cost is calculated as the sum of the dataset generation

cost (LHS, FFD, CFD computations to obtain ground truth, Image preprocessing in

Applications II-III), the training cost (depends on network trainable parameters and

hyperparameters of training) and the fine-tuning cost (EASY domain of exploration
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and setup).

3.5.1 Methodology Overview

In a real-world industrial setting, an automotive company would typically store a

database of sketches and variants of conceptual or existing designs, along with their

corresponding performance data. These stylistically similar records (assuming they

were designed by the same styling team) could be directly used to train this Thesi’s

models. Herein, synthetic datasets are generated, following the sequence of steps

presented below.

Initially, NURBS Morphing Boxes are defined at certain position(s) of a baseline

geometry. Their CPs are displaced according to the LHS method, creating Ndb

instances, and the FFD technique is applied to deform the underlying geometry,

resulting in the generation of Ndb variations of the baseline geometry.

The output dataset of all cases is obtained via CFD simulations performed by

PUMA. The calculated properties/forces are considered the ground truth. Key

mesh and flow parameters for each case are summarized in tables within their

respective introductory subsections.

Lastly, in Applications II and III, filters are applied to images of the various geome-

tries to mimic the desired sketch-like style and resemble industrial concept drawings.

Since this algorithm relies on expensive CFD simulations, the sample size Ndb for

each case should remain limited; excessive sampling and flow solving would contra-

dict the primary goal of creating a computationally efficient local surrogate model

and undermine its importance. Ndb is defined 100 in Applications I, II and 366 in

Application III.

3.5.2 EASY setup for fine tuning

In subsequent Applications, certain hyperparameters of the models’ training process

are adjusted via Trial-and-error studies. However, the different network configura-
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tions are examined entirely by EASY, which is used for cost-efficient, case-dependent

fine tuning, rather than overall model optimization.

In all cases, the models are parameterized by:

• The total Number of Convolutional Layers

• The filter size for each Convolutional Layer

• The activation function applied by Convolutional Layers (shared)

• The total Number of fully connected Layers

• The neuron size for each fully connected Layer

• The activation function applied by fully connected Layers (shared)

and EASY evaluates distinct configurations. The following setups are implemented

in each case, unless specified otherwise in a subcase.

Application I Application II Application III

E
x
p
lo
ra

ti
o
n

D
o
m
a
in

Number of CNN Layers Up to 8 (ceil)

Number of CNN Layers Up to 8 (ceil)

CNN L1-Lceil filter size (pow. of 2) Up to 9

DNN L1-Lceil neuron size (pow. of

2)

Up to 9 Up to 12 Up to 12

Activation function CNN & DNN

Layers

ReLU, GELU,

tanh, sigmoid,

SELU, ELU,

Leaky ReLU

ReLU, GELU,

tanh, sigmoid

SE Block Integration – Implicitly via empirical rules

E
A
s
S
e
tu

p EASY Evaluations* 125 250 250

Population Size* 30 30 45

Parent:Offspring ratio 3

Elite Population size 15

Table 3.1: Summary of the EASY framework’s setup in the subsequent Applications. (*) indicates
that the presented values may vary, if specified so in the corresponding subsection.

The use of EASY allows for the proper adjustment of the networks’ architectural

composition and component parameters, unlocking and demonstrating the true ca-

pabilities of the examined configurations. During fine-tuning, the kernel size as well

as the stride length of the 2D Convolutional layers have predefined shapes (3, 3)

and (1, 1) respectively and remain fixed. The same applies to the pool size in the

MaxPooling layers, which is fixed to the shape (2, 2).
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Chapter 4

Application I - Isolated Airfoil Prop-

erties Prediction

4.1 Introduction

Application I focuses on predicting airfoils’ geometric and aerodynamic properties

(area, lift coefficient CL and drag coefficient CD) using CNNs. The primary ob-

jective is the development of a general CNN architecture that achieves superior

cost-effectiveness in 2D aerodynamic-governed phenomena, when compared to con-

ventional approaches.

Additionally, a second, implicit goal involves investigating the network’s structural

components and hyperparameters. This exploration aims to constrict EASY’s do-

main of exploration in subsequent Applications II and III, which naturally demand

greater computational resources and involve more training parameters.

As a result, Application I is essentially a foundational study for the development of

the final 3D car drag prediction network, focusing both in accuracy and computa-

tional efficiency (both in training and fine-tuning).

Figure 4.1: The NACA4318 airfoil geometry embedded in the 5× 3 NURBS box. Blue CPs are
fixed while red CPs are allowed to move.

The baseline geometry (NACA4318 Isolated Airfoil) is controlled by the 5 x 3

NURBS box of Fig. [4.1]. The blue CPs are fixed, while the red ones are allowed to
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move by ±10% of their reference position in the chordwise and normal-to-the-chord

directions, resulting in 26 design variables in total. A dataset of Ndb,I = 100 sample

airfoils in the form of black-and-white images (Fig. [4.2]) is generated. A structured

grid of 30K cells is generated around each airfoil, and the flow of Table [4.1] is

solved using the PUMA CFD software. The working dataset, originally developed

in [26] for different objectives, is provided in a ready-to-use format.

Quantity Symbol Value

Freestream Mach Number M∞ 0.13

Reynolds Number (·106) Re 3.8

Angle of Attack (◦) AoA 2.2

Table 4.1: Flow conditions of Application I.

Figure 4.2: (left) A (scaled) depiction of the outlines of the NACA4318 airfoil’s variations that
comprise this Application’s dataset. (right) A sample airfoil displayed in the black-and-white form

that it will be inserted into the model.

The lift and drag coefficients are given by the following formulas:

CL =
L

0.5ρU2
∞A

, CD =
D

0.5ρU2
∞A

where L and D are the lift and drag forces respectively, ρ is the air density and U∞

is the freestream velocity.
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4.2 Proposed Baseline Architecture

Capture of the non-linear phenomena governing the aerodynamic problem requires

1) successfully capturing features in the input images (Image Recognition - CNN)

and 2) correctly interpreting these features (DNN). Thus, the developed models

follow the simple architecture of Fig. [4.3]; the first half comprises subsequent

pairs of Convolutional and Max Pooling layers, while the second half is a sequence

of dense layers leading to a scalar output. The black-and-white depictions of the

generated samples (Fig. [4.2]) are fed into the network in the form of [640 × 320]

tensors. Out of the 100 samples, 20% are isolated and used to evaluate the model

post training. Out of the 80 remaining samples, 20% is used to form a validation

set for the model to be evaluated in each epoch during the training process.

Figure 4.3: The single-branch CNN model architecture implemented in the present application,
illustrated both simplified (top) and more detailed (bottom), featuring subsequent pairs of 2D

convolutional layers and Max Pooling layers, followed by a series of fully connected layers. The
output layer consists of one neuron, corresponding to the single scalar value of interest.
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4.3 Case I - Airfoil’s lift coefficient

In Case I, the goal is the accurate prediction of the airfoils’ CL. The elite conven-

tional configurations proposed by the evolutionary algorithms share a small number

of layers, limited to a maximum of 5 2D Convolutional/MaxPooling pairs and 3

dense hidden layers. The proposed models mainly used the ReLU and GELU ac-

tivation functions for the 2D Convolutional and dense layers respectively, however

models using GELU for both types of layers achieved more accurate predictions.

Fig. [4.4] presents the predictions of the three elite conventional model configura-

tions proposed by EASY and summarized in Table [4.2]. The models only differ

in terms of the activation function they use. In the first model, the GELU activa-

tion function is selected and used in both the Convolutional and the dense layers

(G-G configuration). The second model features the ReLU and GELU activation

functions in the 2D Convolutional and dense hidden layers respectively (R-G con-

figuration) and the last model uses the ReLU function in all hidden layers (R-R

configuration) (Table 4.2).

Parameter Model 1 (G-G) Model 2 (R-G) Model 3 (R-R)

Number of CNN Layers 5 5 5

Number of DNN Layers 3 3 3

CNN L1 filter size (pow. of 2) 3 3 3

CNN L2 filter size (pow. of 2) 5 5 5

CNN L3 filter size (pow. of 2) 5 5 5

CNN L4 filter size (pow. of 2) 7 7 7

CNN L5 filter size (pow. of 2) 8 8 8

DNN L1 neuron size (pow. of 2) 7 7 7

DNN L2 neuron size (pow. of 2) 6 6 6

DNN L3 neuron size (pow. of 2) 5 5 5

act. function CNN Layers GELU ReLU ReLU

act. function DNN Layers GELU GELU ReLU

kernel size (constant) (3,3)

strides (constant) (1,1)

pool size (constant) (2,2)

batch size 8

epochs 400

Table 4.2: Summary of the proposed conventional models after the exploration of the design space
by EASY.
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Figure 4.4: Performance of the proposed G-G, R-G and R-R models. (top) Bar plot comparing the
target CL values to the predictions of the three proposed models. (bottom) Regression plots for each

model, illustrating the agreement of its predictions with the target CL values.

All models perform well, however application of the ReLU activation function

seems to downgrade performance, mainly concerning samples closer to the dataset’s

boundaries. Application of GELU in both the 2D Convolutional and dense layers

results in better agreement of the model’s prediction with the target values.

To improve accuracy and achieve a more consistent performance, SE Blocks are

integrated between each Convolutional and MaxPooling layer. In this Application,

all SE-Blocks share the same configuration; a reduction ratio of 16 is defined and the

excitation process is performed by two fully connected layers with floor(C/ratio)

and C neurons respectively, using the ReLU activation function.

Respecting the updated architecture, fine-tuning proposes model configurations of

higher complexity, featuring a larger number of dense hidden layers and neurons.

The GELU activation function is used both for the Convolutional and the fully

connected layers, with only a single model applying the ReLU function in the Con-

volutional layers. No other activation functions are applied in the elite networks.
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Two proposed elite configurations, extensions of the G-G and R-G models with

SE Blocks, are selected (denoted G-G-SE and R-G-SE), presenting an increased

accuracy and overall performance when compared to the models lacking the SE-

blocks, as depicted in Fig. [4.5].

Figure 4.5: Demonstration of the effect of SE-Blocks on the models’ performance, illustrating the
(distribution of) ARE of the G-G models (left) and R-G models (right) evaluated on the Test

Dataset.

This error plot format is used multiple times throughout this Application. It

presents a visualization of the error distribution of models’ evaluations. The scat-

tered points correspond to the test samples comprising the evaluation dataset. Their

x− value corresponds the true value of the sample, while the y−axis refers to the

ARE of the corresponding predictions. The test data range is divided into seg-

ments, and the local mean error is calculated for all points within each segment.

The curved line represents an interpolation of these mean error values, providing

an overview of the error distribution across the entire dataset. The dashed line

illustrates the MARE for each Model.

Configuration G-G-SE, featuring the characteristics of Table 4.3, performs accu-

rately across the entire range of the dataset. Integration of SE-Blocks resulted in

an almost 31% decrease of the mean error, achieving a MARE of 0.403%, which is

more evenly distributed between the test samples. Additionally, convergence of the

error was achieved in fewer epochs. The induced relative computational drawback

is approximated at 0.79%.
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Parameter Value Parameter Value

Number of CNN Layers 5 Number of DNN Layers 8

CNN L1 filter size (pow. of 2) 3 DNN L1 neurons (pow. of 2) 6

CNN L2 filter size (pow. of 2) 2 DNN L2 neurons (pow. of 2) 6

CNN L3 filter size (pow. of 2) 6 DNN L3 neurons (pow. of 2) 5

CNN L4 filter size (pow. of 2) 5 DNN L4 neurons (pow. of 2) 9

CNN L5 filter size (pow. of 2) 3 DNN L5 neurons (pow. of 2) 9

CNN L6 filter size (pow. of 2) – DNN L6 neurons (pow. of 2) 9

CNN L7 filter size (pow. of 2) – DNN L7 neurons (pow. of 2) 6

CNN L8 filter size (pow. of 2) – DNN L8 neurons (pow. of 2) 9

act. function CNN layers GELU act. function DNN layers GELU

kernel size (constant) (3, 3) batch size 8

strides (constant) (1, 1) epochs 400

pool size (constant) (2, 2)

Table 4.3: Summary of the proposed G-G-SE model after the exploration of the design space by
EASY.

Figure 4.6: Performance of the selected G-G-SE model. (top) Bar plot comparing the target CL

values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.403%). (left) Regression plot of the selected model, illustrating the agreement of its
predictions with the target CL values. (right) Convergence of the MAE of the model over the

training epochs.
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4.4 Case II - Airfoil’s drag coefficient

Case II concerns the prediction of airfoils’ CD. Initially, the baseline network ar-

chitecture of Case I is used. The models proposed by EASY apply mostly the

ReLU activation function in both convolutional and dense layers, and achieve a

minimum MARE of 0.5463% across the test dataset. Similarly to Case I, SE-

Blocks are integrated, aiming to direct attention to the more informative feature

maps that capture nonlinearities governing the case. Surprisingly, this downgrades

performance, increasing MARE to 0.6143% (Fig. [4.7]).

Figure 4.7: Performance of the proposed R-R and R-R-SE models. (top) Bar plot comparing the
target CD values to the predictions of the two proposed models. (bottom) Regression plots for each

model, illustrating the agreement of its predictions with the target CD values.

The results indicate that moderately-tuned plain SE-models predict the CD inade-

quately, suggesting that either SE-Blocks alone do not provide sufficient represen-

tational power, or that extensive attention needs to be given to the interpretational

part of the network. To enhance performance and improve generalization, L2 Regu-

larization is introduced in the fully connected layers, with a regularization strength
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λ = 0.001. Additional exploration by EASY proposes the network summarized

in Table 4.4. The combination of SE-Blocks and L2 regularization results in the

slightly improved overall performance of Fig. [4.8], with minimal additional com-

putational cost (approximately 0.66% increase in training time). While the Elite

network achieved an improved MARE (0.523% , ∼ 4.24% decrease), distribution

remains non-uniform across the dataset, indicating potential limitations in general-

ization, when insufficient resources are expended in fine-tuning.

Parameter Value Parameter Value

Number of CNN Layers 5 Number of DNN Layers 4

CNN L1 filter size (pow. of 2) 7 DNN L1 neurons (pow. of 2) 7

CNN L2 filter size (pow. of 2) 9 DNN L2 neurons (pow. of 2) 5

CNN L3 filter size (pow. of 2) 6 DNN L3 neurons (pow. of 2) 6

CNN L4 filter size (pow. of 2) 7 DNN L4 neurons (pow. of 2) 7

CNN L5 filter size (pow. of 2) 2 DNN L5 neurons (pow. of 2) –

CNN L6 filter size (pow. of 2) – DNN L6 neurons (pow. of 2) –

CNN L7 filter size (pow. of 2) – DNN L7 neurons (pow. of 2) –

CNN L8 filter size (pow. of 2) – DNN L8 neurons (pow. of 2) –

act. function CNN layers ReLU act. function DNN layers GELU

kernel size (constant) (3, 3) batch size 8

strides (constant) (1, 1) epochs 700

pool size (constant) (2, 2)

Table 4.4: Summary of the proposed R-G-SE model after the exploration of the design space by
EASY.
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Figure 4.8: Performance of the selected R-G-SE model. (top) Bar plot comparing the target CD

values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.523). (left) Regression plot of the selected model, illustrating the agreeent of its

predictions with the target CD values. (right) Convergence of the MAE of the model over the
training epochs.
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4.5 Case III - Airfoil’s cross section area

Similarly to the CD case, the connection between geometric modifications and cross

section area is non-linear, however predicting it supposedly easier, since a pixel-

wise approach should theoretically be sufficient. Initially, two models are evaluated,

employing SE-Blocks along with L1 and L2 Regularization respectively (denoted

L1-SE, L2-SE). Both follow the baseline architecture of the previous cases. Fine-

tuning strictly proposes models applying the ReLU activation function in their

Convolutional layers and the GELU activation function in the dense layers.

Figure 4.9: Performance of the proposed L1-SE and L2-SE models. (top) Bar plot comparing the
target area values to the predictions of the two models. (bottom) Regression plots for each model,

illustrating the agreement of its predictions with the target area values.
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Figure 4.10: Illustration of the (distribution of) ARE of the L1-SE and L2-SE models evaluated
on the same Test dataset.

Fig. [4.9] presents the two Elites’ evaluations, showcasing a slightly better perfor-

mance by the L2-SE model. Additionally, Fig. [4.10] depicts the models’ Absolute

Relative Error distribution, when evaluated on the same test dataset. The L2-SE

configuration performs slightly better.

The L2-SE model is further tuned with EASY. The training epochs are increased

to 700 and the regularization strength to 0.0013. The proposed model, denoted

L2-SE*, is summarized in Table 4.5. It presents a better overall performance and

a MARE of 0.3353% (∼ 44.3% decrease) , distributed more evenly throughout

the dataset, as shown in Fig. [4.11]. The (SE-Block associated) computational

drawback is approximately 0.71%.

Figure 4.11: Illustration of the (distribution of) ARE of the L2-SE and L2-SE* models evaluated
on the same Test dataset.
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Parameter Value Parameter Value

Number of CNN Layers 5 Number of DNN Layers 3

CNN L1 filter size (pow. of 2) 5 DNN L1 neurons (pow. of 2) 8

CNN L2 filter size (pow. of 2) 9 DNN L2 neurons (pow. of 2) 9

CNN L3 filter size (pow. of 2) 7 DNN L3 neurons (pow. of 2) 6

CNN L4 filter size (pow. of 2) 2 DNN L4 neurons (pow. of 2) –

CNN L5 filter size (pow. of 2) 2 DNN L5 neurons (pow. of 2) –

CNN L6 filter size (pow. of 2) – DNN L6 neurons (pow. of 2) –

CNN L7 filter size (pow. of 2) – DNN L7 neurons (pow. of 2) –

CNN L8 filter size (pow. of 2) – DNN L8 neurons (pow. of 2) –

act. function CNN layers ReLU act. function DNN layers GELU

kernel size (constant) (3, 3) batch size 10

strides (constant) (1, 1) epochs 700

pool size (constant) (2, 2)

Table 4.5: Summary of the selected L2-SE* model after the exploration of the design space by EASY.

Figure 4.12: Performance of the selected L2-SE* model. (top) Bar plot comparing the target area
values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.3353%). (left) Regression plot of the selected model, illustrating the agreement of its
predictions with the target area values. (right) Convergence of the MAE of the model over the

training epochs.
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4.6 Overview and Conclusions

Application I demonstrates the capability of neural networks to accurately predict

airfoil aerodynamic characteristics directly from image representations. The devel-

oped models estimate the lift coefficient CL, drag coefficient CD, and airfoil cross-

sectional area. While prediction errors remain low across all cases, some variations

occur due to differences in data variance. Since model predictions are constrained

by the dataset’s target value ranges, direct comparison of relative errors of the dif-

ferent quantities is misleading due to their greatly different scales. For instance, CD

values range from 0.0329 to 0.0396 (a span of ∼0.0066), whereas CL values span

from 0.9438 to 1.7490 (a range of ∼0.8051, over one hundred times larger) More-

over the three output quantities follow different distributions (CL: σ = 0.1812,

Shapiro-Wilk normality test [42] p-value = 0.2171 , CD and Areas: σ ∼ 0.0015,

Shapiro-Wilk p-value ∼ 0.082). Consequently, the relative errors for each quantity

operate on fundamentally different scales.

To achieve a fair comparison of model accuracy across all cases within their training

range, the relative error distribution is computed and analyzed using the standard-

ized data (scaled to a 0-100 range), ensuring a shared scale. Fig. [4.13] presents

this error distribution of the three selected model configurations.

The G-G-SE configuration of the CL case achieves the highest overall accuracy, with

a MAREStd,CL
= 1.4271%. Drag coefficient prediction is less accurate, potentially

due to its high sensitivity to geometric perturbations. Research has shown that

CD can exhibit first-order sensitivities exceeding 50% with respect to small design

variations, indicating that even minor geometric changes can significantly impact

drag [49]. The elite network achieved MAREStd,CD
= 6.8854%.

Notably, the optimal model configuration for area prediction achievedMAREStd,area =

4.5501%, which appears suboptimal given that it represents a relatively straight-

forward computer vision problem, particularly when working with binary input

images. This suggests that, while increasing model complexity and employing ad-

vanced components can enhance representational and interpretational capabilities,

it may over-parameterize geometric relationships, making it more difficult to iden-

tify simpler input-output connections.
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Figure 4.13: Illustration of the (distribution of) ARE of the selected models for the three examined
subcases, evaluated on the same test dataset. The Relative Error formula is applied on the

transformed data.

The conducted studies provided a robust baseline network architecture with con-

firmed superiority over the equivalent conventional CNN and negligible increases in

training cost. The results highlight the potential of SE-blocks, both as standalone

components and in conjunction with regularization techniques. This general archi-

tecture serves as the foundational structure for models developed in the subsequent

Applications.

Furthermore, the results of Application I supply valuable insights about the design

space explored by EASY. Ineffective regions of the design space can be system-

atically excluded, thus narrowing down the exploration domain. This allows for

reduced computational resource requirements for model fine-tuning in subsequent

Applications II and III, by avoiding unnecessary parameter searches.

Specifically, EASY identified ReLU, GELU, sigmoid, and tanh as the most promis-

ing candidates as far as activation functions are concerned. The analysis also re-

vealed that dense layer dimensions need not exceed those of convolutional layers,

providing architectural constraints that aid both efficiency and performance.
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Chapter 5

Application II - Automobile’s Drag

Force and Surface Area (1 Morph-

ing Box)

5.1 Introduction

Application II concerns the extension of the previously developed backbone ar-

chitecture in problems concerning three-dimensional geometries of cars, aiming to

accurately predict their surface area and aerodynamic drag. Although the drag is

the primary quantity of interest, surface area is also examined due to its non-linear

nature. In this way, the model is evaluated on more non-linear data, allowing for

the test of its generalization ability, while not spending excessive computational re-

sources on CFD simulations. Different approaches are examined to develop a CNN

configuration that balances predictive accuracy and computational efficiency in the

context of the task at hand, aiming to identify the most promising one for use in

the subsequent Application III.

5.1.1 The DrivAer car model

The DrivAer is a publicly available aerodynamic benchmark car model developed

by researchers at the Technical University of Munich (TUM) in collaboration with

Audi. It was introduced in 2012 as a more realistic alternative to traditional sim-

plified car models (like the Ahmed body) for CFD and wind tunnel testing in

automotive aerodynamics research [20]. It represents a modern passenger car with

a detailed underbody, wheels, mirrors, and a slanted rear window. Herein, the

fastback configuration is used, featuring a smooth, sloping rear, as depicted in Fig.

[5.1].
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Figure 5.1: The fastback configuration of the DrivAer open-source car model, featuring detailed
characteristics and a smooth, sloping rear. Image taken from [3]

5.1.2 Dataset Generation

This problem’s dataset, also obtained from [26], results from free-form deforming

the rear end of the baseline automobile. Specifically, 210 CPs are arranged in a

7×5×6 NURBS control lattice and positioned at the rear part of the (half) car, as

depicted in Fig. [5.3] (extended to the full car). The CPs in red are allowed to move

by ±25% in the longitudinal direction and by ±60% in the normal-to-the-ground

direction, resulting in a total of 96 design variables. A dataset of Ndb,II = 100

samples is generated.
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Figure 5.2: Illustration of the FFD control lattice partially enclosing the DrivAer model’s rear.
Image taken from [26].

Figure 5.3: The generated mesh around the geometry of the baseline DrivAer model.

A computational grid of ∼ 1.4M nodes is generated around the geometry, and the

flow summarized in Table 5.1 is solved, using the PUMA CFD Software. Specifically,

the incompressible variant of the PUMA code is employed, that uses the pseudo-

compressibility method. The simulation concerns half the car’s geometry and uses

symmetry conditions (Fig. [5.4])
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Table 5.1: Flow conditions of Application II.

Figure 5.4: (top) Axial velocity and (bottom) pressure fields of the flow around a sample from the
generated dataset. Negative pressures are present because the ambient pressure is set to zero, since

pressure differences are of interest, not absolute values.

In the automotive industry, stylists typically illustrate conceptual designs by provid-
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ing their rear, side, rear, top and/or rear three-quarter (R34) views to the design

engineering team. In order to generate a synthetic dataset mimicking a realistic

industrial one, the sample geometries are initially captured from the different view-

points. These images are then resized to relatively small dimensions, to reduce com-

putational load and complexity. Finally, they undergo a series of transformations

aimed at partially reducing the visual information content and giving the images the

desired sketch-like appearance. This process ensures that the final dataset reflects

the characteristics of real-world design sketches. A sample of the input dataset is

given in Fig. [5.5].

Figure 5.5: Result of preprocessing on images of the front, rear, side and upper views of a sample
from the generated dataset. The images are to be fed into the network in this form.
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5.2 Statistically Informed Dataset Transformation

The small size of the working dataset (Ndb,II = 100) already poses challenges for

training. The output values that the model is tasked with predicting are examined

w.r.t. their statistical properties. The results reveal -most notably- an extremely

low variance of σ2 = 1.82 and a relatively high mean Drag Force value of µ = 226.07

[N]. Such a narrow dynamic range can obstruct model learning by reducing the

gradient magnitude, thus weakening the optimization signal during training [13].

The distributional properties of the output dataset are displayed in Fig. [5.6].

Figure 5.6: Distributional summary of the original output dataset. (left) The dataset’s distribution
compared to the corresponding normal curve. (center) Comparison of the dataset’s coefficient of

variation CV against an empirically effective CV range. (right) The dataset’s boxplot.

This plot format, used multiple times throughout the Thesis, summarizes the dis-

tributional properties of a dataset. The left plot offers a comparison of the dataset’s

distribution to a gaussian normal distribution. The central plot compares the

dataset’s coefficient of variation (CV), defined CV = σ
µ
× 100, against a desired

range (10−30%), according to studies and observations throughout this work. The

third plot presents the dataset’s box-and-whisker plot or boxplot. The box’s lower

boundary is denoted Q1 or 25th percentile and the upper boundary is denoted Q3 or

75th percentile. The range of the dataset below Q1 contains 25% of the samples, as

does the one above Q3. The box, with a height of IQR = Q3−Q1, contains 50% of

the dataset’s samples. The red line represents the medial value (denoted Q2), which

divides the dataset into two equal halves; its positioning illustrates data symmetry.

Lastly, the circles beyond the whiskers correspond to outliers in the dataset, whose

values are either smaller than Q1 − 1.5 × IQR or greater than Q3 + 1.5 × IQR.

From now on, the range contained by the box’s boundaries in each case is referred

to as Q1Q3 or interquartile range.
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To address the limitations mentioned earlier, an affine transformation is applied to

scale the output values into the interval [0, 100].

xtrans =
x−min(x)

max(x)−min(x)
× 100 (5.1)

where x is the original output, and xnorm is the transformed output. This transfor-

mation stretches the data across a wider range while preserving the overall distri-

butional shape. However, it does alter scale-dependent metrics such as the mean

and standard deviation. While the coefficient of variation, defined CV = σ
µ
× 100

is generally scale-invariant, in this case, its value changed due to the affine nature

of the transformation affecting the mean and standard deviation non-uniformly.

The transformation leads to a substantial increase in standard deviation, as ex-

pected, since the data is stretched over a broader interval. This change improves

the signal amplitude and helps to address the vanishing/exploding gradient prob-

lem during backpropagation [13]. The coefficient of variation increased from 0.60%

to 26.31%, now falling within the more effective range. Skewness and kurtosis re-

mained unchanged by the transformation, as expected; the distribution retained a

slightly left-skewed and peaked shape. The distributional properties of the trans-

formed output dataset are illustrated in Fig. [5.7].

Figure 5.7: Distributional summary of the transformed output dataset. (left) The dataset’s
distribution compared to the corresponding normal curve. (center) Comparison of the dataset’s

coefficient of variation CV against an empirically effective CV range. (right) The dataset’s boxplot.

In summary, the transformation successfully expanded the dynamic range and im-

proved the statistical suitability of the output variable for regression. The networks

of this Application are trained on the transformed data, and their predictions are re-

scaled back to the original domain in post-processing. These changes are expected
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to improve model training stability and amplify the optimization signal in back-

propagation. A summary of the data (pre- and post- transformation) is presented

in Table [5.2].

Metric Original Data Transformed Data

Sample Size (n) 100 100

Mean (µ) 226.07 59.87

Standard Deviation (σ) 1.35 15.75

Variance (σ2) 1.82 248.05

Coefficient of Variation (CV) 0.60% 26.31%

Skewness -0.4983 -0.4983

Kurtosis 1.5305 1.5305

Range 8.57 100.00

Table 5.2: Statistics of the output dataset before and after transformation.
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5.3 Examined Model Configurations

In Application I, a single-branch architecture was implemented. The first part of

the model consisted of subsequent Convolutional and MaxPooling layers (as well

as advanced Building blocks on some occasions), while the second part consisted

of a series of fully connected layers. This structure proved to be adequate for the

task at hand, since the airfoil’s cross section is two-dimensional, thus only a single

input image was needed. However, the present problem is much more complex and

concerns three-dimensional geometries.

Figure 5.8: Overview of the approaches examined to adaptively extend the configuration of
Application I to the current Application’s objective, concerning the three-dimensional geometries of

automobiles.

This Thesis examines two approaches, depending on the inputs of the models. The

first one suggests a single R34 (isometric-like) image of the car being fed to the

model. The core idea relies on the hypothesis that the R34 view contains sufficient

information for accurate prediction. Since this approach employs a single input, it

requires a single Convolutional branch. Consequently, the network architecture for

this implementation remains identical to that of Application I. This model config-

uration will be referred to as Single-Branch (SB).

The second approach suggests the parallel processing of multiple orthogonal views;

each view is processed by a separate Convolutional branch, similar to that of Ap-

plication I, uniquely associated with it. The outputs of these branches are then

concatenated and passed through a series of dense layers for feature interpreta-
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tion and processing. While utilizing more images provides a more comprehensive

representation of information, it inherently increases both model complexity and

training requirements. Additionally, the concatenation step introduces further po-

tential challenges. This baseline architecture will be referred to as Multi-Branch

(MB). Two variants of the MB configuration are examined; the Individualized Multi-

Branch (IMB) configuration and the Shared Multi-Branch (SMB) configuration.

In the IMB approach, each Convolutional branch maintains a unique architecture

with independently tuned parameters and structural composition during the fine-

tuning process. This allows each branch to be specifically adjusted for its corre-

sponding view. In contrast, the SMB approach maintains a uniform architecture

across all Convolutional branches. During fine-tuning, this shared architecture is

adjusted and implemented by all branches, promoting view-invariant feature learn-

ing regardless of the input perspective. An overview of the examined approaches is

graphically presented in Fig. [5.8].

During the development of this Application, different architectural setups were

tested through a trial-and-error process. Based on observations, an empirical rule

was adopted for integrating SE-Blocks and MaxPooling layers within the Convo-

lutional branches. According to this rule, a MaxPooling layer is added after every

two Convolutional layers, and an SE-Block is inserted after every three. When both

a MaxPooling layer and an SE-Block are to be added after the same Convolutional

layer, the SE-Block is placed first. An example of this rule on a branch with seven

Convolutional layers is shown in Fig. [6.1]. Its application proved to successfully

balance computational efficiency and predictive accuracy.

Figure 5.9: Application of the empirical rule on a convolutional branch of 7 convolutional layers.
Here, C denotes a 2D Convolutional Layer, M denotes a Max Pooling Layer and SE denotes a

Squeeze-and-Excitation Block.
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5.4 Single-Branch Model

The dataset of the R34 views is used to train the SB model. The grayscale images

are fed to the model in the form of [157 × 452] tensors. Indicatively, two samples

are presented in Fig. [5.10] to illustrate typical differences that the various cars

present.

Both for drag and surface prediction models, the number of epochs are set to 200

(idle epochs callback is set to 60) and the batch size is defined 16. The Adam opti-

mizer is used with a learning rate of 0.0013, monitoring the MAE of the predictions

on the transformed data. 80 samples are used for training, and 20 are isolated to

evaluate the model afterwards.

Figure 5.10: Two R34 samples of the SB model’s training dataset. The samples are fed into the
model in this form.
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5.4.1 Drag Force Prediction

In the Drag Force prediction case, EASY proposed the model summarized in Table

[5.3].

Parameter Value Parameter Value

Number of CNN Layers 7 Number of DNN Layers 7

CNN L1 filter size (pow. of 2) 5 DNN L1 neurons (pow. of 2) 9

CNN L2 filter size (pow. of 2) 9 DNN L2 neurons (pow. of 2) 7

CNN L3 filter size (pow. of 2) 6 DNN L3 neurons (pow. of 2) 6

CNN L4 filter size (pow. of 2) 9 DNN L4 neurons (pow. of 2) 10

CNN L5 filter size (pow. of 2) 4 DNN L5 neurons (pow. of 2) 6

CNN L6 filter size (pow. of 2) 4 DNN L6 neurons (pow. of 2) 6

CNN L7 filter size (pow. of 2) 5 DNN L7 neurons (pow. of 2) 8

CNN L8 filter size (pow. of 2) – DNN L8 neurons (pow. of 2) –

act. function CNN layers ReLU act. function DNN layers GELU

kernel size (constant) (3, 3) batch size 16

strides (constant) (1, 1) epochs 200

pool size (constant) (2, 2)

Table 5.3: Summary of the proposed SB model after the exploration of the design space by EASY.

Evaluation of the model on the test dataset demonstrates an inability to accurately

capture the target values of the Drag Force. Fig. [5.11] displays an inadequate

performance, with strong disagreement between the model’s predictions and the

ground truth. Fig. [5.12 illustrates that, closer to the bounds, the Error takes

the highest values, however, even at the center of the dataset, the network is inac-

curate. The significant dispersion of predictions in the regression plot, as well as

the large slope deviation between the predictions’ regression line and the identity

line (10.35◦) indicate that the model has failed to capture the connection between

geometric modifications and their corresponding effects on the Drag Force. These

results raise concerns about the Single-Branch Configuration’s capabilities in this

Application, especially given that the presented model is the elite proposition of a

computationally significant design space exploration.
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Figure 5.11: Performance of the proposed SB model. (top) Comparison of the target Drag Force
values to the predictions of the model, displaying the Relative Error on each sample’s prediction

(MARE = 0.1497%). (left) Regression plot of the model, illustrating the agreement of its
predictions with the target Drag Force values. (right) Convergence of the MAE of the model over the

training epochs.

Figure 5.12: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed SB model.
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5.4.2 Surface Area Prediction

In the Surface Area prediction case, EAs proposed the model of Table [5.4]. Com-

pared to the SB Elite for Drag prediction, this network presents a far-better overall

performance, as depicted in Fig. [5.13]. Specifically, its predictions have a MARE

of 0.0104% to the target values. Their regression line has a slope of 0.9492 and

deviates by 1.49◦ to the identity line. The error distribution across the range of the

test dataset is slightly uneven, but the regression plot showcases a guaranteed level

of accuracy in all regions. However, in Fig. [5.14] it is notable that some predic-

tions deviate significantly to the ground truth, raising concerns for an inadequate

architecture in the general context of the Thesis.

Parameter Value Parameter Value

Number of CNN Layers 7 Number of DNN Layers 1

CNN L1 filter size (pow. of 2) 4 DNN L1 neurons (pow. of 2) 7

CNN L2 filter size (pow. of 2) 4 DNN L2 neurons (pow. of 2) –

CNN L3 filter size (pow. of 2) 2 DNN L3 neurons (pow. of 2) –

CNN L4 filter size (pow. of 2) 7 DNN L4 neurons (pow. of 2) –

CNN L5 filter size (pow. of 2) 6 DNN L5 neurons (pow. of 2) –

CNN L6 filter size (pow. of 2) 9 DNN L6 neurons (pow. of 2) –

CNN L7 filter size (pow. of 2) 4 DNN L7 neurons (pow. of 2) –

CNN L8 filter size (pow. of 2) – DNN L8 neurons (pow. of 2) –

act. function CNN layers GELU act. function DNN layers ReLU

kernel size (constant) (3, 3) batch size 16

strides (constant) (1, 1) epochs 200

pool size (constant) (2, 2)

Table 5.4: Summary of the proposed SB model after the exploration of the design space by EASY.
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Figure 5.13: Performance of the proposed SB model. (top) Comparison of the target Surface Area
values to the predictions of the model, displaying the Relative Error on each sample’s prediction

(MARE: 0.0104%). (left) Regression plot of the model, illustrating the agreement of its predictions
with the target Surface Area values. (right) Convergence of the MAE of the model over the training

epochs.

Figure 5.14: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed SB model.
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5.5 Multi-Branch Model (IMB - SMB Configu-

rations)

The general architecture of the Multi-Branch Model is illustrated in Fig. [5.15]. The

core idea is that more information can be extracted from multiple orthogonal views,

allowing for greater precision in the predictions, provided that the combination of

the different features is properly addressed.

Figure 5.15: Illustration of the general architecture of the SMB configuration.

5.5.1 Drag Force Prediction - IMB, SMB

Individualized Multi Branch Configuration - IMB

In the Individualized Multi Branch configuration, the EASY software is employed

to define the total number of 2D Convolutional Layers for each branch separately,

along with the parameters of each layer. The dense halve of the network is examined

similarly to the SB configuration. After exploration of the design space, fine-tuning

proposed the model summarized in Table [5.5].
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Parameter Value Parameter Value

Number of Side Branch (B1) Layers 4 Number of Rear Branch (B2) Layers 6

Number of Top Branch (B3) Layers 7 Number of DNN Layers 4

B1 L1 filter size (pow. of 2) 5 B2 L1 neurons (pow. of 2) 5

B1 L2 filter size (pow. of 2) 4 B2 L2 neurons (pow. of 2) 7

B1 L3 filter size (pow. of 2) 8 B2 L3 neurons (pow. of 2) 5

B1 L4 filter size (pow. of 2) 2 B2 L4 neurons (pow. of 2) 3

B1 L5 filter size (pow. of 2) – B2 L5 neurons (pow. of 2) 2

B1 L6 filter size (pow. of 2) – B2 L6 neurons (pow. of 2) 5

B1 L7 filter size (pow. of 2) – B2 L7 neurons (pow. of 2) –

B3 L1 filter size (pow. of 2) 7 B2 L1 neurons (pow. of 2) 6

B3 L2 filter size (pow. of 2) 8 B2 L2 neurons (pow. of 2) 7

B3 L3 filter size (pow. of 2) 7 B2 L3 neurons (pow. of 2) 7

B3 L4 filter size (pow. of 2) 5 B2 L4 neurons (pow. of 2) 7

B3 L5 filter size (pow. of 2) 7 B2 L5 neurons (pow. of 2) –

B3 L6 filter size (pow. of 2) 6

B3 L7 filter size (pow. of 2) 3

act. function B1, B2, B3 layers ReLU act. function DNN layers GELU

kernel size (constant) (3, 3) batch size 16

strides (constant) (1, 1) epochs 250

pool size (constant) (2, 2)

Table 5.5: Summary of the proposed IMB model after the exploration of the design space by EASY.

Figure 5.16: Performance of the proposed IMB model. (top) Comparison of the target Drag Force
values to the predictions of the model, displaying the Relative Error on each sample’s prediction

(MARE: 0.1008%). (left) Regression plot of the model, illustrating the agreement of its predictions
with the target Drag Force values. (right) Convergence of the MAE of the model over the training

epochs.
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The regression plot of Fig. [5.16] clearly shows that the model under-performs

and struggles to predict the Drag Force accurately throughout the entire range of

the dataset. Specifically, certain test samples are predicted with great accuracy,

while the rest present a significant deviation to the target values. The overall

test MARE is computed 0.1008% (MRE = −0.0632%). In order to achieve a

better understanding of the situation, Fig. [5.17] is provided, which has a striking

resemblance to Fig. [2.4 (right)]. The model is over-fitted in regions of the training

dataset with high sample concentration, mainly concerning the interquartile region

of the dataset. This leads to the presence of large deviations in test samples close-by.

On the contrary, the model performs well in regions with fewer training samples,

like the one concerning the first 40 (sorted) training samples.

Figure 5.17: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed IMB

model.

Shared Multi Branch Configuration - SMB

In the SMB implementation, the EASY software is employed to define, among other

parameters, the shared architectural composition (and component parameters) of

the Convolutional branches. Fine-tuning proposed the model summarized in Table

[5.6], which features substantially fewer trainable parameters than the one proposed

in the IMB case, and presents a more robust performance throughout the entire

range of the dataset. It achieves a MARE of 0.04532% (MRE = 0.0072%). The

predictions’ regression line deviates by 2.36◦ from the identity line. Fig. [5.18]
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displays a smooth distribution of error, and highlights the increased accuracy and

generalization ability of the model, when compared to IMB Elite.

Parameter Value Parameter Value

Number of CNN Layers 7 Number of DNN Layers 3

CNN L1 filter size (pow. of 2) 7 DNN L1 neurons (pow. of 2) 9

CNN L2 filter size (pow. of 2) 4 DNN L2 neurons (pow. of 2) 8

CNN L3 filter size (pow. of 2) 7 DNN L3 neurons (pow. of 2) 12

CNN L4 filter size (pow. of 2) 5 DNN L4 neurons (pow. of 2) –

CNN L5 filter size (pow. of 2) 4 DNN L5 neurons (pow. of 2) –

CNN L6 filter size (pow. of 2) 6 DNN L6 neurons (pow. of 2) –

CNN L7 filter size (pow. of 2) 2 DNN L7 neurons (pow. of 2) –

CNN L8 filter size (pow. of 2) – DNN L8 neurons (pow. of 2) –

act. function CNN layers ReLU act. function DNN layers GELU

kernel size (constant) (3, 3) batch size 16

strides (constant) (1, 1) epochs 200

pool size (constant) (2, 2)

Table 5.6: Summary of the proposed SMB model after the exploration of the design space by EASY.

Figure 5.18: Performance of the proposed SMB model. (top) Comparison of the target Drag Force
values to the predictions of the model, displaying the Relative Error on each sample’s prediction

(MARE: 0.04532%). (left) Regression plot of the model, illustrating the agreement of its predictions
with the target Drag Force values. (right) Convergence of the MAE of the model over the training

epochs.
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Fig. [5.19] showcases the proper fitting of the model, presenting a slightly elevated

deviation of the predictions and target values in regions mainly closer to the bounds

of the dataset. In the central region, which concerns the majority of the samples,

the model manages to properly identify and decode patterns in the input images,

and translate them to produce predictions of high accuracy.

Figure 5.19: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed SMB

model.

The above results demonstrate that, herein, the Shared Multi-Branch Architecture

is superior to the Individualized one and manages to accurately predict the cars’

Drag Forces. It presents a better overall performance, with a more evenly dis-

tributed error and a significantly smaller MARE (almost 2× smaller). It is also

notable that the evolutionary algorithms employed to search the optimal Network

architectures performed more than 2.5× more evaluations on the Individualized-

Branch case, yet the Shared-Branch configuration outperformed it.

These intriguing results and observations, indicating the SMB configuration’s dom-

inance, are elaborated in a more detailed discussion in the “Summary and Compar-

ison” subsection.

The superior Shared Multi-Branch configuration is selected and used both in the

Drag Force and Surface Area prediction of the Multi-Branch subsection of Appli-

cation II.
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5.5.2 Surface Area Prediction - SMB

The above study verifies the Shared-Branch Architecture’s superior performance;

thus, the same architecture is used for the surface area prediction. Fine-tuning pro-

poses the model of Table [5.7], featuring an increased complexity in its Convolutional-

based first half, and an almost “shallow” second half, with a single hidden layer of

64 neurons.

Parameter Value Parameter Value

Number of CNN Layers 8 Number of DNN Layers 1

CNN L1 filter size (pow. of 2) 4 DNN L1 neurons (pow. of 2) 6

CNN L2 filter size (pow. of 2) 3 DNN L2 neurons (pow. of 2) –

CNN L3 filter size (pow. of 2) 3 DNN L3 neurons (pow. of 2) –

CNN L4 filter size (pow. of 2) 2 DNN L4 neurons (pow. of 2) –

CNN L5 filter size (pow. of 2) 7 DNN L5 neurons (pow. of 2) –

CNN L6 filter size (pow. of 2) 2 DNN L6 neurons (pow. of 2) –

CNN L7 filter size (pow. of 2) 5 DNN L7 neurons (pow. of 2) –

CNN L8 filter size (pow. of 2) 4 DNN L8 neurons (pow. of 2) –

act. function CNN layers ReLU act. function DNN layers ReLU

kernel size (constant) (3, 3) batch size 16

strides (constant) (1, 1) epochs 300

pool size (constant) (2, 2)

Table 5.7: Summary of the proposed SMB model after the exploration of the design space by EASY.
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Figure 5.20: Performance of the proposed SMB model. (top) Comparison of the target Surface
Area values to the predictions of the model, displaying the Relative Error on each sample’s

prediction (MARE: 0.0048%). (left) Regression plot of the model, illustrating the agreement of its
predictions with the target Surface Area values. (right) Convergence of the MAE of the model over

the training epochs.

Fig. [5.21] displays a really satisfying performance of the Elite, and a strong and

consistent agreement between its predictions and the target surface area values,

even close to the bounds, where the training samples are considerably fewer. The

predictions’ regression line has a slope of 0.9777 and presents an angle difference of

0.65◦ with the identity line. The model performed with a MARE of 0.0048% and

an MRE of −0.0021%, when evaluated on the test dataset.
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Figure 5.21: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed SMB

model.

5.6 Summary and Comparison

This subsection offers a thorough comparison of the examined models, and a com-

mentary justifying the selection of the superior SMB configuration as the working

configuration in the subsequent Application III. At the end of the subsection, Table

[5.8] provides a compact presentation of the different models’ evaluation metrics.

The studies and results of Application II highlight the superiority of the MB Con-

figuration over the SB Architecture Model. The latter proves to be inadequate for

the purposes of this Thesis; either the information encoded in the R34 inputs is not

sufficient to provide accurate results, or the SB architecture is naturally incapable

of capturing and processing patterns in the input tensors of this study.

In the surface area case, the SB configuration performs with a questionably suffi-

cient accuracy and a MARE of 0.0104%. Fig. [5.14] presents both regions of high

accuracy and ones of low credibility and precision, resulting in an uneven distribu-

tion of Error across the dataset. However, excluding a few predictions, the network

“decodes” changes in the depicted geometries successfully and captures the target

values to a satisfying extent. On the one hand, the complexity of this Applica-
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tion’s task justifies a couple of inaccuracies on the predictions (to a certain extent).

However, being the product of a computationally heavy tuning process, the SB

Model does not live up to its expectations, thus raising concerns over its predictive

capabilities as a whole.

These concerns are amplified in the Drag Force prediction case, which proves the

SB Configuration to be completely unfit for this Application’s purposes. After a

total of 250 EA evaluations, the proposed model performs poorly and presents a

high dispersion in its predictions’ regression plot, as displayed in Fig. [5.14]. It is

clear that, especially closer to the dataset’s bounds, the network fails to properly

interpret changes in the depicted cars. The MARE has a value of 0.1497% and the

predictions’ regression line has a slope of 0.6911, presenting an angle difference of

10.35o with the identity line. Overall, the drag prediction case highlights the SB

Configuration’s inability to form a robust and reliable model for the purposes of

this Application.

In order to properly compare the examined networks based on their accuracy and

distribution of error, the following errors are formulated.

MARETr =
1

n

n∑
i=0

ARETr,i =
1

n

n∑
i=0

|yi − ŷi|
yi

100% (5.2)

MAEN
Tr =

1

n

n∑
i=0

AEN
Tr,i =

1

n

n∑
i=0

|yi − ŷi|
ymax − ymin

100% (5.3)

where y and ŷ denote the standardized target values and predictions respectively.

Eq [5.2] refers to the MARE applied on the transformed data. Eq [5.3] refers to

the normalized MAE applied on the transformed data, which is the highest when

the opposite bound of the range is predicted.

The introduced MB Configuration produces much more accurate predictions, out-

performing the inadequate SB Networks. The study conducted, comparing the two

different approaches of the proposed idea, allows for some very interesting observa-

tions, as well as promising results.

The IMB Configuration relies on the separate adjustment of each convolutional

branch, allowing for a fine-tuning of their (sequence of) processing units, depending

on each view’s needs. The multiple input images contain more encoded information,

allowing for a better performance and higher accuracy, provided the model is prop-

erly trained. On the downside, the EASY software explores a 32-dimensional design

space during the optimization of the model’s architecture, introducing a significant
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computational cost that should be taken into consideration when evaluating the

IMB Configuration as a whole.

Fig. [5.22] and [5.23] presents the Distribution of MARETr and MAEN
Tr of the

final, Elite IMB model, compared to the equivalent SB Model in both examined

cases.

Figure 5.22: Illustration of the (distribution of the) ARETr (left) and AEN
Tr (right) of the SB

(blue) and IMB (red) Elites of the Surface Area prediction case.

Figure 5.23: Illustration of the (distribution of the) ARETr (left) and AEN
Tr (right) of the SB

(blue) and IMB (red) Elites of the Drag Force prediction case.
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In the surface area case, the two networks perform similarly, providing accurate re-

sults and achieving small Errors across the entire range of the test dataset, excluding

the bounds where the SB model performs with some inaccuracy. The IMB network

presents a smoother, more even Distribution of Error and achieves a smallerMARE.

The drag prediction case also highlights the Individualized-Branch model’s superi-

ority, which achieves a MARETr of 4.16% and a MAEN
Tr of 2.64%, and presents a

significantly smoother error distribution.

The displayed results validate the IMB Configuration’s ability to capture modi-

fications in the depicted cars and interpret them accordingly, to provide reliable

predictions over their geometric properties and aerodynamic behavior. The IMB

model seems to accurately identify and translate the prominent changes in the de-

picted geometries, which are almost entirely responsible for most the drag’s change,

however it seemingly fails to capture smaller, more discrete fluctuations that affect

it in a smaller scale. As a result, two issues persist; firstly, the error distribution

is questionably smooth and follows a morphology seemingly uncorrelated with the

sample density in the training dataset. Additionally, the overall performance of

the model is not proportional to the large computational cost imposed by the fine-

tuning process of its 32 Design Variables. As briefly mentioned earlier, although

the IMB Configuration’s design space potentially contains a better global solution,

due to its high dimensionality, it also presents much higher complexity and a larger

number of local optimal solutions, posing a risk of insufficient tuning and selection

of a suboptimal composition. Since the goal of this study is to propose a surrogate

model to avoid excessive exploration and substitute computationally costly meth-

ods, the IMB network’s performance does not outweigh the cost needed to construct

it.

Implementation of the SMB Configuration successfully addressed both issues in a

simultaneous manner. Reduction of the dimensionality of the design space from 32

to 20 dramatically dropped the computational cost of the network’s optimization by

nearly 60%, and evidently prevented EASY from sticking at local minima. More-

over, the introduced forced restriction likely acts as a regularization mechanism,

constraining the model’s generalization ability and preventing it from overfitting on

the (already small) training dataset samples. Additionally, the shared depth of the

convolutional branches ensures the same level of abstraction for each view, crucial

for the proper interpretation of the concatenation product by the dense part of the

model.

Fig. [5.24] and [5.25] display the SMB Model outperforming the IMB one, both in

the Surface Area case and the Drag prediction case.
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Figure 5.24: Illustration of the (distribution of the) ARETr (left) and AEN
Tr (right) of the IMB

(blue) and SMB (red) Elites of the Surface Area prediction case.

Figure 5.25: Illustration of the (distribution of the) ARETr (left) and AEN
Tr (right) of the IMB

(blue) and SMB (red) Elites of the Drag Force prediction case.

In Fig. [5.24], concerning the surface area case, the SMB model presents a re-

ally smooth distribution of error across most of the dataset, particularly the inner

regions. The MAEN
Tr only becomes greater than 5% at the first test sample’s pre-

diction, which belongs to a region of low sample concentration in the dataset. The

rest of the distribution curve presents a remarkable smoothness, showcasing a defi-
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nite improvement from the IMB Configuration, as far as surface area prediction is

concerned.

In the case of drag prediction, the SMB network is still superior, as depicted in

Fig. [5.25]. The Errors take values smaller than 5% for the MARETr and 2.5%

for the MAEN
Tr across the entire dataset (again, excluding the first prediction);

interestingly, here the SMB model performs better than in the surface area case,

which is, however, justified by the “positioning” of the test samples in the working

dataset.

Surface Area (original domain) Drag Force (original domain)

SB MARE : 0.0104% , MRE : −0.0037% MARE : 0.1497% , MRE : −0.0684%

IMB MARE : 0.008% , MRE : −0.006% MARE : 0.1008% , MRE : −0.0632%

SMB MARE : 0.0048% , MRE : −0.0021% MARE : 0.0453% , MRE : 0.0072%

Design Space Dimentionality Overall Cost

SB 20 design variables 1 TU

IMB 32 design variables ∼ 12 TU

SMB 20 design varibales ∼ 5.5 TU

Table 5.8: Summary of the presented configurations’ performances, cost and efficiency wise.

5.7 Conclusions

The studies of Application II demonstrated an undeniable superiority of the Shared

Multi-Branch Configuration in the context of this Thesis; despite the complexity

of the task, it manages to provide accurate predictions with little fluctuations in

the error distribution, while not requiring excessive computational resources to fine

tune (approximately 40 hours on 2 × GeForce RTX3060). The promising results

presented above indicate an increased generalization ability and a guaranteed level

of predictive accuracy, provided a properly-calibrated cooperation of SE-Blocks and

Regularizers. Thus, the SMB structure is selected and used in the subsequent

Application III.
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Chapter 6

Application III - Automobile’s Drag

Force (3 Morphing Boxes)

6.1 Introduction

Application III concerns an implementation of the studies conducted earlier in the

Thesis, to construct an ML model that produces high-precision predictions of dif-

ferent automobiles’ aerodynamic drag values. This section’s car samples present

more subtle geometry fluctuations. The following study aims to prove the pre-

sented SMB configuration’s efficiency, accuracy and generalization ability, provided

a proper tuning of the model’s parameters and hyperparameters, proposing it as a

promising surrogate alternative to costly CFD methods in early stages of design,

where extreme precision is not yet necessary.

6.2 LHS-based Dataset Generation

Contrary to Application II, this application’s dataset consists of a tot al of 366 vari-

ations of the DrivAer car model. These variations are constructed by employing the

FFD technique with 3 morphing boxes partially embedding the baseline geoometry.

The boxes, positioned as depicted in Fig. [6.1], contain a total of 270 CPs (each) ar-

ranged in a 6×5×9 grid. CPs are categorized in yRows (xz plane) and xRows (yz

plane) (as depicted in Fig. [6.1]) and are displaced with the LHS method; yRows

are allowed to move by ±0.07 and ±0.033 in the −x and −z directions respectively,

while xRows move by ±0.052 and ±0.03 in the −x and −z directions (Absolute

Values).
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Figure 6.1: Illustration of the Morphing boxes defined to develop the dataset of Application III.
(left) The baseline DrivAer geometry and the CPs of the three morphing boxes; blue CPs are fixed

while red CPs are allowed to move as described in the previous paragraph. (right) Simplistic
illustration of the three control grids, exemplifying the categorization of the CPs in yRows and

xRows.

A total of Ndb,III = 366 modified cars are generated (∼ 185 hours, excluding all

complications and re-runs). Images of the geometries are taken and preprocessed in

a manner identical to Application II. The same flow as in the previous Application

(summarized in Table [5.1]) is solved using the PUMA CFD Solver.

Figure 6.2: Two samples of the SMB model’s training dataset (side view). The samples are fed
into the model in this form.
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Fig. [6.2] depicts two samples of the training dataset from the side view, displaying

the subtle modifications applied to the baseline DrivAer model. In contrast to

Application II, four views of the cars are exploited; the front, side, rear and top

view, each with a Convolutional branch uniquely associated with it. The images

are fed to the model in tensors of fixed size for each view. Specifically, the tensor

sizes are [312 × 224] for the front and rear view, [752 × 240] for the side view and

[712× 312] for the top view.

Figure 6.3: Distributional summary of the original output dataset (left) The dataset’s distribution
compared to the corresponding normal curve. (center) Comparison of the dataset’s coefficient of

variation CV against an empirically effective CV range.(right) The dataset’s boxplot.

As depicted in Fig. [6.3], the working dataset once again poses challenges to the

training process naturally; it presents a mean value of µ = 267.1737 and a variance

of σ2 = 8.6197 (CV = 1.10%). Unlike Application II, it is highly skewed (skewness

= 0.9183) and non-normal according to the Shapiro-Wilk test.

Figure 6.4: Distributional summary of the transformed output dataset (left) The dataset’s
distribution compared to the corresponding normal curve. (center) Comparison of the dataset’s

coefficient of variation CV against an empirically effective CV range.(right) The dataset’s boxplot.

To address the original dataset’s narrow dynamic range and extremely low vari-

ance, the linear transformation defined in Eq. (5.1) is once again applied. While
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this operation successfully expands the range and improves numerical conditioning,

the quality of the transformed dataset remains questionable. Specifically, the re-

sulting coefficient of variation is approximately 36%, which exceeds the established

preferable range. Although high CV values can indicate excessive variability and

potential noise (increased risk of overfitting), 36% is still considered acceptable. The

affine nature of the operation results in the preservation of the distribution’s shape;

the skewness remains unchanged, and the dataset continues to exhibit significant

asymmetry and deviation from normality. These characteristics, while not ideal,

are manageable through architectural choices within the model.

Rather than employing a more complex non-linear transformation—which could in-

troduce interpretational complexity— a decision is made to retain this simple linear

scaling. To regulate the effects of the dataset’s idiosyncrasies, greater emphasis will

be placed later on on the architectural components of the models, as well as the

(hyper)parameters of the training process. A statistical summary of the dataset,

pre- and post- transformation, is provided in Table [6.1].

Metric Original Data Transformed Data

Sample Size (n) 366 366

Mean (µ) 267.1737 34.5432

Standard Deviation (σ) 2.9359 12.4346

Variance (σ2) 8.6197 154.6198

Coefficient of Variation (CV) 1.10% 36.00%

Skewness 0.9183 0.9183

Kurtosis 2.9111 2.9111

Range 23.6109 100.00

Table 6.1: Statistics of the output dataset before and after transformation.
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6.3 SMB Model Implementation

6.3.1 Drag Force Prediction - MAE Loss

The SMB configuration derived from the studies of Application II is used. Initially,

the Elite model of Table [5.6] is trained on the current dataset. During training, the

MAE of the predictions is monitored to guide the trainable parameters’ adjustment.

The model performed poorly, failing to both capture and translate patterns in the

input data. Regardless of the test sample, the model predicted the test set’s mean

value µ.

Enhancements are deemed necessary in order to increase the representational capac-

ity and, ultimately, improve the predictive accuracy. Thus, a study is conducted to

examine the architectural components and associated hyperparameters of the cur-

rent model. The modifications derived from this analysis are summarized below.

• Integration of SE-Blocks after every two Convolutional Layers: The

geometric variations in the current application are more subtle compared to

those encountered in the previous Application and the selected SMB Elite

evidently failed to capture them. SE-Blocks are now incorporated after every

two Convolutional layers. This integration proves to enhance the network’s

interpretive capabilities.

• Max-Pooling after every four Convolutional Layers: Frequent use of

Max-Pooling operations can lead to loss of important information due to down-

sampling, especially in this case. The study suggested the integration of these

layers after every four Convolutional layers, which evidently balances abstrac-

tion and information preservation. However, this adjustment leads to an in-

creased requirement of computational resources for training (and fine-tuning

later on).

These first two teps form the updated empirical rule for integrating SE Blocks

and MaxPooling blocks in the developed networks. An application of this rule

on a branch of 7 convolutional layers is displayed in Fig. [6.5].

• Training Hyperparameter Optimization: A batch size of 22 and a train-

ing duration of 200 epochs are defined, helping achieve a stable and accurate

convergence.

80



Figure 6.5: Application of the presented modifications on a convolutional branch of 7 convolutional
layers. Here, C denotes a 2D Convolutional Layer, M denotes a Max Pooling Layer and SE denotes

a Squeeze-and-Excitation Block.

• Reduced SE-Block Reduction Ratio: Lowering the SE-Block reduction

ratio to r = 11 improves the model’s performance. This is attributed to a finer

detail in the recalibration process, allowing for more expressive representations.

However, this imposes an increase in computational demand (as suggested in

Eq (2.5) ), especially given the more frequent deployment of SE-Blocks.

• Dropout Regularization in Dense Layers: To aid generalization, Dropout

is applied in every two dense layers with a dropout rate of 0.07. This technique

proves effective in improving test dataset accuracy.

Application of these architectural revisions leads to the far-better performance of

Fig. [6.6]. The updated SMB network is capable of identifying the subtle geometric

modifications of the car depictions, but fails to properly interpret them.
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Figure 6.6: Performance of the modified Elite Application II SMB model evaluated on this
Application’s dataset (top) Bar plot comparing the target Drag Force values to the predictions of the
model, displaying the Relative Error on each sample’s prediction (left) Regression plot of the model,
illustrating the agreement of its predictions with the target Drag Force values. (right) Convergence

of the MAE of the model over the training epochs.

Figure 6.7: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the modified SMB

model. The highlighted region represents the Q1Q3 range.
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6.3.2 Bias-Variance Tradeoff and Loss modifications

The observed concentration of predictions within the interquartile range in Fig. [6.7]

exemplifies a fundamental challenge in machine learning known as the bias-variance

tradeoff. When the working dataset is of limited output variability, neural networks

tend to develop a systematic bias toward the central tendency of the target distribu-

tion, effectively minimizing prediction error by converging on safe, middle-ground

estimates [36]. This behavior is demonstrated by the Elite of Application II, which

predicts the mean value µ of the output dataset on all samples. This phenomenon

reduces variance in predictions and introduces an extremely problematic bias that

constrains the model. To overcome this challenge, one approach would be to further

enhance the model’s complexity and increase the resources expended in fine-tuning,

aiming to improve the network’s interpretational capabilities. However that would

ultimately lead to a dramatic computational drawback with an uncertain outcome

[5], [39].

A different approach is followed, according to which more attention is paid on the

statistical-wise agreement of the predictions with the target values. To implement

this, a custom Loss function is formulated.

cLoss = α ·
∣∣σ2(y)− σ2(ŷ)

∣∣+ (1− α) ·MAE(y, ŷ)

= a ·

∣∣∣∣∣ 1N
N∑
j=1

(yj − µy)
2 − 1

N

N∑
j=1

(ŷj − µŷ)
2

∣∣∣∣∣+ (1− a) · 1

N

N∑
i=1

|yi − ŷi| (6.1)

where µy and µŷ are the mean values of the target value and prediction sets respec-

tively, N is the test dataset size and α is a coefficient defining the balance between

the two terms.

Essentially, this custom Loss function penalizes not only the absolute difference of

the predictions to the target values, but also the absolute difference of the variances

of the two sets, thus introducing attention to the distributional properties of the

error and explicitly adressing the bias-variance imbalance. The underlying idea is

to push the model to first escape the highlighted region of Fig. [6.7] by producing

predictions across the entire range of the dataset.
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With an established (controlled) diversity in the predictions, ensured by the first

term of cLoss, the quality of the model’s performance is now a matter of proper

training and evaluation by the second term in Eq [6.1]. The cLoss is now applied

on the transformed output values and monitored during training. The batch size is

increased to 40 to ensure a more representative variance in each batch.

6.3.3 Drag Force Prediction - Custom Loss

The coefficient α is initially set to 0.15. EASY is employed to fine-tune the updated

model. After a total of 200 evaluations, with a parent-offpsing ratio of 3 and a

population size of 30, the first elite performs as displayed in Fig. [6.8].

Figure 6.8: Performance of the proposed SMB model with the cLoss coefficient α = 0.15 (top) Bar
plot comparing the target Drag Force values to the predictions of the model, displaying the Relative
Error on each sample’s prediction (left) Regression plot of the model, illustrating the agreement of
its predictions with the target Drag Force values. The highlighted region represents the Q1Q3 range.
(right) Convergence of cLoss (Train Loss) and MAE (Val. Loss) of the model over the training

epochs.
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At first glance, this performance raises concerns about the use of the cLoss function.

The high sparsity in the regression plot imitates randomness, and the errors asso-

ciated with many samples take exceedingly high values. However, the predictions

successfully range across the entire dataset. Specifically, the test and prediction

sets have a variance of 158.4796 and 153.8926 respectively (or 8.8348 and 8.5791 in

the original domain). Moreover, the inaccuracy is the most significant in regions

outside the highlighted area containing the 50% of the dataset. Overall, employing

the custom loss function addressed the lack of diversity in the predictions.

Figure 6.9: Performance of the proposed SMB model with the cLoss coefficient α = 0.05 (top) Bar
plot comparing the target Drag Force values to the predictions of the model, displaying the Relative
Error on each sample’s prediction (left) Regression plot of the model, illustrating the agreement of
its predictions with the target Drag Force values. The highlighted region represents the Q1Q3 range.
(right) Convergence of cLoss (Train Loss) and MAE (Val. Loss) of the model over the training

epochs.

The coefficient is redefined to 0.05. Exploration of the design space with the same

EA setup proposed a new model composition. Its performance, depicted in Fig.

[6.9], presents a substantial improvement both in terms of variance agreement and

isolated sample accuracy, particularly within the highlighted area. The test and

prediction sets present a significant difference in variance, with σ2
true = 158.4796
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and σ2
pred = 100.1103 respectively (8.8348 and 5.5809 in the original domain). These

results highlight the sensitivity of the training process to the coefficient α.

Further investigation within a trial-and-error process led to the definition of α =

0.08. A computationally heavy fine-tuning process, with 800 EASY evaluations with

the same general setup described earlier, proposed the model summarized in Table

[6.2] as the Elite SMD implementation for the purpose of this Application. The

test set has variance of 158.4796 and the prediction set 152.2746 (8.8348 and 8.4889

in the original domain). The predictions present MARE = 0.1734% (MRE =

0.105%). Their regression line deviates by 0.95◦ from the identity line, and the

distribution of error is moderately even across the range of the dataset (no bias

is observed). The Elite’s performance is graphically presented in Fig. [6.10] and

[6.10].

Parameter / Metric Value Parameter / Metric Value

Number of CNN Layers 5 Number of DNN Layers 4

CNN L1 filter size (pow. of 2) 5 DNN L1 neurons (pow. of 2) 7

CNN L2 filter size (pow. of 2) 6 DNN L2 neurons (pow. of 2) 10

CNN L3 filter size (pow. of 2) 3 DNN L3 neurons (pow. of 2) 5

CNN L4 filter size (pow. of 2) 4 DNN L4 neurons (pow. of 2) 6

CNN L5 filter size (pow. of 2) 4 DNN L5 neurons (pow. of 2) –

CNN L6 filter size (pow. of 2) – DNN L6 neurons (pow. of 2) –

CNN L7 filter size (pow. of 2) – DNN L7 neurons (pow. of 2) –

CNN L8 filter size (pow. of 2) – DNN L8 neurons (pow. of 2) –

act. function CNN layers ReLU act. function DNN layers ReLU

kernel size (constant) (3, 3) batch size 40

strides (constant) (1, 1) epochs 300

pool size (constant) (2, 2) cLoss coefficient α 0.08

MARE 0.1734 % MRE 0.104 %

Test set variance σ2
true 158.4796 Prediction set variance σ2

pred 152.2746∣∣σ2(y)− σ2(ŷ)
∣∣ 6.205

Table 6.2: Summary of the composition and performance of the selected SMB model after the
exploration of the design space by EASY and evaluation.
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Figure 6.10: Performance of the selected SMB model with the cLoss coefficient α = 0.08. (top)
Bar plot comparing the target Drag Force values to the predictions of the model, displaying the

Relative Error on each sample’s prediction (MARE: 0.1734%). (left) Regression plot of the model,
illustrating the agreement of its predictions with the target Drag Force values. The highlighted region
represents the Q1Q3 range. (right) Convergence of cLoss (Train Loss) and MAE (Val. Loss) of the

model over the training epochs.

Figure 6.11: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the modified SMB

model. The highlighted region represents the Q1Q3 range.
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6.4 Overview and Conclusions

The studies conducted in Application III highlight the strength of the SMB config-

uration as a powerful NN architecture, capable of addressing complex aerodynamic

problems, such as the prediction of the aerodynamic Drag Force of cars from their

two-dimensional representations. Provided a statistically-driven pre-processing of

the dataset and a generally cheap fine-tuning regarding the architectural compo-

nents of the model and their parameters, as well as the training hyperparameters,

the SMD models manage to identify subtle differences in the depicted geometries

and decode the highly non-linear phenomena governing the problem, effectively

producing predictions of great precision.

The selected SMB Elite manages to predict the Drag Force target values with

accuracy across the entirety of the dataset. Employment of the cLoss effectively

addressed the bias-variance imbalance and allowed the predictions to escape the

interquartile region, introducing controlled diversity to the prediction set. Proper

balance of the error distribution term and the MAE term of Eq [6.1], achieved by

adjusting the α coefficient, allows for an overall robust performance.

However, significant computational resources are necessary to fine-tune the addi-

tional trainable parameters of the present SMB implementation, compared to that

of Application II. Specifically, the exploration conducted by EASY to propose the

Elite took approximately 72 hours on 2 × GeForce RTX3060.
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Chapter 7

Conclusion

7.1 Overview

This Thesis demonstrates how CNNs can be integrated as local data-driven sur-

rogate models within the early stages of automotive design, addressing the com-

putational bottlenecks of conventional workflows that rely on 3D modeling, mesh-

ing, and flow simulations using expensive high-fidelity models. By leveraging 2D

sketch-like representations of car designs (typically stored in industrial archives),

the proposed methodology confirms that cooperation of SE Blocks with regulariz-

ers, and a moderately cheap fine tuning process concerning the model’s architectural

properties, composition and component parameters, allows for the development of

case-dependent cost-efficient Convolutional models that accurately predict the de-

signs’ Drag Force values. These models can allow rapid real-time evaluation of

modifications on a baseline automobile geometry, both in terms of aerodynamic

criteria and aesthetics, guiding design iterations toward viable configurations while

conserving computational resources for high-fidelity optimization in later stages.

The work is structured into three sequential applications of ascending complexity,

each targeting distinct challenges in the development of the models.

Application I: Airfoil Aerodynamic Prediction

Application I concerned the development of an advanced convolutional configuration

that achieves superior cost-effectiveness in 2D aerodynamic-governed phenomena.

The conducted studies highlighted the importance of Squeeze-and-Excitation Blocks

(SE-Blocks) both as standalone components and in conjunction with Regularization

Techniques.

Results:

• CL: MARE = 1.4271%, CD: MARE = 6.8854%, Area: MARE = 4.5501%.
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• Importance of SE-Blocks and Regularization to enhance CNN interpretational

capabilities and decode non-linear aerodynamic phenomena

• Development of a robust backbone CNN architecture

• Restriction of the EASY exploration domain for subsequent Applications

Application II: Single Morphing Box Automotive Design

The backbone convolutional architecture of Application I was adapted for the pre-

diction of properties of 3D car geometries. Three distinct approaches were exam-

ined, differing either on the shape of the input data or the architectural symmetry

of the network.

• Single-Branch Model (SB): Consists of a single convolutional branch (similar

to that of Application I). Accepts a single R34 view image.

• Multi-Branch (MB): Consists of multiple parallel convolutional branches, the

outputs of which are concatenated and passed through a series of fully con-

nected layers. Accepts as input multiple orthogonal views of the cars, each

processed by a branch uniquely associated with it.

– Individualized Multi-Branch (IMB): Each branch is adjusted separately

during the fine-tuning process, resulting in different branch composition

and an architectural asymmetry of the model.

– Shared Multi-Branch (SMB): All convolutional branches share the same

composition at all times, both in architectural components and their cor-

responding parameters.

The presented configurations were evaluated on the cars’ Surface Areas and Drag

Forces.

Results:

• SMB Superiority in Drag Force Prediction: Achieves MARET r: 2.04%,

MAEN
Tr : 1.13% , outperforming SB (6.43%, 3.96%) and IMB (4.16%, 2.64%).

• SMB Superiority in Surface Area Prediction: AchievesMARET r: 5.73%,

MAEN
Tr : 1.56% , outperforming SB (8.55%, 3.40%) and IMB (6.11%, 2.60%).

• SMB Superiority in Distribution of Error: Achieves a more evenly dis-

tributed Error across the range of the dataset.

• Cost-Efficiency of the SMB Configuration: The overall costs for the
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development and fine-tuning of the examined models are approximated: SB

=1TU, IMB ∼12TU, SMB ∼5.5TU.

A thorough comparison concerning the distributions of the error of the models’

predictions justified the selection of the SMB configuration as the backbone config-

uration for Application III.

Application III: Complex Automotive Geometries with Multiple Morph-

ing Boxes

The methodology was extended to automobiles presenting subtle modifications at

their frontal, top and rear regions. Initially, the SMB model failed to produce ac-

curate results, concentrating its predictions within the interquartile range of the

dataset, indicating that the model is strongly biased. To counteract this bias-

variance imbalance, a statistically driven modification was applied to the loss func-

tion of the training process, which allowed for the accurate predictions of the ge-

ometries’ Drag Force values.

Results:

• Highlights importance of custom Loss: Application of cLoss allows for

the accurate prediction of the Drag Force Values.

• MARE = 0.1734%, MRE = 0.103%

• |σ2(y)− σ2(ŷ)| = 6.205

7.2 The case-dependent SMB model

The developed SMB configuration, implemented in Applications II and III, is a

CNN comprising the first (convolutional) half, associated with feature extraction,

and the second (deep) half, associated with interpreting the extracted features. In

the context of non-linear aerodynamic problems regarding complex 3D automobile

designs, it manages to provide accurate precisions of the aerodynamic Drag Force

values.

It is a multiple input - single output model; it accepts (herein three -in Applica-

tion II- and four -in Application III-) fix-sized images and estimates the value of a

single scalar parameter/metric of the examined geometry. The input images corre-
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spond to different, orthogonal views of the geometry, each processed by a separate

convolutional branch, uniquely associated with it. The branches’ outputs are later

concatenated and passed through a sequence of fully connected layers which leads

to the single neuron of the output layer. It is graphically presented in Fig. [7.1].

Figure 7.1: Illustration of the general architecture of the SMB configuration.

The model presents total architectural symmetry, as all convolutional branches

feature the exact same sequence of components and parameters. The branches

comprise convolutional layers, MaxPooling layers and, most importantly, SE Blocks,

which critically enhance the networks interpretational capabilities and predictive

accuracy. Regularization is applied both in the CNN and DNN parts of the network.

Evolutionary tuning of the working components and application of a statistically-

focused custom loss function fully unlocks this configuration’s capabilities.

7.3 Conclusions

This Thesis suggests that CNNs can be used as local surrogate models in the pre-

liminary phases of the car design process, aiming to bypass the costly steps of

modeling, meshing and high-fidelity flow simulation in the conventional procedure.

Specifically, it indicates that the developed networks can provide reliable predictions

of automobiles’ aerodynamic Drag Force values solely from their two-dimensional

sketch-like representations. In the automotive industry, the presented methodology

can allow for the development of a cheap, real-time evaluation tool for stylists, to
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examine proposed designs (and design modifications) w.r.t. aerodynamic criteria in

addition to aesthetics, thereby facilitating more informed design space exploration

and optimization decisions during the conceptual design phase.

The applications of this Thesis collectively form a moderately cheap algorithmic

process that successfully leads to the development of case-dependent CNN configu-

rations that successfully decode the phenomena governing the working problem -in

this case non-linear 3D aerodynamic applications- and produce high precision pre-

dictions. This algorithmic process can essentially be simplified into three distinct

steps; the development of an effective and computationally efficient architecture for

a simplified version of the target problem, the extension of this architecture to the

full-scale problem, and the application of targeted modifications to ensure optimal

performance in the working case.

Following this structure, Application I concerns the construction of a baseline con-

figuration, while simultaneously aiming to implicitly exclude unimportant regions

of the EA design space for the subsequent, more computationally-heavy Applica-

tions. Herein, it concerns 2D aerodynamic flows around isolated airfoils. Appli-

cation II refers to the adaptive extension of the previously established backbone

CNN architecture for aerodynamic problems concerning 3D geometries, specifically

automobiles. In this work, three distinct configurations are examined, differing

either in their input’s shape or their architectural symmetry. EA-driven fine tun-

ing and post-processing allow for the selection of a superior configuration that is

best-suited for the working case, herein the SMB configuration, comprising three

parallel Convolutional branches, including SE-Blocks and employing regularization

techniques. Lastly, Application III highlights the importance of statistically driven

pre-processing of the dataset to address potential inherent challenges. In this The-

sis, a statistically-driven modification was applied to the training’s Loss Function

to mitigate the strong prediction bias, thereby eliminating the fundamental and

common challenge of bias-variance tradeoff and produce high-precision predictions.

Herein, when evaluated on a challenging set of 50 unseen automobile geometries, the

SMB configuration produced predictions of their Drag Force values with a MARE

of 0.1734%

Computational requirements for implementing these models include the cost of the

dataset generation, the cost of training the model, and the cost of fine-tuning its

parameters and composition. The conducted studies showcase the ability to develop

robust and cost-efficient CNNs without the need for excessive sampling, model

complexity (training cost) or fine-tuning. Specifically, referring to the development

of the SMB Elite of Application III, the total cost is detailed (on 2 × GeForce
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RTX3060) ∼ 185 hours for dataset generation and ∼ 72 hours for fine tuning (cost

of training of each candidate included).

While these computational requirements appear substantial, practical implemen-

tation in industrial automotive applications typically eliminates the dataset gen-

eration phase, as manufacturers maintain extensive archives of sketches and cor-

responding aerodynamic performance data from conceptual design studies and ex-

isting vehicle configurations. Consequently, the primary computational investment

for industrial deployment focuses on the fine-tuning phase, with cost-effectiveness

determined by the frequency of the surrogate model’s utilization and the associated

reduction in conventional CFD simulation requirements. Indicatively, in Applica-

tion III, the fifty test samples’ Drag Force values were estimated at essentially zero

computational cost, whereas employment of PUMA would require 25 hours in total.

To balance the 72 hours of fine-tuning, utilization of the SMB for an additional 94

designs would be required.

7.4 Future Work Proposals

Based on the implementations presented in this Thesis, the following future work

proposals are proposed:

• Firstly, additional types of networks (such as U-Nets) or network configura-

tions can be implemented to examine whether it is possible to further improve

predictive accuracy, concerning the automobiles’ drag prediction from their 2D

sketch-like representations. More sophisticated studies can also be conducted

to replace the empirical rules employed in this Thesis’ Applications II and III,

although attention must be given to the balance between the computational

drawbacks that this optimization would impose and the potential profits of the

developed surrogate model.

• Next, the algorithmic procedure developed in this Thesis can be adjusted to

be included in an automated optimization loop; the objective function being

the drag force, or the downforce-to-drag ratio, and the design variables being

the coordinates of the CPs that form the NURBS Moprhing Boxes enclosing

regions of the original car geometry. In theory, this can allow for a shape-
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optimization of the automobile within a predefined region of the design space,

defined by the training dataset’s bounds.

• Lastly, an interesting approach would be to extend the working dataset, by

including variations of different baseline car geometries, and including a clas-

sification part of the model, identifying the baseline geometry the input sam-

ple corresponds to. Such an implementation would critically reduce the case-

dependency of the presented models, and potentially allow for a greater gen-

eralization ability, which could, in theory, allow for predictions outside each

baseline geometry’s training dataset’s bounds.
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Εισαγωγή

Στόχος της Διπλωματικής αυτής Εργασίας είναι η εφαρμογή Συνελικτικών Νευρω-

νικών Δίκτύων (ΣΝΔ) ως τοπικά μεταμοντέλα στα πρώιμα στάδια της διαδικασίας

σχεδιασμού αυτοκινήτων, με σκοπό την υποκατάσταση κοστοβόρων βημάτων της κα-

θιερωμένης διαδικασίας, συγκεκριμένα την μοντελοποίηση, πλεγματοποίηση και προ-

σομοίωση (επίλυση της ροής). Κατά την προσέγγιση που παρουσιάζεται, τα ΣΝΔ

δέχονται διδιάστατες αναπαραστάσεις των αυτοκινήτων σε μορφή σκίτσου, όπως συ-

νηθίζεται να παρουσιάζονται προτεινόμενα σχέδια στην βιομηχανία, και στοχεύει στην

ακριβή πρόβλεψη της αεροδυναμικής τους αντίστασης. ΄Ενα τέτοιο εργαλείο θα επι-

τρέπει στους σχεδιαστές να αξιολογούν ταχέως πιθανές τροποποιήσεις σε μια αρχική

γεωμετρία, και να τις δέχονται ή απορρίπτουν με γνόμωνα τόσο την αισθητική όσο

και τα εκάστοτε αεροδυναμικά κριτήρια. Ως εκ τούτου, η εφαρμογή τέτοιων δικτύων

δύναται να περιορίσει τον σχεδιαστικό χώρο από τα νωρίς, επιτρέπωντας την διατήρηση

υπολογιστικών πόρων για πιο υποσχόμενα σχέδια σε επόμενα στάδια του σχεδιασμού.

Η διπλωματική αυτή ασχολείται με την ανάπτυξη προηγμένων ΣΝΔ που, με χαμη-

λό υπολογιστικό κόστος, καταφέρνουν να εκτιμούν την αεροδυναμική αντίσταση των

απεικονιζόμενων αυτοκινήτων με μεγάλη ακρίβεια.

Τεχνητή Νοημοσύνη και Μηχανική Μάθηση

Η Τεχνητή Νοημοσύνη (AI) περιλαμβάνει αλγορίθμους που προσομοιώνουν ανθρώπι-

νες γνωστικές λειτουργίες, ενώ η Μηχανική Μάθηση (ML), ως υποπεδίο της, επιτρέπει

σε υπολογιστικά μοντέλα να βελτιώνονται μέσω εμπειρίας. Η εποπτευόμενη μάθηση

αποτελεί το κυρίαρχο πλαίσιο για προγνωστικά μοντέλα. Τα Τεχνητά Νευρωνικά

Δίκτυα (ANNs) είναι ισχυροί προσεγγιστικοί αλγόριθμοι που έχουν αποδειχθεί ιδια-

ίτερα αποτελεσματικοί στην υποκατάσταση πολύπλοκων υπολογιστικών διαδικασιών.

Η παρούσα εργασία αξιοποιεί (CNNs) ως τοπικά μεταμοντέλα για την απευθείας

πρόβλεψη αεροδυναμικών χαρακτηριστικών αυτοκινήτων από 2D σκίτσα. Στόχος είναι

η μείωση του κόστους και του χρόνου του συμβατικού σχεδιασμού, που περιλαμβάνει

μοντελοποίηση, πλεγματοποίηση και ΥΡΔ ανάλυση. Μέσω αξιοποίησης υφιστάμενων

βάσεων δεδομένων, η προτεινόμενη προσέγγιση ενσωματώνει τις αρχές της AI/ML

στη ροή εργασιών του σχεδιασμού, ιδίως σε πρώιμα στάδια, επιτρέποντας άμεση, πο-

σοτική αξιολόγηση εναλλακτικών γεωμετριών σε πραγματικό χρόνο.
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Διαδικασία Σχεδιασμού Μοντέλων

Η διαδικασία που ακολουθείται για την ανάπτυξη των μοντέλων αποδομείται σε τρεις

βασικές μελέτες διαφορετικών στόχων και αυξανόμενης πολυπλοκότητας: Ι) την α-

νάπτυξη προηγμένων CNNs για 2Δ αεροδυναμικές εφαρμογές που, στην προκειμένη,

αφορούν σε αεροτομές ΙΙ) την επέκταση της προκύπτουσας αρχιτεκτονικής σε 3Δ

εφαρμογές που αφορούν σε παραπλήσια αυτοκίνητα και ΙΙΙ) την αξιολόγηση του υπε-

ρισχύοντος μοντέλου σε ένα απαιτητικό σύνολο δεδομένων αυτοκινήτων.

Στις τρεις μελέτες ακολουθείται με τον ίδιο, κατά βάση, τρόπο η διαδικασία που πα-

ρουσιάζεται αλγοριθμικά παρακάτω.

• Κατασκευή συνθετικού συνόλου δεδομένων για την εκπαίδευση και αξιολόγηση
των δικτύων, μέσω εφαρμογής της μεθόδου FFD σε ένα αρχικό σχέδιο.

• (Για τις μελέτες ΙΙ και ΙΙΙ:) Αποτύπωση των γεωμετριών από διάφορες κάθετες
μεταξύ τους όψεις, καθώς και την οπίσθια 3/4 όψη (R34), και επεξεργασία ώστε

να αποκτήσουν μορφή που προσομοιάζει σκίτσο, για τους σκοπούς της Διπλω-

ματικής.

• Επίλυση ροής γύρω από την εκάστοτε γεωμετρία με χρήση του λογισμικού ΥΡΔ
PUMA. Τα αποτελέσματα των προσομοιώσεων απαρτίζουν το σύνολο δεδομένων

εξόδου που τα μοντέλα καλούνται να προβλέψουν.

Ακόμα, γίνεται χρήση εξελικτικών αλγορίθμων, μέσω του λογισμικού EASY, για την

προσαρμογή (και όχι παγκόσμια βελτιστοποίηση) αρχιτεκτονικών ιδιοτήτων και δομι-

κών στοιχείων του εκάστοτε δικτύου με στόχο την ελαχιστοποίηση του σφάλματος

των προβλέψεων.

Τέλος, παρουσιάζονται τα Μπλοκ συμπίεσης και διέγερσης (Μπλοκ Σ/Δ, SE Blocks)

και η τεχνική κανονικοποίησης (Regularization), που συντέλεσαν στην ανάπτυξη ε-

ύστοχων και αποδοτικών δικτύων.

Τσ Μπλοκ Σ/Δ είναι δομικά στοιχεία που ενισχύουν την αναπαταστατική ικανότητα

των ΣΝΔ, αναθέτωντας συντελεστές βάρους στα κανάλια της εξόδου ενός συνελι-

κτικού επιπέδου, επιτρέποντας έτσι στο μοντέλο να δώσει έμφαση στα πιο σημαντικά

κανάλια και να καταστείλει τα λιγότερο χρήσιμα. Τα παραπάνω γίνονται δυνατά μέσω

τριών βασικών λειτουργιών: συμπίεση, διέγερση και επαναφορά σε κλίμακα. Το Σχήμα

1 απεικονίζει γραφικά την αρχή λειτουργίας των Μπλοκ Σ/Δ.
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Σχήμα 1: Γραφική απεικόνιση της αρχής λειτουργίας ενός Μπλοκ Σ/Δ.

Η κανονικοποίηση είναι μια βασική τεχνική για την αποφυγή υπερπροσαρμογής και

την ενίσχυση της ικανότητας γενίκευσης των μοντέλων σε νέα δεδομένα, προσθέτο-

ντας έναν επιπρόσθετο όρο στην συνάρτηση σφάλματος που παρακολουθείται κατά την

εκπαίδευση των δικτύων. Σε αυτή την Διπλωματική Εργασία, χρησιμοποιούνται οι τε-

χνικές L1 και L2. Η πρώτη προάγει την επιλογή χαρακτηριστικών μέσω της μηδενικής

τιμής βαρών, ενώ η δεύτερη μειώνει την ευαισθησία του μοντέλου στο θόρυβο.

Μελέτη Ι

Το σύνολο δεδομένων της πρώτης μελέτης προκύπτει από εφαρμογή της παραπάνω

διαδικασίας στην αεροτομή NACA4318, και απεικονίζεται στο Σχήμα 2. Σκοπός είναι η

πρόβλεψη του συντελεστή αεροδυναμικής άνωσης CL, του συντελεστή αεροδυναμικής

αντίστασης CD και της επιφάνειας των αεροτομών, σε κάποιες συνθήκες ροής.

Σχήμα 2: (αριστερά) Το πλέγμα ελέγχου που περικλείει την αρχική γεωμετρία της μεμονωμένης

αεροτομής NACA4318, και τα ΣΕ που το απαρτίζουν. (κέντρο) Τα περιγράμματα των διάφορων
παραλλαγών της αρχικής αεροτομής που κατασκευάστηκαν. (δεξιά) ΄Ενα τυχαίο δείγμα του συνόλου

δεδομένων εισόδου, στην μορφή που θα εισέλθει στα νευρωνικά δίκτυα της παρούσας μελέτης.

Το εργαζόμενο μοντέλο αρχικά χωρίζεται στο Συνελικτικό τμήμα (τμήμα ΣΝΔ), που

ασχολείται με την αναγνώριση και απόσπαση μοτίβων στα δεδομένα εισόδου, και στο

Βαθύ τμήμα (τμήμα ΒΝΔ), που ακολουθεί το Συνελικτικό και αρχολείται με την απο-

κωδικοποίηση και ερμηνεία των μοτίβων. Το τμήμα ΣΝΔ απαρτίζεται από αλληλουχία

ζευγαριών συνελικτικών επιπέδων (Convolutional Layers) και επιπέδων μέγιστης υ-

ποδειγματοληψίας (MaxPooling layers). Το τμήμα ΒΝΔ απαρτίζεται μόνο από πυκνά
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επίπεδα (dense layers) και καταλήγει σε έναν μοναδικό νευρώνα για την πρόβλεψη του

εκάστοτε μονόμετρου μεγέθους. Η δομή του μοντέλου απεικονίζεται στο Σχήμα 3.

Σχήμα 3: Η (απλουστευμένη) δομή του μονοκλαδικού μοντέλου που χρησιμοποιείται κατά την

παρούσα μελέτη.

Αρχικά, γίνεται χρήση του EASY για να παράξει διαμορφώσεις συμβατικών ΣΝΔ που

σέβονται την παραπάνω αρχιτεκτονική, τα καλούνται να προβλέψουν και τα τρία μεγέθη

ενδιαφέροντος. Γίνονται προσαρμογές στην αρχιτεκτονική και στα δομικά στοιχεία των

μοντέλων, με σκοπό την ανάπτυξη προηγμένων δικτύων που αποδίδουν καλύτερα. Συ-

γκεριμένα, προστίθενται Μπλοκ Σ/Δ ανά δύο συνελικτικά επίπεδα, και εφαρμόζονται

τεχνικές κανονικοποίησης. Τα μοντέλα που σχηματίζονται για καθεμία από τις τρείς

περιπτώσεις (CL, CD,, επιφάνεια) συγκρίνονται με τα αντίστοιχα συμβατικά.

Στην περίπτωση του συντελεστή άνωσης, οι προσαρμογές επέφεραν περίπου 30% αύξη-

ση στην ακρίβεια των προβλέψεων με μόνο ∼ 0.52% παραπάνω υπολογιστικό κόστος.

Το προηγμένο δίκτυο πετυχαίνει Μέσο Απόλυτο Σχετικό Σφάλμα (ΜΑΣΣ) 0.403%

ή 1.4271% στα κανονικοποιημένα δεδομένα στο εύρος 0-100. Τα αποτελέσματα του

προκύπτοντος δικτύου απεικονίζονται στο Σχήμα 4.

Στην περίπτωση του συντελεστή αεροδυναμικής αντίστασης, επιτεύχθη μερική αύξηση

της ακρίβειας με επιβάρυνση ∼ 0.66% στο υπολογιστικό κόστος Το ΜΑΣΣ παίρνει

τιμή 0.523% ή 6.8854% στο κανονικοποιημένο 0-100 πλαίσιο. Τα αποτελέσματα απει-

κονίζονται στο Σχήμα 4.

Τέλος, σχετικά με την πρόβλεψη της επιφάνειας, το αναπτυχθέν μοντέλο πετυχαίνει

ΜΑΣΣ = 0.3353% (ή 4.5501% στα κανονικοποιημένα δεδομένα στο εύρος 0-100),

όπως φαίνεται στο Σχήμα 4.

4



Σχήμα 4: Οι αποδόσεις των ανεπτυχθέντων μοντέλων για τις περιπτώσεις (πάνω) του CL

,(κέντρο) του CD και (κάτω) της επιφάνειας.

Η πρακτική αξία της Μελέτης Ι, πέραν της επαλήθευσης ότι τα Μπλοκ Σ/Δ και

οι τεχνικές κανονικοποίησης βελτιώνουν σημαντικά την αποδοτικότητα των δικτύων,

έγκειται στην αναγνώριση των σημαντικών παραμέτρων σχεδιασμού που εξερευνούν

οι ΕΑ.

Συνεπώς, με το πέρας της πρώτης Μελέτης έχουμε καταφέρει αφενός να αναπτύξουμε

μια αρχιτεκτονική CNNs που υπερισχύει των αντίστοιχων συμβατικών στα αεροδυνα-

μικά προβλήματα που εξετάζονται, αφετέρου να περιορίσουμε τις διαστάσεις του χώρου

εξερεύνησης των ΕΑ, μειώνοντας το κόστος της διερεύνησης προσαρμογών, ενόψει

των (υπολογιστικά) απαιτητικών μελετών που ακολουθούν.

Μελέτη ΙΙ

Η δεύτερη μελέτη εξετάζει προσαρμογές της αναπτυχθείσας αρχιτεκτνικής για χρήση

σε τριδιάστατα προβλήματα που αφορούν την αεροδυναμική αντίσταση αυτοκινήτων.

Ως αρχική γεωμετρία χρησιμοποιείται η fastback εκδοχή του δημόσιου μοντέλου αυ-

τοκινήτου DrivAer, που παραμετροποιείται με πλέγμα ελέγχου στο οπίσθιο μέρος με

210 κόμβους ελέγχου, όπως φαίνεται στο Σχήμα [5].
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Σχήμα 5: Το πλέγμα ελέγχου που περικλείει το οπίσθιο μέρος του μοντέλου ΔριΑερ, μέσω του

οποίου κατασκευάζονται 100 παραλλαγές του.

Οι τρείς εξεταζόμενες προσεγγίσεις διαφέρουν είτε ως προς το σχήμα της εισόδου των

μοντέλων, είτε ως προς την συμμετρία του, και απεικονίζονται στο Σχήμα 7. Κατά

την διαμόρφωση Μοναδικού (συνελικτικού) Κλάδου (Single Branch - SB), το μοντέλο

δέχεται μοναδική εικόνα, που απεικονίζει το αυτοκίνητο απο την οπίσθια 3/4 όψη. Ως

εκ τούτου, η αρχιτεκτονική παραμένει κατά βάση ίδια με αυτή της Μελέτης Ι.

Σχήμα 6: Η (απλουστευμένη) δομή του πολυκλαδικού μοντέλου που εξετάζεται σε αυτή την μελέτη.

Κατά την Πολυκλαδική προσέγγιση (Multi Branch - MB) του Σχήματος 6, το μοντέλο

δέχεται εικόνες που απεικονίζουν το αυτοκίνητο από πολλαπλές, κάθετες μεταξύ τους

όψεις, συγκεκριμένα εδώ την πρόσοψη, πλάγια όψη και οπίσθια όψη. Εξετάζονται δύο

υποπερπτώσεις: η Εξατομικευμένη (IMB) και η Ενοποιημένη (SMB). Κατά την IMB,

οι συνελικτικοί κλάδοι υπόκεινται σε διαφορετικές προσαρμογές κατά την δερεύνηση

με τους ΕΑ και αποκτούν διαφορετικές διαμορφώσεις, συνεπώς το μοντέλο δεν παρου-

σιάζει συμμετρία. Κατά την SMB, όλοι οι κλάδοι απαρτίζονται από ακριβώς τα ίδια
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δομικά στοιχεία με τις ίδιες παραμέτρους, με το δίκτυο να είναι απόλυτα συμμετρικό.

Σχήμα 7: Διάγραμμα που απεικονίζει τις τρείς εξεταζόμενες προσεγγίσεις αρρχιτεκτονικής

μοντέλου στην παρούσα μελέτη.

Μετά από συνοπτική στατιστική αξιολόγηση του συνόλου δεδομένων, αυτό κανονικο-

ποιείται στο εύρος 0-100, ώστε να αντιμετωπισθεί η πολύ μικρή διασπορά που αρχικά

παρουσίαζε. Τα εξεταζόμενα μοντέλα εκπαιδεύοντια με αυτά τα (μετασχηματισμένα)

δεδομένα.

Μέσα από πειραματικές διαδικασίες δοκιμών, γίνεται στους συνελικτικούς κλάδους ε-

φαρμογή του εμπειρικού κανόνα του Σχήματος 8, ο οποίος προτείνει την προσθήκη

επιπέδον μέγιστης υποδειγματοληψίας ανά δύο συνελικτικά επίπεδα, και προσθήκη

Μπλοκ Σ/Δ ανά τρία.

Σχήμα 8: Ο εμπειρικός κανόνας που εφαρμόσθηκε στους συνελικτικούς κλάδους, για την εισαγωγή

επιπέδων μέγιστης υποδειγματοληψίας και Μπλοκ Σ/Δ.

Μετά από μελέτες και προσαρμογές μέσω του λογισμικού EASY, προκύπτουν τα α-

κόλουθα αποτελέσματα (στα κανονικοποιημένα δεδομένα στο εύρος 0-100).

• Μονοκλαδικό Μοντέλο: 20 διάστατος παραμετρικός χώρος
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– Πρόβλεψη Επιφάνειας: ΜΑΣΣ = 8.55%, Ανομοιόμορφη κατανομή σφάλμα-

τος

– Πρόβλεψη Αεροδυναμικής Αντίστασης: ΜΑΣΣ = 6.43%, ΄Εντονη απόκλιση

προβλέψεων από τους στόχους σε όλο το εύρος του συνόλου δεδομένων

• Εξατομικευμένο Πολυκλαδικό Μοντέλο: 32 διάστατος παραμετρικός
χώρος

– Πρόβλεψη Επιφάνειας: ΜΑΣΣ = 6.11%, Σχετικά ομοιόμορφη κατανομή

σφάλματος

– Πρόβλεψη Αεροδυναμικής Αντίστασης: ΜΑΣΣ = 4.16%, Ανομοιόμορφη κα-

τανομή σφάλματος

• Ενοποιημένο Πολυκλαδικό Μοντέλο: 20 διάστατος παραμετρικός

χώρος

– Πρόβλεψη Επιφάνειας: ΜΑΣΣ = 5.73%, Πολύ ομοιόμορφη κατανομή σφάλ-

ματος

– Πρόβλεψη Αεροδυναμικής Αντίστασης: ΜΑΣΣ = 2.04%, Ομοιόμορφη κα-

τανομή σφάλματος

Οι μελέτες δείχνουν την αναμφισβήτητη υπεροχή της Πολυκλαδικής Διαμόρφωσης,

συγκεκριμένα της SMB, τόσο ως προς την ακρίβεια των αποτελεσμάτων, όσο και

την απαίτηση υπολογιστικών πόρων για την διερεύνηση από τον EASY, λόγω των

διαστάσεων του παραμετρικού χώρου. Το Σχήμα 9 απεικονίζει την κατανομή του

ΜΑΣΣ των δύο πολυκλαδικών διαμορφώσεων στα κανονικοποιημένα δεδομένα.

Σχήμα 9: Οι κατανομές του ΜΑΣΣ των δύο πολυκλαδικών μοντέλων στα κανονικοποιημένα

δεδομένα, στην περίπτωση (αριστερά) της πρόβλεψης επιφάνειας και (δεξιά) της πρόβλεψης της

αεροδυναμικής αντίστασης.
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Μελέτη ΙΙΙ

Η τρίτη και τελευταία μελέτη εξετάζει την αποδοτικότητα της Κοινοποιημένης Πολυ-

κλαδικής διαμόρφωσης σε ένα απαιτητικό σύνολο αυτοκινήτων. Εδώ, τα αυτοκίνητα

παραμορφώνονται μέσω τριών πλεγμάτων ελέγχου, τοποθετημένα στο εμπρόσθιο, κε-

ντικό και οπίσθιο τμήμα τους, και οι παραμορφώσεις είναι πιο διακριτικές από ότι στην

προηγούμενη μελέτη. Δημιουργούνται Ndb,III = 366 παραλλαγές του DrivAer στο

σύνολο. Στατιστική μελέτη δείχνει ότι η κατανομή των δεδομένων εξόδου είναι πολύ

πυκνή και παρουσιάζει εξαιρετικά μικρή διασπορά. Κανονικοποίηση τους στο εύρος

0-100 βελτιώνει εν μέρει την κατανομή, αλλά δεν αντιμετωπίζει τις περισσότερες ιδιο-

μορφίες της.

Το επικρατέστερο μοντέλο της προηγηθείσας μελέτης (με τις ίδιες παραμέτρους) α-

δυνατεί να παράξει ακριβείς προβλέψεις. Αρχικά εφαρμόζονται τροποποιήσεις στο μο-

ντέλο, με σκοπό την αύξηση της πολυπλοκότητας, και ακολούθως, ευστοχίας του,

θυσιάζοντας υπολογιστική αποδοτικότητα. Το ανανεωμένο μοντέλο, παρότι αναγνω-

ρίζει διαφορές στα απεικονιζόμενα αυτοκίνητα, αδυνατεί να τις ερμηνεύσει, και συγκε-

ντρώνει τις προβλέψεις του στο εύρος ενδοτεταρτημορίου του συνόλου δεδομένων, που

περιέχει το 50% των δεδομένων.

Το φαινόμενο αυτό αναδεικνύει μια θεμελιώδη πρόκληση στην μηχανική μάθηση που

ονομάζεται αντιπαράθεση προκατάληψης-διασποράς (bias-variance tradeoff): όταν τα

δεδομένα εξόδου παρουσιάζουν περιορισμένη διακύμανση, τα νευρωνικά δίκτυα ανα-

πτύσσουν μια προκατάληψη προς την μέση τιμή της κατανομής, ελαχιστοποιώντας

έτσι το σφάλμα.

Για να αντιμετωπισθεί το παραπάνω, προς αποφυγή παιρεταίρω αύξησης της πολυπλο-

κότητας, που θα καθιστούσε την ανάπτυξη και χρήση του δικτύου ως μεταμοντέλο

υπολογιστικά ασύμφορη, επιλέγεται μια διαφορετική προσέγγιση, κατά την οποία τρο-

ποποιείται η συνάρτηση σφάλματος που παρακολουθείται κατά τη διαδικασία εκπαίδευ-

σης. Συγκεκριμένα, αυτή επαναπροσδιορίζεται ως εξής.

cLoss = α ·
∣∣σ2(y)− σ2(ŷ)

∣∣+ (1− α) ·MAE(y, ŷ)

= a ·

∣∣∣∣∣ 1N
N∑
j=1

(yj − µy)
2 − 1

N

N∑
j=1

(ŷj − µŷ)
2

∣∣∣∣∣+ (1− a) · 1

N

N∑
i=1

|yi − ŷi|

Στην ουσία, προστίθεται ένας όρος που ποσοτικοποιεί την απόκλιση της διασποράς

των προβλέψεων με αυτή των δεδομένων στόχου. Η ισορροπία μεταξύ του όρου του
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ΜΑΣ και της απόλυτης διαφοράς των διασπορών ρυθμίζεται μέσω του συντελεστή α.

Η τροποποίηση αυτή επιφέρει μια ελεγχόμενη διασπορά στις προβλέψεις του μοντέλου.

Μετά από ρύθμιση του συντελεστή α και προσαρμογης των δομικών στοιχείων μεσω

ΕΑ, προκύπτει το Ενοποιημένο Πολυκλαδικό μοντέλο του Πίνακα 1.1, που καταφέρνει

να προβλέψει την αεροδυναμική αντίσταση με εξαιρετική ακρίβεια, όπως φαίνεται στα

Σχήματα 10 και 11.

Parameter / Metric Value Parameter / Metric Value

Number of CNN Layers 5 Number of DNN Layers 4

CNN L1 filter size (pow. of 2) 5 DNN L1 neurons (pow. of 2) 7

CNN L2 filter size (pow. of 2) 6 DNN L2 neurons (pow. of 2) 10

CNN L3 filter size (pow. of 2) 3 DNN L3 neurons (pow. of 2) 5

CNN L4 filter size (pow. of 2) 4 DNN L4 neurons (pow. of 2) 6

CNN L5 filter size (pow. of 2) 4 DNN L5 neurons (pow. of 2) –

CNN L6 filter size (pow. of 2) – DNN L6 neurons (pow. of 2) –

CNN L7 filter size (pow. of 2) – DNN L7 neurons (pow. of 2) –

CNN L8 filter size (pow. of 2) – DNN L8 neurons (pow. of 2) –

act. function CNN layers ReLU act. function DNN layers ReLU

kernel size (constant) (3, 3) batch size 32

strides (constant) (1, 1) epochs 300

pool size (constant) (2, 2) cLoss coefficient α 0.08

MARE 0.1734 % MRE 0.104 %

Test set variance σ2
true 158.4796 Prediction set variance σ2

pred 152.2746∣∣σ2(y)− σ2(ŷ)
∣∣ 6.205

Table 1.1: Τα χαρακτηριστικά του τελικού Ενοποιημένου Πολυκλαδικού Μοντέλου, μετά απο εξερε-
ύνηση του χώρου σχεδιασμού από το λογισμικό EASY.
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Σχήμα 10: Επίδοση του επιλεγμένου μοντέλου με τον συντελεστή α = 0.08. (πάνω)
Ραβδογράφημα που συγκρίνει τις τιμές στόχου της αεροδυναμικής αντίστασης με τις προβλέψεις του

μοντέλου, εμφανίζοντας το Σχετικό Σφάλμα σε κάθε πρόβλεψη (MARE: 0,1734%). (αριστερά)
Διάγραμμα παλινδρόμησης του μοντέλου, που απεικονίζει τη συμφωνία των προβλέψεών του με τις

τιμές στόχου της αεροδυναμικής αντίστασης. Η τονισμένη περιοχή αντιπροσωπεύει το εύρος Q1Q3.

(δεξιά) Σύγκλιση του cLoss (Train Loss) και του MAE (Val. Loss) του μοντέλου κατά τη διάρκεια
των εποχών εκπαίδευσης.

Σχήμα 11: Το ταξινομημένο σύνολο δεδομένων. Οι μπλε σταυροί απεικονίζουν τα δείγματα

εκπαίδευσης, ενώ οι μαύρες κουκκίδες τα δείγματα αξιολόγησης και οι κόκκινες κουκκίδες τις

αντίστοιχες προβλέψεις του επιλεγμένου μοντέλου. Η τονισμένη περιοχή αντιπροσωπεύει το εύρος

Q1Q3.
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Συμπεράσματα

Τα αποτελέσματα από τις προηγηθείσες μελέτες αποδεικνύουν ότι, με κατάλληλες προ-

σαρμογές και σχετικά φθηνή διερεύνηση μέσω ΕΑ, είναι δυνατή η κατασκευή CNNs

που να προβλέπουν με ακρίβεια την αεροδυναμική αντίσταση αυτοκινήτων κατευθείαν

από διδιάστατες αναπαραστάσεις τους σε μορφή σκίτσων. Είναι, επομένως, δυνατή η

εκπαίδευση τους με δεδομένα που ποϋπάρχουν σε εταιρίες της αυτοκινητοβιομηχανίας,

και η χρήση τους ως τοπικά μεταμοντέλα στην διαδικασία σχεδιασμού αυτοκινήτων,

υποκαθιστώντας κοστοβόρα βήματα της συμβατικής διαδικασίας που ακολουθείται.

Εφαρμογή τους δύναται να επιφέρει τεράστια πτώση στο υπολογιστικό κόστος και

ασήμαντες (για τα πρώιμα στάδια) επιπτώσεις στην ακρίβεια των αποτελεσμάτων.
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