National Technical University of Athens
School of Mechanical Engineering

Fluids Section

Parallel CFD & Optimization Unit

o
i

Z

-]
?Lls
{ A

>
SEar
14
2

Convolutional Neural Networks as Surrogate
Models in the Early Stages of the Automobile
Design process

Diploma Thesis

Faliakos Vasileios

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, 2025

Acknowledegments

I would like to begin by expressing my sincere gratitude to my supervisor, Professor
Kyriakos C. Giannakoglou. I am deeply grateful for his continuous support and
insightful guidance throughout the course of this Diploma Thesis. His distinguished
academic stature as a capable, passionate and inspirational educator were evident
in every interaction during the years of my studies. I deeply appreciate his unique
mentoring spirit, offering valuable direction and encouraging independent thinking.
I am truly inspired by his methodical approach to address problems, combined with
clarity of thought and sophisticated insight, which undeniably contributed to my

academic development, helping me grow as a prospective engineer and as a person.

Secondly, T am truly grateful to all the members of the PCOpt/NTUA team for pro-
viding a stimulating and supportive environment. I am wholeheartedly thankful to
Dr. Marina Kontou, for her continuous presence and willingness to engage at every
stage of the process. Her enthusiasm for problem-solving, openness to discussion,
and sophisticated academic advice were invaluable throughout the development of
this Thesis. I am deeply inspired by her passion, and truly grateful for the academic

consultation she provided during this work.

Finally, I would like to thank my family—my parents and my brother—and my
close friends for supporting me throughout my studies and offering unforgettable
memories along the journey.

ii

iii

TANE

National Technical University of Athens
School of Mechanical Engineering

Fluids Section

Parallel CFD & Optimization Unit

£

Bl

)

Tiok.
We' 208y
&t "j/’;%?”g
4 A
. e
!
%ﬁn BEV

N

‘h

Convolutional Neural Networks as Surrogate Models in the
Early Stages of the Automobile Design process

Diploma Thesis
Faliakos Vasileios
Advisor: Kyriakos C. Giannakoglou, Professor NTUA
Athens, 2025

Abstract

The objective of this Diploma Thesis is the implementation of Artificial Neural
Networks (ANNs), combining Convolutional Neural Networks (CNNs) and Deep
Neural Networks (DNNs), as local data-driven surrogate models in the early stages
of the automobile design process, to substitute costly steps followed in the estab-
lished conventional CFD-based approach, and guide the design space exploration

toward a more sensible direction.

In this work, Convolutional Neural Networks are employed to predict automobiles’
aerodynamic drag directly from their sketch-like representations, thus bypassing
the costly stages of 3D modeling, meshing and simulation. Starting from a pre-
existing design, the models can assess geometric changes imposed on it, helping
stylists to rapidly accept or reject potential modifications, based both on aesthetics
and aerodynamic criteria. As a result, they can allow designers to narrow down the
exploration domain early in the design process, and steer it in a sensible direction,
thus preserving computational resources for high-fidelity optimization in later stages
of the design.

The developed models derive from a sequence of applications of different objectives
and ascending complexity. Since the 3D car geometries are going to be evalu-
ated by their 2D representations, a key prerequisite is the development of an ad-
vanced CNN architecture that outperforms the equivalent conventional network in
cost-effectiveness for 2D aerodynamic applications. This backbone configuration

is developed through a foundational application concerning airfoils. Architectural

adaptations to extend this configuration to 3D car geometries are then examined,
specifically three distinct approaches, differing either in their input shape or their
architectural symmetry. The superior configuration is then selected and evaluated

on a challenging dataset of automobiles and their corresponding drag force values.

The studies propose that statistically-driven adaptations and affordable fine-tuning
can successfully lead to the development of local CNN surrogate models that eval-
uate cars with great precision in a cost-efficient manner, within a constrained space

of the design domain.

ii

T E9vixé Metoofio IToAuteyveio
Yxoh) Mryavorhoywy Mryavixov

PETS08. >
NUARE $20
@ pt S /A
R PT
- “:é‘ B
A poMHBEYS - 1‘?

=g

Touéag Pevotwy

Movdada ITapdAAnAne YT roloyioTixng

‘h

Peuvotoduvauixnc & Beltiotonoinong

YuveAuxtixd Nevpwvixd Aixtua wg Metapovtéda ota
I[Mewipo Xtddia tng Aradixociog Xyediacuon
AvToxiviTwy

Amwpatin Egyaoto
Paiidxoc Baciisioc
EmBrénwv: Kupdxog X. Tavvéxoyhou, Kodnyntic EMII
Adrva, 2025

Hepirndm
O ot6y0¢ autrc e Atmhwpatixfc Epyaotag etvon 1) egapuoy Teyvnteddyv Neupomvixoyv
Awtiwy (TNA), cuvbudlovtag Xuvehixtixd Nevpwvixd Aixtuo (ENA) xou Baderd
Nevpwvixd Alxtua (BNA), w¢ tomxd METOUOVTEAN GTA TRWLIA GTAOLL TNG OLoOLXo-
olog oYEBLUGUOV AUTOXWVATOWY, UE GXOTO TNV AVTIXUTAGC TUOT XOG TOBORMY BNudtwy Tou
oxohoutolvton xatd Ty cupPotixd -Bacilouevn oty TPA- npocéyyion, xaw v xa-

Yodhynon tne e€EPELVNOTNC TOU YWEOU GYEBLACHOV TEOC (Lo TILO OUGLMOT XATEVTUVOT).

Kotd tnv mpotevduevn mpoc€yylor, To GUVEMXTIXG VEVEWVIXG. BiXTUN YENOLLOTOlO-
Ovton Yyl Ty TeoBAedm tng acpoduvouixic avtioTaong autoxwvitwy arcudelug and
OLOLYO TUTEC AVATUPAC TACELS TOUC OF Uop®T) OX{TGOU, TUQUXIUTTOVTUC ETOL T XOG TO-
Bopa otddlar TN wovtehomoinong, TAeypatomoinong xo tpocopoiwong ye TPA. Ze-
XVOVTOG amd Eva TeolTdeyov oYEDL0, Ta LOVTEAN UTopoUY va yeroluonotnioly yia
NV 0&LOAGYNON YEWUETOIXMY UAAXY WY TOU TOU ETUBAANOVTAL, ETLTOETOVTAS OTOUC GYE-
Olao Téc var amodeydolv 1| vo amoppldhouy Tayéwe TiavéC TPOTOTOCELS, UE YVOUWVAL
TO00 TNV oUNTXY 600 Xt Ta AEQOBUVOUIXY XpLTrpta. §1¢ amoTEAEOUA, 1) YPTioT] TOUg
OUVOTAL VL TTEPLOPICEL TOV GYEDLACTIXG Y(WPEO ATO TO TEWLUN OTAOLYL, DLUTNEWVTIS ETOL

UTOAOYLO TIX00C TOLOUC YLOL TILO UTLOGY OUEVO OYEDLY OE ENOUEVA GTABLO TOU GYEBLUGUOU.

To avamtuydevta povtéda mpoxinTouy uéoa and uio axoroudla EQUPUOYOY BLUPOPE-
TIXOV GTOY WY %ot auEavouevne ToAumhoxdtntoc. Aedouévou 6Tt ot 3A yewuetpleg

TWV AUTOXIVATOVY TROXELTaL Vo aflohoynioly péow Tov 2A avamdpacTICEDY TOUC,

Boaowr mpolnddeon elvor 1 avdmTUT WG TEONYHEVNS AQYLTEXTOVIXAS TIOU VO UTEPL-
oy VEL TV GUUBAUTIXOY UPYLTEXTOVIXWOY O ATOBOTIXOTNTO X0t oxEiBELL, Yiar BLoOLEo To-
TEC AEPOOUVOUIXES EQUPUOYEC. AUTY| 1) ooixr] dpyITEXTOVIXY) avamTOCOETAL UECE LG
VeUEADOOOUS EQUOUOYTIC TOU 0poEd AEPOTONES. XTT) CUVEYELY, eCETALOVTOL UPYITEXTO-
VIXEC TIPOOUPUOYES TNG WOTE VoL ETMEXTOEL OE EQPUPUOYES 3A YEMUETPUOY AUTOXVATOY,
CUYXEXQUIEVOL TRELS DLUPOPETIXES TIPOCUPUOYES, OL OTIOlEG DLUPEQOUY E(TE GTO OY U EL-
c6dou eite ot ouuuetela TNg apyLtexTovixrc. H urtepioylovoa dlaudppwon emAcyeTo
xou o&LoAOYE(TOL OF €val amotTNTXG GUVOAO BEBOUEVMV AUTOXIVATOY, WS TEOS TIC TES

NG AEPOOLYAUUIXTC TOUC aVTIoTAOTC.

Ou pehéteg delyvouy 6Tl oTaTIoTNd XorOBNYOUUEVEC TTROCUQUOYES XOl UTOAOYLOTIXG
TEOGITES BIEPELVACELS UTOROUY Vol 0ONYHGOUY TNV avamTUET ECEBIUEUPEVODY TOTIXMY
Otopoppnoewy UNA, ovd var a&loAoyoly YEWUETEIES AUTOXIVATWY UE LXAVOTIOMNTIXT
oxpBetar xou YouunAd UTOROYLOTIXG XOGTOC, EVTOS EVOC TEOXAOPLOUEVOU TALGiOU TOU

YWEOL GYEBDLICUOD.

ii

Contents

Contents

1 Introduction

1.1 Artificial Intelligence and Machine Learning
1.2 Types of Learning in Machine Learning
1.3 Artificial Neural Networks
1.4 Motivation L e e
1.5 Thesis Outline e

2 Deep Neural Networks

2.1 Imtroduction
2.2 Network Architecture and Working Principle
2.3 Neural Network Training process
2.3.1 The gradient-based optimization problem
2.3.2 Activation Functions Lo
2.3.3 Loss functions

2.3.4 The Adam Optimizer

2.4 Squeeze-and-Excitation Blocks oo oo

2.5 Regularizers

3 Implementation Practice
3.1 Introduction e e e e

3.2 Free-Form Deformation and Morphing Boxes

3.3 The PUMA CFD Solver
3.4 Evolutionary Algorithms and the EASY Software
3.5 Procedural Pipeline
3.5.1 Methodology Overview
3.5.2 EASY setup for fine tuning o oo

4 Application I - Isolated Airfoil Properties Prediction

4.1 Inmtroduction e e e e e e

B B H

& B &

124

26!

120

20|

23]

29|

5 Application II - Automobile’s Drag Force and Surface Area (1 Morphing Box)

6

7

4.2 Proposed Baseline Architecture

4.3 Case I - Airfoil’s lift coefficient
4.4 Case II - Airfoil’s drag coefficient L.
4.5 Case III - Airfoil’s cross section area
4.6 Overview and Conclusions L

5.1 Imtroduction L
5.1.1 The DrivAer car model
5.1.2 Dataset Generation

5.2 Statistically Informed Dataset Transformation

5.3 Examined Model Configurations

5.4 Single-Branch Model Lo
5.4.1 Drag Force Prediction
5.4.2 Surface Area Prediction o L.

5.5 Multi-Branch Model (IMB - SMB Configurations)
5.5.1 Drag Force Prediction - IMB, SMB
5.5.2 Surface Area Prediction- SMB 0oL,

5.6 Summary and Comparisonol

5.7 Conclusions

Application IIT - Automobile’s Drag Force (3 Morphing Boxes)

6.1 Introduction L
6.2 LHS-based Dataset Generation
6.3 SMB Model Implementation
6.3.1 Drag Force Prediction - MAE Loss
6.3.2 Bias-Variance Tradeoff and Loss modifications
6.3.3 Drag Force Prediction - Custom Loss.
6.4 Overview and Conclusions
Conclusion
T1 OVerview o e
7.2 The case-dependent SMB model

0]

40|

[48]

4§
(0]

(Ol

0]

8]

89
89|

91

7.3 Conclusions e 02

7.4 Future Work Proposals 94

Bibliography 96

Chapter 1

Introduction

1.1 Artificial Intelligence and Machine Learning

The field of Artificial Intelligence (AI) has evolved from a theoretical concept into
a transformative force that is now integrated in nearly every aspect of modern en-
gineering and industrial design. Al, broadly defined as the capability of machines
to perform tasks that typically require human intelligence, includes a vast array of
computational techniques designed to solve complex problems, recognize patterns,
and make informed decisions [38]. Within this domain, Machine Learning (ML)
has emerged as one of the most powerful and practical subfields, enabling systems
to automatically learn and improve from experience without being explicitly pro-

grammed for every application [33].

The automotive industry, in particular, has witnessed a paradigm shift in how
design processes are conceived, executed, and optimized. Traditional engineer-
ing approaches, while robust and well tested, often rely on iterative prototyping
and extensive computational simulations that can be both time-consuming and
resource-intensive. The integration of AI and ML techniques into automotive de-
sign workflows represents a significant opportunity to accelerate innovation, reduce

development costs, and enhance the overall quality of vehicle systems.

Machine Learning, as a subset of Al, focuses on the development of algorithms that
can identify patterns in data and make predictions or decisions based on them.
The fundamental premise of ML is that systems can be trained to perform specific
tasks by analyzing large datasets, extracting meaningful features, and developing
mathematical models that generalize well to unseen data [6]. In a time of increased
availability of computational power and exponential growth in data generation and
storage capabilities, ML techniques can be applied to increasingly complex engi-
neering problems. In the context of automotive design, this translates to the ability
to process vast amounts of simulation data, experimental results, and operational

feedback to develop more accurate and efficient design tools.

1.2 Types of Learning in Machine Learning

Machine Learning algorithms can be broadly categorized into three fundamental
types of learning, each suited to different problem domains and data availability

scenarios, summarized in Fig. [1.1].

Supervised Learning represents the most common and intuitive form of machine
learning, where algorithms learn from labeled training data to make predictions on
new, unseen examples. In supervised learning, the system is provided with input-
output pairs during the training phase, allowing it to learn the mapping function
that connects the two [16]. This approach is particularly well-suited for problems

where empirical data with known outcomes is available.

Unsupervised Learning addresses scenarios where only input data is available
without corresponding target outputs. These algorithms seek to discover hidden
patterns, structures, or relationships within the data without explicit guidance
about what to search [34]. Common unsupervised learning tasks include clustering,

dimensionality reduction, and anomaly detection.

Reinforcement Learning takes a different approach by focusing on learning op-
timal actions through interaction with an environment. Rather than learning from
static datasets, reinforcement learning agents receive feedback in the form of rewards
or penalties based on their actions, gradually improving their decision-making ca-

pabilities through trial and error [44].

Machine

— ~ \\
,.'r_’/ | S~
Supervised Unsupervised Reinforcement
Learning Learning Learning

Madel training with labelled data Maodel training with unlabelled data Model take actions in the environment then
/ ‘\ \ received state updates and feedbacks
/.-’ \
Classification Regression Clustering
------- ’,
- A RS # ° e -
o N Pl * il | Environment |
Pl A \ Vs e e . & |
] & A e s 0 4
] A +f - ® . "
| A 1 @’ Seee # ™
O b ¢ » : - ~ P p i—:
- ’ 2 o Nt o ———— [feedback —l—=
- i 4 7 4 E ® action e state
e VA / e L N @ L | | = |
I L Ny A o ® e s 3¢ L] T
O P s e - o N L e
le i . ® . AN
"\ L] e I L] e @ b3 e A
Soo @ 7 o e A . Model
______ e ® X Agent N

Figure 1.1: The different types of learning in ML.

1.3 Artificial Neural Networks

Artificial Neural Networks (ANNSs) represent one of the most versatile and power-
ful classes of supervised machine learning algorithms, inspired by the structure and
function of biological neural systems [15]. The fundamental building block of a neu-
ral network is the artificial neuron, which receives multiple inputs, applies weights
to these inputs, sums them together with a bias term, and passes the result through
an activation function to produce an output [37]. This simple computational unit,
when combined with many others, organized in layers in complex architectures, can
approximate virtually any continuous function given sufficient data and appropriate

training [22]. The structure of an ANN is graphically presented in Fig. [1.2]

ANNs are associated with either Regression or Classification tasks. Regression
problems involve predicting continuous numerical values based on input features.
In regression, the goal is to learn a mapping function that can estimate real-valued
outputs with minimal error. Classification problems, in contrast, involve assigning
input examples to discrete categories or classes. The objective is to learn decision

boundaries that can accurately separate different classes in the feature space [6].

A @
O 0.
— = 0 N
~ Ny
Input Layer Q 7 - T I Output Layer
= =3
Hidden Layer Hidden Layer

Figure 1.2: Typical architecture of an ANN.

The universal approximation capabilities of neural networks make them particu-
larly effective in developing surrogate models in engineering applications. Neural
networks can adapt their trainable parameters during training to capture the under-
lying physics and relationships present in the data and produce accurate estimations
[28].

1.4 Motivation

The motivation for this Diploma Thesis stems from the inherent inefficiencies and
substantial costs associated with the conventional design methodology employed
throughout the automotive industry. This traditional approach follows a sequen-
tial, multi-stage process that has remained largely unchanged for years, despite its

recognized limitations in terms of time consumption and resource allocation.

The conventional automotive design workflow can be characterized by the following

sequential phases and graphically presented in Fig. [1.3]:

e The styling team initiates the process by developing a comprehensive set of
design concepts, with primary emphasis placed on aesthetic appeal and visual

impact rather than functional performance characteristics.

e The digital modeling team is tasked with translating these conceptual designs
into detailed three-dimensional CAD models while incorporating necessary ge-

ometric constraints.

e An extensive CFD preparation phase follows, during which the 3D models un-
dergo further geometric modifications to ensure computational compatibility.

This stage involves geometric refinement and complex meshing procedures.

e Finally, high-fidelity high-cost CFD solvers are deployed to simulate the com-
plex flow phenomena around the proposed vehicle geometries, extracting aero-
dynamic performance quantities such as drag coefficient, downforce character-
istics and pressure distributions.

CFD Simulation &

Analysis
3D Modeling & CAD E:

2D Ca Digital Modeli CFD Solvers
r lg,lla n eling " .
Z Meshing : Aerodynamic
Design Aero Dynamics 2
QA Team metrics
Validation &
& z & Correlation /
Styling Phase . Meshing & CFD
3D Modeling Preperation
ADS: Conceptual Design
CAE Team
PDS: Production-Feasible
designs CFD Support Team
{CMT) Aero-Performance

Figure 1.3: Schematic representation of the conventional automotive design process workflow.

This established methodology requires repeating the entire workflow for each design
variant, creating significant bottlenecks in development timelines. The complexity
increases when additional stakeholders such as marketing teams, project managers,
and regulatory specialists contribute their requirements, extending evaluation pe-
riods and adding procedural overhead. Additionally, each team operates with dif-
ferent objectives and criteria, often creating conflicting requirements that demand
iterative modifications. According to [4], (re)meshing accounts for approximately
25% of total CFD project time, while model pre-processing (including geometry
cleanup) constitutes 35% of the workload. Moreover, the substantial computa-
tional resources needed for high-fidelity CFD simulations require careful planning,
naturally limiting the frequency of design iterations. Additionally, communication

delays and coordination difficulties further slow down design evaluation.

Notably, the automotive industry holds a valuable but underutilized resource: ex-
tensive databases containing conceptual designs, production vehicle geometries, and
their aerodynamic performance data. This accumulated knowledge spans decades of
design experience and experimental validation, offering an excellent foundation for
advanced supervised machine learning approaches. These comprehensive datasets
present an opportunity to develop predictive models that can accelerate the de-
sign process while maintaining acceptable accuracy, particularly during preliminary

phases where absolute precision is less critical.

This Diploma Thesis proposes the integration of CNNs as sophisticated data-driven
surrogate models for aerodynamic quantity regression. The approach aims to bypass
the steps of 3D modeling, mesh generation, and numerical simulation by directly

predicting aerodynamic properties from 2D design sketches.

Implementing such a methodology would enable real-time aerodynamic evaluation
within styling workflows. This approach would provide immediate feedback on
design modifications, allowing rapid exploration of the design space while preserving

computational resources for detailed analysis on the most promising candidates.

1.5 Thesis Outline

Following the Introduction, this Thesis is organized as follows:

e Chapter 2: This chapter covers the fundamental architectural components
and operating principles of DNNs, including their gradient-based optimization
processes. Additionally, it presents advanced building blocks and techniques
that significantly enhance model predictive accuracy and interpretational ca-

pabilities used throughout this work.

e Chapter 3: It provides a comprehensive overview of the software tools and
methodologies employed to generate the working datasets (both input and
output) for subsequent applications, as well as an algorithmic description of
their application in recurring processes. Additionally, it introduces Evolution-
ary Algorithms, which are consistently utilized to fine-tune the architectural

composition and component parameters of the developed models.

e Chapter 4: It is the first application of this work, focusing on predicting aero-
dynamic and geometric properties of 2D airfoils. It aims at the development of
a superior CNN architecture that balances the trade-off between cost-efficiency
and accuracy, serving as the foundational structure for models in Applications
IT and III. Additionally, it identifies ineffective regions within the evolutionary
search domain, enabling their systematic exclusion to reduce computational

requirements for subsequent, more complex applications.

e Chapter 5: This chapter investigates adaptive modifications to the estab-
lished architecture from Application I, extending its application to aerody-
namic 3D automotive geometry problems. It evaluates three distinct network
configurations that differ primarily in input data structure and architectural
symmetry. Through comprehensive analysis and performance comparisons, it
identifies the optimal configuration for implementation in the final Application
I1I.

e Chapter 6: Builds upon Application II with the primary distinction being
increased dataset complexity. The objective of this Application is the accurate
prediction of automobiles’ aerodynamic Drag Force. The conducted studies
emphasize the importance of implementing statistically-informed modifications
within the training process to avoid excessive computational costs and address
fundamental challenges in applications with limited (and statistically poor)

datasets.

e Chapter 7: Synthesizes key findings from previous chapters and emphasizes
on the adaptability of the selected configuration. Demonstrates that CNNs can
effectively function as local surrogate models in automotive design applications,

provided a proper architectural and compositional fine-tuning.

Chapter 2
Deep Neural Networks

2.1 Introduction

Neural Networks have emerged as a fundamental tool in modern ML, capable of
approximating highly complex phenomena across diverse applications. The present
chapter examines the core architectural components of a NN as well as their pa-
rameters, and offers a compact presentation of its working principle. Additionally,
it presents the main working component exploited in this Thesis, the Squeeze and
Excitation Block, which allowed the development of accurate and cost-efficient net-
works in the challenging subsequent implementations.

2.2 Network Architecture and Working Principle

Deep Neural Networks (DNNs) are a subcategory of ANNs. In order to be classified
as a DNN, a network must have multiple hidden layers. The complexity of a DNN’s
architecture and neural computations allows for the better interpretation of complex
patterns in the input data, making them successful in various tasks where shallow
networks fail. The number and types of hidden layers in a DNN can vary, depending
on the nature of the objective, the shape of the input data, the type of the desired
output and the complexity of the task. Two of the most common categories of

layers used in DNNs are dense layers and convolutional layers.

In dense (or fully connected) layers, each neuron receives information from all the
neurons of the immediately preceding layer(s) and passes it on to all the neurons of
the subsequent layer(s), through connections called synapses. For a single neuron,

each synapse’s information is multiplied by a weight uniquely associated with the

10

synapse, and then summed up. A unique bias associated with the neuron is added
and an activation function is then applied, forming the output of the neuron, as
shown in Fig. [2.1].

f(Zwz+b)

Figure 2.1: Working principle of a neuron.

Convolutional layers are the fundamental components of Convolutional Neural Net-
works (CNNs), a subcategory of DNNs; used in tasks associated with computer
vision and image recognition. They are designed to adaptively identify spatial hi-
erarchies of features present in their input data, which is typically an image or a
set of feature maps. They operate by applying a set of learnable filters or kernels
to their inputs. The fixed-sized filter slides across the input, overlapping regions
of the data. The dot product of the filter and the local region is then computed,
and this process continues until the entire input has been altered. This transformed
representation of the input is then passed through an activation function to intro-
duce non-linearity, forming the output of the layer, a feature map, extracting a
specific pattern (Fig. [2.2]). Multiple filters result in multiple output feature maps

(channels).

113]121|4

65} 871 o2 . |15]23]21
10(9 12|11 1] 3 p27)43]35
14| 13| 16| 15— e N 43| 59|51

Figure 2.2: Operation of a 2D convolutional layer.

For a convolutional layer with C filters and input X € R#>W'*C" (where H', W'
denote the input height and width respectively, and C” denotes the input channels),
let V = [vy,...,v¢] be the filter bank where each v, € R¥*¥*¢" is composed of 2D

kernels vé € R***. The output channel u, € R”*W is computed as:

11

C,
u.=o- (E Vz*XS—i-bC),
s=1

where * denotes cross-correlation (commonly - and herein - implemented in deep
learning frameworks instead of the traditional convolution operator), b. € R is
the bias term, o denotes the activation function and - denotes its element-wise

application. The layer’s full output is formulated

U = [uy,...,ug] € RFEXWC (2.1)

Multi-dimensional inputs naturally pose a risk to the model’s accuracy, as images
or videos often contain noise, which obstructs the feature extraction process of the
convolutional layers. In addition, the produced feature maps can be large in size,
increasing the complexity of the model and posing a risk of overfitting. In order
to address these challenges, convolutional layers are often used in conjunction with
max pooling layers, which perform a downsampling operation on the data. The
input of a max pooling layer is divided into non-overlapping regions of a predefined
size, greater than a data unit, and the contained data points are replaced by the local
region’s maximum value. As a result, the spatial dimensions of the data are reduced
while retaining the most prominent features, thus improving generalization and
reducing the computational load. A demonstration of the max pooling operation is
depicted in Fig. [2.3].

22]50[19] 1
4 | 33| 46|29 50[46
1278 [31] 7 [a1]37
41|26 15]37

Figure 2.3: Operation of a Mazx Pooling layer.

12

2.3 Neural Network Training process

2.3.1 The gradient-based optimization problem

The training process of a Neural Network is an iterative gradient-based optimization
problem, in which the trainable parameters of the network’s components (weights,
biases etc.) are adjusted in order to minimize a defined loss function’s output. A

typical Network’s training process comprises the following steps:

1. Trainable Parameters’ Initialization: The trainable parameters to be op-
timized are initialized. Proper initialization can potentially prevent the model

from sticking at local minima in the training process [30].

2. Forward Propagation: The input data is fed into the input layer, and prop-
agates through the various layers, transformed according to the current train-
able parameters’ values. This process continues until information reaches the

output layer, where the final prediction is generated.

3. Loss Value Calculation: The output of the model is computed and com-

pared to the true value with the use of a pre-selected loss function.

4. Back Propagation: After computing the loss value, the gradients of the loss
w.r.t the network’s trainable parameters are calculated using the chain rule of
calculus. The calculated gradients indicate the direction and magnitude of the

adjustments necessary to reduce the loss [6].

5. Gradient - Based Optimization: The adjustment of the trainable param-
eters is achieved through an optimization process based on the calculated gra-
dients. Typically, gradient based optimization algorithms are used, with the
most common being the Adam optimizer [I8]. Optimizers have their own
hyperparameters, such as the learning rate or the momentum, which play a

crucial role in the convergence’s speed and stability [15].

6. Update of parameters: The trainable parameters of the model are then

updated accordingly.

The presented process is also called Forward Feed - Back Propagation.

13

Steps 2 to 6 are repeated for a number of iterations, called epochs, in which the
entire training dataset is processed in batches. The batch size is a significant hy-
perparameter of the training process, referring to the number of training samples
processed simultaneously in a single forward and backward propagation, and can
greatly affect both the computational efficiency and the accuracy of the calculated
gradients. Larger batch sizes can lead to steadier gradient estimates, but require
more memory and often slow down convergence [43]. Smaller batch sizes can po-
tentially prevent the model from sticking at local minima [19], but lead to more
frequent updates on the trainable parameters, reducing the generalization of the

tuning process and making convergence more unstable [§].

Concerning the effectiveness and quality of the model’s training, there are two

common problems that need to be monitored.

The first is the vanishing gradient problem; during the back-propagation process,
the gradients of the loss function can become exceedingly small, resulting in minimal
updates of the trainable parameters, and therefore impeding the network’s ability
to learn and adjust to the training dataset. This typically occurs when certain
activation functions, such as sigmoid or tanh, are employed. Both functions resize
input values into small ranges, but, most importantly, they saturate at extreme
input values, and the calculated gradients from the training process are approaching
machine precision. This problem can be prevented by applying activation functions

without saturated regions, such as ReLU [14].

The second challenge concerns two major performance issues in ML; the phenomena
of underfitting and overfitting. Overfitting can be described as critical lack of
generalization during training, indicating that the network failed to recognize the
essential features of the input, but rather captures noise and random fluctuations
[50].

An overfitted model performs well on the training data but fails to adjust to unseen
data. On the contrary, an underfitted model is either too simplistic or inadequately
trained to capture the necessary patterns in the input data, resulting in high errors

both in the seen and unseen data [Fig. [2.4].

14

Underfit

Overfit

Figure 2.4: (left) Performance of an underfitted model that fails to predict data. (middle)
Performance of a well fitted model that captures the patterns in the dataset. (right) Performance of
an overfitted model that captures training data but fails to generalize on unseed data.

Traditionally, to overcome these issues, the validation technique is implemented,
according to which a chunk of the dataset is isolated and not fed into the network
except for when a complete pass of the training dataset has been performed (end of
each epoch). The goal is to monitor how well the model generalizes to unseen data

by observing the validation loss [35].

2.3.2 Activation Functions

Activation functions are crucial components of ANNs, introducing non-linearity into
the model. Without them, a network would perform similar to a single-layer linear
model, and fail to predict complex phenomena [21]. Let a neural network be defined
as a function f : R¥ — R™. For a neuron in layer ¢, with input x() € R™-1 (where
ng = k), weights w'» € R™-1, bias b) € R and activation function ¢ : R — R, its

output is computed as:

y O = ¢ (w®) x4 p0)

Below follows a presentation of the most common activation functions used in NNs,

which are included in the parametric explorations in the subsequent Applications.

15

- ReLU: Rectified Linear Unit is a piecewise linear activation function commonly
used in machine learning tasks. It maps all negative inputs to zero, reducing unnec-
essary computations. However, this introduces the risk of neurons being inactive
and not contributing to the learning process, often referred to as the "Dying ReLU
Problem”

0 forxz<O
ReLU(z) =
xz forz >0

- GELU: Gaussian Error Linear Unit is a smoother approximation of ReLLU, filtering
the neuron’s input by its probability under a Gaussian distribution rather than its
sign. Additionally, GELU has a continuous gradient in comparison to ReL U’s, which
has piecewise continuity. All in all, GELU outperforms ReLLU in deep architectures.

GELU() = 5(1+erf(5)) = 51+ = /

- Leaky ReLU: Leaky ReLU is nearly identical to ReLU, with the only difference
being the presence of a non-zero slope for negative input values. The latter addresses
the dying ReLLU problem and prevents dead neurons, while retaining most of ReLLU’s

advantages. Parameter « is set to a small value, typically 0.01.

axr forx <0

Leaky ReLU(x) =
x forx>0

- ELU: The Exponential Linear Unit activation function behaves identically to
ReLU and Leaky ReLU for positive inputs. Unlike them, ELU maintains its smooth-
ness everywhere, improving optimization and training stability. Additionally, ELU
pushes the mean activation closer to zero, which can reduce vanishing or exploding

gradients and improve learning speed. Parameter a is typically set to 1.

16

forx >0

ELU(z) =
ale® —1) forz <0

- Sigmoid: The Sigmoid activation function is a smooth, differentiable function that
projects all inputs to the range (0,1). However, it is prone to the vanishing gradient

problem, since it saturates near the boundaries of it’s domain of definition.

1

0'(.17) = m

- Tanh: The Hyperbolic Tangent activation function maps any real inputs to the
range (0,1). Compared to the sigmoid function, tanh is often preferred due to its
steeper gradients, which can accelerate training and allow better weight optimiza-

tion. However, it is still prone to the vanishing gradient problem.

x —x

e —e
e +e
Activation Functions Derivatives of Activation Functions
5]
— RelU 7 L.75 4 — Rely
—— Leaky Rell ’ —— Leaky RelU
44 — cEW 1551 / — GEW
— EW / — AU
— SEW | — SEWV
3{ — sigmaid 125 f —— sigmoid
i i s = B
100+ o — e —
2 1 f N /
" = JI ..‘
14) \
0t —
s
_——'—"'_F."-
—2 T T T T
-4 -2 1] 2 4 -4 -2 o 2 4

Figure 2.5: Behavior of the presented activation functions (left) and their derivatives (right).

17

2.3.3 Loss functions

Loss functions are mathematical functions quantifying the discrepancy between the
prediction provided by the model to the ground truth. Essentially, they serve as
the objective function of the training process optimization problem, whose gradient
indicates how the trainable parameters should be adjusted to improve accuracy. The
most common loss functions in regression problems are the the Mean Absolute Error
loss function (MAE) and the Mean Squared Error loss function (MSE), formulated

below accordingly.

1 N
MAE = — 0
N;l lyi — Uil

XN
_ 32
MSE = N Z(yz — ¥i)

=1

N is the total number of samples, y; with ¢ = 1,2, ..., N is the target value of each

sample and ; is the corresponding prediction of the network.

MAE is less sensitive to outliers and anomalous points [48], treating all errors
equally, and provides a measure that is easy to interpret in terms of the actual units.
However, its undefined gradient at zero can pose challenges to the optimization
process of training. On the other hand, MSFE has a smooth gradient at all points,
allowing for a more stable optimization. It penalizes large errors heavily due to the
squaring of the error, which is often desirable in regression tasks. On the downside,
this leads to increased sensitivity to outliers, sometimes sabotaging the model’s
ability to generalize properly. The selection between MAE and MSE depends both
on the dataset and the nature of the problem [9]. When working with a noise-
free dataset with few outliers, MSE can often aid the construction of an accurate
(and efficient) model. When the working dataset is of moderate size and noise and
contains outliers, selecting the MAF loss function will allow for a more robust and

accurate model.

In this Diploma Thesis, two additional loss functions are employed, the Mean Rela-
tive Error (MRE) and the Mean Absolute Relative Error (MARE), defined respec-

tively as:

18

N .
1 Yi — Ui
MRE = — 2.2
N Zl Y ()
1 o Jyi — il
MARE = — § 2L (2.3)
N ZZ1 il

These metrics are particularly advantageous when the target values exhibit small

variance, as relative errors normalize deviations by the target magnitude [7].

2.3.4 The Adam Optimizer

The Adaptive Moment Estimation Optimizer (Adam Optimizer) [25], is an adap-
tive gradient-based optimization algorithm that combines the benefits of two earlier
optimization methods, the Adaptive Gradient Algorithm (AdaGrad) [I0] and Root
Mean Square Propagation (RMSProp) [45]. It is a versatile optimization algorithm
that offers several advantages over conventional gradient-based optimization meth-
ods, by balancing adaptivity and convergence speed. Adam is used throughout this

entire Thesis as the optimizer of the models’ training.

The fundamental principle of Adam is the computation of individual adaptive learn-
ing rates for different parameters, based on estimates of both first-order and second-

order moments of the gradients.

Let f(#) be the objective function to be minimized, where 6 denotes the (vector of)
parameters to be optimized, herein the model’s trainable weights. At each timestep

t, the gradient of the function w.r.t 6 is computed:

9= Vofi

Adam maintains and updates the exponential moving averages of the gradient my
(estimate of the first moment of the gradient) and the squared gradient v; (estimate

of the second moment of gradient) as follows

my = Bimy_1 + (1 — B1)g

19

vy = Povp_r + (1 — 52)9152

B1, P2 € [0,1) are the hyperparameters controlling the exponential decay rates of
the gradient and squared gradient moving averages respectively. Typically, 5 is set
to 0.9 and [is set to 0.999. Since the moving averages are initialized at zero, they
are biased toward zero, particularly during the initial training steps. To counteract
this, the Adam optimizer calculates the bias-corrected moment estimates m; and

Uy.

« my
my = ——
1—pt
A Uy
Uy =
1— 8

Finally, the trainable parameters ¢ are updated:

my
0y =0, 1 —a——
t t—1 \/’UTt e
where « is the learning rate and € is a small value (typically set to 1078) to prevent
division by zero and enhance numerical stability. Division by the term /v, ensures
an appropriately scaled parameter update based on the past gradients, allowing for

an adaptive step size across different parameters.

Adam is computationally efficient and requires only first-order derivatives, mak-
ing it well-suited for large-scale optimization problems. In addition, the inclusion
of momentum accelerates convergence in the direction of consistent gradient de-
scent, preventing oscillations in curved loss surfaces. It is the most commonly used

optimizer for machine learning tasks and neural networks’ training.

2.4 Squeeze-and-Excitation Blocks

Squeeze-and-Excitation Blocks (SE Blocks) [23], are building units that mimic bio-
logical vision, in which more attention is given to more salient stimuli [47]. They are
designed to enhance the representational power of CNNs, configuring channel-wise
feature responses and thus allowing the network to emphasize on informative fea-

ture maps and suppress less useful ones. SE Blocks are the fundamental component

20

of this Thesis’s networks and played a critical role to their accuracy and efficiency.

Consider the output of a Convolutional Layer of Eq. (2.1). An SE block enhances
conventional convolution by forming channel-wise feature responses through three

consecutive operations: squeeze, excitation, and scale, collectively denoted as Fgg.

e Squeeze Operation: This stage is responsible for aggregating global spatial
information across each channel. It employs Global Average Pooling (GAP)
to generate channel-wise statistics, contained in a channel descriptor. The
squeeze operation Fy, : RIWXC — RY transforms the feature tensor U into

the channel descriptor z € R¢:

T
X | =
S
M=
&

2= Fy(u) =

where u.(i,7) represents the value at position (i,j) in the c-th channel of
the block’s input. Each statistic z. € R possesses a global receptive field
and provides a representation of the entire spatial extent of the corresponding

channel.

e Excitation Operation (Adaptive Recalibration): After the squeeze op-
eration, the goal is to capture inter-channel dependencies and generate a set of
modulation weights. This is achieved through a gating mechanism parameter-

ized by a two-layer Multi-Layer Perceptron (MLP) with a bottleneck structure.

The excitation transformation F,, : R¢ — R¢ is formulated:

S = FGI(Z, W) = U(Wgé(le + bl) + bQ)

where W, € R%*C and W, € RE*S are the weight matrices of the first and
second fully connected layers respectively, by € R% and b, € RY are the cor-
responding bias vectors, d refers to a non-linear activation function (typically
ReLU), o denotes the sigmoid activation function and r > 1 is the reduction
ratio hyperparameter controlling block capacity and computational cost (typ-
ically set to 16). The first transformation Wiz reduces dimensionality from
C to %, constraining model capacity and computational complexity. The sub-
sequent, expansion via Wy restores the original channel dimensionality. The
ReLU activation § allows for the capture of non-linear inter-channel dependen-
cies and the sigmoid activation o ensures that the weights s. € [0, 1], where

s. ~ 0 indicates channel suppression and s. &~ 1 indicates channel emphasis.

e Scale Operation: Finally, the scale operation applies the learned channel-

21

wise weights to the original feature maps through element-wise multiplication.
ic = Fscale(uca Sc) =S.Ou,

where u, € R?*W is the original feature map, and x, € R¥*W represents the

recalibrated feature map.

The complete SE block transformation can be expressed as the composition:

X = FSE(U) == Fscale<U7 Few(qu(U)))

where X = [X1,%s,...,%Xc] € RIEXWXC represents the final recalibrated feature

tensor.

The SE block introduces little computational overhead while providing substantial
performance improvements. Briefly, the additional trainable parameters introduced

are:

W, b1 W,
T T T AN e ¢
PSE:CX—+ — +—XC+ C :—+—+C (24)
N T T’J T ., T T
Fgl FEQ

The additional floating-point operations (FLOPs) per forward pass are:

c C C
FLOPsg =CxHXW4+(CXx —+ —4+—xC+C+CxHxW
N—————— r r, T , S——————
GAP ~~ ~~ Scale
FC1 FC2
202
=2xCxHxW+4+ —+42C (2.5)
r
F.. (W)
X U F, () » [N ———
/ 1x1%C 151=C
H' For H
E.'f W

Figure 2.6: Configuration of a Squeeze-and-Ezxcitation Block. Image taken from [23]

22

This series of operations allows models to focus on the most informative feature
maps and controls the influence of those less relevant. Integrating SE blocks into
existing CNN architectures has been shown [23] to significantly improve perfor-
mance while imposing minimal additional computational cost, leading to more ro-
bust and efficient performances. As a result, it is common to integrate SE Blocks
in pre-existing model schemes, e.g. the ResNet module [I7], forming the SENet
or SE-ResNet model (Fig. [2.7]) which achieved 1st place in the ILSVRC 2017

classification competition [24].

| x X

| Inception | I Inception | P
X
Global pooling ¢
Inception Module Lxix
FC 1x1x E ResMet Module
-
T [
ReLU 1xlx—
-
FC 1xixC
Sigmoid 1x1xC
Scale HxFxC

Figure 2.7: Integration of SE Blocks in the original Inception module (left). The ResNet module,
forming the SENet or SE-ResNet module (right). Image taken from [23].

23

2.5 Regularizers

Regularization is a fundamental technique in ML applications, implemented to pre-
vent overfitting and aid generalization on unseen data [6]. Regularization is often
employed in complex applications with large sets of trainable parameters, to ensure

a robust performance.

Consider a network with weights w € R?. Regularization modifies the model’s loss

function, introducing a regularization term that penalizes large weight magnitudes.

Lreg(W) = L(W) + X - Q(w)

where L is the original loss function, €2 is the regularization term and A > 0 is a hy-
perparameter called regularization strength. In this Thesis, the two most common
regularization techniques are presented and implemented, Lasso or L1 Regulariza-
tion and Ridge or L2 Regularization. Both introduce a penalty term derived from

the norms of the model’s weights [15].

e L2 Regularization (Ridge Regression / Weight Decay) penalizes the

squared magnitude of weights, with the regularization term:

d
Q(w) = ||w|5 = wa with Vo (AQ) = Vo (\[|W][3) = 2Aw
i=1

During optimization in the training process, say with the gradient descent, the

weights are updated:

Wil = Wy — T](VE(Wt) + 2)\Wt)

where 7 is the learning rate. This update shrinks the trainable weights propor-
tionally to their magnitude. Application of L2 drives the network to distribute
learned information across more parameters, leading to a reduced sensitivity

to noise and a better ability to generalize.

e L1 regularization (Lasso Regression) penalizes the absolute magnitude of

the weights, with the regularization term:

24

Q(w) = [[wlli = S Jw] with Vi (A2) = Ve Al|wll1) = A - sign(w)

=1

where sign(w) is undefined at zero. During optimization in the training process

with the gradient descent, the weights are updated:

Wi = Wy — n(VL(W) + A - sign(wy))

Due to the non-differentiability at zero, proximal methods or soft-thresholding

operators are employed at w; = 0.

Unlike L2, L1 regularization can drive some weights exactly to zero, performing
feature selection, which is particularly useful in high-dimensional problems

where many features could be irrelevant.

In practice, it is common to implement a hybrid approach, combining both regu-

larizations (Elastic Net) [51], modifying the loss function according to:

Lyeg(W) = L+ Mf[wls + Ao wl[3

25

Chapter 3

Implementation Practice

3.1 Introduction

This chapter outlines the methodology employed in all three subsequent Applica-
tions. Initially, it introduces the in-house software and techniques employed across
the case studies for dataset generation, flow simulation and model fine-tuning (in
this order). It then provides a comprehensive description of the procedural pipeline
followed, and presents fundamental setups that are consistently reapplied and im-

plemented, thereby eliminating redundancy and ensuring legibility.

3.2 Free-Form Deformation and Morphing Boxes

Free-Form Deformation (FFD) is a geometric modeling technique that allows the
manipulation of shapes through the control of an underlying lattice structure [41].
A set of Control Points (CPs) is arranged in such a way that a cubical grid is
defined, fully enclosing the geometry to be deformed. This control grid serves as a
parameterization framework for the geometry; the initial positions of the CPs define
the undeformed state of the geometry, while displacement of the control points is

linearly propagated to the underlying geometry, altering its shape.

In [41], the working scheme parameterizing the deformation is based on trivariate
Bernstein polynomials. Consider a point p = (z,y, z) in the original (undeformed)
space. It’s deformed position p’ = (2/,7/, 2’) is calculated using a trivariate tensor

product of Bernstein polynomials as:

n m l

P'=Y_> Y Blu)B'(v)B(w)PS

i=0 j=0 k=0

where Pg,f are the CPs forming the FFD regular control grid, (u, v, w) are the local

coordinates of p within the unit cube of the control lattice and B]' denotes the

26

Berstein polynomial of degree n:
B (u) = (") wi(l —)
i

Movement of a control point only affects the embedded geometry locally, to an
extent dictated by the Bernstein basis. Specifically, if a CP Pg,f is moved, the
change in the geometry is restricted to the region where the corresponding basis
functions are non-zero. This locality of the propagated influence makes Free-Form
Deformation a very powerful tool in engineering applications like shape optimization
and design exploration. Additionally, FFD can be extended beyond cubic lattices
and incorporate more sophisticated basis functions for greater control and precision

29].

[[—— [T, . *----- \ e .- '.. ----- .
L] . :. .: - L4 . ./ . — - + Y KEY
i e .- . Lattice
*----= - ; ----- L] * ’ A ,I B
| ['S —rt —— Inset
: Lol bl Object
| W e . e . .) - -®
| .' Cell
| . Contour
. . . - . . $ozoms - * *
[A] [B]

Figure 3.1: Stages of Free-Form Deformation. [A] Pre-deformation stage, depicting the object
fully enclosed in the control lattice in its undeformed state. [B] Post-deformation: Displacement of
the CPs caused a local deformation to the inset object. Image taken from [12]

In this Thesis, Morphing Bozes are employed. Following the core concept of FFD,
Morphing Boxes use splines to parameterize the deformation and do not necessarily
require the geometry-to-be-deformed to be fully embedded within the control grid.
Specifically, in Applications II and III of this Thesis, only predefined regions of the

geometry are enclosed by the lattice.

The method of morphing boxes is implemented through the PUMA software [2],
which offers an application of the FFD methodology based on Non Uniform Rational
B-Splines (NURBS). Each time the NURBS lattice’s control points are displaced,
the geometry encapsulated by the grid is deformed and the CFD mesh is adapted

to it. This allows for a time-efficient creation of a diverse dataset.

The displacement of the control points is performed using the Latin Hypercube
Sampling (LHS) method. LHS is a popular statistical method used in Design of

Experiments (DOE) applications to generate near-random samples from a mul-

27

tidimensional space, ensuring a uniform and representative distribution of points
[32]. In a n-dimensional problem, the core concept of LHS is to divide each di-
mension of the n-dimensional design space into equal, non-overlapping intervals
(strata) and ensure that each stratum is sampled exactly once, creating a stratified
sampling scheme that minimizes clustering of the sample points and guarantees a
well-distributed sample set. Application of the LHS method allows for the creation
of a representative dataset without the need for excessive sampling. It has been
demonstrated [31] that applying LHS allows for more efficient sampling of the design

space, relative to other popular methods like the Monte Carlo sampling.

Monte Carlo LHS Sampling

. a®e * 0

LT .
@ P
® A = C. e® :. = = .‘.
® 2 . & o. R '. L
3 0.51% o @ e o205 = ®o 1 o ®
[] L E]
© e 0. s - ot IS ® e
¥ s * ® o ® e e
0 — - 0 - v s
0 0.5 1 {0 0.5
X, X,

Figure 3.2: Comparison of the Monte Carlo and LHS Sampling techniques with the same sample
size, demonstrating LHS’s ability to cover the design space more evenly. Image taken from [{0]

3.3 The PUMA CFD Solver

All flow simulations are performed employing the in-house GPU-accelerated Parallel
Unstructured Multirow Adjoint (PUMA), an advanced CFD solver developed by the
PCOpt/NTUA [2], [46].

of GPUs, allowing for efficient and accurate simulations of complex fluid flows,

It is designed to leverage the computational capabilities

particularly in turbomachinery applications.

PUMA solves numerically the 3D Reynolds-Averaged Navier-Stokes equations (RANS)
for compressible and incompressible fluids. In this work, the incompressible variant
is used (the pseudo compressible for Application I). The flow and the RANS adjoint
equations are discretized on unstructured /hybrid meshes using the vertex-centered

finite volume method.

The steady residuals of the viscous flow for an incompressible fluid read

=0

ékvk ékck

28

where fi"™ and f?* are the inviscid and viscous fluxes respectively, formulated:

PUE 0
purvU1 + poiy, T1k
2 = | pukva + pag v = Tok
PURU3 + Poay, T3k
pukhy | | vk + x|

In this notation, p, p, vx and h, are the fluid’s density, pressure, velocity components
and total enthalpy respectively. Ogi,, denotes the Kronecker symbol. The viscous

stress tensor is given by:

Qv | Ovm 25 Ou
ox,, Ox, 3 0Ox

Tem = ,u(

where p is the fluid’s bulk viscosity and ¢ is the heat flux. PUMA includes the
inviscid, laminar and viscous flow models, with all computations performed with a
second-order accuracy. In the case of a turbulent low, PUMA allows the application
of a variety of turbulence models; herein the Spalart-Allmaras turbulence model is

employed.

PUMA offers a high parallel efficiency in both the flow and the adjoint solvers by
using the Mixed Precision Arithmetics (MPA) [2], which reduces memory usage
and memory transactions between the GPU threads and the device memory with

no effects on the code’s accuracy.

3.4 Evolutionary Algorithms and the EASY Soft-

ware

Evolutionary Algorithms (EAs) are population-based optimization methods in-
spired by biological evolution. These algorithms iteratively improve a set of can-
didate solutions (chromosomes) by evaluating their performance against an objec-
tive function. The best-performing solutions are selected for reproduction through
crossover operations, while mutation introduces controlled variations to explore new
regions of the design space [I1]. This stochastic approach allows EAs to escape lo-

cal optima, making them particularly effective for complex, nonlinear optimization

29

problems where gradient-based methods often struggle.

EASY (Evolutionary Algorithms System) is a versatile optimization framework de-
veloped by the PCOpt/NTUA [1]. It implements these evolutionary principles
while incorporating advanced features such as distributed computing and surro-
gate modeling [27]. These capabilities make EASY well-suited for computationally
demanding engineering optimization tasks, including cases where explicit mathe-

matical formulations are unavailable or impractical.

In this Thesis, EASY is employed for single-objective, unconstrained optimization,
specifically for (hyper)parameter tuning of the developed models and their train-
ing. Its adaptive search strategy ensures efficient convergence while maintaining

flexibility across different problem configurations.

3.5 Procedural Pipeline

The first part of this subsection concerns the established methodology that is fol-
lowed across the subsequent Applications, to generate the corresponding working
datasets. Essentially, it comprises two steps; the generation of a dataset from a
baseline geometry, and (in Applications II and III) the pre-processing of the sam-
ples to match a desired style for the context of this Thesis.

The second part regards the EASY software’s design space and general setup in the
parametric studies conducted in each case, concerning the shape and composition

of the examined network configurations.

A major downside of data-driven models is the restriction of their output predictions
within a constrained design space established by the training dataset’s bounds.
This constraint introduces an inherent locality to these models; regardless of their
accuracy and computational efficiency, their utility is restricted to specific regions of
the design space. This limitation establishes a practical ceiling on the computational
resources that can be justifiably expended to model development and training,
creating a cost-effectiveness trade-off that must be taken into consideration before

establishing any recurring processes.

A surrogate model’s total cost is calculated as the sum of the dataset generation
cost (LHS, FFD, CFD computations to obtain ground truth, Image preprocessing in
Applications II-III), the training cost (depends on network trainable parameters and

hyperparameters of training) and the fine-tuning cost (EASY domain of exploration

30

and setup).

3.5.1 Methodology Overview

In a real-world industrial setting, an automotive company would typically store a
database of sketches and variants of conceptual or existing designs, along with their
corresponding performance data. These stylistically similar records (assuming they
were designed by the same styling team) could be directly used to train this Thesi’s
models. Herein, synthetic datasets are generated, following the sequence of steps

presented below.

Initially, NURBS Morphing Boxes are defined at certain position(s) of a baseline
geometry. Their CPs are displaced according to the LHS method, creating Ny,
instances, and the FFD technique is applied to deform the underlying geometry,

resulting in the generation of Ny, variations of the baseline geometry.

The output dataset of all cases is obtained via CFD simulations performed by
PUMA. The calculated properties/forces are considered the ground truth. Key
mesh and flow parameters for each case are summarized in tables within their

respective introductory subsections.

Lastly, in Applications II and III, filters are applied to images of the various geome-

tries to mimic the desired sketch-like style and resemble industrial concept drawings.

Since this algorithm relies on expensive CFD simulations, the sample size Ng, for
each case should remain limited; excessive sampling and flow solving would contra-
dict the primary goal of creating a computationally efficient local surrogate model
and undermine its importance. Ng, is defined 100 in Applications I, IT and 366 in

Application III.

3.5.2 EASY setup for fine tuning

In subsequent Applications, certain hyperparameters of the models’ training process

are adjusted via Trial-and-error studies. However, the different network configura-

31

tions are examined entirely by EASY, which is used for cost-efficient, case-dependent

fine tuning, rather than overall model optimization.
In all cases, the models are parameterized by:
e The total Number of Convolutional Layers

e The filter size for each Convolutional Layer

The activation function applied by Convolutional Layers (shared)

The total Number of fully connected Layers

The neuron size for each fully connected Layer

The activation function applied by fully connected Layers (shared)

and EASY evaluates distinct configurations. The following setups are implemented

in each case, unless specified otherwise in a subcase.

Application I ‘ Application IT ‘ Application ITI

Number of CNN Layers Up to 8 (ceil)
= Number of CNN Layers Up to 8 (ceil)
g CNN Li-Lee; filter size (pow. of 2) Upto 9
5 DNN Lj-Leei; neuron size (pow. of Upto9 Up to 12 Up to 12
g2
Lc-v; ReLU, GELU,
St . .
2 | Activation function CNN & DNN b, sigmoid, feLt, GELY,
LE Layers SELU, ELU, tanh, sigmoid

Leaky ReLLU

SE Block Integration - Implicitly via empirical rules
g- EASY Evaluations*® 125 250 250
E Population Size* 30 30 45
w | Parent:Offspring ratio 3
é Elite Population size 15

Table 3.1: Summary of the EASY framework’s setup in the subsequent Applications. (*) indicates
that the presented values may vary, if specified so in the corresponding subsection.

The use of EASY allows for the proper adjustment of the networks’ architectural
composition and component parameters, unlocking and demonstrating the true ca-
pabilities of the examined configurations. During fine-tuning, the kernel size as well
as the stride length of the 2D Convolutional layers have predefined shapes (3, 3)
and (1, 1) respectively and remain fixed. The same applies to the pool size in the

MaxPooling layers, which is fixed to the shape (2, 2).

32

Chapter 4
Application I - Isolated Airfoil Prop-

erties Prediction

4.1 Introduction

Application I focuses on predicting airfoils’ geometric and aerodynamic properties
(area, lift coefficient C'f, and drag coefficient Cp) using CNNs. The primary ob-
jective is the development of a general CNN architecture that achieves superior
cost-effectiveness in 2D aerodynamic-governed phenomena, when compared to con-

ventional approaches.

Additionally, a second, implicit goal involves investigating the network’s structural
components and hyperparameters. This exploration aims to constrict EASY’s do-
main of exploration in subsequent Applications II and III, which naturally demand

greater computational resources and involve more training parameters.

As a result, Application I is essentially a foundational study for the development of
the final 3D car drag prediction network, focusing both in accuracy and computa-

tional efficiency (both in training and fine-tuning).

Figure 4.1: The NACA/318 airfoil geometry embedded in the 5 x 3 NURBS box. Blue CPs are
fized while red CPs are allowed to move.

The baseline geometry (NACA4318 Isolated Airfoil) is controlled by the 5 x 3
NURBS box of Fig. . The blue CPs are fixed, while the red ones are allowed to

33

move by +10% of their reference position in the chordwise and normal-to-the-chord
directions, resulting in 26 design variables in total. A dataset of Ng, ; = 100 sample
airfoils in the form of black-and-white images (Fig.) is generated. A structured
grid of 30K cells is generated around each airfoil, and the flow of Table [4.1] is
solved using the PUMA CFD software. The working dataset, originally developed

in [26] for different objectives, is provided in a ready-to-use format.

’ Quantity ‘ Symbol ‘ Value ‘
Freestream Mach Number Mo 0.13
Reynolds Number (-10°) Re 3.8
Angle of Attack (°) AoA 2.2

Table 4.1: Flow conditions of Application I.

Figure 4.2: (left) A (scaled) depiction of the outlines of the NACA4318 airfoil’s variations that
comprise this Application’s dataset. (right) A sample airfoil displayed in the black-and-white form
that it will be inserted into the model.

The lift and drag coefficients are given by the following formulas:

L D

Cp=—" Cp=—"
EoospuzA 0 TP T 05p02A

where L and D are the lift and drag forces respectively, p is the air density and U,

is the freestream velocity.

34

4.2 Proposed Baseline Architecture

Capture of the non-linear phenomena governing the aerodynamic problem requires
1) successfully capturing features in the input images (Image Recognition - CNN)
and 2) correctly interpreting these features (DNN). Thus, the developed models
follow the simple architecture of Fig. ; the first half comprises subsequent
pairs of Convolutional and Max Pooling layers, while the second half is a sequence
of dense layers leading to a scalar output. The black-and-white depictions of the
generated samples (Fig. [4.2]) are fed into the network in the form of [640 x 320]
tensors. Out of the 100 samples, 20% are isolated and used to evaluate the model
post training. Out of the 80 remaining samples, 20% is used to form a validation

set for the model to be evaluated in each epoch during the training process.

Figure 4.3: The single-branch CNN model architecture implemented in the present application,
illustrated both simplified (top) and more detailed (bottom), featuring subsequent pairs of 2D
convolutional layers and Max Pooling layers, followed by a series of fully connected layers. The
output layer consists of one neuron, corresponding to the single scalar value of interest.

35

4.3 Case I - Airfoil’s lift coefficient

In Case I, the goal is the accurate prediction of the airfoils’ C',. The elite conven-
tional configurations proposed by the evolutionary algorithms share a small number
of layers, limited to a maximum of 5 2D Convolutional/MaxPooling pairs and 3
dense hidden layers. The proposed models mainly used the ReLU and GELU ac-
tivation functions for the 2D Convolutional and dense layers respectively, however

models using GELU for both types of layers achieved more accurate predictions.

Fig. presents the predictions of the three elite conventional model configura-
tions proposed by EASY and summarized in Table . The models only differ
in terms of the activation function they use. In the first model, the GELU activa-
tion function is selected and used in both the Convolutional and the dense layers
(G-G configuration). The second model features the ReLU and GELU activation
functions in the 2D Convolutional and dense hidden layers respectively (R-G con-
figuration) and the last model uses the ReLU function in all hidden layers (R-R
configuration) (Table [4.2).

Parameter | Model 1 (G-G) | Model 2 (R-G) | Model 3 (R-R) |
Number of CNN Layers 5 5 5
Number of DNN Layers 3 3
CNN L1 filter size (pow. of 2) 3 3 3
CNN L2 filter size (pow. of 2) 5 5 5
CNN L3 filter size (pow. of 2) 5 5 5
CNN L4 filter size (pow. of 2) 7 7 7
CNN LS5 filter size (pow. of 2) 8 8 8
DNN L1 neuron size (pow. of 2) 7 7 7
DNN L2 neuron size (pow. of 2) 6 6 6
DNN L3 neuron size (pow. of 2) 5 5 5
act. function CNN Layers GELU ReLU ReLU
act. function DNN Layers GELU GELU ReLU
kernel size (constant) (3,3)

strides (constant) (1,1)

pool size (constant) (2,2)

batch size 8

epochs 400

Table 4.2: Summary of the proposed conventional models after the exploration of the design space
by EASY.

36

174

C; Value

0 1 2 3 4 5 6 7 8 92 W0 11 12 13 14 15 16 17 18 19
Test Sample ID
HEl True Values M R-G Configuration Predicticns
mmm G-G Configuration Predictions mmm R-R Configuration Predictions

G-G Configuration R-G Configuration R-R Configuration
MAE: 0.0079 | MRE: 0.5892 % MAE: 0.0108 | MRE: 0.7981 % MAE: 0.0109 | MRE: 0.7948 %
1.6 - 1.6 7 3
g 151 LB
©
2 14 . 14
Ju—-l‘ L]
'é 131 g .
&
1.2 2
74 11 4
l.l?_ l.|4 1_.'6 1,I2 l.l-l l.I6 l.l?_ l.|4 l.I6
Target C; Values Target C; Values Target C; Values

Figure 4.4: Performance of the proposed G-G, R-G and R-R models. (top) Bar plot comparing the
target Cr values to the predictions of the three proposed models. (bottom) Regression plots for each
model, illustrating the agreement of its predictions with the target Cr values.

All models perform well, however application of the ReLLU activation function
seems to downgrade performance, mainly concerning samples closer to the dataset’s
boundaries. Application of GELU in both the 2D Convolutional and dense layers

results in better agreement of the model’s prediction with the target values.

To improve accuracy and achieve a more consistent performance, SE Blocks are
integrated between each Convolutional and MaxPooling layer. In this Application,
all SE-Blocks share the same configuration; a reduction ratio of 16 is defined and the
excitation process is performed by two fully connected layers with floor(C/ratio)

and C' neurons respectively, using the ReLLU activation function.

Respecting the updated architecture, fine-tuning proposes model configurations of
higher complexity, featuring a larger number of dense hidden layers and neurons.
The GELU activation function is used both for the Convolutional and the fully
connected layers, with only a single model applying the ReLU function in the Con-

volutional layers. No other activation functions are applied in the elite networks.

37

Two proposed elite configurations, extensions of the G-G and R-G models with
SE Blocks, are selected (denoted G-G-SE and R-G-SE), presenting an increased
accuracy and overall performance when compared to the models lacking the SE-
blocks, as depicted in Fig. [4.5].

- o
a
.
i
dd--;‘.-‘}’

]

os

Relative Emor [%]

......

. B 025 *_/"
T tiwe — e
o4 2 % =T 0.00 - &

11 12 L3 13 15 16

12 L3
Cp Test dataset range

€ Test datasetrange

+ 0-0 Data Points

—— G-0 Interpolation

+ G-G'5E Data Points —— G-G-5E Interpolation

== OG-0 MRE [%]: 0.589
- G-G-SE MAE [%]: 0,403

+ R-G Data Points

—— R0 Interpolation

== R0 MRE [%]: 0.788

+ R-GSE Data Points ~ —— R-G-SE Interpolation == R-G-5€ MAE [%} 0.598

Figure 4.5: Demonstration of the effect of SE-Blocks on the models’ performance, illustrating the
(distribution of) ARE of the G-G models (left) and R-G models (right) evaluated on the Test
Dataset.

It

presents a visualization of the error distribution of models’ evaluations. The scat-

This error plot format is used multiple times throughout this Application.

tered points correspond to the test samples comprising the evaluation dataset. Their
x— value corresponds the true value of the sample, while the y—axis refers to the
ARE of the corresponding predictions. The test data range is divided into seg-
ments, and the local mean error is calculated for all points within each segment.
The curved line represents an interpolation of these mean error values, providing
an overview of the error distribution across the entire dataset. The dashed line

illustrates the M ARFE for each Model.

Configuration G-G-SE, featuring the characteristics of Table [£.3] performs accu-
rately across the entire range of the dataset. Integration of SE-Blocks resulted in
an almost 31% decrease of the mean error, achieving a M ARE of 0.403%, which is
more evenly distributed between the test samples. Additionally, convergence of the
error was achieved in fewer epochs. The induced relative computational drawback

is approximated at 0.79%.

38

Parameter ‘ Value Parameter ‘ Value

Number of CNN Layers 5 Number of DNN Layers 8
CNN L1 filter size (pow. of 2) 3 DNN L1 neurons (pow. of 2) 6
CNN L2 filter size (pow. of 2) 2 DNN L2 neurons (pow. of 2) 6
CNN L3 filter size (pow. of 2) 6 DNN L3 neurons (pow. of 2) 5
CNN L4 filter size (pow. of 2) 5 DNN L4 neurons (pow. of 2) 9
CNN L5 filter size (pow. of 2) 3 DNN L5 neurons (pow. of 2) 9
CNN L6 filter size (pow. of 2) - DNN L6 neurons (pow. of 2) 9
CNN L7 filter size (pow. of 2) - DNN L7 neurons (pow. of 2) 6
CNN LS8 filter size (pow. of 2) - DNN L8 neurons (pow. of 2) 9
act. function CNN layers GELU act. function DNN layers GELU
kernel size (constant) (3, 3) batch size 8
strides (constant) (1, 1) epochs 400
pool size (constant) (2, 2)

Table 4.3: Summary of the proposed G-G-SE model after the exploration of the design space by
EASY.

Cross Section Area Value

Model Predictions

0 1 2 3 4 5 6 T 8 9 10 11 12 13 14 15 16 17 18 19
Test Sample ID
mEm True Values mmm Predicted Values

e 0.407 —— Train Loss
' 0.35 - —— Val. Loss
15 S 0.30
0
v 0.25 A
1.4 = 5
S 0.20 4
2
1.3 0.15
&
2 0.10 A
12
0.05
1.1 A 0.00 4
T T T T T T T T T T T
11 1.2 13 14 15 1.6 0 100 200 300 400
True Values Epochs

Figure 4.6: Performance of the selected G-G-SE model. (top) Bar plot comparing the target Cy,
values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.403%). (left) Regression plot of the selected model, illustrating the agreement of its
predictions with the target Cr values. (right) Convergence of the MAE of the model over the
training epochs.

39

4.4 Case II - Airfoil’s drag coefficient

Case II concerns the prediction of airfoils’ C'p. Initially, the baseline network ar-
chitecture of Case I is used. The models proposed by EASY apply mostly the
ReLU activation function in both convolutional and dense layers, and achieve a
minimum MARE of 0.5463% across the test dataset. Similarly to Case I, SE-
Blocks are integrated, aiming to direct attention to the more informative feature

maps that capture nonlinearities governing the case. Surprisingly, this downgrades
performance, increasing MARE to 0.6143% (Fig.)

Cp Value

0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19
Test Sample 1D
HEl True Values HEE R-R-SE Configuration Predictions
mmm R-R Configuration Predictions

R-R Configuration R-R-SE Configuration
MAE: 1.959e-04 | MRE: 0.5462 % MAE: 2.219e-04 | MRE: 0.6143 %

0.039

0.038 0.038 -
g 0.037
= 0.037 . b
g
=]
£ 0.036 0.036 -
g
& 0.035 - 0.035

0.034 0.034 -

0.034 0.0'35 0.636 0.(.';3? 0.0I3B 0.034 O.OIBS 0.636 0.0I3? 0.(;39

Target Values: Cp Target Values: Cp

Figure 4.7: Performance of the proposed R-R and R-R-SE models. (top) Bar plot comparing the
target Cp values to the predictions of the two proposed models. (bottom) Regression plots for each
model, illustrating the agreement of its predictions with the target Cp values.

The results indicate that moderately-tuned plain SE-models predict the C'p inade-
quately, suggesting that either SE-Blocks alone do not provide sufficient represen-
tational power, or that extensive attention needs to be given to the interpretational
part of the network. To enhance performance and improve generalization, L2 Regu-

larization is introduced in the fully connected layers, with a regularization strength

40

A = 0.001. Additional exploration by EASY proposes the network summarized
in Table 4.4, The combination of SE-Blocks and L2 regularization results in the
slightly improved overall performance of Fig. , with minimal additional com-
putational cost (approximately 0.66% increase in training time). While the Elite
network achieved an improved MARE (0.523% , ~ 4.24% decrease), distribution
remains non-uniform across the dataset, indicating potential limitations in general-

ization, when insufficient resources are expended in fine-tuning.

‘ Parameter ‘ Value ‘ Parameter ‘ Value ‘
Number of CNN Layers 5 Number of DNN Layers 4
CNN L1 filter size (pow. of 2) 7 DNN L1 neurons (pow. of 2) 7
CNN L2 filter size (pow. of 2) 9 DNN L2 neurons (pow. of 2) 5
CNN L3 filter size (pow. of 2) 6 DNN L3 neurons (pow. of 2) 6
CNN 14 filter size (pow. of 2) 7 DNN L4 neurons (pow. of 2) 7
CNN L5 filter size (pow. of 2) 2 DNN L5 neurons (pow. of 2) -
CNN L6 filter size (pow. of 2) - DNN L6 neurons (pow. of 2) -
CNN L7 filter size (pow. of 2) - DNN L7 neurons (pow. of 2) -
CNN LS8 filter size (pow. of 2) - DNN L8 neurons (pow. of 2) -
act. function CNN layers ReLU act. function DNN layers GELU
kernel size (constant) (3, 3) batch size 8
strides (constant) (1, 1) epochs 700
pool size (constant) (2, 2)

Table 4.4: Summary of the proposed R-G-SE model after the exploration of the design space by
EASY.

41

Cp Value

Model Predictions

0 1 2 3 4 5 6 f i 8 9 10 11 12 13 14 15 1?6 17 18 19
Test Sample ID
EEE True Values BB Predicted Values

x1073
3.0 —— Train Loss
0.038 — Val. Loss
e 2.5
2
0.037 A Y50
&
32
o
0.036 @ 155
4
5 1.0 -
0.035 2
0.5
0.034 A
T T T T 0‘0 _ T T T T T T T T
0.034 0.035 0.036 0.037 0.038 0 100 200 300 400 500 600 700
True Values Epochs

Figure 4.8: Performance of the selected R-G-SE model. (top) Bar plot comparing the target Cp
values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.523). (left) Regression plot of the selected model, illustrating the agreeent of its
predictions with the target Cp wvalues. (right) Convergence of the MAE of the model over the
training epochs.

42

4.5 Case III - Airfoil’s cross section area

Similarly to the Cp case, the connection between geometric modifications and cross
section area is non-linear, however predicting it supposedly easier, since a pixel-
wise approach should theoretically be sufficient. Initially, two models are evaluated,
employing SE-Blocks along with L1 and L2 Regularization respectively (denoted
L1-SE, L2-SE). Both follow the baseline architecture of the previous cases. Fine-
tuning strictly proposes models applying the ReLU activation function in their

Convolutional layers and the GELU activation function in the dense layers.

Cross Section Area

0 o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Test Sample ID
N True Values N 2-SE N |1-SE

L2-SE Configuration L1-SE Configuration
MAE: 2.164e-04 | MRE: 0.6021 % MAE: 2.346e-04 | MRE: 0.6517 %
0.03%9
0.038 1 0.038 -
w
5
= 0.037 0.037 +
B
=
L 0036 4 0.036
L)
<
; 0.035 1
% 0.035 - :
0.034 +
0.034
0.034 0.035 0.036 0.037 0.038 0.034 0.035 0.036 0.037 0.038
Target Values: Cross Section Area Target Values: Cross Section Area

Figure 4.9: Performance of the proposed L1-SE and L2-SE models. (top) Bar plot comparing the
target area values to the predictions of the two models. (bottom) Regression plots for each model,
illustrating the agreement of its predictions with the target area values.

43

+

2.0 4

+

—_ +
L 15
[' +
g
e
w
£ 104
=
m
K]
4

0.5

0.0 1

T T T T T
0.034 0.035 0.036 0.037 0.038
Test dataset Cross Section Area range
+ L2-SE Data Points —— L2-SE Interpolation == |L2-SE MRE [%]: 0.6021
+ L1-SE Data Points —— L1-SE Interpolation == L1-SE MRE [%:]: 0.6517

Figure 4.10: Illustration of the (distribution of) ARE of the L1-SE and L2-SE models evaluated
on the same Test dataset.

Fig. presents the two Elites’ evaluations, showcasing a slightly better perfor-
mance by the L2-SE model. Additionally, Fig. depicts the models” Absolute
Relative Error distribution, when evaluated on the same test dataset. The L2-SE
configuration performs slightly better.

The L2-SE model is further tuned with EASY. The training epochs are increased
to 700 and the regularization strength to 0.0013. The proposed model, denoted
L2-SE*, is summarized in Table .5 Tt presents a better overall performance and
a MARE of 0.3353% (~ 44.3% decrease) , distributed more evenly throughout

the dataset, as shown in Fig. [4.11]. The (SE-Block associated) computational
drawback is approximately 0.71%.

1754

150 4

125 4

100 4

0.75 4

Relative Error [%]

0.50 4

0.25 4

0.00 4

T T T T T
0.034 0.035 0.036 0.037 0.038
Test dataset Cross Section Area range

+ L2-SE Data Points —— L2-SE Interpolation == | 2-SE MRE [%]: 0.6021
+ L2-SE* Data Points —— L2-SE* Interpolation == L2-SE* MRE [%]: 0.3353

Figure 4.11: Illustration of the (distribution of) ARE of the L2-SE and L2-SE* models evaluated
on the same Test dataset.

44

Parameter ‘ Value Parameter ‘ Value

Number of CNN Layers 5 Number of DNN Layers 3
CNN L1 filter size (pow. of 2) 5 DNN L1 neurons (pow. of 2) 8
CNN L2 filter size (pow. of 2) 9 DNN L2 neurons (pow. of 2) 9
CNN L3 filter size (pow. of 2) 7 DNN L3 neurons (pow. of 2) 6
CNN L4 filter size (pow. of 2) 2 DNN L4 neurons (pow. of 2) -
CNN L5 filter size (pow. of 2) 2 DNN L5 neurons (pow. of 2) -
CNN L6 filter size (pow. of 2) - DNN L6 neurons (pow. of 2) -
CNN L7 filter size (pow. of 2) - DNN L7 neurons (pow. of 2) -
CNN LS8 filter size (pow. of 2) - DNN L8 neurons (pow. of 2) -
act. function CNN layers ReLU act. function DNN layers GELU
kernel size (constant) (3, 3) batch size 10
strides (constant) (1, 1) epochs 700
pool size (constant) (2,2)

Table 4.5: Summary of the selected L2-SE* model after the exploration of the design space by EASY.

Cross Section Area Value

Test Sample 1D
N True Values B Predicted Values

x10~3
3.0 A —— Train Loss
0.038 — Val. Loss
= 2.5
o g
s &
E 0.037 o 2.01
= 5
o [g
o 0.036 4 a 1.5
= <
2 ® 5 1.0
= :]
0.035 - s
~ hd 0.5
0.034 0.0 4
0.034 0.035 0.036 0.037 0.038] 100 200 300 400 500 600 700
True Values Epochs

Figure 4.12: Performance of the selected L2-SE* model. (top) Bar plot comparing the target area
values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.3353%). (left) Regression plot of the selected model, illustrating the agreement of its
predictions with the target area values. (right) Convergence of the MAE of the model over the

training epochs.

45

4.6 Overview and Conclusions

Application I demonstrates the capability of neural networks to accurately predict
airfoil aerodynamic characteristics directly from image representations. The devel-
oped models estimate the lift coefficient Cp, drag coefficient Cp, and airfoil cross-
sectional area. While prediction errors remain low across all cases, some variations
occur due to differences in data variance. Since model predictions are constrained
by the dataset’s target value ranges, direct comparison of relative errors of the dif-
ferent quantities is misleading due to their greatly different scales. For instance, Cp
values range from 0.0329 to 0.0396 (a span of ~0.0066), whereas Cf values span
from 0.9438 to 1.7490 (a range of ~0.8051, over one hundred times larger) More-
over the three output quantities follow different distributions (Cp: o = 0.1812,
Shapiro-Wilk normality test [42] p-value = 0.2171 , Cp and Areas: o ~ 0.0015,
Shapiro-Wilk p-value ~ 0.082). Consequently, the relative errors for each quantity

operate on fundamentally different scales.

To achieve a fair comparison of model accuracy across all cases within their training
range, the relative error distribution is computed and analyzed using the standard-
ized data (scaled to a 0-100 range), ensuring a shared scale. Fig. [4.13] presents

this error distribution of the three selected model configurations.

The G-G-SE configuration of the ', case achieves the highest overall accuracy, with
a MARFEgc, = 1.4271%. Drag coefficient prediction is less accurate, potentially
due to its high sensitivity to geometric perturbations. Research has shown that
Cp can exhibit first-order sensitivities exceeding 50% with respect to small design
variations, indicating that even minor geometric changes can significantly impact
drag [49]. The elite network achieved M AREsq.c,, = 6.8854%.

Notably, the optimal model configuration for area prediction achieved M AREs4 areqa =
4.5501%, which appears suboptimal given that it represents a relatively straight-
forward computer vision problem, particularly when working with binary input
images. This suggests that, while increasing model complexity and employing ad-
vanced components can enhance representational and interpretational capabilities,
it may over-parameterize geometric relationships, making it more difficult to iden-

tify simpler input-output connections.

46

F 6 d --- Case C.. MRE [%]: 1.4271
E 4
%)
v + ——
E 24 - - = + =
L] — e
g - e = e — 2

0 'f_' » —

Y ' y | ' v y
0.2 0.3 0.4 0.5 0.6 0.7 0.8

7 --- Case Cp, MRE [%]: 6.8854
= 204
t
w
w
2 10
E -------------- R ——— - .
2 i D 5

0 + +* + +

0.2 0.3 0.4 0.5 0.6 0.7 0.8

= 151 ' -== Case Cross Section Area, MRE [%]: 4.5501
£ 10 - .
- S,
v 4
% 5 T T -r-‘-"‘—q_::: ---------------------------------
2 ¢ ¥ _— N 3
L y ——

0 + +

0.2 0.3 0.4 0.5 0.6 07 0.8

Test Dataset range

Figure 4.13: Illustration of the (distribution of) ARE of the selected models for the three examined
subcases, evaluated on the same test dataset. The Relative Error formula is applied on the
transformed data.

The conducted studies provided a robust baseline network architecture with con-
firmed superiority over the equivalent conventional CNN and negligible increases in
training cost. The results highlight the potential of SE-blocks, both as standalone
components and in conjunction with regularization techniques. This general archi-
tecture serves as the foundational structure for models developed in the subsequent

Applications.

Furthermore, the results of Application I supply valuable insights about the design
space explored by EASY. Ineffective regions of the design space can be system-
atically excluded, thus narrowing down the exploration domain. This allows for
reduced computational resource requirements for model fine-tuning in subsequent

Applications II and III, by avoiding unnecessary parameter searches.

Specifically, EASY identified ReLU, GELU, sigmoid, and tanh as the most promis-
ing candidates as far as activation functions are concerned. The analysis also re-
vealed that dense layer dimensions need not exceed those of convolutional layers,

providing architectural constraints that aid both efficiency and performance.

47

Chapter 5

Application II - Automobile’s Drag
Force and Surface Area (1 Morph-
ing Box)

5.1 Introduction

Application II concerns the extension of the previously developed backbone ar-
chitecture in problems concerning three-dimensional geometries of cars, aiming to
accurately predict their surface area and aerodynamic drag. Although the drag is
the primary quantity of interest, surface area is also examined due to its non-linear
nature. In this way, the model is evaluated on more non-linear data, allowing for
the test of its generalization ability, while not spending excessive computational re-
sources on CFD simulations. Different approaches are examined to develop a CNN
configuration that balances predictive accuracy and computational efficiency in the
context of the task at hand, aiming to identify the most promising one for use in

the subsequent Application III.

5.1.1 The DrivAer car model

The DrivAer is a publicly available aerodynamic benchmark car model developed
by researchers at the Technical University of Munich (TUM) in collaboration with
Audi. It was introduced in 2012 as a more realistic alternative to traditional sim-
plified car models (like the Ahmed body) for CFD and wind tunnel testing in
automotive aerodynamics research [20]. It represents a modern passenger car with
a detailed underbody, wheels, mirrors, and a slanted rear window. Herein, the

fastback configuration is used, featuring a smooth, sloping rear, as depicted in Fig.

B,

48

Figure 5.1: The fastback configuration of the DrivAer open-source car model, featuring detailed
characteristics and a smooth, sloping rear. Image taken from [3]

5.1.2 Dataset Generation

This problem’s dataset, also obtained from [20], results from free-form deforming
the rear end of the baseline automobile. Specifically, 210 CPs are arranged in a
7 x5 x 6 NURBS control lattice and positioned at the rear part of the (half) car, as
depicted in Fig. (extended to the full car). The CPs in red are allowed to move
by +25% in the longitudinal direction and by +60% in the normal-to-the-ground
direction, resulting in a total of 96 design variables. A dataset of Ng ; = 100

samples is generated.

49

Figure 5.2: [llustration of the FFD control lattice partially enclosing the DrivAer model’s rear.
Image taken from [26].

Figure 5.3: The generated mesh around the geometry of the baseline DrivAer model.

A computational grid of ~ 1.4M nodes is generated around the geometry, and the
flow summarized in Table[5.1]is solved, using the PUMA CFD Software. Specifically,
the incompressible variant of the PUMA code is employed, that uses the pseudo-
compressibility method. The simulation concerns half the car’s geometry and uses

symmetry conditions (Fig. [5.4])

50

Quantity Symbol | Value

Freestream Flow Velocity (ms™ ') Us 38.85
Air Kinematic Viscosity (-10~"m?/s) v 1.5
Angle of Attack (°) AoA 0.0

Table 5.1: Flow conditions of Application II.

Figure 5.4: (top) Azial velocity and (bottom) pressure fields of the flow around a sample from the
generated dataset. Negative pressures are present because the ambient pressure is set to zero, since
pressure differences are of interest, not absolute values.

In the automotive industry, stylists typically illustrate conceptual designs by provid-

51

ing their rear, side, rear, top and/or rear three-quarter (R34) views to the design
engineering team. In order to generate a synthetic dataset mimicking a realistic
industrial one, the sample geometries are initially captured from the different view-
points. These images are then resized to relatively small dimensions, to reduce com-
putational load and complexity. Finally, they undergo a series of transformations
aimed at partially reducing the visual information content and giving the images the
desired sketch-like appearance. This process ensures that the final dataset reflects
the characteristics of real-world design sketches. A sample of the input dataset is

given in Fig. [5.5].

Figure 5.5: Result of preprocessing on images of the front, rear, side and upper views of a sample
from the generated dataset. The images are to be fed into the network in this form.

52

5.2 Statistically Informed Dataset Transformation

The small size of the working dataset (Ng ; = 100) already poses challenges for
training. The output values that the model is tasked with predicting are examined
w.r.t. their statistical properties. The results reveal -most notably- an extremely
low variance of 02 = 1.82 and a relatively high mean Drag Force value of u = 226.07
[N]. Such a narrow dynamic range can obstruct model learning by reducing the
gradient magnitude, thus weakening the optimization signal during training [13].
The distributional properties of the output dataset are displayed in Fig. [5.6].

Probability Density

35 A Effective CV o
240 1 (Empirical) —
0.35 e D97 228
0.30 g 25 S
N\ :
<4 1 = £ L0 A
0.25 | E zo | 20.0%
0.20 s
5 21 224
0.15 E
9 10 =1
0.10 s &
222
0.05 X
0.6% o
0.00 L — T — - . o . . -
222 224 226 228 original Empirically Dataset
Target Values Dataset Effective

Figure 5.6: Distributional summary of the original output dataset. (left) The dataset’s distribution
compared to the corresponding normal curve. (center) Comparison of the dataset’s coefficient of
variation C'V against an empirically effective CV range. (right) The dataset’s boxzplot.

This plot format, used multiple times throughout the Thesis, summarizes the dis-
tributional properties of a dataset. The left plot offers a comparison of the dataset’s
distribution to a gaussian normal distribution. The central plot compares the
dataset’s coefficient of variation (CV), defined CV = o < 100, against a desired
range (10 —30%), according to studies and observations throughout this work. The
third plot presents the dataset’s box-and-whisker plot or boxplot. The box’s lower
boundary is denoted @)1 or 25th percentile and the upper boundary is denoted ()3 or
75th percentile. The range of the dataset below ()1 contains 25% of the samples, as
does the one above @X3. The box, with a height of IQR = Q3 — ()1, contains 50% of
the dataset’s samples. The red line represents the medial value (denoted ()2), which
divides the dataset into two equal halves; its positioning illustrates data symmetry.
Lastly, the circles beyond the whiskers correspond to outliers in the dataset, whose
values are either smaller than Q1 — 1.5 x IQR or greater than Q3 + 1.5 x IQR.
From now on, the range contained by the box’s boundaries in each case is referred

to as Q13 or interquartile range.

53

Probability Density

To address the limitations mentioned earlier, an affine transformation is applied to

scale the output values into the interval [0, 100].

o = — L) (5.1)

max(z) — min(z)

where x is the original output, and x4, is the transformed output. This transfor-
mation stretches the data across a wider range while preserving the overall distri-
butional shape. However, it does alter scale-dependent metrics such as the mean
and standard deviation. While the coefficient of variation, defined C'V = % x 100
is generally scale-invariant, in this case, its value changed due to the affine nature

of the transformation affecting the mean and standard deviation non-uniformly.

The transformation leads to a substantial increase in standard deviation, as ex-
pected, since the data is stretched over a broader interval. This change improves
the signal amplitude and helps to address the vanishing/exploding gradient prob-
lem during backpropagation [13]. The coefficient of variation increased from 0.60%
to 26.31%, now falling within the more effective range. Skewness and kurtosis re-
mained unchanged by the transformation, as expected; the distribution retained a
slightly left-skewed and peaked shape. The distributional properties of the trans-
formed output dataset are illustrated in Fig. [5.7].

0.035 35 4 Effective CV 1004 i
{Empirical)

0.030 4 = 301 |

£ 26.3% 89
0.025 § 25

A\ & so [

= 20.0%
0.020 £ 20

s
0.015 4 £ 154 40 -

£
0.010 4 T 10 |

s 20 &
0.005 | 5

| > o
0.000 1L - o — - o . -
4] 20 40 60 80 100 original Empirically Dataset

Target Values Dataset Effective

Figure 5.7: Distributional summary of the transformed output dataset. (left) The dataset’s
distribution compared to the corresponding normal curve. (center) Comparison of the dataset’s
coefficient of variation CV against an empirically effective C'V range. (right) The dataset’s boxplot.

In summary, the transformation successfully expanded the dynamic range and im-
proved the statistical suitability of the output variable for regression. The networks
of this Application are trained on the transformed data, and their predictions are re-

scaled back to the original domain in post-processing. These changes are expected

54

to improve model training stability and amplify the optimization signal in back-

propagation. A summary of the data (pre- and post- transformation) is presented
in Table [5.2].

‘ Metric ‘ Original Data | Transformed Data

Sample Size (n) 100 100

Mean () 226.07 59.87
Standard Deviation (o) 1.35 15.75
Variance (0?) 1.82 248.05
Coefficient of Variation (CV) 0.60% 26.31%
Skewness -0.4983 -0.4983
Kurtosis 1.5305 1.5305
Range 8.57 100.00

Table 5.2: Statistics of the output dataset before and after transformation.

55

5.3 Examined Model Configurations

In Application I, a single-branch architecture was implemented. The first part of
the model consisted of subsequent Convolutional and MaxPooling layers (as well
as advanced Building blocks on some occasions), while the second part consisted
of a series of fully connected layers. This structure proved to be adequate for the
task at hand, since the airfoil’s cross section is two-dimensional, thus only a single
input image was needed. However, the present problem is much more complex and

concerns three-dimensional geometries.

re=—m
&47,

L\——\. ; Single Branch e = 2D Model

Configuration (SB)

. Single View Processin
DrivAer = £

|

Multi View Processi Individualized Multi Branch
Configuration (IMB) = e Model

21) Model

| B 1
Shared Multi Branch - S
Configuration (SMB) 3D Model

1

Figure 5.8: Querview of the approaches examined to adaptively extend the configuration of
Application I to the current Application’s objective, concerning the three-dimensional geometries of
automobiles.

This Thesis examines two approaches, depending on the inputs of the models. The
first one suggests a single R34 (isometric-like) image of the car being fed to the
model. The core idea relies on the hypothesis that the R34 view contains sufficient
information for accurate prediction. Since this approach employs a single input, it
requires a single Convolutional branch. Consequently, the network architecture for
this implementation remains identical to that of Application I. This model config-

uration will be referred to as Single-Branch (SB).

The second approach suggests the parallel processing of multiple orthogonal views;
each view is processed by a separate Convolutional branch, similar to that of Ap-
plication I, uniquely associated with it. The outputs of these branches are then

concatenated and passed through a series of dense layers for feature interpreta-

56

tion and processing. While utilizing more images provides a more comprehensive
representation of information, it inherently increases both model complexity and
training requirements. Additionally, the concatenation step introduces further po-
tential challenges. This baseline architecture will be referred to as Multi-Branch
(MB). Two variants of the MB configuration are examined; the Individualized Multi-
Branch (IMB) configuration and the Shared Multi-Branch (SMB) configuration.

In the IMB approach, each Convolutional branch maintains a unique architecture
with independently tuned parameters and structural composition during the fine-
tuning process. This allows each branch to be specifically adjusted for its corre-
sponding view. In contrast, the SMB approach maintains a uniform architecture
across all Convolutional branches. During fine-tuning, this shared architecture is
adjusted and implemented by all branches, promoting view-invariant feature learn-

ing regardless of the input perspective. An overview of the examined approaches is
graphically presented in Fig. [5.§].

During the development of this Application, different architectural setups were
tested through a trial-and-error process. Based on observations, an empirical rule
was adopted for integrating SE-Blocks and MaxPooling layers within the Convo-
lutional branches. According to this rule, a MaxPooling layer is added after every
two Convolutional layers, and an SE-Block is inserted after every three. When both
a MaxPooling layer and an SE-Block are to be added after the same Convolutional
layer, the SE-Block is placed first. An example of this rule on a branch with seven
Convolutional layers is shown in Fig. . Its application proved to successfully

balance computational efficiency and predictive accuracy.

1 2 3 2 5 6 7

C»>C M>C SI»C M»>C»>C SEM>C

Figure 5.9: Application of the empirical rule on a convolutional branch of 7 convolutional layers.
Here, C denotes a 2D Convolutional Layer, M denotes a Max Pooling Layer and SE denotes a
Squeeze-and-Excitation Block.

57

5.4 Single-Branch Model

The dataset of the R34 views is used to train the SB model. The grayscale images
are fed to the model in the form of [157 x 452] tensors. Indicatively, two samples
are presented in Fig. [5.10] to illustrate typical differences that the various cars

present.

Both for drag and surface prediction models, the number of epochs are set to 200
(idle epochs callback is set to 60) and the batch size is defined 16. The Adam opti-
mizer is used with a learning rate of 0.0013, monitoring the MAF of the predictions
on the transformed data. 80 samples are used for training, and 20 are isolated to

evaluate the model afterwards.

Figure 5.10: Two R34 samples of the SB model’s training dataset. The samples are fed into the
model in this form.

58

5.4.1 Drag Force Prediction

In the Drag Force prediction case, EASY proposed the model summarized in Table

63.

‘ Parameter ‘ Value Parameter ‘ Value
Number of CNN Layers 7 Number of DNN Layers 7
CNN L1 filter size (pow. of 2) 5 DNN L1 neurons (pow. of 2) 9
CNN L2 filter size (pow. of 2) 9 DNN L2 neurons (pow. of 2) 7
CNN L3 filter size (pow. of 2) 6 DNN L3 neurons (pow. of 2) 6
CNN L4 filter size (pow. of 2) 9 DNN L4 neurons (pow. of 2) 10
CNN L5 filter size (pow. of 2) 4 DNN L5 neurons (pow. of 2) 6
CNN L6 filter size (pow. of 2) 4 DNN L6 neurons (pow. of 2) 6
CNN L7 filter size (pow. of 2) 5 DNN L7 neurons (pow. of 2) 8
CNN LS8 filter size (pow. of 2) - DNN L8 neurons (pow. of 2) -
act. function CNN layers ReLU act. function DNN layers GELU
kernel size (constant) (3, 3) batch size 16
strides (constant) (1, 1) epochs 200
pool size (constant) (2, 2)

Table 5.3: Summary of the proposed SB model after the exploration of the design space by EASY.

Evaluation of the model on the test dataset demonstrates an inability to accurately
capture the target values of the Drag Force. Fig. displays an inadequate
performance, with strong disagreement between the model’s predictions and the
ground truth. Fig. illustrates that, closer to the bounds, the Error takes
the highest values, however, even at the center of the dataset, the network is inac-
curate. The significant dispersion of predictions in the regression plot, as well as
the large slope deviation between the predictions’ regression line and the identity
line (10.35°) indicate that the model has failed to capture the connection between
geometric modifications and their corresponding effects on the Drag Force. These
results raise concerns about the Single-Branch Configuration’s capabilities in this
Application, especially given that the presented model is the elite proposition of a

computationally significant design space exploration.

59

229 1

Drrag Force

0 1 2 3 4 bl 6 ¥ 8 9 10 1 12 13 14 15 6 17 I8 19
Test Sample ID
B True Values B Predicied Values

25 4 ;
228.0 A —— Tram Loss
27,5 4 " Val. Loss
o 2701 5
£ &
g 2265 4 2 154
= =
E 200 E
= < =
2 255 g 10
= -
25.0 A 2
54
4.5 4
PP
224.0 h T T T T T U L T T T T T
224 225 226 27 228 0 50 100 150 200
True Values Epochs

Figure 5.11: Performance of the proposed SB model. (top) Comparison of the target Drag Force
values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE = 0.1497%). (left) Regression plot of the model, illustrating the agreement of its
predictions with the target Drag Force values. (right) Convergence of the MAE of the model over the
training epochs.

+ Traming Dataset ot
—&— Test Dataset Values = . | : .] oo
—— Predicted Values R B AT Wf L
e - | I I I
w226 4
2
=
=)
]
=
24+
'
na 4|
+
T ¥ T T T T T T
0 20 40 60 80 10

Sample ID

Figure 5.12: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed SB model.

60

5.4.2 Surface Area Prediction

In the Surface Area prediction case, EAs proposed the model of Table . Com-
pared to the SB Elite for Drag prediction, this network presents a far-better overall
performance, as depicted in Fig. . Specifically, its predictions have a M ARFE
of 0.0104% to the target values. Their regression line has a slope of 0.9492 and
deviates by 1.49° to the identity line. The error distribution across the range of the
test dataset is slightly uneven, but the regression plot showcases a guaranteed level
of accuracy in all regions. However, in Fig. it is notable that some predic-
tions deviate significantly to the ground truth, raising concerns for an inadequate

architecture in the general context of the Thesis.

Parameter ‘ Value Parameter ‘ Value
Number of CNN Layers 7 Number of DNN Layers 1
CNN L1 filter size (pow. of 2) 4 DNN L1 neurons (pow. of 2) 7
CNN L2 filter size (pow. of 2) 4 DNN L2 neurons (pow. of 2) -
CNN L3 filter size (pow. of 2) 2 DNN L3 neurons (pow. of 2) -
CNN L4 filter size (pow. of 2) 7 DNN L4 neurons (pow. of 2) -
CNN LS5 filter size (pow. of 2) 6 DNN L5 neurons (pow. of 2)

CNN L6 filter size (pow. of 2) 9 DNN L6 neurons (pow. of 2) -
CNN L7 filter size (pow. of 2) 4 DNN L7 neurons (pow. of 2) -
CNN L8 filter size (pow. of 2) - DNN L8 neurons (pow. of 2) -
act. function CNN layers GELU act. function DNN layers ReLU
kernel size (constant) (3,3) batch size 16
strides (constant) (1, 1) epochs 200
pool size (constant) (2, 2)

Table 5.4: Summary of the proposed SB model after the exploration of the design space by EASY.

61

14.94 A

s -
14.93 - - El
) 2 =
= 3
= 1492 4 >
2
S i
w
£ 1491 1 i
A |
14.90 i
14.89 1 H
| |
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 6 17 18 19
Test Sample ID
B True Values B Predicted Values
14.93 4 .
0.016 4 —— Tram Loss
Val.
0.014 4 al. Loss
14.92
2 g 0.012
= i}
5 1491 1 £ 0010
E 2
= 2 0,008 -
E
= 14.90 4 = 0.000 1
-
0.004 4
14.89
s 0.002
T T T T T T T T T T
14.89 14.90 14.91 14.92 14.93 0 50 100 150 200
True Values Epochs

Figure 5.13: Performance of the proposed SB model. (top) Comparison of the target Surface Area
values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.0104%). (left) Regression plot of the model, illustrating the agreement of its predictions
with the target Surface Area values. (right) Convergence of the MAE of the model over the training
epochs.

1493 4 + Traming Datasct E
| —®— Test Dataset Values
—e— Predicted Values
1492
2 1491 4
@
14.90
14,89

] 20 40 Lil] i 100
Sample ID

Figure 5.14: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed SB model.

62

5.5 Multi-Branch Model (IMB - SMB Configu-

rations)

The general architecture of the Multi-Branch Model is illustrated in Fig. [5.15]. The
core idea is that more information can be extracted from multiple orthogonal views,
allowing for greater precision in the predictions, provided that the combination of

the different features is properly addressed.

[Convolutional Branches Fully Connected Lavers
Tensors

~Cefe
- o g

~Pefe

Figure 5.15: [llustration of the general architecture of the SMB configuration.

P
@

5.5.1 Drag Force Prediction - IMB, SMB

Individualized Multi Branch Configuration - IMB

In the Individualized Multi Branch configuration, the EASY software is employed
to define the total number of 2D Convolutional Layers for each branch separately,
along with the parameters of each layer. The dense halve of the network is examined
similarly to the SB configuration. After exploration of the design space, fine-tuning
proposed the model summarized in Table .

63

Parameter Value Parameter ‘ Value
Number of Side Branch (B1) Layers 4 Number of Rear Branch (B2) Layers 6
Number of Top Branch (B3) Layers 7 Number of DNN Layers 4
B1 L1 filter size (pow. of 2) 5 B2 L1 neurons (pow. of 2) 5
B1 L2 filter size (pow. of 2) 4 B2 L2 neurons (pow. of 2) 7
B1 L3 filter size (pow. of 2) 8 B2 L3 neurons (pow. of 2) 5
B1 L4 filter size (pow. of 2) 2 B2 L4 neurons (pow. of 2) 3
B1 L5 filter size (pow. of 2) B2 L5 neurons (pow. of 2) 2
B1 L6 filter size (pow. of 2) - B2 L6 neurons (pow. of 2) 5
B1 L7 filter size (pow. of 2) - B2 L7 neurons (pow. of 2) -
B3 L1 filter size (pow. of 2) 7 B2 L1 neurons (pow. of 2) 6
B3 L2 filter size (pow. of 2) 8 B2 L2 neurons (pow. of 2) 7
B3 L3 filter size (pow. of 2) 7 B2 L3 neurons (pow. of 2) 7
B3 L4 filter size (pow. of 2) 5 B2 L4 neurons (pow. of 2) 7
B3 L5 filter size (pow. of 2) 7 B2 L5 neurons (pow. of 2) -
B3 L6 filter size (pow. of 2) 6

B3 L7 filter size (pow. of 2) 3

act. function B1, B2, B3 layers ReLU act. function DNN layers GELU
kernel size (constant) (3, 3) batch size 16
strides (constant) (1, 1) epochs 250
pool size (constant) (2,2)

Table 5.5: Summary of the proposed IMB model after the exploration of the design space by EASY.

Al

e J

0 1 2 3 4 5 L] 7 8 9 10 11 12 13 14 I5 (1] 17 I8 19
Test Sample ID
I True Values ER Predicted Values

= Tram Loss

—— Val. Loss

| Predictions

.
200

T T
100 150

Epochs

26 n1 8 0 50

4

15

True Values

Figure 5.16: Performance of the proposed IMB model. (top) Comparison of the target Drag Force
values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.1008%). (left) Regression plot of the model, illustrating the agreement of its predictions
with the target Drag Force values. (right) Convergence of the MAE of the model over the training
epochs.

64

The regression plot of Fig. clearly shows that the model under-performs
and struggles to predict the Drag Force accurately throughout the entire range of
the dataset. Specifically, certain test samples are predicted with great accuracy,
while the rest present a significant deviation to the target values. The overall
test MARE is computed 0.1008% (MRE = —0.0632%). In order to achieve a
better understanding of the situation, Fig. [5.17] is provided, which has a striking
resemblance to Fig. (right)]. The model is over-fitted in regions of the training
dataset with high sample concentration, mainly concerning the interquartile region
of the dataset. This leads to the presence of large deviations in test samples close-by.
On the contrary, the model performs well in regions with fewer training samples,

like the one concerning the first 40 (sorted) training samples.

+ Traming Datascl
—&— Test Dataset Values

1 =—=— Predicted Values] & i
228 i

I3
=2

Drag Force

24

] 20 40 Lil] i 100
Sample ID

Figure 5.17: The sorted working dataset. Blue crosses tllustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed IMB
model.

Shared Multi Branch Configuration - SMB

In the SMB implementation, the EASY software is employed to define, among other
parameters, the shared architectural composition (and component parameters) of
the Convolutional branches. Fine-tuning proposed the model summarized in Table
[5.6, which features substantially fewer trainable parameters than the one proposed
in the IMB case, and presents a more robust performance throughout the entire
range of the dataset. It achieves a MARE of 0.04532% (M RE = 0.0072%). The
predictions’ regression line deviates by 2.36° from the identity line. Fig. [5.1§]

65

displays a smooth distribution of error, and highlights the increased accuracy and

generalization ability of the model, when compared to IMB Elite.

‘ Parameter ‘ Value ‘ Parameter ‘ Value ‘
Number of CNN Layers 7 Number of DNN Layers 3
CNN L1 filter size (pow. of 2) 7 DNN L1 neurons (pow. of 2) 9
CNN L2 filter size (pow. of 2) 4 DNN L2 neurons (pow. of 2) 8
CNN L3 filter size (pow. of 2) 7 DNN L3 neurons (pow. of 2) 12
CNN L4 filter size (pow. of 2) 5 DNN L4 neurons (pow. of 2) -
CNN LS5 filter size (pow. of 2) 4 DNN L5 neurons (pow. of 2) -
CNN L6 filter size (pow. of 2) 6 DNN L6 neurons (pow. of 2) -
CNN L7 filter size (pow. of 2) 2 DNN L7 neurons (pow. of 2) -
CNN L8 filter size (pow. of 2) DNN L8 neurons (pow. of 2) -
act. function CNN layers ReLU act. function DNN layers GELU
kernel size (constant) (3, 3) batch size 16
strides (constant) (1, 1) epochs 200
pool size (constant) (2, 2)

Table 5.6: Summary of the proposed SMB model after the exploration of the design space by EASY.

I3
]

Drag Force

I3
=2

[1 2 3 4 ¥ fi 7 B 9 10 11 12 13 14 15 16 17 1% 19
Test Sample 1D
B True Values BN Predicted Values

8 —— Train Lass

—— Val. Loss

Model Predictions
Mean Absolute Error
E oY
L

. [

4 ns 226 n7 23R 1] S 1001 150 0 250
True Values Epochs

Figure 5.18: Performance of the proposed SMB model. (top) Comparison of the target Drag Force
values to the predictions of the model, displaying the Relative Error on each sample’s prediction
(MARE: 0.04532%). (left) Regression plot of the model, illustrating the agreement of its predictions
with the target Drag Force values. (right) Convergence of the MAE of the model over the training
epochs.

66

Fig. showcases the proper fitting of the model, presenting a slightly elevated
deviation of the predictions and target values in regions mainly closer to the bounds
of the dataset. In the central region, which concerns the majority of the samples,
the model manages to properly identify and decode patterns in the input images,

and translate them to produce predictions of high accuracy.

+ Traming Datascl | +
—&— Test Dataset Values
1 =—e— Predicted Values (i 4
228 i

I3
=2

Drag Force

24

W S
N + ad A e - L
7 22 260 7 bR T
| oS 2

] 20 40 Lil] i 100
Sample ID

Figure 5.19: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed SMB
model.

The above results demonstrate that, herein, the Shared Multi-Branch Architecture
is superior to the Individualized one and manages to accurately predict the cars’
Drag Forces. It presents a better overall performance, with a more evenly dis-
tributed error and a significantly smaller MARE (almost 2x smaller). It is also
notable that the evolutionary algorithms employed to search the optimal Network
architectures performed more than 2.5x more evaluations on the Individualized-

Branch case, yet the Shared-Branch configuration outperformed it.

These intriguing results and observations, indicating the SMB configuration’s dom-
inance, are elaborated in a more detailed discussion in the “Summary and Compar-

ison” subsection.

The superior Shared Multi-Branch configuration is selected and used both in the
Drag Force and Surface Area prediction of the Multi-Branch subsection of Appli-

cation II.

67

5.5.2 Surface Area Prediction - SMB

The above study verifies the Shared-Branch Architecture’s superior performance;
thus, the same architecture is used for the surface area prediction. Fine-tuning pro-
poses the model of Table , featuring an increased complexity in its Convolutional-

based first half, and an almost “shallow” second half, with a single hidden layer of

64 neurons.
Parameter ‘ Value Parameter ‘ Value
Number of CNN Layers 8 Number of DNN Layers 1
CNN L1 filter size (pow. of 2) 4 DNN L1 neurons (pow. of 2) 6
CNN L2 filter size (pow. of 2) 3 DNN L2 neurons (pow. of 2) -
CNN L3 filter size (pow. of 2) 3 DNN L3 neurons (pow. of 2) -
CNN L4 filter size (pow. of 2) 2 DNN L4 neurons (pow. of 2) -
CNN LS5 filter size (pow. of 2) 7 DNN L5 neurons (pow. of 2) -
CNN L6 filter size (pow. of 2) 2 DNN L6 neurons (pow. of 2) -
CNN L7 filter size (pow. of 2) 5 DNN L7 neurons (pow. of 2) -
CNN L8 filter size (pow. of 2) 4 DNN L8 neurons (pow. of 2)
act. function CNN layers ReLU act. function DNN layers ReLU
kernel size (constant) (3,3) batch size 16
strides (constant) (1, 1) epochs 300
pool size (constant) (2, 2)

Table 5.7: Summary of the proposed SMB model after the exploration of the design space by EASY.

68

14.94

=]
=]
4.93 4 =
14.93 =
3 14.92
=
3
£ 1491 4
=
175}
14.90
14.89 1
Test Sample ID
N (rue Values mmm Predicted values
14.930 0.0200 :
—— Tram Loss
14.925 Q0175 7 Val. Loss
14.920 4] .. 00150 +
2 £
2 14915 4] = 00125
o i
=] =
g 191018 2 aot00-
= 14905 H -
2 = 00075
Z 14900 - =
= 00050
14.895
00025 4
14.890 5
T T T T T T T T T T T T
14.89 14.90 1491 14.92 14.93 0 S0 100 150 200 50 300
True Values Epochs

Figure 5.20: Performance of the proposed SMB model. (top) Comparison of the target Surface
Area values to the predictions of the model, displaying the Relative Error on each sample’s
prediction (MARE: 0.0048%). (left) Regression plot of the model, illustrating the agreement of its
predictions with the target Surface Area values. (right) Convergence of the MAE of the model over
the training epochs.

Fig. displays a really satisfying performance of the Elite, and a strong and
consistent agreement between its predictions and the target surface area values,
even close to the bounds, where the training samples are considerably fewer. The
predictions’ regression line has a slope of 0.9777 and presents an angle difference of
0.65° with the identity line. The model performed with a MARE of 0.0048% and
an MRE of —0.0021%, when evaluated on the test dataset.

69

14.92

1493 4 + Traming Datascl — -1“__ ! F
| —®— Test Dataset Values i vl :
—e— Predicted Values T
|
i

1491

Surface Area

14.90 4

1489 1

] 20 40 Lil] i 100
Sample ID

Figure 5.21: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the proposed SMB
model.

5.6 Summary and Comparison

This subsection offers a thorough comparison of the examined models, and a com-
mentary justifying the selection of the superior SMB configuration as the working
configuration in the subsequent Application III. At the end of the subsection, Table

provides a compact presentation of the different models’ evaluation metrics.

The studies and results of Application II highlight the superiority of the MB Con-
figuration over the SB Architecture Model. The latter proves to be inadequate for
the purposes of this Thesis; either the information encoded in the R34 inputs is not
sufficient to provide accurate results, or the SB architecture is naturally incapable

of capturing and processing patterns in the input tensors of this study.

In the surface area case, the SB configuration performs with a questionably suffi-
cient accuracy and a MARE of 0.0104%. Fig. [5.14] presents both regions of high
accuracy and ones of low credibility and precision, resulting in an uneven distribu-
tion of Error across the dataset. However, excluding a few predictions, the network
“decodes” changes in the depicted geometries successfully and captures the target

values to a satisfying extent. On the one hand, the complexity of this Applica-

70

tion’s task justifies a couple of inaccuracies on the predictions (to a certain extent).
However, being the product of a computationally heavy tuning process, the SB
Model does not live up to its expectations, thus raising concerns over its predictive

capabilities as a whole.

These concerns are amplified in the Drag Force prediction case, which proves the
SB Configuration to be completely unfit for this Application’s purposes. After a
total of 250 EA evaluations, the proposed model performs poorly and presents a
high dispersion in its predictions’ regression plot, as displayed in Fig. . It is
clear that, especially closer to the dataset’s bounds, the network fails to properly
interpret changes in the depicted cars. The MARE has a value of 0.1497% and the
predictions’ regression line has a slope of 0.6911, presenting an angle difference of
10.35° with the identity line. Overall, the drag prediction case highlights the SB
Configuration’s inability to form a robust and reliable model for the purposes of

this Application.

In order to properly compare the examined networks based on their accuracy and

distribution of error, the following errors are formulated.

1 1y — g
MAREy, =~ AREp,; = - v = 9l g0 (5.2)
n 4 n“ Yi
=0 i=0
1 ¢ 1 ¢ i — Ui
MAEY, = =3 AEN =~ =060y (5.3)
n . b n - ymax —_ ymln
1=0 1=0

where y and gy denote the standardized target values and predictions respectively.
Eq refers to the MARFE applied on the transformed data. Eq refers to
the normalized MAFE applied on the transformed data, which is the highest when
the opposite bound of the range is predicted.

The introduced MB Configuration produces much more accurate predictions, out-
performing the inadequate SB Networks. The study conducted, comparing the two
different approaches of the proposed idea, allows for some very interesting observa-

tions, as well as promising results.

The IMB Configuration relies on the separate adjustment of each convolutional
branch, allowing for a fine-tuning of their (sequence of) processing units, depending
on each view’s needs. The multiple input images contain more encoded information,
allowing for a better performance and higher accuracy, provided the model is prop-
erly trained. On the downside, the EASY software explores a 32-dimensional design

space during the optimization of the model’s architecture, introducing a significant

71

computational cost that should be taken into consideration when evaluating the

IMB Configuration as a whole.

Fig. [5.22] and [5.23] presents the Distribution of M ARE7, and MAEN of the
final, Elite IMB model, compared to the equivalent SB Model in both examined

cases.

140 140
130 120
o
= . |
2 100+ | 100 |
§ . (]
.c L . ol (i .
= . v
0 15%
Q
B e ,
= 2
o
]
=0 A 40 .
2 e Y .
& ¢
" v
20 o
— SB Elite - (MARFp.: 8.55%) — SB Elite ";U.-lﬁ‘:,\-',: 3A40%)
. —— IMB Elite - (MAREr.: 6,11%) . —— IMB Elite - (MAEY: 2.60%)
o _I T T T T T o
0 0 0 0 b) 0 0 20 & 50 100
True Values (Transformed) True Values (Transformed)

Figure 5.22: Illustration of the (distribution of the) AREr, (left) and AEY, (right) of the SB
(blue) and IMB (red) Elites of the Surface Area prediction case.

100 | 100

EIE - y o0
5 ¥
:
2 B ' - 0
g .
E »
o T : 4
o
=
g - - -
o 60 / @ 4
51 .
k1 e
b= ; o
& s i s -
A . :

4
- n . "
w —— SBElite - (MAREy,: GA3%) &4 —— SB Elite - [MAE]: 396%)
—— IMB Elito - (MARE: 4.16%) —— IMD Eliwe - (MAEN . 2.04%)
@0 30] N 2 40 5 0 o =0
True Values (Transformed) True Values (Transformed)

Figure 5.23: Illustration of the (distribution of the) AREr, (left) and AEY, (right) of the SB
(blue) and IMB (red) Elites of the Drag Force prediction case.

72

In the surface area case, the two networks perform similarly, providing accurate re-
sults and achieving small Errors across the entire range of the test dataset, excluding
the bounds where the SB model performs with some inaccuracy. The IMB network
presents a smoother, more even Distribution of Error and achieves a smaller M ARFE.
The drag prediction case also highlights the Individualized-Branch model’s superi-
ority, which achieves a M AREr, of 4.16% and a M AEN of 2.64%, and presents a

significantly smoother error distribution.

The displayed results validate the IMB Configuration’s ability to capture modi-
fications in the depicted cars and interpret them accordingly, to provide reliable
predictions over their geometric properties and aerodynamic behavior. The IMB
model seems to accurately identify and translate the prominent changes in the de-
picted geometries, which are almost entirely responsible for most the drag’s change,
however it seemingly fails to capture smaller, more discrete fluctuations that affect
it in a smaller scale. As a result, two issues persist; firstly, the error distribution
is questionably smooth and follows a morphology seemingly uncorrelated with the
sample density in the training dataset. Additionally, the overall performance of
the model is not proportional to the large computational cost imposed by the fine-
tuning process of its 32 Design Variables. As briefly mentioned earlier, although
the IMB Configuration’s design space potentially contains a better global solution,
due to its high dimensionality, it also presents much higher complexity and a larger
number of local optimal solutions, posing a risk of insufficient tuning and selection
of a suboptimal composition. Since the goal of this study is to propose a surrogate
model to avoid excessive exploration and substitute computationally costly meth-
ods, the IMB network’s performance does not outweigh the cost needed to construct
it.

Implementation of the SMB Configuration successfully addressed both issues in a
simultaneous manner. Reduction of the dimensionality of the design space from 32
to 20 dramatically dropped the computational cost of the network’s optimization by
nearly 60%, and evidently prevented EASY from sticking at local minima. More-
over, the introduced forced restriction likely acts as a regularization mechanism,
constraining the model’s generalization ability and preventing it from overfitting on
the (already small) training dataset samples. Additionally, the shared depth of the
convolutional branches ensures the same level of abstraction for each view, crucial
for the proper interpretation of the concatenation product by the dense part of the

model.

Fig. [5.24] and [5.25] display the SMB Model outperforming the IMB one, both in

the Surface Area case and the Drag prediction case.

73

100 100
[] L]
3 . . .
a 80 7 ’ 80 1 T
B | o AL
| 0 4 A5 .) - ¥ -
2 . -
5
-
= 4 el
3)
‘U
=
2
~ . .
0 0
— IMB Elite - (MAREy,: 6.11%) ! —— IMB Elite - (MAE}: 260%)
—— SMB Elite - (MAREz,: 5.73%) —— SMB Elita - (MAFEY: 1.56%)
n 40 w0 B0 100 N a0 il w0 100
True Values (Transformed) True Values (Transformed)

Figure 5.24: Illustration of the (distribution of the) AREr, (left) and AEY, (right) of the IMB
(blue) and SMB (red) Elites of the Surface Area prediction case.

100 + ¢ 100
o0 @
2l
'__E 04 . 5 4 ! / .
ﬁ
& "
~ T - 4
E 5 . . .
2] d . 4
ﬁ -
2 '
= s gt
E & . e & . »
T B —— IMB Elite - (MAREr,. 1.16%) .y M Bite - (MAE: 2615%)
—— SMB Elite - (MAREy,: 204%) — SMB Elite - (MAE}: 1.13%)
T - T - T - - - T T
40 50) k] 50 0 50 0 mn 0
True Values (Transformed) True Values (Transformed)

Figure 5.25: Illustration of the (distribution of the) AREr, (left) and AEY, (right) of the IMB
(blue) and SMB (red) Elites of the Drag Force prediction case.

In Fig. , concerning the surface area case, the SMB model presents a re-
ally smooth distribution of error across most of the dataset, particularly the inner
regions. The M AELY only becomes greater than 5% at the first test sample’s pre-
diction, which belongs to a region of low sample concentration in the dataset. The

rest of the distribution curve presents a remarkable smoothness, showcasing a defi-

74

nite improvement from the IMB Configuration, as far as surface area prediction is

concerned.

In the case of drag prediction, the SMB network is still superior, as depicted in
Fig. . The Errors take values smaller than 5% for the M ARE, and 2.5%
for the MAERY across the entire dataset (again, excluding the first prediction);
interestingly, here the SMB model performs better than in the surface area case,
which is, however, justified by the “positioning” of the test samples in the working

dataset.

’ ‘ Surface Area (original domain) ‘ Drag Force (original domain) ‘

SB | MARE :0.0104% , MRE : —0.0037% | MARE :0.1497% , MRE : —0.0684%
IMB MARE :0.008% , MRE : —0.006% | MARE :0.1008% , MRE : —0.0632%
SMB | MARE :0.0048% , MRE : —0.0021% | MARE :0.0453% , MRE : 0.0072%

Design Space Dimentionality Overall Cost

SB 20 design variables 1TU
IMB 32 design variables ~ 12 TU
SMB 20 design varibales ~ 5.5 TU

Table 5.8: Summary of the presented configurations’ performances, cost and efficiency wise.

5.7 Conclusions

The studies of Application II demonstrated an undeniable superiority of the Shared
Multi-Branch Configuration in the context of this Thesis; despite the complexity
of the task, it manages to provide accurate predictions with little fluctuations in
the error distribution, while not requiring excessive computational resources to fine
tune (approximately 40 hours on 2 x GeForce RTX3060). The promising results
presented above indicate an increased generalization ability and a guaranteed level
of predictive accuracy, provided a properly-calibrated cooperation of SE-Blocks and
Regularizers. Thus, the SMB structure is selected and used in the subsequent

Application III.

7

Chapter 6
Application III - Automobile’s Drag
Force (3 Morphing Boxes)

6.1 Introduction

Application III concerns an implementation of the studies conducted earlier in the
Thesis, to construct an ML model that produces high-precision predictions of dif-
ferent automobiles’ aerodynamic drag values. This section’s car samples present
more subtle geometry fluctuations. The following study aims to prove the pre-
sented SMB configuration’s efficiency, accuracy and generalization ability, provided
a proper tuning of the model’s parameters and hyperparameters, proposing it as a
promising surrogate alternative to costly CFD methods in early stages of design,

where extreme precision is not yet necessary.

6.2 LHS-based Dataset Generation

Contrary to Application II, this application’s dataset consists of a tot al of 366 vari-
ations of the DrivAer car model. These variations are constructed by employing the
FFD technique with 3 morphing boxes partially embedding the baseline geoometry.
The boxes, positioned as depicted in Fig. , contain a total of 270 CPs (each) ar-
ranged in a 6 x 5 x 9 grid. CPs are categorized in yRows (zz plane) and x Rows (yz
plane) (as depicted in Fig. [6.1]) and are displaced with the LHS method; yRows
are allowed to move by £0.07 and +0.033 in the —x and —z directions respectively,
while zRows move by +0.052 and +0.03 in the —x and —z directions (Absolute
Values).

76

@ *Row Cxample
« (Ps

e Hack Body Marphing Box
w— Front Body Morphing Box
—— Mam Body Morphing Box

30

Figure 6.1: Illustration of the Morphing boxes defined to develop the dataset of Application III.
(left) The baseline DrivAer geometry and the CPs of the three morphing bozes; blue CPs are fized
while red CPs are allowed to move as described in the previous paragraph. (right) Simplistic
tllustration of the three control grids, exemplifying the categorization of the CPs in yRows and

Tz Rows.

A total of Ny, = 366 modified cars are generated (~ 185 hours, excluding all
complications and re-runs). Images of the geometries are taken and preprocessed in
a manner identical to Application II. The same flow as in the previous Application

(summarized in Table [5.1]) is solved using the PUMA CFD Solver.

Figure 6.2: Two samples of the SMB model’s training dataset (side view). The samples are fed
into the model in this form.

7

Z Axis

Probability Density

Fig. depicts two samples of the training dataset from the side view, displaying
the subtle modifications applied to the baseline DrivAer model. In contrast to
Application II, four views of the cars are exploited; the front, side, rear and top
view, each with a Convolutional branch uniquely associated with it. The images
are fed to the model in tensors of fixed size for each view. Specifically, the tensor
sizes are [312 x 224] for the front and rear view, [752 x 240] for the side view and
[712 x 312] for the top view.

Probability Density

0181 Effective CV o
| (Empirical) o]
0.14 1 f\ 40 4 280 4
g
0.12 - =
/ s 275 4
0.10 ' E
0.08 z
= s 270
| 2 20 - 20.0% |]
0.06 1 .% |
265 1
0.04 E "6
*021 260
1.1% 8
0.00 / T — 4] = T T
260 265 270 275 280 ariginal Empirically Dataset
Target Values Dataset Effective

Figure 6.3: Distributional summary of the original output dataset (left) The dataset’s distribution
compared to the corresponding normal curve. (center) Comparison of the dataset’s coefficient of
variation C'V against an empirically effective CV range.(right) The dataset’s boxplot.

As depicted in Fig. , the working dataset once again poses challenges to the
training process naturally; it presents a mean value of y = 267.1737 and a variance
of 02 = 8.6197 (CV = 1.10%). Unlike Application II, it is highly skewed (skewness
= 0.9183) and non-normal according to the Shapiro-Wilk test.

Effective CV 100 o
00351 L (Empirical) o
40 4
0.030 f\ F 36.0% 80
/ =
0.025 = 30 g_
= 60
m
0.020 1 2
2 20.0%
= 20 A |
0'015 | E 40 :
o e
0.010 -
E 10 4 204
0.005 4 [N E—
0+ 8
0.000 T . — T : o- T T
4] 20 40 60 80 100 ariginal Empirically Dataset
Target Values Dataset Effective

Figure 6.4: Distributional summary of the transformed output dataset (left) The dataset’s
distribution compared to the corresponding normal curve. (center) Comparison of the dataset’s
coefficient of variation CV against an empirically effective CV range. (right) The dataset’s boxzplot.

To address the original dataset’s narrow dynamic range and extremely low vari-
ance, the linear transformation defined in Eq. (5.1]) is once again applied. While

78

this operation successfully expands the range and improves numerical conditioning,
the quality of the transformed dataset remains questionable. Specifically, the re-
sulting coefficient of variation is approximately 36%, which exceeds the established
preferable range. Although high CV values can indicate excessive variability and
potential noise (increased risk of overfitting), 36% is still considered acceptable. The
affine nature of the operation results in the preservation of the distribution’s shape;
the skewness remains unchanged, and the dataset continues to exhibit significant
asymmetry and deviation from normality. These characteristics, while not ideal,

are manageable through architectural choices within the model.

Rather than employing a more complex non-linear transformation—which could in-
troduce interpretational complexity— a decision is made to retain this simple linear
scaling. To regulate the effects of the dataset’s idiosyncrasies, greater emphasis will
be placed later on on the architectural components of the models, as well as the
(hyper)parameters of the training process. A statistical summary of the dataset,
pre- and post- transformation, is provided in Table .

‘ Metric ‘ Original Data ‘ Transformed Data

Sample Size (n) 366 366

Mean (1) 267.1737 34.5432
Standard Deviation (o) 2.9359 12.4346
Variance (02) 8.6197 154.6198
Coefficient of Variation (CV) 1.10% 36.00%
Skewness 0.9183 0.9183
Kurtosis 29111 29111

Range 23.6109 100.00

Table 6.1: Statistics of the output dataset before and after transformation.

79

6.3 SMB Model Implementation

6.3.1 Drag Force Prediction - MAE Loss

The SMB configuration derived from the studies of Application II is used. Initially,
the Elite model of Table [5.6] is trained on the current dataset. During training, the
MAE of the predictions is monitored to guide the trainable parameters’ adjustment.
The model performed poorly, failing to both capture and translate patterns in the
input data. Regardless of the test sample, the model predicted the test set’s mean

value p.

Enhancements are deemed necessary in order to increase the representational capac-
ity and, ultimately, improve the predictive accuracy. Thus, a study is conducted to
examine the architectural components and associated hyperparameters of the cur-

rent model. The modifications derived from this analysis are summarized below.

e Integration of SE-Blocks after every two Convolutional Layers: The
geometric variations in the current application are more subtle compared to
those encountered in the previous Application and the selected SMB Elite
evidently failed to capture them. SE-Blocks are now incorporated after every
two Convolutional layers. This integration proves to enhance the network’s

interpretive capabilities.

e Max-Pooling after every four Convolutional Layers: Frequent use of
Max-Pooling operations can lead to loss of important information due to down-
sampling, especially in this case. The study suggested the integration of these
layers after every four Convolutional layers, which evidently balances abstrac-
tion and information preservation. However, this adjustment leads to an in-
creased requirement of computational resources for training (and fine-tuning

later on).

These first two teps form the updated empirical rule for integrating SE Blocks
and MaxPooling blocks in the developed networks. An application of this rule
on a branch of 7 convolutional layers is displayed in Fig. .

e Training Hyperparameter Optimization: A batch size of 22 and a train-
ing duration of 200 epochs are defined, helping achieve a stable and accurate

convergence.

80

1 2 3 4 5 6

C SE>C»C SE>C MsC SE»CoC

~1

A\YES SL

Figure 6.5: Application of the presented modifications on a convolutional branch of 7 convolutional
layers. Here, C denotes a 2D Convolutional Layer, M denotes a Max Pooling Layer and SE denotes
a Squeeze-and-Excitation Block.

¢ Reduced SE-Block Reduction Ratio: Lowering the SE-Block reduction
ratio to r = 11 improves the model’s performance. This is attributed to a finer
detail in the recalibration process, allowing for more expressive representations.
However, this imposes an increase in computational demand (as suggested in
Eq), especially given the more frequent deployment of SE-Blocks.

¢ Dropout Regularization in Dense Layers: To aid generalization, Dropout
is applied in every two dense layers with a dropout rate of 0.07. This technique

proves effective in improving test dataset accuracy.

Application of these architectural revisions leads to the far-better performance of
Fig. [6.6]. The updated SMB network is capable of identifying the subtle geometric

modifications of the car depictions, but fails to properly interpret them.

81

Drag Force

Model Predictions

278 =
276 w2 Eri
[34) -t
'}?4 -1 l(" ~2 o
] — —T e Bk
272 - a8 o S THEL ==
£ P — a1
i . & FF.. Ficen.f.. GRF e 2 35 Zf 4
| s8 Tl _.SSER-SIORHCSSy yRLSRCsFeco Solel
R BT [WY GE == i HIESl BB
w651 SHepl==F = = =
264
01234567 89I1011121314151617181920212223242526272829 30313233 34353637 3839404]1 4243 44546474849
Test Sample ID
EE True Values B Predicted Values
276
50 9 —— Train Loss
274 4 Val. Loss
_-]ﬂ <
22 5
=
270 1 2 30 1
E=
208 1 <
! = 20 -
=
266 4 =
10 4
264 |
U T T T

204

T
2o6

T
208

T
270
True Values

T
100
Epochs

Figure 6.6: Performance of the modified Elite Application II SMB model evaluated on this
Application’s dataset (top) Bar plot comparing the target Drag Force values to the predictions of the
model, displaying the Relative Error on each sample’s prediction (left) Regression plot of the model,

tllustrating the agreement of its predictions with the target Drag Force values. (right) Convergence
of the MAFE of the model over the training epochs.

Drag Force

Training Dataset
Test Datasct Valucs
Predicted Values : |

+
——
R R
75 i
270 A
265
200 4+
i
T
L1}

T e T i T
150 200 250 304
Sample 1D

T
350

Figure 6.7: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the modified SMB
model. The highlighted region represents the Q1Qs range.

82

6.3.2 Bias-Variance Tradeoff and Loss modifications

The observed concentration of predictions within the interquartile range in Fig.
exemplifies a fundamental challenge in machine learning known as the bias-variance
tradeoff. When the working dataset is of limited output variability, neural networks
tend to develop a systematic bias toward the central tendency of the target distribu-
tion, effectively minimizing prediction error by converging on safe, middle-ground
estimates [36]. This behavior is demonstrated by the Elite of Application II, which
predicts the mean value p of the output dataset on all samples. This phenomenon
reduces variance in predictions and introduces an extremely problematic bias that
constrains the model. To overcome this challenge, one approach would be to further
enhance the model’s complexity and increase the resources expended in fine-tuning,
aiming to improve the network’s interpretational capabilities. However that would
ultimately lead to a dramatic computational drawback with an uncertain outcome
[51, [39].

A different approach is followed, according to which more attention is paid on the
statistical-wise agreement of the predictions with the target values. To implement

this, a custom Loss function is formulated.

cLoss = o - ‘az(y) —d*())|+ (1 —a) - MAE(y,9)

N 1

—a- %Z(yj — 11y)* = NZ(?% —1)*| + (L —a)- %Z lyi =%l (6.1)

J=1 J=1

where p,, and 1 are the mean values of the target value and prediction sets respec-
tively, N is the test dataset size and « is a coefficient defining the balance between

the two terms.

Essentially, this custom Loss function penalizes not only the absolute difference of
the predictions to the target values, but also the absolute difference of the variances
of the two sets, thus introducing attention to the distributional properties of the
error and explicitly adressing the bias-variance imbalance. The underlying idea is
to push the model to first escape the highlighted region of Fig. by producing

predictions across the entire range of the dataset.

83

With an established (controlled) diversity in the predictions, ensured by the first
term of cLoss, the quality of the model’s performance is now a matter of proper
training and evaluation by the second term in Eq . The cLoss is now applied
on the transformed output values and monitored during training. The batch size is

increased to 40 to ensure a more representative variance in each batch.

6.3.3 Drag Force Prediction - Custom Loss

The coefficient « is initially set to 0.15. EASY is employed to fine-tune the updated
model. After a total of 200 evaluations, with a parent-offpsing ratio of 3 and a

population size of 30, the first elite performs as displayed in Fig. [6.8].

280.0 _
2775 9
s & o
275.0 4 e = = oo
) e 1 g = £S5 H P
£ m5+ = - £ TS0 g
- = s = g : g T =]
gn — .Qg § & s = W& ?: s ‘3_l“*~c’~ - -: e | < ;“m
== S o, <8.0Ws7S i c=2s. ZIIN:sY 3
== = =] 8 R = —
%154 SHES Hedigm < e SySds =
= = lR ——] =E
265.0 e = =
262.5 4
0123456 789I1001121314151617181920212223242526272829303132333435363738 394041 4243 44546474849
Test Sample ID
B True Values B Predicied Values
. -
276 4 150 Train Loss
Val. Loss
274 300
5 272 A . 2507
2 £
B 270 =200
= g
S 268 - o 1501
=
266 109
264 A l
: 0
202 T T T T T T T T T T T T
204 2ab 208 210 212 274 276 0 50 100 150 200
True Values Epochs

Figure 6.8: Performance of the proposed SMB model with the cLoss coefficient o = 0.15 (top) Bar
plot comparing the target Drag Force values to the predictions of the model, displaying the Relative
Error on each sample’s prediction (left) Regression plot of the model, illustrating the agreement of
its predictions with the target Drag Force values. The highlighted region represents the Q1Qs range.

(right) Convergence of cLoss (Train Loss) and MAE (Val. Loss) of the model over the training
epochs.

84

At first glance, this performance raises concerns about the use of the cLoss function.
The high sparsity in the regression plot imitates randomness, and the errors asso-
ciated with many samples take exceedingly high values. However, the predictions
successfully range across the entire dataset. Specifically, the test and prediction
sets have a variance of 158.4796 and 153.8926 respectively (or 8.8348 and 8.5791 in
the original domain). Moreover, the inaccuracy is the most significant in regions
outside the highlighted area containing the 50% of the dataset. Overall, employing

the custom loss function addressed the lack of diversity in the predictions.

P

oo

, =

276 £ Ficd
H o

z 1 |
=
1

Drag Force
-2
3
=
1

03174 |

 ——

01234567 891011121314151617181920212223242526272829303132333435363738394041 4243 44546474549
Test Sample ID
B True Values B Predicled Values

—— Train Loss
Val. Loss
SU -4
g
k= g 07
-}
z v
E g
= 1 40 1
2 o
=
:20 -
o A
U o
T T T T T T T T T T T T
204 2o6 208 270 22 174 276 0 50 100 150 200
True Values Epochs

Figure 6.9: Performance of the proposed SMB model with the cLoss coefficient oo = 0.05 (top) Bar
plot comparing the target Drag Force values to the predictions of the model, displaying the Relative
Error on each sample’s prediction (left) Regression plot of the model, illustrating the agreement of
its predictions with the target Drag Force values. The highlighted region represents the (Q1Q3s range.
(right) Convergence of cLoss (Train Loss) and MAE (Val. Loss) of the model over the training
epochs.

The coefficient is redefined to 0.05. Exploration of the design space with the same
EA setup proposed a new model composition. Its performance, depicted in Fig.
, presents a substantial improvement both in terms of variance agreement and
isolated sample accuracy, particularly within the highlighted area. The test and

prediction sets present a significant difference in variance, with o2, = 158.4796

85

and o7, = 100.1103 respectively (8.8348 and 5.5809 in the original domain). These

results highlight the sensitivity of the training process to the coefficient a.

Further investigation within a trial-and-error process led to the definition of a =
0.08. A computationally heavy fine-tuning process, with 800 EASY evaluations with
the same general setup described earlier, proposed the model summarized in Table
as the Elite SMD implementation for the purpose of this Application. The
test set has variance of 158.4796 and the prediction set 152.2746 (8.8348 and 8.4889
in the original domain). The predictions present MARE = 0.1734% (MRE =
0.105%). Their regression line deviates by 0.95° from the identity line, and the
distribution of error is moderately even across the range of the dataset (no bias
is observed). The Elite’s performance is graphically presented in Fig. [6.10] and
16.10].

Parameter / Metric ‘ Value Parameter / Metric ‘ Value
Number of CNN Layers 5 Number of DNN Layers 4
CNN L1 filter size (pow. of 2) 5 DNN L1 neurons (pow. of 2) 7
CNN L2 filter size (pow. of 2) 6 DNN L2 neurons (pow. of 2) 10
CNN L3 filter size (pow. of 2) 3 DNN L3 neurons (pow. of 2) 5
CNN L4 filter size (pow. of 2) 4 DNN L4 neurons (pow. of 2) 6
CNN L5 filter size (pow. of 2) 4 DNN L5 neurons (pow. of 2) -
CNN L6 filter size (pow. of 2) - DNN L6 neurons (pow. of 2) -
CNN L7 filter size (pow. of 2) DNN L7 neurons (pow. of 2) -
CNN LS8 filter size (pow. of 2) - DNN L8 neurons (pow. of 2) -
act. function CNN layers ReLU act. function DNN layers ReLU
kernel size (constant) (3, 3) batch size 40
strides (constant) (1, 1) epochs 300
pool size (constant) (2, 2) cLoss coefficient « 0.08
MARE 0.1734 % | MRE 0.104 %
Test set variance 2., 158.4796 | Prediction set variance 0’27,ed 152.2746
lo?(y) — o*(9)] 6.205

Table 6.2: Summary of the composition and performance of the selected SMB model after the
ezploration of the design space by EASY and evaluation.

86

i0.30%

250
0130%0

Drag Force

0123456 789I1011121314151617181920212223242526272829 30313233343536 3738394041 4243 444546474849

Test Sample ID
B True Values B Predicted Values

276

274 4

272 +

270 4

268 A

Model Predictions

266

264

—— Train Loss
Val. Loss

cLoss Emor

262

T
204

T
2ab

T T
208 210

T T
212 274 270 0 0 100 150 200

True Values Epochs

Figure 6.10: Performance of the selected SMB model with the cLoss coefficient o = 0.08. (top)
Bar plot comparing the target Drag Force values to the predictions of the model, displaying the
Relative Error on each sample’s prediction (MARE: 0.1734%). (left) Regression plot of the model,
illustrating the agreement of its predictions with the target Drag Force values. The highlighted region
represents the Q1Qs range. (right) Convergence of cLoss (Train Loss) and MAE (Val. Loss) of the

model over the training epochs.

+
-

===

Drag Force

270 A
265 1

260

Training Dataset
Test Datasct Valucs
Predicted Values

-+
i

T
L1}

T G e i T T
50 100 150 200 250 304 350
Sample 1D

Figure 6.11: The sorted working dataset. Blue crosses illustrate the training samples, while black
dots illustrate the test samples and red dots the corresponding predictions of the modified SMB
model. The highlighted region represents the Q1Qs range.

87

6.4 Overview and Conclusions

The studies conducted in Application III highlight the strength of the SMB config-
uration as a powerful NN architecture, capable of addressing complex aerodynamic
problems, such as the prediction of the aerodynamic Drag Force of cars from their
two-dimensional representations. Provided a statistically-driven pre-processing of
the dataset and a generally cheap fine-tuning regarding the architectural compo-
nents of the model and their parameters, as well as the training hyperparameters,
the SMD models manage to identify subtle differences in the depicted geometries
and decode the highly non-linear phenomena governing the problem, effectively

producing predictions of great precision.

The selected SMB Elite manages to predict the Drag Force target values with
accuracy across the entirety of the dataset. Employment of the cLoss effectively
addressed the bias-variance imbalance and allowed the predictions to escape the
interquartile region, introducing controlled diversity to the prediction set. Proper
balance of the error distribution term and the MAE term of Eq , achieved by

adjusting the a coefficient, allows for an overall robust performance.

However, significant computational resources are necessary to fine-tune the addi-
tional trainable parameters of the present SMB implementation, compared to that
of Application II. Specifically, the exploration conducted by EASY to propose the
Elite took approximately 72 hours on 2 x GeForce RTX3060.

88

Chapter 7

Conclusion

7.1 Overview

This Thesis demonstrates how CNNs can be integrated as local data-driven sur-
rogate models within the early stages of automotive design, addressing the com-
putational bottlenecks of conventional workflows that rely on 3D modeling, mesh-
ing, and flow simulations using expensive high-fidelity models. By leveraging 2D
sketch-like representations of car designs (typically stored in industrial archives),
the proposed methodology confirms that cooperation of SE Blocks with regulariz-
ers, and a moderately cheap fine tuning process concerning the model’s architectural
properties, composition and component parameters, allows for the development of
case-dependent cost-efficient Convolutional models that accurately predict the de-
signs’ Drag Force values. These models can allow rapid real-time evaluation of
modifications on a baseline automobile geometry, both in terms of aerodynamic
criteria and aesthetics, guiding design iterations toward viable configurations while

conserving computational resources for high-fidelity optimization in later stages.

The work is structured into three sequential applications of ascending complexity,

each targeting distinct challenges in the development of the models.

Application I: Airfoil Aerodynamic Prediction

Application I concerned the development of an advanced convolutional configuration
that achieves superior cost-effectiveness in 2D aerodynamic-governed phenomena.
The conducted studies highlighted the importance of Squeeze-and-Excitation Blocks
(SE-Blocks) both as standalone components and in conjunction with Regularization

Techniques.
Results:

e C: MARE = 1.4271%, Cp: MARE = 6.8854%, Area: MARE = 4.5501%.

89

e Importance of SE-Blocks and Regularization to enhance CNN interpretational

capabilities and decode non-linear aerodynamic phenomena
e Development of a robust backbone CNN architecture

e Restriction of the EASY exploration domain for subsequent Applications

Application II: Single Morphing Box Automotive Design

The backbone convolutional architecture of Application I was adapted for the pre-
diction of properties of 3D car geometries. Three distinct approaches were exam-
ined, differing either on the shape of the input data or the architectural symmetry

of the network.

e Single-Branch Model (SB): Consists of a single convolutional branch (similar

to that of Application I). Accepts a single R34 view image.

e Multi-Branch (MB): Consists of multiple parallel convolutional branches, the
outputs of which are concatenated and passed through a series of fully con-
nected layers. Accepts as input multiple orthogonal views of the cars, each

processed by a branch uniquely associated with it.

— Individualized Multi-Branch (IMB): Each branch is adjusted separately
during the fine-tuning process, resulting in different branch composition

and an architectural asymmetry of the model.

— Shared Multi-Branch (SMB): All convolutional branches share the same
composition at all times, both in architectural components and their cor-

responding parameters.

The presented configurations were evaluated on the cars’ Surface Areas and Drag

Forces.
Results:

e SMB Superiority in Drag Force Prediction: Achieves MARErr: 2.04%,
MAEXR :1.13% , outperforming SB (6.43%, 3.96%) and IMB (4.16%, 2.64%).

e SMB Superiority in Surface Area Prediction: Achieves MARErr: 5.73%,
MAER :1.56% , outperforming SB (8.55%, 3.40%) and IMB (6.11%, 2.60%).

e SMB Superiority in Distribution of Error: Achieves a more evenly dis-

tributed Error across the range of the dataset.

e Cost-Efficiency of the SMB Configuration: The overall costs for the

90

development and fine-tuning of the examined models are approximated: SB
=1TU, IMB ~12TU, SMB ~5.5TU.

A thorough comparison concerning the distributions of the error of the models’
predictions justified the selection of the SMB configuration as the backbone config-

uration for Application III.

Application III: Complex Automotive Geometries with Multiple Morph-

ing Boxes

The methodology was extended to automobiles presenting subtle modifications at
their frontal, top and rear regions. Initially, the SMB model failed to produce ac-
curate results, concentrating its predictions within the interquartile range of the
dataset, indicating that the model is strongly biased. To counteract this bias-
variance imbalance, a statistically driven modification was applied to the loss func-
tion of the training process, which allowed for the accurate predictions of the ge-

ometries’ Drag Force values.
Results:

e Highlights importance of custom Loss: Application of cLoss allows for

the accurate prediction of the Drag Force Values.
e MARE =0.1734%, MRE = 0.103%

o [0*(y) — o*(§)| = 6.205

7.2 The case-dependent SMB model

The developed SMB configuration, implemented in Applications II and III, is a
CNN comprising the first (convolutional) half, associated with feature extraction,
and the second (deep) half, associated with interpreting the extracted features. In
the context of non-linear acrodynamic problems regarding complex 3D automobile
designs, it manages to provide accurate precisions of the aerodynamic Drag Force

values.

It is a multiple input - single output model; it accepts (herein three -in Applica-
tion II- and four -in Application III-) fix-sized images and estimates the value of a

single scalar parameter/metric of the examined geometry. The input images corre-

91

spond to different, orthogonal views of the geometry, each processed by a separate
convolutional branch, uniquely associated with it. The branches’ outputs are later
concatenated and passed through a sequence of fully connected layers which leads

to the single neuron of the output layer. It is graphically presented in Fig. [7.1].

[t Convolutional Branches Fully Conneeted Lavers
Tensors Q
i

“Tebe
~Tele

Figure 7.1: Illustration of the general architecture of the SMB configuration.

Q
/
QO
.
O
O
\O

The model presents total architectural symmetry, as all convolutional branches
feature the exact same sequence of components and parameters. The branches
comprise convolutional layers, MaxPooling layers and, most importantly, SE Blocks,
which critically enhance the networks interpretational capabilities and predictive
accuracy. Regularization is applied both in the CNN and DNN parts of the network.
Evolutionary tuning of the working components and application of a statistically-

focused custom loss function fully unlocks this configuration’s capabilities.

7.3 Conclusions

This Thesis suggests that CNNs can be used as local surrogate models in the pre-
liminary phases of the car design process, aiming to bypass the costly steps of
modeling, meshing and high-fidelity flow simulation in the conventional procedure.
Specifically, it indicates that the developed networks can provide reliable predictions
of automobiles’ aerodynamic Drag Force values solely from their two-dimensional
sketch-like representations. In the automotive industry, the presented methodology

can allow for the development of a cheap, real-time evaluation tool for stylists, to

92

examine proposed designs (and design modifications) w.r.t. aerodynamic criteria in
addition to aesthetics, thereby facilitating more informed design space exploration

and optimization decisions during the conceptual design phase.

The applications of this Thesis collectively form a moderately cheap algorithmic
process that successfully leads to the development of case-dependent CNN configu-
rations that successfully decode the phenomena governing the working problem -in
this case non-linear 3D aerodynamic applications- and produce high precision pre-
dictions. This algorithmic process can essentially be simplified into three distinct
steps; the development of an effective and computationally efficient architecture for
a simplified version of the target problem, the extension of this architecture to the
full-scale problem, and the application of targeted modifications to ensure optimal

performance in the working case.

Following this structure, Application I concerns the construction of a baseline con-
figuration, while simultaneously aiming to implicitly exclude unimportant regions
of the EA design space for the subsequent, more computationally-heavy Applica-
tions. Herein, it concerns 2D aerodynamic flows around isolated airfoils. Appli-
cation II refers to the adaptive extension of the previously established backbone
CNN architecture for aerodynamic problems concerning 3D geometries, specifically
automobiles. In this work, three distinct configurations are examined, differing
either in their input’s shape or their architectural symmetry. EA-driven fine tun-
ing and post-processing allow for the selection of a superior configuration that is
best-suited for the working case, herein the SMB configuration, comprising three
parallel Convolutional branches, including SE-Blocks and employing regularization
techniques. Lastly, Application IIT highlights the importance of statistically driven
pre-processing of the dataset to address potential inherent challenges. In this The-
sis, a statistically-driven modification was applied to the training’s Loss Function
to mitigate the strong prediction bias, thereby eliminating the fundamental and
common challenge of bias-variance tradeoff and produce high-precision predictions.
Herein, when evaluated on a challenging set of 50 unseen automobile geometries, the
SMB configuration produced predictions of their Drag Force values with a MARE
of 0.1734%

Computational requirements for implementing these models include the cost of the
dataset generation, the cost of training the model, and the cost of fine-tuning its
parameters and composition. The conducted studies showcase the ability to develop
robust and cost-efficient CNNs without the need for excessive sampling, model
complexity (training cost) or fine-tuning. Specifically, referring to the development
of the SMB Elite of Application III, the total cost is detailed (on 2 x GeForce

93

RTX3060) ~ 185 hours for dataset generation and ~ 72 hours for fine tuning (cost

of training of each candidate included).

While these computational requirements appear substantial, practical implemen-
tation in industrial automotive applications typically eliminates the dataset gen-
eration phase, as manufacturers maintain extensive archives of sketches and cor-
responding aerodynamic performance data from conceptual design studies and ex-
isting vehicle configurations. Consequently, the primary computational investment
for industrial deployment focuses on the fine-tuning phase, with cost-effectiveness
determined by the frequency of the surrogate model’s utilization and the associated
reduction in conventional CFD simulation requirements. Indicatively, in Applica-
tion III, the fifty test samples’ Drag Force values were estimated at essentially zero
computational cost, whereas employment of PUMA would require 25 hours in total.
To balance the 72 hours of fine-tuning, utilization of the SMB for an additional 94

designs would be required.

7.4 Future Work Proposals

Based on the implementations presented in this Thesis, the following future work

proposals are proposed:

e Firstly, additional types of networks (such as U-Nets) or network configura-
tions can be implemented to examine whether it is possible to further improve
predictive accuracy, concerning the automobiles’ drag prediction from their 2D
sketch-like representations. More sophisticated studies can also be conducted
to replace the empirical rules employed in this Thesis” Applications II and III,
although attention must be given to the balance between the computational
drawbacks that this optimization would impose and the potential profits of the

developed surrogate model.

e Next, the algorithmic procedure developed in this Thesis can be adjusted to
be included in an automated optimization loop; the objective function being
the drag force, or the downforce-to-drag ratio, and the design variables being
the coordinates of the CPs that form the NURBS Moprhing Boxes enclosing

regions of the original car geometry. In theory, this can allow for a shape-

94

optimization of the automobile within a predefined region of the design space,

defined by the training dataset’s bounds.

Lastly, an interesting approach would be to extend the working dataset, by
including variations of different baseline car geometries, and including a clas-
sification part of the model, identifying the baseline geometry the input sam-
ple corresponds to. Such an implementation would critically reduce the case-
dependency of the presented models, and potentially allow for a greater gen-
eralization ability, which could, in theory, allow for predictions outside each

baseline geometry’s training dataset’s bounds.

95

Bibliography

1]

[5]

[6]
[7]

8]

[9]

[10]

Asouti, V., Trompoukis, X., Kampolis, I., Giannakoglou, K.: Unsteady CFD
computations using vertex—centered finite volumes for unstructured grids on

Graphics Processing Units. International Journal for Numerical Methods in
Fluids 67(2), 232-246 (May 2011)

Asouti, V., Trompoukis, X., Kampolis, 1., Giannakoglou, K.: Unsteady cfd
computations using vertex-centered finite volumes for unstructured grids on
graphics processing units. International Journal for Numerical Methods in Flu-
ids 67(2), 232-246 (2011). https://doi.org/10.1002/fld.2342

Aultman, M., Auza-Gutierrez, R., Disotell, K., Duan, L.: Effects of wheel ro-
tation on long-period wake dynamics of the drivaer fastback model. Fluids
7(1), 19 (2022). https://doi.org/10.3390/fluids7010019, https://doi.org/
10.3390/£f1uids7010019

Barthelmés, P., Rosnitschek, T., Tremmel, S., Rieg, F.. Impact of
hpc and automated cfd simulation processes on virtual product de-
velopment—a case study. Applied Sciences 11(14), 6552 (2021).

https://doi.org/10.3390/app11146552, https://doi.org/10.3390/
app11146552
Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern machine learning

and the bias-variance trade-off. PNAS 116(32), 15849-15854 (2019)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

Botchkarev, A.: Performance metrics (error measures) in machine learning

regression, forecasting and prognostics: Properties and typology. arXiv preprint
arXiv:1809.03006 (2018)

Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale
machine learning. SIAM Review 60(2), 223-311 (2018)

Chai, T.L., Draxler, R.R.: Root-mean-square error (rmse) or mean absolute
error (mae)?—arguments against avoiding rmse in the literature. Geoscientific
Model Development 7(3), 12471250 (2014)

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online
learning and stochastic optimization. In: Proceedings of the 24th International
Conference on Neural Information Processing Systems (NeurIPS). p. 257-265
(2011)

96

https://doi.org/10.3390/fluids7010019
https://doi.org/10.3390/fluids7010019
https://doi.org/10.3390/app11146552
https://doi.org/10.3390/app11146552

[11] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural
Computing Series, Springer, 2nd edn. (2003)

[12] Gain, J., Lab, C.: Enhancing spatial deformation for virtual sculpting (09 2000)

[13] Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedfor-
ward neural networks. In: Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics (AISTATS). pp. 249-256 (2010)

[14] Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks (2011)
[15] Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

[16] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, 2 edn. (2009)

[17] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recogni-
tion pp. 770-778 (2016)

[18] He, X., Xue, F.; Ren, X., You, Y.: Large-scale deep learning optimizations: A
comprehensive survey. arXiv preprint arXiv:2111.00856 (2021)

[19] He, Y., Zhang, X., Sun, J.: Rethinking the value of batch size in stochastic
gradient descent. arXiv preprint arXiv:1905.04694 (2019)

[20] Heft, A.L, Indinger, T., Adams, N.A.: Introduction of a new realistic generic
car model for aerodynamic investigations. Sae technical paper 2012-01-0168,
SAE International (2012). https://doi.org/10.4271/2012-01-0168

[21] Hornik, K.: Approximation capabilities of multilayer feedforward networks.
Neural Networks 4(2), 251-257 (1991)

[22] Hornik, K., Stinchcombe, M., ~White, H.. Multilayer feedforward
networks are universal approximators. Neural Networks 2 (1989).
https://doi.org/10.1016,/0893-6080(89)90020-8

[23] Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 7132-7141 (2018)

[24] Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence 42(8), 2011-2023 (2019)

[25] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 (2014)

97

[20]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

Kontou, M.: The Continuous Adjoint Method with Consistent Discretization
Schemes for Transitional Flows and the Use of Deep Neural Networks in Shape

Optimization in Fluid Mechanics. Ph.D. thesis, National Technical University
of Athens (2023)

Kyriacou, S., Giannakoglou, K.X.: Evolutionary algorithm-based design opti-
mization methods in turbomachinery — updates to easy. Technical Presentation,
NTUA (2012), describes the integration of knowledge-based design, specialized
operators, and PCA-driven metamodeling within EASY

Lagaris, I.LE., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving
ordinary and partial differential equations. IEEE Transactions on Neural Net-
works 9(5) (1998). https://doi.org/10.1109/72.712178

Larsson, R., Gustavsson, E., Wikander, J.: Shape modeling and design system
using free-form deformation and nurbs. Computer-Aided Design and Applica-
tions 3(1-4), 77-85 (2006)

LeCun, Y., Bottou, L., Orr, G.B., Miiller, K.R.: Efficient backprop pp. 9-50
(1998)

Lee, J.H., Ko, Y.D., Yun, I.: Comparison of latin hypercube sampling and
simple random sampling applied to neural network modeling of hfo2 thin film
fabrication. Transactions on Electrical and Electronic Materials 7(4), 210-214
(2006)

McKay, M., Beckman, R., Conover, W.: A comparison of three methods for
selecting values of input variables in the analysis of output from a computer

code. Technometrics 21(2), 239-245 (1979)
Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press,
Cambridge, MA (2012)

Prechelt, L.: Early stopping—but when? pp. 55-69 (1998)

Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with

deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by
back-propagating errors. In: Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, vol. 1, chap. 8, pp. 318-362. MIT Press (1986).
https://doi.org/10.7551 /mitpress/5236.003.0026

98

[38] Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson,
Hoboken, NJ, 4th edn. (2020)

[39] Schwartz, R., Stanovsky, G., Swayamdipta, S., Dodge, J., Smith, N.A.: Mea-
sure and improve robustness in nlp models: A survey. In: NAACL (2020)

[40] Science, T.D.: Performing uncertainty analysis in three steps: A hands-
on guide. towardsdatascience.com/performing-uncertainty-analysis-in-three-
steps-a-hands-on-guide-9110b120987¢/ (2023)

[41] Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models.
ACM SIGGRAPH Computer Graphics 20(4), 151-160 (1986)

[42] Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete
samples). Biometrika 52(3/4), 591-611 (1965)

[43] Smith, S.L., Le, Q.V.: Don’t decay the learning rate, increase the batch size.
arXiv preprint arXiv:1711.00489 (2018)

[44] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 2nd edn. (2018), http://incompleteideas.net/
book/RLbook2020. pdf

[45] Tieleman, T., Hinton, G.: Lecture 6.5 - rmsprop: Divide the gradient by
a running average of its recent magnitude. http://www.cs.toronto.edu/
~tijmen/csc321/slides/lecture_slides_lec6.pdf (2012), coursera: Neu-

ral Networks for Machine Learning

[46] Trompoukis, X., Tsiakas, K., Asouti, V., Giannakoglou, K.: Continuous
adjoint-based shape optimization of a turbomachinery stage using a 3d volu-
metric parameterization. International Journal for Numerical Methods in Flu-
ids (2023). https://doi.org/10.1002/fld.5187

[47) Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: Efficient channel
attention for deep convolutional neural networks. CVPR (2020)

[48] Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (mae)
over the root mean square error (rmse) in assessing average model performance.
Climate research 30(1), 79-82 (2005)

[49] Xu, X., Chen, H., Zhang, C., Duan, Y., Wang, G.: Data-driven sen-
sitivity analysis of the influence of geometric parameterized variables on
flow fields under different design spaces. Aerospace 11(12), 984 (2024).
https://doi.org/10.3390/aerospacel11120984

99

http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

[50] Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. Communications of the ACM 64(3),
107-115 (2021)

[51] Zou, H., Hastie, T.: Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
67(2), 301-320 (2005)

100

101

E9vixé MetodfBio Ilohuteyveiog

e
L
*
z
£

IR
9 “-?o =y
A poMHBEYS - J'g
&
==l

Xy oA Mnyavohoywy Mnyovixmy

Touéag Pevotwy

Movdda ITagdAAnAng vnoloyioTtixrc Peuotoduvauixig

‘h

& Beltiotonoinong

Yuvehxtixd Nevpwvixd AlxTuo g
Metopovtéda ota [odipa Ytddio tng
Aradixociog 2yedltaopod AVTOXIVATOYV

Awmiwpatin Epyaota - Extevic Heplindn oty Exknvin

Paidxoc Baoikesiog

EmuBiénwy: Kupdnog X. Tavvdxoyiou, Kadnyntric EMII

Adfva, 2025

Ewcaywyn

Y1oyoc e Ammiwpatixrc authic Epyaotoc elvon 1 egapuoyr Yuvehntindv Nevpw-
vixov Aixtoov (XNA) w¢ tomxd eTalovtéls oTa TemIUo oTédt e OLadtxactog
OYEDLUCUOU AUTOXVATWY, UE OXOTO TNV UTOXATAC TUOT XOGTORORMY BNudTtwy Tng xo-
Yiepwpévng dladactog, ouYXEXPWEVA TNV LOVTEAOTOINGTY), TAEYUOTOTOMOT XL TEo-
couoiwan (enflvon e pofc). Kotd v mpocéyyion nou mogovotdleton, o XNA
OEYOVTAL OLOLIC TUTEC AVATIOEUO TUOELS TWV QUTOXIVATWY GE UOPPT| OXITOOU, 0TS CU-
vioiletan va mapovoidlovton TEOTEWVOUEVY OYESLW 0TV Blounyavio, xou oToyedel oTNy
oxeif3n) meoPhedn g aepoduvauxrc Toug avtioTtaong. ‘Eva tétoo epyaieio Yo emi-
TEEMEL GTOUC OYEBLAOTES Vo 0 lohoyolV Tayéwe TaVEC TPOTOTOLACELS GE Lo 0Py X
YEWUETElO, X0t Vo TIG BEYOVTOL 1) AmOPE(TTOLY UE YVOUWVA TG0 TNy aodntuxr 6co
AL T EXAOTOTE AgPOOUVOIXE xptThpLa.)¢ €x TOUTOU, 1) EQUPUOYY| TETOUWY BLXTUMY
OUVOTAL VL TEQLOPIOEL TOV OYEDUCTIXO YWEO ATO To VWPEIC, EMITEETWVTAS TNV dlaTheNoN
UTIOAOYLO TIXWV TOPMY YL O UTOGYOUEVY OYEDLNL O ETOUEVA OTADLY TOU GYEBLUGUOU.
H Simhoyatind auty| aoyorelton ye tny ovdmtuln mponyuévwy YNA nou, ue youn-
A6 UTOAOYIGTIXO XOOTOC, XUTAUPEPVOLY VoL EXTYOUV TNV AEEOOLVAULXY| VT TACT) TeV

OMEWOVILOPEVOY AUTOXIVATOV UE UEYAAT axp{Beta.

Teyvnty Nonuoolivn xow Mryavixry, Mddnon

H Teyvnt Nonpootvn (Al) nepthopBdver ahyopiduous mou mpocouotdvouy aviemnt-
VEC YVWOo TixéC Aettovpyiee, eved 1 Mnyaviey Médnon (ML), we unonedio g, emtpénet
O€ UTOAOYLOTIXY LOVTERX Vo BehTiwvovtan péow eunelplac. H emonteuduevn udidnon
amotekel T0 nuplapyo mhalolo Y mpoyvewoTixd wovtéha. To Teyvntd Nevpwvixd
Aixtua (ANNS) eivon woyvpol npoceyylotixol akydprduot mou €youv amodeyVel tda-

{Tepa AMOTEAEOUAUTIXOL GTNY UTOXATAC TUCT) TOAUTTAOXWY UTIOAOYIC TIXWY OLUOIXUCLMYV.

H nopoloa epyooia ofonoei (CNNs) wg tomxd yetopovtého yio v ameuieioc
TEOBAEPT AECOBLVUUXDY YAUPUXTNELO TIXWY AUTOXWVATOY amd 2D oxitoa. Xtdyoc eivor
1 HElWOT TOL XOCTOUG X TOU YPOVOL TOU GUUPATIXOU GYEDBLACHOU, ToU TEQLAUUBAVEL
wovtelonoinor, mheypatonoinomn xa TPA avdhuor. Méow allomoinone vpotduevmy
Bdoewy Bedouévev, 1 TROTEWVOUEVT TEOGEYYLON EVOWPUTOVEL T opyéc tne AI/ML
OTN POY| EPYUCLOY TOU GYEDLAOUOU, OIS OE TEMOIA OTADLY, EMTEETOVIUS GUEDT), TTO-

coTXT) ACLOAGYNOT) EVUAAOXTIXWY YEWUETPUOV OF TRUYUAUTIXO YEOVO.

Avadixacio Xyediacpnol Moviéhwy

H diaduacio mou axohoudeitar yior TNV avdmtuln TV HOVTEAWY ATOBOUE(TOL OE TEELC
Boowée PEAETES BLOPORPETIXWY OTOYWY Xt awEavouevne molvmhoxdtnrag: 1) v o-
vamtugn mponyuévey CNNs yio 2A agpodLVUUIXES EQUPUOYES IOV, GTNV TROXEWIEVT,
apopolv oe aepotouéc 1) v enéxtaon tng mpoxUntoucac apyltextovixic o 3A
£QaploYEC oL opopolv oe mapamAfola autoxivnto xou III) v alohdynon tou ume-

ELoYVOVTOC LOVTENOU GE EVOL ATOUTNTIXO GUVOAO DEDOUEVHY AUTOXVATMV.

Y1ic Teelg YeAéteg axorovdeiton ue Tov (Blo, xotd Bdor, TedTo 1) dadixacio Tou ma-

pouctdleton oAYopLIUIXd ToEOXATE.

o Katooxeur) ouvletinol cuvolou Be00UEVWY Yiar TNV EXTOELOT) xon a&loAGYToN

TV OWTOLY, H€ow eqopuoyhic Tne uedodou FFD ot éva apyixd oyédio.

o (Ia ug peAéreg II kar III:) Amotdnwon v YEWUETPUOV and BLdpopec xddeTeS
ueto€l Toug oele, xadwe xou Ty omiot 3/4 bdn (R34), xou eneZepyooia wote
VoL AMOXTACOUY Hop®T| Tou TeocoUotdlel oxitoo, Yyl Toug oxomolc Tne Awmiw-

HOTLONG.

o Enihuon poric YOpw and TNy exdoTote YEWUETpla UE Yphon Tou Aoylouxol TPA
PUMA. To anoteAéopota TV TeocoHotOoenmy amapTi{ouv T0 GUVOAO SEGOUEVKY

££600L TOL TOL LOVTEAN XohoVVToL VoL TEOBAEpOUV.

Axdua, yivetar yprion e€ehxTixdy alyopliuny, uéow tou Aoylouxol EASY, yi tny
npocopuoyn (xou byt mayxdoula BEATIOTOTOMOT)) AEYLTEXTOVIXGDY WOLOTATWY Xat SO
%WV OTOYElY TOU EXFOTOTE BIXTUOU UE GTOYO TNV EAXYLOTOTOMNOY TOU CQAMNINTOC

TV TEOPAEPERV.

Téhog, mapovaidlovton to Mmhox cuunieonc xou Siéyepone (Mmiox £/A, SE Blocks)
X0l 1) TEYVIXT xavovixoTolnong (Regularization), mou cuvtéheoay OTNV oVITTUEN €-

0O TOY WY XL ATOBOTIXDY BIXTUMV.

To Mnhox /A elvon Sound oTotyeior ToU EVIGYUOLY TNV AVOTATAG TUTLXT IXAVOTITOL
v XNA, avodétwvtac cuvteAeotéc Bdpous ota xovdha tTng e€600U EVOS GUVEAL-
AT00 EMUTEDOV, EMUTPENOVTOG £TOL GTO UOVTEAD VO OWOEL EUPUOT) GTUL THO CTUAVTLIXS
HAVAALYL YO VO XUTAC TEIAEL Tat Ay OTeEpo Yeriowua. To mopamdve yivovtar duvatd uEce
TELOVY Bootx®dY AEITOVEYUOV: CUUTIEST), BIEYEpoT) xou emavapopd o€ xAfuaxa. To Xyfua

ametxovilel ypoupixd Ty apyn hertoupyiag v Mmhox X/A.

G ¢
ExAua 1: Ipagikn areikdvion tng apxris Acicovpyias evés Mok X/A.

H xavovixomoinom etvon uior Bacixr Teyvixt| yio TNV omo@uYT| UTERTEOCUPUOYNS Xl
TNV EVIOYUOT TNG IXAVOTNTAS YEVIXEUOTC TV HOVTEAWY OF VEX BedoUEVA, TPocUETo-
VTOG €vay ETTEOGUETO 6p0 GTNY CUVAETNOT) GYAAUNTOS IOV Topoxohovdeiton xotd Ty
exTalOEVOT TWV SXTLWY. Xe autyh Ty Aimhowuoatixr Epyoaoio, yenowonowidvton o Te-
yvixée L1 xou L2, H mpcdytn mpodiyel Ty emAOY T YoooxTNOLO TIXMY HECW TNG UNOEVIXTC

TWrg Popddv, eV 1) BedTeRn UeWVEL TNV evatcdncia Tou povtélou oto Yopufo.
Meién I

To cOVOhO BEBOUEVWV TNG TEMOTNG PEAETNG TPOXUTTEL OO EPUQUOYY| TNG TUPATAVE
owdwactog otny acpotour) NACA4318, xan anewovileton oo Xy . 2%x0mo¢ elvon 1)
TeoPBAedn Tou cuvTteEAEoTH agpoduVaUXc dvwone Cr, ToU GUVTEAEGTY| AEQOBUVOIXTC

avtiotaong Cp o TNG EMPAVELNS TWY AEPOTOUGY, OE XATOLEC GUVITIXES POTIC.

© ° ° © ©
P BEESES .
e
° ° © ‘;:}ao
"'-_____'_'_'____..—-——'_'_
L L o o L]

SxAra 2: (apiotepd) To mAéyua eAéyxou mou mepikAeiel TNy apxiky) YewueTpia Tng peHOvmuérng
aepotouns NACA4318, kair ta XE mov to anaptifovr. (kévtpo) Ta meprypdupata twv Sidpopwy
TapaAdaydv Tng apxikris aepotouns Tov kataokevdotnkar. (de&id) Eva tuxaio defyua tov ouvdlov
dedopévwv ewoédov, atny popen mouv Ya ewélea ota veupwrikd diktva Tng mapoloag HeAETNS.

To epyalbpevo poviého apynd ywelletar oto Luvehixtixd tuhiua (tphue XNA), tou
Aoy ONELTOL UE TNV VoY VWPELOT) X0 TGO HOTIBWY oTar Bedouéva ELl06B0U, XaL 0TO
Bord0 tuiua (tuiua BNA), tou oxoloudel to uvehixtind xar opyoleiton Ue Ty amo-
xwoixornoinom xou epunvela Twv potifov. To tunua XNA anoptiletar and odinlouyio
CevyopLdv cuvelixtixwy emmédwy (Convolutional Layers) xou emnédwy péytotng v-

nodetypatohndiog (MaxPooling layers). To tufua BNA anaptiCeton pévo and nuxvd

eninedo (dense layers) xou xotohfyel o€ €vay wovadixd vevpdva Yo Ty teofBiedn tou

exdoToTE YovopeTeou Yeyédoug. H dour tou povtéiou anewovileton oto Xy fua .

EyxApo 3: H (amhovotevuérn) dourj tov povokdadikol povtélov mov xpnoiponoleizar katd tny
napodoa ueAéTn.

Apynd, yiveton yprion tou EASY yia va topdéet diopoppnoels ouuBatixedy XNA tou
oéovTaL TNV TRV UEYITEXTOVIXT|, To XohoUvTon Vo TeoBAégouy xan ta Tpla ueyéin
evolapepovToC. I'ivovTon TpocupuoYES OTNY AEYITEXTOVIXT Xl GTOL DOUIXA G TOLYElO TKV
HOVTEAWY, UE OGXOTO TNV AVATTUEN TEOTYUEVWY BIXTOWY TOL amodIB0LY XOAITERA. 2U-
yxepwéva, mpootivevtar Mmhox Y /A avé 800 cuvelxTixnd enineda, xau eqopuolovTal
TEYVES ovovixoroinong. Ta povtéha mou oynuatiCovian yio xodepio and T Teelc

nepintwoelc (Cr, Cp,, empdvea) cuyxpivovtal e o avTio Tory o GUUBaTIXd.

TNy TEPIMTWOT TOL GUVTEAEG T vwong, oL Tpocupuoyés enépepay Tepinou 30% adin-
on ot oxpifela twv TeoBrédewy e pévo ~ 0.52% napamdve utoloytotixd xdotoc.
To nponyuévo dixtuo netuyaivet Méso Andiuto Xyetixd Lodiua (MAYXY) 0.403%
1 1.4271% oo xavovixornotnuéva 6edoueva oo evpog 0-100. To amotehéoyato ToU

TEOXOTTOVTOS dTUOU ameovilovton 6To Ly .

LNV TEPIMTWOT TOU CUVTEAEC TH| AEEOBUVOUIXTC avTio Taong, emTedy U ueph addnom
e axp{felog pe emBdpuvon ~ 0.66% oto unohoyotind x6otoc To MAYY naipvel
T 0.523% 1 6.8854% oo xavovixonotnuévo 0-100 mhaioto. To amotehéoporto onet-
xovilovtar oo Lyt @

Téhog, oyetind pe Vv TEOBAedn TNg EMPAVELNS, TO avamTuyY V€V LOVTENO TETUYEVEL
MAYY = 0.3353% (¥ 4.5501% oto xavovixomownuéva dedopéva oto ebpog 0-100),
6nee gatvetan oo Ly [

240 —— Train Loss
0334 —_— il Luss
CELE
025 4
030
0.15

Maodel Pradictons
b
&

Mean Absolute Eror

010 4

00%4

1.1 4 0.00
11 1.2 13 14 1.3 1.0 o 100 700 300 400

3.0 —— Train Loss

wval. Loss

0.038 4

=
§ 0037 &
= ’ &
'g =
= 0036 E
] =L
B &
= 0.035 4 E
0.034
0.034 0035 no3e 0.037 0.038 o 100 200 300 400 500 600 700
3.04 e Tran Loss
0.038 —— Wal. Loss

Q03T

0,036

Wodel Predictions
Mgan AbSolute Error

0035
-

0.034
0.034 0.035 0036 0.037 0.038 [} 100 200 300 400 S00 600 TOO
True Walues Epochs

ExApo 4: O anoddoes twy aventuyIévtwr povtélwr yia s tepintaoel (ndvw) tov Cf,

,(#évtpo) Tou Cp xau (xdtw) TN eMpdveLac.
P i ¢

H mpaxtinr &l e Merétne I, népav tne emodfdevone ot too Mmhox X/A xau
Ol TEYVIXES XoVOVIXOTIOINONG BEATIOVOUY CTUAVTIXG TNV ATOBOTIXOTNTA TWV OXTUWY,
EYXELTAL OTNV OVAYVWRLOT TV CTUOVTIXWY TOPUUETEWY OYEDLACUOY ToU EEEPEUVOUY
ol EA.

LUVETOC, UE TO MRS TN TeWTNS Meétng €youue xoTapEpel apevoC Vo avamTOEOUUE
war apyrtextovixr) CNNs mou umeploy el Twv avtioTolymY CUULBUTIXMY GTA UECOBUVI-
ud TeoBAfuota Tou €ETALOVTOL, APETEPOU VoL TEQLOPICOUUE TIC BLUG TACELS TOU Y(EOU
elepelvnong Tov EA, yeidvoviag 10 x06T0¢ TG BlepelvNong TEOCUPUOY MY, EVOPEL

TV (UTOROYLOTIXG) OTOUTNTIXGOV HEAETCOY TTOU 0xohouHoly.

Mehérn 11

H dedtepn perétn e€etdler mpocopuoyéc g avamtuydeioac apyttexTtvinic yia yeron
O€ TELWLAOTUTA TEOBAAUTA TOU APOEOLY TNV AEPODUVOULXY AVTIC TUOY] AUTOXIVTOV.
Q¢ apywn) yewpetpla yenowornoteitar 1 fastback exdoyr tou dnudclov woviéhou au-
Toxwihtou DrivAer, mou mopouetpomoleiton ue mAyuo eEAEyyou oto omlotio pépog e

210 x6pPouc eréyyov, 6nwe gaiveton oto Lyfua [5].

Exhua 5: To mAéyua eAéyxov mou mepikAeier to omiotho pépog touv povtédov ApiAep, péow tou
omoiov kataokevdlovtar 100 TapaAdayés Tov.

O Tpelc e€etalbueveg TpooeyYIoELS BLaPEQOLY EITE WS TTPOG TO OY U TNE ELOOOOUL TV
HOVTEAWY, Elte we mpog TNV cuuueTtpio Tou, xau ameixoviCovton oTo Xyhud m Kota
™V Slaubdppnon Movadxol (cuvehixtixol) Khddou (Single Branch - SB), to povtého
Oéyeton povadinn exdva, mou amexovilel To autoxivito amo v onioV 3/4 6. Q¢

£x TOUTOU, 1) OPYLTEXTOVIXT| TAUPUUEVEL Xotd Bdom (Bl ue auth) Tne Mehétne L.

Input Convolutional Branches Fully Connected Lavers

Tensors
View 1 @

View 2

9>

ﬁ‘
@-ﬁ‘ﬁ

EyxApo 6: H (amdovotevpérn) dour tov modvkAadikod povtélov mov eéetdletar o€ avtr) TNy peAétn.

Kot tnp Hohuwdodid npooéyyion (Multi Branch - MB) tou Syuoroc[6] to povtého
O€YETOL ELXOVES TIOU ATELXOVILOUY TO aUTOXIVITO a6 TOAAATAES, xddeTeg YETAEY TOUG
oeig, ouyxexpéva 66 TNy Tpdcodr, TGyl o xou omtiotho 6. EZetdlovtan 500
vnonepntioelc: 1 EEotopxevpévn (IMB) xau n Evonoinuévn (SMB). Kotd tnv IMB,
0L GUVENXTIXOL XAGDOL UTIOXELVTAL OE DLUPORETINEG TPOCUPUOYES XUTd TNV DePELVNOT
ue Toug EA xon amoxtoly SlapopeTIXEC BLUUOPPMOELS, GUVETKS TO LOVTEAD OEV TUPOL-

owdler ouppetpio. Koatd v SMB, diot or xhddol anoptilovton and oxeBoe ta (Blo

douxd otovyeio Ye Tic (Bleg TAUPAUUETEOUS, UE TO B{XTUO Vo Efval amOAUTA GUUUETEIXO.

<

Deivh Single View Processing "'(“—(L:——{m Single Branch
rivaer Configuration (SB)
Multi View Processin Individualized Multi Branch

Configuration (IMB)

Shared Multi Branch
Configuration (SMB)

IxAra 7: Awdypappa mov areikoviler Tis Tpels ebetaldueves TpooeYYITES appXITEKTOVIKTIS
HovTélov oTny mapoloa peAéTn.

Metd amd ocuvontnr) 6TaTlo TixY| alloAOYNOT TOU GUVOAOU BEBOUEVEV, OUTO XOVOVLXO-
mote{ton oo €0pog 0-100, dote vo avtiuetwmovel 1 ToAD Uixper) SlacToed Tou oy IXd
napovciole. To eZetaloyevo povtélo exnardedovTia Ue auTd To (pawoxnpomcpévcx)

OEDOUEVAL.

¢oa amd TELLAUATIXEC Otadxaciec DoV, YivETol 6TOUC GUVEAXTIXOUC XALDOUC €-
M oLod) , A A&
POPUOYT TOU EUTELOIXOU Xavova Tou MLy fuatog |8, o omolog mpoTelvel TNV mpocUxm
emmédov UEYLoTNg uToderyatoAndiog avd 600 cuVEMX TG ETimEdA, xou TEOGVYXN
Mmlox /A avd teio.

1 2 3 4 5 6 7
C>C M>C SI>C M>C>C SEN»C

IxAra 8: O eunepikds kavévas mov e@apudodnike otovs ouveAlkTikols kKAddous, yia tny ewaywyr]
emnédwy péyiong vroderypatoAnpias kar Mok X/A.

Metd and perétec xon mpocupuoYES UEcw Tou Aoyiowxol EASY, mpoximtouy tor o-

x6hovdo anoteréopata (oo AAVOVIXOTIOLNUEVA BEDOPEVA OTO EVEOG 0-100).

e MovoxAadixé Movtého: 20 B1doTaTOC TOPUUETOIXOC YWEOG

— IpdPhedmn Emgdvelag: MAYY = 8.55%, Avopolouopgn xatovour| opdhua-

TOC

— ITp6PBredn Acpoduvauixhic Avtiotaonc: MAXY = 6.43%, 'Evtovn andxion

TEOPAEPEWY amd TOUG GTOYOUC OE OAO TO EVPOG TOU GUVOAOU BEBOUEVEYV

o E€atopixevpévo IToAuxhadixd Movtélo: 32 BldoToTOC TUPUUETEIXOG
YWEOC

— HpéPhedn Emgdvernc: MAYY = 6.11%, Lyeuxd opotbuopen xotovoun
OPIAUATOG

— ITpbBredn Aepoduvapixnc Avtiotaong: MAXY = 4.16%, Avouotbéuopen xo-
TAVOUT| CPIAUATOS

e Evonowmuévo ITohuxAhadixé Movtélo: 20 OLICTUATOC TUPUUETELXOC
Y0G

— ITp6PBredn Emgpdveac: MAYY = 5.73%, IIoAd opotbuoppn xatavoun oedh-

Viavele

— HpdPredmn Acpoduvauixrc Avtiotoong: MAYY = 2.04%, Ouotéuopgn xo-
TOVOUY| GPUAUATOS

Ou peréteg Selyvouv v avougiolhtntn urepoyy| e IloAuvxiaduc Aludppwong,
ouvyxexpwéva e SMB, 1600 w¢ mpog Ty axpBela Twv anoteleoudTwy, 660 XL
TNV anadTNoT UTOAOYIOTIXOY TOpWY Yia TNV Olgpebvnon amd tov EASY, Adyw Tov
OLoTdoEwY ToU TaUPUPETEWOD yweou. To XyAua |§| ameoVileL TNY XATAvVoUY| TOU

MAYY tev 500 TOAXAABIXWY SLUUORPOCENY GTA XAVOVIXOTOLNUEVA DEDOUEVAL.

Predicted Values (Transformed)
Predicted Values (Transformed)

= IMB EMec - (MARE: 6.11%
— SMB Elte - (MAREy,: 0.T0%

SMD Elie MARE,: 247

0 o s
True Values (Transformed) v
<) o) T

True Values (Transformed)

IxArna 9: O1 katavoués tov MAXY twv 600 modvkAadikdy povtélwv ata kavovikomoinuéva

debouéra, oTny mepintwon (apotepd) tng mpdPAepns empdreas kar (be&id) tns mpdPAedng Tng
aepoduvakng avtioTaons.

Mehérn II1

H tpitn xou tehevtala uerétn e€etdlel v anodotixdtnta Tne Kowvomomuévne IToau-
HNAOWNG OLoOPPMOTS O €V AmaTNTXO GUVOAO auToXvATwY. Ed®, Tor autoxivta
TOROUORPWVOVTOL UECK TELOY TAEYHATWY eAEYYO0U, TomoUeTnuéva 6To EUnPociio, XE-
VTIXO o OTHoUIO TUAUA TOUG, oL OL TURUUOPPWOELS EVOL TLO BLOXELTIXEC Amd OTL GTNY
TeonyoUUeV PERETN. Anuovpyolvton Ng,rrr = 366 mopoddayéc tou DrivAer oto
oUVOho. XTaTio T MEAETT BelyVEL OTL 1) xoTorvouY| TwV BEBOUEVLY eEHB0U Elvor TOAD
TUXVT X Toouotdlel e€onpeTnd UixpY| dtaomopd. Kavovixornolnon toug oto edpog

0-100 BeAtudvel eV H€PEL TNV XUTOVOUT], OAAE BEV aVTIUETWTILEL TIC TEQIOOOTERES LBLo-
HopQlEC TNG.

To emxpatéotepo povtého tne mponyndeioog yerétne (ue Tic (Blec mopauétpou) a-
duvartel v mapddel axpieic mpoBiédeic. Apyd epopudlovial TPOTOTOCELS GTO [o-
VTENO, UE OXOTO TNV aLENoY NS TOAUTAOXOTNTOC, Xt axoAoUUne, EucTOoYloC TOU,
Yuotdlovtoag utoroyloTixy anodototnTa. To avavewuévo Lovtého, TapdTL ovoryve-
oilet Suapopéc oTar ameovi{OPEVOL aUTOXIVN T, ABUVITEL VoL TIG EQUNVEVOEL, XL CUYXE-
VTpWVEL TIC TRoBAEEC TOU 6TO €0pOC EVOOTETAUPTNHOPIOL TOU GUVOAOL BEBOUEVKV, TOU

neptéyel o 50% twv BeBOUEVLY.

To gouvouevo autd avadevier pior YeUelmdn Tedxhnon oty unyovixd udinorn tou
ovoudleta avtinapdieon tpoxatdhnne-daonopdc (bias-variance tradeoff): étov o
dedouéva €£600U ToEOUCIALOUY TEQLOPIGUEVT] BLOOUAVOT), T VEURWVIXY BixTud orva-
TTUCGOUV Il TEOXATAANYN TEOC TNV YECT, TY| TNG XATAVOUNG, EAOYLOTOTOLOVTUC

€TOL TO GPAAUAL.

o vor avtipetomiodel To tapandve, Teog anoguyr totpetalpe adENoNe TNg ToAUTho-
%x6TNTOC, oL Yo xorhoToVoE TNV avAmTUEN Xou YPHoT Tou BXTO0U WS UETHUOVTELD
UTOAOYIO TS AGUUPORT), ETLAEYETOL ULl DLUPORETLXY) TIPOCEYYLOT), XATA TNV OTolo TEO-
Tomoteltan 1 cLVAPTNOT oPdIALUTOS TOL Tapaxoloude(Ton xoTd TN Sladtacior EXTadEL-

ONG. LUYXEXPWEVA, auTH ETavampocdlopiletal wg ENg.

cLoss = o - ‘az(y) —d*())|+ (1 —a) MAE(y,9)

N 1 N

N
1 2 ~ 2 1 ~
ZG'NZ(yj—My) —NZ(%‘—M;}) +(1_a)'ﬁz;|yi_yi|

j=1 j=1

Yy oucia, mpootiieton €voc po¢ TOU TOGOTIXOTOEL TNV AMOXALON TNG OLUCTORAC

TV TROBAEPEwY Ue auTh TwV 6edouévwy otoyou. H ooppomia petald Tou dpou Tou

MAX xon tng amdAutng SLopopdc Twv dlaomop®y pLIUICETHL YUEGW TOU GUVTEAEDTY| ar.

H tpomonoinon auty| empépet pLor eAeyyOuevr dlaomopd oTic TeoBAédels Tou povtélou.
Metd and pliuion Tou GUVTEAESTH @ X0 TTROCUPUOYNG TGV DOUXGMY GTOLYEIWY UECW
EA, mpoxOntel to Evonownuévo Iohuxhadind povtéro tou Ilivaxa , TIOL XUTUPEQVEL

va TeoBAéDeEL TNV acpoduvauixh avtiotaon ue EotoeTiny oxplBeta, OTwe QolveTtal ot
P Yl e el nu PETIUT) OXP) ¢

yfuorto [10] xou

Parameter / Metric ‘ Value Parameter / Metric ‘ Value
Number of CNN Layers 5 Number of DNN Layers 4
CNN L1 filter size (pow. of 2) 5 DNN L1 neurons (pow. of 2) 7
CNN L2 filter size (pow. of 2) 6 DNN L2 neurons (pow. of 2) 10
CNN L3 filter size (pow. of 2) 3 DNN L3 neurons (pow. of 2) 5
CNN L4 filter size (pow. of 2) 4 DNN L4 neurons (pow. of 2) 6
CNN L5 filter size (pow. of 2) 4 DNN L5 neurons (pow. of 2) -
CNN L6 filter size (pow. of 2) - DNN L6 neurons (pow. of 2) -
CNN L7 filter size (pow. of 2) - DNN L7 neurons (pow. of 2) -
CNN L8 filter size (pow. of 2) - DNN L8 neurons (pow. of 2) -
act. function CNN layers ReLU act. function DNN layers ReLU
kernel size (constant) (3, 3) batch size 32
strides (constant) (1, 1) epochs 300
pool size (constant) (2, 2) cLoss coefficient « 0.08
MARE 0.1734 % | MRE 0.104 %
Test set variance 07, 158.4796 | Prediction set variance ”Zm d 152.2746
02(w) - o*(9) 6.205

Table 1.1: Ta yapaktnpiotikd tov teAikov Evornoinuévov ITodvkAadikod Movtélov, uetd ano ekepe-
Yvnon tou xopov oxediaouol ané to Aoyouiké EASY.

10

Drag Force

012343567 8910111213141516171819202122232425262728293031323334353603738 394041 4243 44546474849
Test Sample ID
EE True Values B Predicted values

276 104 —— Tram Loss
Val. Loss
274 1
B A o
= £
B 270 A a
=]
£ 268 A 4
a ° LV
=
266
264
262 T T T T T T T T T T T T
204 266 208 270 272 274 276 0 50 100 150 200
True Values Epochs

EyxApa 10: Enidoon tov emAeyuévov povtélov pe tov ovvtedeoti a = 0.08. (mdrw)
PaBdoypdenua mov ouykpivel Tig TInéS TTEYOU TNS aEPOSVVAIKTIS avTioTaons Me TS npoPA&pes Tou
povtélov, eppavitortag to Xxetikd XpdApa oe kdle npdBrepn (MARE: 0,1784%). (apiotepd)
Aidypappa talvdpdunons tov povtélov, mou areikovilel tn ovupwria Twv npoPAEPedy Tov uEe TS
TIéS aTdyou NS aepoduvauknis avtiotaons. H toviopévn mepioyn avtinpoownever to elpos Q1Q3.
(6e&1d) XOykhion tov cLoss (Train Loss) ka1 tov MAE (Val. Loss) tov povtélov katd tn Sidpkeia
TV €NOXWY €KTaideVonS.

+ Training Dataset
{ —®— Test Datasct Valucs
280 1 —— DProdicted Values |

Drag Force
(53
3
=
|

T G e i T T
50 100 150 200 250 304 350
Sample 1D

-+
i

T
L1}

ExArwa 11: To ta&wvounuévo odvolo dedouévwy. Or unke otavpol aneikovifovy ta defyuara
exnaidevong, eve o1 palpes kKoukkides ta detfyuata akioddynong kai o1 kKOKKIveS KOUKKIOES TIS
avtiotoyes npofA&pers Ttov emAeyuévov povtélov. H toviouérn mepioxr) avTimpoownelel To €Upos

Q1Qs.

11

YuunepdouATA

To amoteréoparo and Ti¢ tponynicicec ueAETeEC amodENVOOLY OTL, UE XATIAANAES TTRO-
OapUOYEC Xou OYETXE PONVY Slepebvnor uéow EA, etvar Suvaty 1 xataoxeury CNNs
ToL Vo TEOBAETOUY UE oxEifELo TNV AEEOBLVOLXT| AVTIOTAOT AUTOXWVATWY XaTeudeliay
oo OIOLIC TATES AVATUPAC TAGELS TOoug OE pop®h) oxitowy. Eivar, emouévwg, duvaty
exTtofdEVOT) TOUG UE BEBOPEVA TTOL TOUTdPY 0LV OE ETARIEC TNG auToXVTTOPtouny aviag,
XL 1) YPNON TOUC WC TOTUXE UETOUOVTEAL GTNY OLUOXACIN GYEDIAOUOU AUTOXIVTWY,
UTOXONO TOVTAS X000 ToB6pa Brjuata Tne cupfatixfc dtadxactag Tou axoloudeito.
Egapuoyn toug dOvotan var emQEREL TEPAOTIN TTWOY GTO UTOAOYLOTIXO XOGTOG Xall

ACTUAVTES (yro Tot TR OTEOLL) ETUTTOOELS TNV axpifelo TV ATOTEAEOUATWY.

12

	Contents
	1 Introduction
	Artificial Intelligence and Machine Learning
	Types of Learning in Machine Learning
	Artificial Neural Networks
	Motivation
	Thesis Outline
	2 Deep Neural Networks
	Introduction
	Network Architecture and Working Principle
	Neural Network Training process
	The gradient-based optimization problem
	Activation Functions
	Loss functions
	The Adam Optimizer

	Squeeze-and-Excitation Blocks
	Regularizers
	3 Implementation Practice
	Introduction
	Free-Form Deformation and Morphing Boxes
	The PUMA CFD Solver
	Evolutionary Algorithms and the EASY Software
	Procedural Pipeline
	Methodology Overview
	EASY setup for fine tuning

	4 Application I - Isolated Airfoil Properties Prediction
	Introduction
	Proposed Baseline Architecture
	Case I - Airfoil's lift coefficient
	Case II - Airfoil's drag coefficient
	Case III - Airfoil's cross section area
	Overview and Conclusions

	5 Application II - Automobile's Drag Force and Surface Area (1 Morphing Box)
	Introduction
	The DrivAer car model
	Dataset Generation

	Statistically Informed Dataset Transformation
	Examined Model Configurations
	Single-Branch Model
	Drag Force Prediction
	Surface Area Prediction

	Multi-Branch Model (IMB - SMB Configurations)
	Drag Force Prediction - IMB, SMB
	Surface Area Prediction - SMB

	Summary and Comparison
	Conclusions
	6 Application III - Automobile's Drag Force (3 Morphing Boxes)
	Introduction
	LHS-based Dataset Generation
	SMB Model Implementation
	Drag Force Prediction - MAE Loss
	Bias-Variance Tradeoff and Loss modifications
	Drag Force Prediction - Custom Loss

	Overview and Conclusions
	7 Conclusion
	Overview
	The case-dependent SMB model
	Conclusions
	Future Work Proposals

	Bibliography

