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Abstract

This dimploma thesis aims at the programming of a Gradient-Based shape opti-
mization software for airfoils using the continuous adjoint method, in its Enchanced
Surface Integral, E-SI, form, as already proposed by the Parallel CFD & Optimiza-
tion Unit (PCOpt) of NTUA. The flow is simulated by solving the Euler equations
on an unstructured grid, based on finite volume vertex-centered approach. After
the engineer defines the objective function, the adjoint field can be computed simi-
larly to the flow-field itself. Thus, the software is able to compute the sensitivity
derivatives with respect to the design variables parameterizing the shape of the air-
foil. Using these derivatives, the design variables are iteratively updated in order to
improve the objective function’s value by changing the airfoil shape.

Furthermore, a parametric analysis has been made with the goal of finding the
most efficient and accurate parameter set for the optimization proccess. Different
numerical schemes, such as Flux Vector Splitting and Roe’s Approximate Riemann
Solver in conservative and non-conservative form have been applied. Moreover, first
and second order schemes have been implemented by also implementing the Van-
Leer Van-Albada Limiter. Additionally, different grid densities have been used in
order to investigate their effect. Last but not least, the continous adjoint (Severed)
SI and Enchanced SI (E-SI) methods are compared with respect to the accuracy
of the shape’s sensitivity derivatives. This parametric analysis has been applied
for three different airfoils, NACA 4412, RAE 2822 and FAUVEL for different free-

stream conditions.

As a next step, the software is evaluated by comparing the adjoint sensitivity deriva-



vi

tives with those resulting from the second-order Finite Difference scheme. Then, a
proper parameter set is extracted that gives accurate and cost-efficient results. On
the account of that, objective functions have been chosen, concerning the increase
of lift coefficient for airfoil optimizations.
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E9vixé Metoofio IloAuteyvelio

Xxor ) Mryavohoywy Mnyavixoy

Touéag Pevotwy

Movada ITapdAAnAne YroloyioTixric PeuocTtoduvauixng
& Beltiotonoinong

Avdntugn hoyiouixol yia BeAtiotonoinon IN'ewyuetplog
Aegpotopwmyv pe tn Xvveyn Xvluyn Medooso

Aimhopotixd epyaoto
Anpitplog Anfpog

EmufBiénwy: Kupdxog X. Tavvéxoyiou, Kadnyntric EMII
Adrva, 2021

H Sumhopotin auth epyacio antooxonel otn dnuiovpylo eVvOC AOYIOUIXOU oUTIOXQOTL-
xfc BeAtiotonoinong pe T cuveyr culuyt| pédodo BaTuTUEVN clupeva ue Ty E-SI
TEY VT Tow €yet mpotadel and TNy epeuvnTixy opdda Tng Movddag Iupdiining Trolo-
yiotixric Pevotoduvauinic & Bedtiotomoinong tou Edvixod Metodfiou Hohuteyvelou.
H mpdheén tne poric uvhomoteiton ye v aprdunter entluon twv elowoewy Euler oe
Un OOUNUEVO TAEYUO XOL TH XEVTPO-XOUPBXT| OLUTOTIWOT| TETEPUOUEVLY OYXwY. Aol
O UMYEVIXOG ETMAEEEL T GUVEETNOT-0TOY O, TEAYUAUTOTOLE(TAL O UTOAOYIOUOS TOU GULU-
YoUg Tediou Ue TPOTO TaPOUOLo UE aUTOV TN TEOAEENS TNg pofic. 'Etot, to hoylouxd
unoloyilel Tic Tapay®Youg evatoINciag we TEOS TIC UETABANTEC OYEBLICUOY NG JERO-
Touric. Me 11 ¥ehom TWV Topay@Ywy auTeY, ol UETUBANTES OyYedLAoUOU UETABAAAOLY
TIC TWéC Toug, WoTe va BeATiwel 1 Tiwr Tng ouvdpTtnong-otéyou. ‘Etot, adldlel xou
TO OYHUA TNS UECOTOUNS.

Enlong, mpaypotomolelton TUpaueTouXy] avaAUCT| UE OXOTO TNV EUPECT] TWV XATIAANAGY
evluicewy yio T yelowon Tou x6cToug xan adENoT TNG TOLOTNTAS TV ATOTEAECUATOVY
xotd T Bedtiotomoinom. XenoulomololvTon SlopopeTxd aptduntixd oy fuato exthuong
™ puorc xon Tng ouluyolg pofig, 6mwe To Flux Vector Splitting o o emAltng
Roe’s Approximate Riemann ce cuvinentu| xou pn-ocuvinentixr poe@r. Axoudq,
CLYXPIVETOL 1) YPNON TEWOTNG Xt OETEPNS TAENG oXELBELN OYNUATOY Bloxplionolnong,
xodog xon o meploptotric Van-Leer Van-Albada. Emniéov, e€etdleton 1) enldpoaon tng
TUXVOTNTOG TOU TAEYUATOC, WOTE Vo YIVEL AV TIANTTY 1) €NLORUOT| TNG 0T ATOTEAEGUATO.
M axduor mopduetpog mou yeketdton etvon 1 yenomn dlapdenmy pedodny tng culuyo-
0¢ ouvdpTNoNg. Luyxexpleva ta anoteréopata Tou E-SI cuyxplvovton ue exelva to
Severed SI. H napopetpm auth avdhuon egapuoletar oe Tpewg acpotoués, T NACA
4412, mn RAE 2822 xau tn FAUVEL, oe dapopetinés ouvirixeg adlatdpuxtng porng,
€T0L WOTE TO CUUTEPAOUATY VoL EfVAL TIO YEVIXA.



Ye enbuevo Prua, moTonoeltar 1 axpifelo Tou Aoylouixol, cuyxpelvovtoug TIC ToEo-
Yyoug evonoinoiog pe auTéC Tou TPoxUTTOLY and Ti¢ devTepng Talng axpifelac lene-
caouévee Awogpopéc. Kodopilovton xatdAAnies pululoels, o Te 0 xWBXIC VoL TORAYEL
a&tomo oL xo owovouxd aroteréouata. Télog, emAéyovioar cUVIETAOEIC-0TOYOL TTOU
oyetiCovton Ye TNV adENoT TOU GUVTEAECTH AVWONC OE TEELC OEPOTOMEC.



1x

Acronyms
CFD Computational Fluid Dynamics
NTUA National Technical University of Athens
PCOpt Parallel CFD & Optimization unit
GBM Gradient Based Method
CPs Control Points
FVS Flux Vector Splitting
SDs Sensitivity Derivatives
FAE Field Adjoint Equations
ABC Adjoint Boundary Conditions
PDE Partial Differential Equation
gdPDE grid displacement Partial Differential Equation
RHS Right Hand Side
E-SI Enchanced SI
Sev-SI Severed / Standard SI
(Non-)Cons (Non-)Conservative
w.r.t. with respect to
EMII Edvixé Metodfio [loiuteyveio
EOX Epyaotriplo Ocpuixayv Mtpofulounyovoy
MIITP&B Movada Iapddinine Troloywotixc Peuctoduvouxhc &
Beltiotomoinorng
TPA Troloyiotxr) Peuctoduvouixy

MAE Mepu|) Awgpopnt| e€lowor






Contents

Contents fil
1 Introduction [l
1.1 Shape Optimization . . . . . . . . .. ... ... ... ... ... il
1.1.1 Shape Parameterization . . . . . . .. ... ... ... ...

1.1.2  Gradient - Based (GB) Methods . . . . ... ... ... ....

1.1.2.1  The Adjoint Method . . . . . . .. ... ... .... 4

1.2 The Necessity of a new Software . . . . . . . ... ... .. ... ...
1.3 Thesis Outline . . . . . . . . . . ...

2 CFD Analysis ird
2.1 Flow Equations . . . . . . . . .. ... ... ... [7]
2.1.1 Eigenvalues and Eigenvectors of the flux Jacobian A and A . . [

2.1.2  Boundary Conditions . . . . . . . .. ... ... ... ... O

2.2 Discretization . . . . . ... 10}
2.2.1 Discretization of the Boundary Conditions . . . . . .. .. .. 14

2.3 Numerical Solution of flow equations . . . . . . . . . ... ... ...
2.3.1 Implementation of the Boundary Conditions . . . . . . .. .. 18]

2.4 The Jacobi Solution Method . . . . . . .. .. .. ... ... ... .. 19

3 The Adjoint E-SI Method 21
3.1 Different Continuous Adjoint Formulations . . . . . . . . .. .. ... 211
3.2 Odjective Function (F) . . . . . .. ... .. o

3.3 The E-SI Adjoint . . . . . . . .. ... 24



i1 Contents

3.3.1 Numerical Solution of the adjoint equations . . . .. .. ... 28]

3.3.1.1 Solving FAEg . . . . . . . . ... .. ... ...,

3.3.1.2 Solving FAE,, . . . . . . . .. .. ... ... ... 301

3.3.1.3 Discretization of SDs . . . . . .. ... ... ... BT

3.4 Optimization Flowchart . . . ... ... ... ... ... .......

4 Numerical Parametric Analysis 35
4.1 The NACA 4412 Airfoil . . . . . . . . . .. .. .. ... ... .... 37
4.1.1 Flow Prediction . . . . . . ... ... ... ... ... ... B1

4.1.2 Comparison of SDs . . . . . . .. ... ... 401

4.2 The RAE 2822 Airfoil . . . . .. .. ... .. .. ... ... ..., 43|
4.2.1 Flow Evaluation. . . . . ... ... ... ... ......... 48]

4.2.2 Comparisonof SDs . . . . . . .. ... 9]

4.3 The FAUVEL Airfoil . . . . . ... ... .. .. ... ... ...... h2
4.3.1 Flow Evaluation. . . . . ... ... ... ... ......... 5%

4.3.2 Comparison of SDs . . . . . . . ... ... ...

5 E-SI Adjoint-Based Shape Optimization 57l
5.1 Adjoint Optimization Parameters . . . . . . . . .. ... .. .. ... 57
5.2 The Optimization Process . . . . . . . .. ... ... .. .. ..... hal
5.2.1 20% Lift increase . . . . . . . . ... By

5.2.2 40% Lift increase . . . . . . . . ... ... 63

6 Summary - Conclusion
A Bezier-Curve Shapes [71]
B Useful Mathematical Equations
Extevig Ilepiindn Awmdwpatixrc Epyaciag
Bibliography 871



Chapter 1

Introduction

The design process of the airfoils has changed significantly throughout the years .
Except for the experiments, other methods have been developed to evaluate the flow
around lifting bodies, mainly based on Prandtl’s lifting-line theory [I]. However, me-
thods like these show serious limitations and cannot be used on high Mach number
and compressible flows. The improvement of the computational power and devel-
opement of numerical schemes made the arithmetic approximation of the Navier-
Stokes Equations feasible via Computational Fluid Dynamics (CFD). Hence, the
cost-expensive experiments have been reduced and the flow analysis can cover al-
most every case with higher levels of accuracy.

1.1 Shape Optimization

In the engineering sector, the goal is not limited to producing a working design,
but to find an optimized one. Thus, optimization is of utmost importance in every
scientific field. There are a lot of techniques that have been developed. Some of them
rely on modeling, experience and human judgement. However, in complex cases with
many and conflicting variables one cannot intuitively determine the optimal design.
Because of this, computer-based optimization softwares have been developed and
applied. Coded properly, it is possible for computers to evaluate a product, solving
the primal problem (Model Analysis), and redesign it until the desirable result arises.

Computer-based optimization can be divided into two main categories: Stochastic
[2] and deterministic methods [3| 4, [5]. The first ones are based on randomized
search. They are able to converge on the global optimum even in multi-objective
problems but they usually require a larger computational budget. The Genetic
(GA) and FEwvolutionary (EA) algorithms [6] are the most common that both fall
into this category and mimic the natural species evolution as formulated by Darwin
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[7]. Their existence is only broached for completeness reasons, as this diploma thesis
only focuses on the deterministic or Gradient-Based Optimization methods(GB).

In mechanical engineering, the main target is to find the best geometry that fits the
problem. On account of that, shape optimization is considered of great importance,
which raises the need for body parameterization.

1.1.1 Shape Parameterization

In order to parameterize a geometry, a set of features must be defined so as to control
its shape. For example, for a Bezier Curve, [8] these can be the Control Points (CPs).
Some of them may be fixed in order to preserve a set of the shape’s characteristics,
while the others be free to get displaced if needed as shown in Figure (1.1 The
coordinates of the latter ones are referred to as the design variables b, ,n =1,--- | N,
where N is their number. In a similar way, design variables (b,) result from each
interpolation method.

0.15 .
Bezier Curve
Control Polygon -----
- A‘ |
o - & Fixed CPs =
SO Free CPs @
0.05% — e A |
w ‘-‘_:. ?—:,__‘!ll;{_nn‘
N .
= 0 ey
® P
- B
-0.05m,- — _’._’_7_7__73_7_{__7_ - |
‘o
-0.1Ff e |
-0.15 I . , .
0 02 0.4 06 08 )
x/c

Figure 1.1: Parameterization of an Airfoil using Bezier Curve.

In order to optimize the shape of a geometry, an objective function (F') must be
defined. The goal is to find the values of b,, variables which maximize or minimize

F =F(by,....0n, ... by) (1.1)

1.1.2 Gradient - Based (GB) Methods

As its name indicates, GBO computes the derivatives of the objective function F
w.r.t. the design variables 6 F'/db,,, also known as sensitivity derivatives (SDs). These
can reveal how the function F' changes if each design variable slightly increases or
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decreases. This information is one of great importance as the algorithm can automat-
ically change the design in order to come up with a new shape in each optimization
cycle which minimizes or maximizes F. In contrast to stochastic methods, GBO
may converge to a local optimum. However, they are less expensive.

There are several ways to compute the SDs. Each one of them affects significantly
the efficiency of the GBO. The most common and simple is the Finite Difference
method (FD) [4]. For a second-order FD scheme assuming that € is an infinitesimally
small quantity

(5_F _ F(by, byt € by) = F(by, by — €, by)
5b, 2¢

(1.2)

This method has two serious drawbacks. First of all, in order to compute each
SD, F' must be computed twice, meaning that the primal problem must be solved
twice, too. Thus, the computational cost of FD can be estimated as 2N times the
cost of primal problem, which is highly uneconomic for large scale optimization.
Moreover, the SDs are affected by the value of e. Although ¢ — 0, this is set,
in numerical computations, as a small number. However, if it gets bigger than
it should, arithmetic deviation occurs. On the other hand, setting it too small
may lead to extremely small difference between the two terms in the numerator of
eq. [I.2] practically zero due to round-off. This results to the degeneration of the
computation. A fully-converged primal solution may correct the problem, but it
has higher computational costs. The application of this method is likely to lead to
the computation of derivatives with high uncertainty degree. There is an e-space
where each SD is independent from the value of € and its estimation is considered
acceptable, but in order to find it, the cost is extremely high, as the same derivative
must be computed with a variety of ¢ numbers.

An alternative method for the computation of the sensitivity derivatives is the Com-

plez Variable (CV) [5] method. According to this

oF . Im[F(bl,...,bn—i—ie,...,bN)]
5b, €

(1.3)

where i = /=1, ¢ — 0 and Im is the imaginary part of the complex function
F'. Because the numerator of eq. has only one term, the SDs are independent
from the value of €, solving the second drawback of the FD method. Nevertheless,
in order to find all SDs, it requires N times the cost of the sollution of the primal
problem. Half the cost of FD, but still a linear cost increase with the number N.
Finally, modification on the existing software should be applied in order to read and
calculate complex variables.

Another way to compute SDs is the Direct Differentiation (DD) [4]. Via this method,
the primal equations are differentiated w.r.t. b, and N linear systems arise. They are
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solved and, then, the SDs’ computation is straightforward, since all the necessary
terms are given. The cost still scales with N. Moreover, the development of a new
solver for the differentiated equations is needed.

The major disadvantage of the previous methods is the linearly increasing cost
w.r.t. N. As a result, an optimization with a large amount of design variables would
be extremely expensive.

1.1.2.1 The Adjoint Method

The adjoint method has a unique feature that makes it perfect for large-scale opti-
mization problems [9] [10, T1]. It is independent from the amount of design variables
N. In order not to compute the derivatives of the flow variables w.r.t. the de-
sign variables (DD method), a Lagrangian multiplier, also known as adjoint (), is
introduced. Adding the volume integrals of the residuals of the primal equations
multiplied by ¥ to the objective function F', an augmented objective function is de-
fined (Fapg). Since the residuals of the primal equations equal to zero, F' = Fayg-.
Finding the SDs of Fay¢g, which equals to those of F', and setting ¥ in a way that
the summation of the terms that contain the derivatives of the primal variables
w.r.t. the design variables equal to zero, a new form of SDs arises. SDs that are
only dependent on the known primal field, easily computed shape parameterization
variables and the adjoint field. The latter has to be computed. Its equations are
similar to the primal ones and approximately so is their cost. Thus, although a
new software must be developed, the cost to compute SDs is N-independent. Each
optimization cycle costs almost as much as two primal problem solutions.

There are two ways to extract the Field Adjoint Equations (FAE) and the Adjoint
Boundary Conditions (ABC). Discrete adjoint, where the already discretized primal
equations are multiplied with ¥, extracting the discretized FAE and ABC directly
and the continuous one, where the adjoint PDEs analytically derive from the dif-
ferentiation of Fy¢ and then discretized. On a general framework both of them
can generate accurate SDs. Normally discrete adjoint has greater precission, but
higher cost than the continuous. However, as the mesh size increases, the difference
between the continuous and discrete gradient reduce [12].

In the literature there are two main formulations of the continuous adjoint. Both end
up in the same FAE and ABC [I3] 14]. Their difference lies on the final expression
of SDs. The first published formulation [9] contains Field Integrals (FI) of grid SDs,
i.e. derivatives of the grid nodes’ coordinates w.r.t. the design variables. Using
a second order FD scheme for their computation results in two grid displacement
PDEs solutions for every derivative, which results the cost to scale linearly with the
number of design variables. The second formulation [I5] ends up in SDs with only
Surface Integral (SI) terms. Thus, this method’s cost is significantly lower than the
FI’s, especially in large-scale optimization problems. However, if the grid is not fine
enough, SDs might not be accurate. In an attempt to preserve SI adjoint low cost
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and FI adjoint precision, the Enhanced-SI (E-SI) adjoint has been developed [16].
FAE and ABC remain exactly the same and although the SDs consist only from
surface integrals, their expression is different from the SI adjoint formulation.

In the following chapters the continuous SI and E-SI adjoint approaches will be
thoroughly analyzed on an airfoil optimization problem and the main difference
between the formulations will be further discussed.

1.2 The Necessity of a new Software

The research team of PCOpt/NTUA has already developed and uses two softwares
for shape optimization. The first one is based on the OpenFOAM. However, its pri-
mal solver can only evaluate incompressible flows. For cases concerning compressible
flows the second software, named PUMA is used. PUMA is programmed on GPUs.
Thus, it cannot be parallelized and has serious memory limitations.

For that reason, a new software programmed on CPUs is needed. More than a
decade ago, a FORTRAN 77 code had been developed by PCOpt/NTUA for the
computation of 2D, inviscid and compressible flow fields. Moreover, the SI adjoint
method was implemented for the computation of SDs. However, the software was
never tested and abandoned before E-SI adjoint was first proposed by PCOpt/NTUA
[T7]. Main purpose of this diploma thesis is to program E-SI adjoint on the existing
code, correct its mistakes and test it on airfoil shape optimization cases.

1.3 Thesis Outline

The thesis consists of 6 chapters, including the introduction and conclusions. They
are summarized below.

In Chapter [2| the 2D Euler equations are discretized and numerically solved. The
Roe and FVS scheme is used on FV unstructured grid.

In Chapter [3], the airfoil optimization algorithm is formulated. At first it gets pa-
rameterized with a Bezier curve and the objective function is defined. Concerning
the continuous E-SI adjoint method, there is a step-by-step analysis for its formu-
lation, solution and discretization of FAE, ABC and SDs. Finally, the optimization
flowchart is presented.

In Chapter [d] the parameters of the numerical schemes used to solve the primal and
adjoint equations, are analysed and compared on three different airfoils. The main
goal of this chapter is to determine the most efficient and accurate parameter set
for the optimization algorithm.
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In Chapter [5] the developed software, programed in FORTRAN 77, is used in order
to increase the lift of three airfoils.



Chapter 2

CFD Analysis

In this chapter, the discretization and the numerical solution of the 2D Euler equa-
tions is presented.

2.1 Flow Equations

The PDEs in conservative form governing the flow of a 2D, inviscid and steady flow
of a compressible fluid [I8], 19] can be written as

ou  of;
- =0 2.1
ot ' om (21)
— p - pul -
where U= |pu|, fi = | pwl + 0;p (2.2)
E, (Ei + p)u;

Eq. is numerically solved with the use of pseudotime ¢t. The variables that
appear in eq. are the density p, the velocity vector «, the total energy per unit
P 1 df;

volume F;, = pE = —— + —p|i|” and the static pressure p. For 4; = —= eq. [2.1
y—1 2 ou
is transformed in
ou . aU
— 4+ A—=0 2.3

7
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For the non-conservative formulation, the non-conservative variable vector V' is de-
fined

. P
p
and for M = 8_[{ and A; = M~ YA, M
ov
ov oV
ATy P S 25
ot i, (2:5)
In 2D cases (i = 1,2)
7= T _ T i = U1l _ u
X9 yl’ Us v|’
SN i) 18
= S| = AZ =
/ [f2 gl A B
pu pv
2
7| ptp N
f - pU,’U ) g = pU2 +p
u(pE +p) v(pE +p)
) i 0 1 0 0
4 9f Pt 4 (3= —(y=1pv y-1
oU —uv v u 0 |’
| —yupE + (v = Du(u® +v°) ypE = G (0> +3u?) —(y - Duv  yu
[ 0 0 1 0
ag —uw v u 0
T e AR O VI C R MR | B
| —vpE + (v — Dv(u? +v?) —(y—Duv ypE — LA (u? 4+ 30%) o

Based on egs. 2.1] to

ou of a5

o Tor oy TV

ou  oU  _oU

4 A — = 2.
ot T, TP, =Y (27)
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or, in the conservative form,

oV —ovV 9V
— 4+ A—+B— = 2.
or TAer TP, = (28)

2.1.1 Eigenvalues and Eigenvectors of the flux Jacobian A
and A

Eigenvalues and eigenvectors reveal how the information is travelling through the
computational field, i.e. its velocity and direction. Via the direct correlation of eq.
and through A; = M~'A,; M, both equations’ eigenvalues are the same. For
simplicity, they are computed by eq. [2.8

det |\ I — /| =0 (2.9)

where o7 = A;n; and Aj the case’s eigenvalues. n; are considered the components of
the unitary vector (77) right to surface of each control volume. For 2D fluxes i = 1,2
and j = 1,2,3,4. Therefore, 7 = (ny,ns) = (n4, ny). From the solution of eq.

Ao = Ui

Naa = il | (2.10)

where ¢ = \/w the speed of sound. Finally, the matrices of the right P

and the left P! eigenvectors of the & = A;n; matrix are defined. In combination
with

A0 0 O un. 0 0 0
A=y ¢ )(\)3 ol =10 a*fsyﬁy 0 (2.11)
0 0 0 M\ 0 0 0 @i — ¢l
they diagonize o7
o/ = PAP™! (2.12)

2.1.2 Boundary Conditions

For the analysis of the isolated 2D airfoil with the Euler equations two boundary
conditions must be imposed. The no-penetration (4 -7 = 0) on the airfoil’s surface
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(Sw) and the undisturbed flow at the farfield (S;,f). (Figure

2.2 Discretization

For the 2D analysis, the grid that is used is unstructured, based on the FV vertex-
centered approach [20] and consists of triagonal and quadrilateral elements. Around
each node P, a control volume 2p is defined by connecting the middle points of
each segment and the cell’s barycenter with a closed polyline. Vertical to this line,
the vector 7 is constructed. Finally, each node connected to P via a grid line is
symbolized as (). Figure is a schematic representation of the above and Figure
shows the meshed computational field.
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Figure 2.1: Computational Grid around an isolated airfoil.
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Figure 2.2: Grid Elements (black continuous line), the Control Volume Qp around
node P (grey hatch), its edges (black dashed line), the cell’s barycenter (blue square),
each edge’s middle point (grey square), node P (red cycle), the neighbouring node @
(green cycle) and the vector right to the edge of the control volume Qp (yellow vector).

For the numerical solution, the conservative form of equations is being chosen (eq.
2.7)). After its volume integration on each finite volume {2

[ Gpan [ (34 50) - 219

and the use of Green-Gauss theorem, it becomes

/ T 0+ / ( Fra + gny) 409 = 0 (2.14)
Discretizing eq.

XtPAUp n Z (fnx gny> AOQ = X—PAUP n Z BpoAIQ =0  (2.15)

The ®poAJS) term describes the flux vector through the interface between the P
and @ control volumes. The interface has a length equal to AJS). Because of this
and in order for the flux to be computed, the flow variables must be computed on
the inteface. Depending on the order of accuracy, the equations relating Up to U5 PO
and Ug to Uf, (Figure [2.3) are given as follows [21]
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1%t order scheme :

Upy =Up
Upq = Ug

274 grder scheme :

1 R
Upo =Up+ 5(PQ)VUP

1 -
Ul = Uq = 5(PQ)V T,

24 order scheme with Limiter:

1 o o
Upg=Up + 5LJM(VUP, VUg)

1 . .
Ut = Uq — 5 LIM(VUq, VUp)

where LIM (a,b) a limiter’s function.

(2.16)

(2.17)

(2.18)

— L, TR T T e 7

U > Urq i Uy 4 Ug

P PQ s Q

° + ]
Left Side | Right Side

Figure 2.3: The extrapolation of flow variables U from nodes P, @ to the middle of

their inbetween grid edge PQ).

According to the Flux Vector Splitting (FVS) scheme [22]

5 7L - 7R

(2.19)

where @7p is the matrix computed by eq. using the averaged primitive values
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VPQ of the PQ node,

— 1 — —
Index ” 47 refers to the zeroing of the negative eigenvalues and ” —” to the zeroing of

the positive eigenvalues in eq. Based on FVS, the Roe approximate Riemann
solver [23] has been developed. According to it

" 1 - = Ly > |7 =
Brq = 5 [hollko + Tlo| - 5 |va| (Tl — Tky) (2.21)
M 0O 0 0
where ‘szpQ‘ =P 8 |)E)2| |£3| 8 Pt (2.22)

0 0 0 |\

The elements of the array above are computed on the P node using the Roe
averaged values [23] of the variable Uf, and Uf,, which are given by the equations

p = V/PLPR
~  UL\/pPL T UR\/PR

u =
VPL T /PR
5 VLA/PL + VR\/PR

VPL + /PR
i - Hy\/pr + Hr\/pr
VPL + /PR

~ ~ w402
;- W— D -1 (2.23)
I N A A SN
where H = ~—1io + §(u + v7) is the total enthalpy. Thus, eq. [2.21] transforms
T—Lip
to
— 1 — — 1 ~ — —
Brq = 5 | hoUkq + 50k, - 5 | oea| (U - Ukg) (2.24)

The last term that appears during the discretization of eq. [2.15, except from the
geometrical ones (Q2p and AJS2) which are already known since the grid is available,
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is the pseudo-time step At. It is estimated as

_ CFL

At
T;

(2.25)

where C'F'L is the Courant — Friedrichs — Lewy number. The value CFL takes on
should maximize the convergence rate without causing arithmetic stability issues.
Moreover,

Ti = (luil + ¢)Qp, (2.26)

where (2p, is the length of the P node’s F'V projection on the 7 direction. For the
2D analysis

T = (Jul + €)%, + (jv] + ), (2.27)

2.2.1 Discretization of the Boundary Conditions

The nodes belonging to the boundaries of the computational field are associated
with FVs as presented in Figure 2.4 In contrast to what was said thus far, flux ®
is coming in or going out from the FVs through the grid boundary segments. To
compute this flux, the FVS scheme [22] is used.

Boundary

Figure 2.4: Finite Volume around a boundary node P. The horizontal line corre-
sponds to the boundary of the flow domain.
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Farfield

A farfield boundary is an interface between the undlsturbed flow and the computa-
tional field. Thus, it is treated the same way as in Figure [2.3] where UL PQ = =U p and

UR PQ = Umf. Likewise eq. m

according to FVS. &7 is the matrix computed by eq. if all the negative
eigenvalues \; are zeroed and &7, the matrix if all positive eigenvalues \; are zeroed.
Because of this, the farfield conditions affect the computational field only in places
and to the extent the eigenvalues, determining the propagation of the information,
allow it.

Solid Walls

According to eq.

PUN pun, p(t - 70)
2 — —
- pun, + pn pun pulu-n)+ pn
®pg = fng + gn, = U+ vo| o [Pt ) (2.29)
puvn, pv*ny + pny pv(t - 1) + pn,
(u(pE +p)ng | |v(pE +p)ny | | (pE +p)(a- 1)

and applying the no-penetration condition @ -7 =0

My
By = |” (2.30)

pny,

2.3 Numerical Solution of flow equations

The variable AU™*! is computed by

AU =gttt — g (2.31)
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where n is the pseudo-time step. Knowing U™ from the previous iteration (or the
field’s initialization) and computing AU™"! the n + 1 step variables emerge as

Uttt = AU 4 U (2.32)

However, because of eq. the n + 1 step doesn’t refer to the same pseudo-time
for every node. For the unknown quantity to appear, eq. is expressed for the
step n+1 as

Qp

Tn+1 n+1
At ——AURT ) ORI A0 =0 (2.33)

Q

In the FVS scheme [22], the 2" term of eq. is combined with eq. and
eq. resulting in

Z DA = Z {FoTby" + iUl } A0 =

Z B NI + Z {gﬁ ATES" + %PQAUR"H} AOQ (2.34)
Q Q
while for the Roe’s scheme [23] instead of eq. , eq. is being used. Thus,
n+1 n—+1 1 = n+1 n+1
Z(I)nﬂA&Q Z{ [ gLy +ﬂ§QUR+] _5’,5271%2‘ (T8 — 0L )}A(‘?Q_
n41 1 - i1
Z B AOQ + Z { |y + ||| TR + 5 [ — |ra| | ATE } AGQ (2.35)

For simplicity reasons, first order scheme is considered (eq. [2.16)). Assuming that

Z Byt AOQ = Z VpoAI + Y { A ATE + o ATS | 200 (2.36)
Q

and

Z LA = Z LA + Z { |:$27p + ‘MPQH AU % [ﬂ%@ — )QZ)QH Aﬁgﬂ} A

(2.37)
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emerge from eq. and eq. respectively. Finally, eq. for the two schemes
becomes

Flux Vector Splitting

{Atp Z } AUR™ + {%: »pr_@} AUGH = - XQ: LLA00Q  (2.38)

N————
I I

Roe’s Approximate Riemann Solver

{53 [t o] a0+ {53 [ [ == 000 20

(. J/ J/
~~ ~~
1

17

Considering that all the equations are extracted from m nodes, a square m x m
matrix emerges. Every node’s influence on itself (term /) and to its neighbours
(term I7) is added to that matrix. By definition, the I terms will be in the diagonal,
while the /1 will be scattered in the remaining places. For example, based on eq.
and depicting the contribution of the node @) to P as Ilpg, the matrix given
below is created for the seven-node grid in Figure [2.5]

Iy Il 1Lz Iy O 0 0 AU{‘“_
Il I, I3 Il O 0 0 AU
Ily, II3y I3 II3y Il35 0 0 AUDH
II,, 0 Il,3 I, Il 0 Il AUZH (2.40)

0 0 Ilsy Il Iy IIss Ilsy| |AUF™

0 I, 0 0 IIg Is Ilg| |AUF

0 0 0 Ily Il I I | |[AUMY
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Figure 2.5: Random 2D grid with 7 nodes. Based on it, the matriz of eq. 18
assembled. Every node’s finite volume is affected by its neighbours. Nodes that do not
connect with grid line do not interact directly.

Even for such a small grid, the presence of many zeroes in the above square matrix
denotes that its storage in the computer memory is highly uneconomic. For that
reason, the I terms are registered in a m x 1 array called Diag and the [ terms in
a 2 x [ called Zm. [ is the number of grid edges. The RHS of the equation originates

from eq. [2.24]

2.3.1 Implementation of the Boundary Conditions

Farfield

From the flux between node P and the undisturbed flow, as described by eq.

cb;ln;l = &P+ A AU (2.41)
and, finally,
QP + Tn+l n
— + szfp AUP = —@ianﬁﬁ (2.42)
Atp ~— —_————

Iy IVing
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Solid Walls

Having defined @y in eq. [2.30, with the use of

0Py . =
ol = @on 4 AU 2.43
e wt —z AUk (2.43)
%(u2 + v?)

P —u
where i =(y—-1) (2.44)

oUu —v

1

and after applying the same precedure as before, the equation that arises is

Qp

—L 4 Vel A AU = — 0%, A (2.45)
Atp  ~——~ S——
111y IV
0 0 0 0
#nw —UN, —UNg Ny

where gyt == ° (2.46)
v“Fn, —un, —uvn, n,

0 0 0 0

Terms I11 are added to Ip and IV to the RHS of the node P equation.

2.4 The Jacobi Solution Method

After the LHS (L) and RHS (R) matrices have been filled, the Jacobi method is
applied. The system is described by the equation

LAU=R (2.47)
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by L - Ly AU, 1
l ) R P - AU o r

where L = 2,1 22 2 , AU = ) 2 and R = ,2 (2.48)
lnl ln2 e lnn AUn T'n

and n is the total number of the nodes. The L matrix can be written as
L=D+G,+G, (2.49)

where D is the diagonal, G; the lower and G, the upper part of the matrix L. The
system’s solution is computed as

AT = p1 [E (G + Gu)Aﬁ’f] (2.50)

or as an element-based formula

1
AUFH = > (ri — ZzijAUf) . i=1,2...,n (2.51)
" i#1

Jacobi is based on iterations (k) to find the solution of the system. The k+1 variables
are computed iteratively until a convergence criterion is met between AUZA’“Jrl and

AUF.



Chapter 3

The Adjoint E-SI Method

In this chapter, the three different adjoint methods are described and the mathemat-
ical formulation of the E-SI adjoint is presented. Finally, the optimization routines
based on adjoint is outlined.

3.1 Different Continuous Adjoint Formulations

oU
For the computation of the 5o the computational cost is large. In order to avoid
n

this, an adjoint field W, is defined. Since R; = gfi = 0 in the volume €2, the
T
objective function F' can be transformed
Q

where i = 1,..., E (E is the number of the state equations). Differentiating eq.
w.r.t. b, yields

SFawa 6F 8

To further expand the 0/0b,, derivative of the volume integral, two alternatives can
be pursuited. According to the FI adjoint approach

5 SR, 0540
2 wRd0 = | U, 40 o, R .
obn Jo Jud /Q Zébnd +/Q 7 6bn, (3:3)

21



22 3. The Adjoint E-SI Method

and with the use of eq. and eq. the final form of the SDs emerge, which

contains field integrals of .

n

Their computation is costly and can be avoided with the use of SI adjoint approach.
Based on it, for the second term of eq. the Leibniz theorem (eq. |B.2)) is applied
resulting in

6FAUG oF 8Rz (5:L’k
= — W, —dS2 v, Rin—dS 3.4
Sbe Obn  JoiOm, +/5 b, (34)
LB;(,erm

The LBterm (Leibniz term) is often ignored in the literature because of the assump-
tion that R; = 0 not only in the flow domain (£2) but also along its boundaries (.5).
In fine grids, where the flow equations are satisfied very close to the boundaries,
neglecting it won'’t affect the SDs’ accuracy. However, depending on the case and
especially the grid’s coarseness it may lead to deviation in the SDs. That’s the rea-
son why the FI adjoint approach is more accurate, as it makes no assumptions at all.
The straightforward computation of the LBterm is not the appropriate treatment.
The computation of the flow equations residuals along the boundaries has numerical
difficulties and uncertainties, especialy in on an unstructured grid.

The Enhanced SI (E-SI) adjoint proposed by PCOpt/NTUA aims to avoid the
computation of the LBterm by introducing the new adjoint variables m¢, of the
Laplace grid displacement Partial Differential Equations (gdPDEs) which hypothet-
ically govern the grid dissplacement

R™ — 82mi

' 8m?

=0, (i=1,2 for 2D flows) (3.5)

where m; is the dissplacement of the grid’s nodes in the cartesian space. A thorough
analysis for the E-SI adjoint approach that is used in this diploma thesis is done in
the following section. The E-SI adjoint manages to compute the SDs with the FI
adjoint accuracy and SI adjoint cost.

3.2 Odjective Function (F)

For airfoil design, the goal is to maximize (or keep constant) the lift coefficient (C7),
minimize drag coefficient (Cp) or both. Thus, the function F' for the optimization
algorithm to minimize is

F= wy (CL — CLta'r)2 + wdC% (36)
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where C7,,. is a preset value of the lift coefficient and wq, w; weight functions. The
forces, lift (L) and drag (D), acted upon an airfoil are expressed right and parallel
to the farfield velocity ., respectively. These are computed from the pressure
distribution on the airfoil surface, which is implemented right to the solid wall and
its direction is opposite to the unitary vector 7 = (n,, n,). By definition, 7 points
away from the solid wall. The two coefficients are expressed below w.r.t. the static
pressure p to the flow equations and the farfield flow angle (as) (Figure [3.1).

e
X
Figure 3.1: The airfoil (black line), the farfield velocity and angle of attack (AoA)
(purple vector), lift (red vector) and drag (green vector) forces.
L N, CO8(Aog) — Ny SIN (Ao
oo = Lo [ pleoton) = ninten))
q Sw q
D Nz COS(Aoso) + Ny STN (Ao
q Sw q

1
where ¢ = ipooUgoc. Poo is the farfield density and c is the airfoil’s chord. Dif-

ferentiating eq. w.r.t. the design variable b,, (Appendix and replacing the
coefficients with the use of eq. yields
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OF 6oC oC
5 2w, (Cr, — Cy,,) Wj + 2wqaCp 565 =
_ / {ZUJ; () —Cp ) (nycos(aoo) — Nzsin(aso)) 20Oy (ngycos(aos) + nysin(as)) 5—pdSW N
\SW q q 5bn P
Agcl
%cos(ao@) - %sm(ao@) (;Zx cos(aso) + %sm(am)
+ 2w (Cp — CLW)/ p— = +2wdCD/ p—= =
\ Sw 4 PN Sw 4 _
SD! SD?
where 77; = n;dSw (dimensional normal vector).
3.3 The E-SI Adjoint
Based on the above, for the E-SI adjoint, Faya (eq. is further expanded to
Fave = F —f-/ v, R;d) + / mfR;ndQ — (39)
Q Q
SFauc 5F ¢ )
—— = —+ — [ ,RdQ+ — SRS 3.10
5b, 5, 30, Jg b, Jo (3.10)

~~ ~~
Adjw Adjm

On the RHS of eq3.10} the first term is given by eq. A more detailed derivation
of the expressions for surface and even volume integrals of F' can be found in [24].
The second term, with the use of eq. and eq. becomes

Adjy

SR, 5 [of }
Ut = [ W 0 =

g |6
v, ——
/Q lal‘k |:5

bn

Han- [ 200 (5] 4o
Q

b, "Ox; Oy, | Oby,
L SU oU: .0V, oft 0 [éx;
W, A I _ I AY dO — U,k _Z 1220 a0 A1

1

~
FAE), I
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. y ) 4
where f} = AYU; & 5?“ A7 6bU The eq’s [3.11f therm [ becomes
b 55 Sy 6b mf [ M 0,

J/

A302

The second term of eq. is further expanded

5U, 5(fimr) ()
AU—TL dS = / k —/ \Ilzfz =
/SW K 5p, RO s TESD,

_0(my
S )
ABC3 533
because, on solid walls,
_ 0 -
op 0(7)
(furix) 0 Te 3, )+
_ % [Fn - by, 3.14
5bn s Oby e+ g m] sw | 0P 5(ny) (3.14)
3, ) TP
L 0 Js,
Up = UN; = UNy + vny =0 (slip - no-penetration condition)
Term 11 in eq. becomes
6fk ox; 0 Ofi] oz, 8f 0x;
Il =— \1; 21 dQ = By 2140 — / b ndS =
0x; 01y [&;J / o [ axj] B ob, 45 =

0 ofy ] ox; / im 0T
/8xk {‘Il 8%1 —dQ) — 895] =AY 5. npdSw  (3.15)

FAE%l SD4

U = const.
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For the third term of eq. [3.10] eq. [B.1], eq. [B.2] and eq. are used

. (5 a M . 8R;n a m 5[Ek .

2,0 .
/m n]a [87711] ds — omy amlds o*m amZdQ+/m§R;7‘nk6—dS (3.16)
s

s Ox; ]86 o O3 0by, b
oxr;  Om, ) )
and because 5.~ b as explained in [I7]
0 [dx; om¢ o, 0*m¢ dz; (5xk
Adjy, = i | o - Q+ SR —— 1
djm, /szn]amj {&)J ds / 8% n; 5, dS + /Q 522 b, d /m R; s dS (3.17)
AEE’},L SD5 FAE2 SD6

The adjoint method is a technique that avoids the expensive computation of the
derivatives of the flow variables w.r.t. b, and the grid SDs in the flow domain (2.
To do so, the adjoint variables (¥;, m¢) are properly defined and the Field Adjoint
Equations (FAE) and Adjoint Boundary Conditions (ABC) are derived.

The field adjoint

oU,;
In order to avoid the computation of —2 in the volume €2, the field adjoint equations

by,
(FAEy) are defined
oU; 0, v,
LAY = —AJ =0
o 0b, " Oy, ¥ O

Likewise the primal equations, in order to perform a stable numerical solution, a
new term is added using pseudo-time.

oV 0% _ 0% 00

ot kox, ot C Ox;

=0 (3.18)

oU;
To avoid the computation of WJ along the boundaries S = S;, s U Sy, the boundary
conditions for the field adjoint gquations (ABCy) are defined

SU;
5bJAjnk\II =0 (3.19)

o
/ Ui Nt w, Ay =
1nf 5 S:San

by
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Js

(nycos(a) — nysin(a))

b 2w,y (ngcos(a) + nysin(a))

le (OL - CLta'r)
q q

OP S =0 (3.20)

+ Wong + Wan, 5

The adjoint grid displacement equations

In order to avoid the computation of E in the volume €2, the adjoint grid displace-

ment equations (FAE,,) are defined

& ; Pms ;
mj 5$]dQ+/ . {qjlafk} 5%de0 - i + - {qjlafk} -
Q axk k

q 02 b dxj| oby, dz? Oz ox;
?me O, dfi o [of Pme U, . 9= BIY o [of
j UYL k1 — J Uiy k U, — Bl=
ox? * Oxy, Ox; * Oy, [&Ej] Ox? * T " Oy, * 'Oy, [8%] '

0
In order to avoid the computation of £ [ 5Z } along the boundaries S = S,y USw,
L

the boundary conditions for the adjoint grid displacement equations (ABC,,) are
defined

/m nj8 [51‘1} dS=0 = m|g=0 (3.22)

Sensitivity Derivatives

After the satisfaction of both FAE and ABC, the remaining terms constitute the
SDs

(3.21)
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5_F = 2w M/ @cos(a) — 5n_xsm(a)
by g Obn 0bn
SD1
Cp oz oy i1 )
+2uwy—= SWp stn cos(a) + Esm(a)] —i—/SW [Wrr1p — i f7] ob,
SD? sps
= (5.22
U i 0T om¢ oz, @ pm
_/SW e o g 5 ndeW s s + / ap —dS
SD4 SDS SD6

The SD? term distinguishes the E — ST from the Severed— ST (standard SI) adjoint
o |0

[13]. The latter one considers — [8—fk] = 0 all over the field. Thus, there is no
T Zj

need to introduce the adjoint grid displacement fields m¢ and SD? is not produced.

3.3.1 Numerical Solution of the adjoint equations

3.3.1.1 Solving FAEy

For the ¥ vector, eq. |3.18L |3.19| and |3.20| have emerged. Likewise eq ,

o, O, O,
R R | i 24
ot ox dy 0 (3:24)

has an adjoint flux vector
Dpo = —dpy Uhy — iy UE, (3.25)
based on FVS [22] and

D 1 T,L 7 T 1 T,R 7 7

$ro = [gfpé - ‘WEQH by - 5 [gfp@ + ]%TQH B, (3.26)
based on Roe’s scheme [23], where for the needs of the adjoint flow equations @7 =
ATn;. In contrast to the primal eq. the adjoint eq. cannot be written in
a conservative form. Thus, based on Roe’s scheme, a non-conservative adjoint flux
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can be extracted [25]

b = Lot [ih 98] Lo [ 85
Gop = gelpil [Tk + 0ho] + 5| k| [Fh — Fh|  (327)
The adjoint boundary conditions on S;,¢ (eq. emerge from equation

U,y 0

%Agnk% o 0= gz = 8 (3.28)
v Suns 0

and the adjoint flux is computed from
—;Up (3.29)

The boundary conditions on Sy, (eq. [3.20]) become

nxCOS(G) + nysm(a) + Uon, + \Ilgny =0 (330)

2w (Cp — Cp ) nycos(a) ; ngsin(a) 2Oy

and after taking into consideration eq. and the no-penetration condition -7 = 0

B -1 -1
[72 a2n17u<a-ﬁ)]w2+[72 @y — (@ ii)| T3

I Y-l I
Uing + [(2 — y)ung + @ - 7] ¥o + [’unaC — (v — 1)uny} Us + |:'\/Etnm — 3 uQTLm — (v — Du(T - n)] Uy

DY = A Vp =

-1
Ying + [uny — (v - 1)1)nm] Wy + [(2 — 'y)vny + - ﬁ',] W3 + [wEtny — ﬁ'zny — (v —1)v(a - ﬁ)} Wy

(v = D)(Wang + W3ny) + (i - @) Vs
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Y1 5
u
2

Ying + (You + Y3v)ne — (1 — y)u [le (CL - CLMM.)

[211)1 (CL - CLtar)

nycos(a) — ngsin(a)

q

nycos(a) — ngsin(a)

q

+2wqCp
q

+2wyCp
q

ngcos(a) + nysin(a)

necos(a) + nysin(a)]

J+ -

-2

-1
3 U | ng Wy

ngcos(a) + nysin(a)

nycos(a) — ngsin(a)
Piny — (1 —y)v [2wl (CL — CLtar) 7 e 2wy Cp

5 -
+ (Pau + ¥3v)ny + [’YEt -
q q

1
11'2:| ny Wy

+ 2wy Cp

nycos(a) — ngsin(a)
) ) q q

—(v=1) {2wl (CL = CLyq, M]

Each wall’s edge contribution to the diagonal of the coefficient matrix is

0 O 0 0
ng un, vn, YEmn, — =ti?n,
gy TWall ¥ _ 0Py o ’ (3.32)
! =W _ :
ov n, un, wvn, vEmn,—i?n,
0 0 o0 0 |

3.3.1.2 Solving FAFE,,

Eq. is integrated in the volume 2

9%me i
/ mﬂd9+/\pii {afk]cm:o
Q Q

ox? dxy, | Oy
and discretized, using eq. and Figure

(3.33)

o v, 2 {a—f’i (3.34)

:| chll =0
lp

where R is the equation’s flux through each grid’s segment and n is the time step,
in the same manner with the CFD analysis. The second term is an already known
quantity, as W and f fields have been computed. Thus a Poisson’s type equation

(3.31)
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emerges. The space m§ derivative on PQ edge, as stated by [20], is

omirq _ + + m— 29”335
0x; 2| Oz ox; 2 oxy ox; ‘ P_Q ‘

Using the Delta Formulation (eq. [2.32) and solving eq. for the n + 1 step

OB \ a1 (3.36)

a J
om g

R =R"+

where for a 2D mesh with P = (Xp, Yp)

OR" Xp— X Yy —Y,
cAmg T = — C P+ =y | Amg gt
om; | PQ PQ"
(X, — X Yo —Yp |
+ O+ Ly | Ame gt (3.37)
PQ | ’

Hence, the second term of eq. and R" are the known quantities in every
iteration. On the other hand, the square solution matrix is being filled with the
terms of eq. [3.37 The first goes to the diagonal as it refers to the P node, around
which the F'V was defined.

3.3.1.3 Discretization of SDs

After their discretization, the SDs are computed. Because the numerical solutions
are based on node-centered FV scheme, the U, ¥ and m® fields are already known
at each grid node. However, 67m;/0b,,, n; and dS are geometric quantities computed
over the segments. Thus, an interpolation is needed. Separating the SD terms into
two main categories, a more generic analysis can be made. The first one constitutes
from SD! to SD? and is represented as

on
K :/ o— 3.38
= [ o5 (3.38)
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The second one refers to the remaining terms and has the form
Ky = / dndS (3.39)
Sw

where ® is any function of one or more flow or adjoint quantities known on each
P node. For the description of finding K7 and K5 the symbols on Figure|3.2| are used.

For the K integral, the Uy, W, and m$, quantities are linearly interpolated, be-
tween P and @), on the middle of the segments and ®,; is computed there. Hence,
in a discrete form

1 on 1 on
Kl‘node—P = §(I>M1 57 + _(I)M2 % (340)

n [ Segm.1 2 n [ Segm.2

On the other hand, for the K integral, the ®ndS quantity is computed on nodes P
and @; using the segment’s P(Q); data. After that, an interpolation is made in the
middle M;. This process is repeated for both edges. A second linear interpolation
between M; and M, computes the quantity at node P. In a discrete form,

1
sznodefp = 5 [(I)Ml + (I)M2] (341)
where
11 11
Dy = Pp|=—n— | =n= =
Mi P [2n2d5]s .+(I>QZ [2n2d5]s |
egm.i egm.i
1
= [2p(ndS)segm.i + Pq,(ndS)segm.i] (3.42)

Figure 3.2: Grid and Airfoil Edges (black line), node P (red dot), its 2 neighoubors
Q1,2 (green squares), the length of each segments S12 and their middle points M 2
(purple dots).
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Instead of a straightforward computation of eq. [3.23] the chain rule can be used.
Specificaly,

0F v 0Favg 0x
ob,, ox  oOb,

0F v 0Favc 0y
= —_— 4
5b, 5y b, (343)

where the last derivatives in eq. m are known via the parameterization (eq. [A.5)).
The terms Fapg/dr and §Faye/dy must be numericaly computed at each node
with the aforementioned techniques.

3.4 Optimization Flowchart

As indicated above, an optimization based on GBM needs to compute the SDs and
update the design variables. Specifically, the continuous adjoint method’s algorithm
is presented in the Flowchart of Figure |3.3]

The progression of the design variables towards the optimal product depends on the
SDs and the value of step n. 7 is usually an empirically defined number smaller
than 1. It prevents dramatic change of b, between two successive iterations. If n
gets smaller than it should, then the algorithm will slow down and the cost of the
optimization will rise. On the other hand, a high n value may lead to divergence.
The odjective function F' defined in eq. must be minimized. Therefore, the 77(%
term gets substracted from b%?. On the contrary, if F is to be maximized, the same
term is to be added.

Another important aspect is the termination criterion. A maximum number of it-
eration is preset. Hence, when the algorithm reaches that limit, the optimization
ends. Moreover, although every new airfoil tends to be better than the previous one,
the optimization turn-around time may increase a lot. For that reason, a minimun
difference between F™” and F°¢ may be an additional termination criterion.
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Figure 3.3: Adjoint-based Optimization Algorithm.




Chapter 4

Numerical Parametric Analysis

Based on Chapters [2 and [3] a software has been developed (in FORTRAN) for the
evaluation of the flow around an airfoil and for the computation of its sensitivity
derivatives using the standard (severed) SI and E-SI continuous adjoint method.
Three airfoils are used as test-cases, namely the reparameterized NACA 4412, RAE
2822 and FAUVEL [27]. For simplicity reasons, during the following presentation
each case is described by the reparameterized airfoil’s name. Their shape, bezier
points and farfield conditions are presented in Figures -[:3] For the computation
of SDs, w; = 1, wg = 0 and Cp,,. = 1.2 (arbitrarily selected) are set. Hence eq.
becomes
Fu; = (O —1.2)?

Case 1: NACA 4412

NACA 4412 Airfoil

T
0.3 Airfoil Shape

Bezier CPs and polygon - Pressure Side --@- - L
0.2 1 Farfield Conditions:
5 6 7 Bezier CPs agnd polygon - Suction Side - -4&--
4 Ak 8
v A o S . 10 11
ERnlr s —

e Angle of Attack = 2°

o 03 oa o6 0 1 e Mach Number = 0.3
x/c

Figure 4.1: Shape and Bezier Points & Polygon of
NACA 4412 airfoil (not in scale).

35
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Case 2: RAE 2822

RAE 2822 Airfoil

0.3 T
Airfoil Shape
0.2 Bezier CPs and polygon - Pressure Side --@-- |
2 Bezier CPs and polygon - Suction Side - -A- -
0.1 A,
9] A - i S 5 6
~ ’ F — I
> 1], =~
04 ]
17
o -
T B IS
P
5
-0.2 i i i i
0 0.2 0.4 0.6 0.8 1
x/c

Figure 4.2: Shape and Bezier Points & Polygon of
RAFE 2822 airfoil (not in scale),

Case 3: FAUVEL

FAUVEL Airfoil

T
0.3F Airfoil Shape

2 Bezier CPs and polygon - Pressure Side --@- -

Bezier CPs and polygon - Suction Side - -A- -

0 0.2 0.4 0.6 0.8 1
x/c

Figure 4.3: Shape and Bezier Points & Polygon of
FAUVEL airfoil (not in scale).

Farfield Conditions:

e Angle of Attack = 3°

e Mach Number = 0.2

Farfield Conditions:

e Angle of Attack = 1°

e Mach Number = 0.4

The design variables of each case are the coordinates of the bezier CPs. Starting
with pressure side, the first design variable is the y coordinate of the first CP, the
second design variable is the x coordinate of the first CP, the third design variable
is the y coordinate of the secomd CP and so on. The design variables of the suction
side are numbered the same way. For instance, since NACA 4412 has 15 pressure
side CPs, the design variable 31 is the y coordinate of the first suction side CP.

In the analysis that follows, the SDs for the coordinates of the leading and trailing
edge CPs are not computed . During an optimization these are considered fixed.

Thus, their SDs are not used.
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4.1 The NACA 4412 Airfoil

4.1.1 Flow Prediction

At first, the flow equations around the airfoil are solved with two different numerical
schemes, FVS and Roe’s Approximate Riemann Solver. Moreover, first-order accu-
racy (eq. is implemented, as well as second-order accuracy with (eq. [2.18)) and
without (eq. the Van Leer - Van Albada limiter (Limiter). Their convergence
paths are shown in Figure [£.4 Only the energy equation residuals are plotted, as
they are absolutely representative and, usually, the last to meet the convergence

criterion. Hence, it reveals the total number of iterations each case needs to run a
flow simulation.

Energy Equation Convergence Path

T T
FVS Scheme ~ 15 Order

Roe Scheme ~ 15 Order = = =
FVS Scheme ~ 2"d Order
Roe Scheme ~ 2"9 Order

FVS Scheme ~ 2" Order & Limiter

Roe Scheme ~ 2" Order & Limiter = = =

Convergence Criterion

. Logyp(Residual)

50 100 150 200 250 300 350 400 450 500 550
Iteration Number

Figure 4.4: NACA 4412 airfoil. Impact of numerical scheme and order of accuracy
on the convergence path.

Both FVS and Roe scheme display the exact same convergence path. However, the
order of accuracy affects it significantly. A first-order flow prediction is much more
economical. It needs 338 iterations to converge. On the other hand, second-order
with and without limiter needs 572 and 579 iterations, respectively. Moreover,
each second-order scheme iteration is more cost-expensive, because VU must be
calculated on every segment of the FV. To further investigate the impact of the
order of accuracy, each case’s results must be examined. To do so, four different
grid densities have been used, as described in Table and shown in Figure [4.5
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Grid Airfoil Nodes Nodes  Triangular Cells
A 80 858 1625
B 400 8979 17517
C 540 23317 46013
D 700 39632 78463

Table 4.1: NACA 4412 airfoil. Grid characteristics. All unstructured grids comprise
only triangular elements.
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Figure 4.5: NACA /412 airfoil. Close-up views of the three grids used in the vicinity
of the airfoil.

To optimize the airfoil, the objective function (eq. |3.6|) depends on both aerodynamic
coefficients C, and Cp (the latter is expected to be zero in a low speed i.e. in the
absence of a shock wave, with the assumption of an inviscid fluid flow, excluding
form drag). These are computed with the Roe scheme, on the four different grids,
with two orders of accuracy, with and without limiter (FVS gives similar results).
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Order of Accuracy Grid Cr, Cp Iterations

A 4.948 1071 123.5 1073 101

B 6.188 107! 53.44 1073 338

1 C 6.587 101 34.02 1073 573

D 6.849 107! 27.59 1073 830

A 7.231 1071 14.54 1073 172

B 7.891 1071 3.788 1073 572

2 C 7.803 10~* 3.078 1073 1103

D 7.851 107! 3.055 1073 1515

A 6.463 107! 31.74 1073 180

B 7.871 107! 5.416 1073 579

2 & Limiter C 7.779 1071 3.433 1073 1115
D 7.840 1071 3.283 1073 1530

Table 4.2: NACA 4412 airfoil. Lift and Drag coefficient computed on different grids

and for two orders of accuracy, with and without limiter.
converge for the same threshold value are included in the last column.

0.8
Q.75
0.7
0.65
.6

0.55

Lift Coefficient (C)

15t Order
2"d Order

2" Order & Limiter = =

o] 5000

10000

15000

20000

25000

NMumber of Grid Nodes

20000

35000

Number of iterations to

40000

Figure 4.6: NACA 4412 airfoil. Impact of grid density and order of accuracy on the

Cr, value.
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Drag Coefficient (Cp) [x 107]
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20000

T
15t Order
2nd Grder
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Number of Grid Nodes

30000

; . . :
23000
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Figure 4.7: NACA 4412 airfoil. Impact of grid density and order of accuracy on the

Cp wvalue.
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Second-order schemes need more iterations to converge and their results differ from
those of the first-order (Table . Moreover, they are practically unaffected from
grid density. On the other hand, the flow prediction using first-order schemes com-
putes different flow variables, especially on coarse grids. Their results come closer
to those of second-order as the grid density increases a lot (Figures and .
This can better be represented by computing the pressure coefficient (Figure .
Both second-order schemes have similar results on a coarse grid.

Pressure Coefficient

Grid A - 15t Order
Grid B - 1% Order ——
Grid C - 1%t Order

Grid D - 1%t Order ——
T A Grid B - 2"9 Order — - - |
: ' ' ' ' Grid B - 21 Order & Limiter = = =
-2 1 I I I I 1 | | |

0 01 02 03 04 05 06 0.7 08 09 1

X/c

Figure 4.8: NACA 4412 airfoil. Comparison of pressure distribution over the airfoil
contour for different grid sizes and schemes of different accuracy.

On grid A and first-order scheme, the Cp line is rough. This happens because the
number of airfoil nodes is small.

4.1.2 Comparison of SDs

The present diploma thesis focuses on the software development for the computation
of each case’s SDs using the continuous E-SI adjoint method. However, the same SDs
are also computed with Finite Differences, which is assumed to compute reference
derivatives’ values. The second-order FD scheme (eq. [1.2)) is being used with e =
1077,

SDs are compared for the aforementioned orders of accuracy and numerical schemes.
Grid B is used in all these comparisons.
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SD Computation using Finite Differences ~ NACA 4412 - Pressure Side
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Sensitivity Derivatives 6F / &by,

FVs ~ 15t Order

s

= ]

os Fvs ~2Morder (O) |
Fvs ~ 2™ order & Limiter  /\

08k Roe ~ 15tOrder = i
Roe ~ 2™ Order

1l Roe~2¥odersiimter & ;-j-;-;%; -

| | | | | | | | | | | | | | | | | | | | | | | | | | |
123456 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27 28 29 30

Design Variable n
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SD Computation using Finite Differences ~ NACA 4412 - Suction Side
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Design Variable n

(b) Suction side

Figure 4.9: NACA 4412 airfoil. Comparison of the SDs computed with FDs using
different orders of accuracy and numerical schemes.

First- and second-order schemes do not compute the same SDs. However, because
the Euler equations are used, only the maximization of lift coefficient is the target
and the grid is dense enough, the difference between the SDs computed by first- and
second-order schemes is small.

Consequently, the parameters of the adjoint schemes are analyzed and the method’s
accuracy is compared with FDs. The field adjoint equations (FAEy) are discretized
and solved similar to the primal ones. However, in contrast to eq. 2.7 eq. is
non-conservative. Thus, the adjoint problem’s Roe scheme possesses both a conser-
vative (Cons Roe) and a non-conservative (NonCons Roe) form. The convergence
paths of both schemes are shown in Figure [£.10] It must be noted that the adjoint’s
FVS convergence has no difference from the conservative Roe’s. In the analysis that
follows, adjoint and primal equations always have consistent schemes.
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Momentum-X Equation Convergence Path

Logjo(Residual)

Non-Conservative Roe Scheme ~ 15t Order

Conservative Roe Scheme ~ 15t Order = = = - |
Non-Conservative Roe Scheme ~ 2"d Order
Conservative Roe Scheme ~ 2" Order = = = - |
Non-Conservative Roe Scheme ~ 2"d Order & Limiter

Conservative Roe Scheme ~ 2"d Order & Limiter = = = -

Convergence Criterion

50 100 150 200 250

300

350 400 450 500 550 600
Iteration Number

Figure 4.10: NACA 4412 airfoil. Impact of adjoint numerical scheme and order of

accuracy on convergence path.

In all three cases, the Non-Conservative Roe scheme appears to be cheaper. The
number of iterations needed are given in Table 4.3| Especially, with second-order of
accuracy, non-conservative Roe is faster by more than 100 iterations.

Order of Accuracy Scheme Iterations
1 Cons Roe 411
Non-Cons Roe 386
2 Cons Roe 779
Non-Cons Roe 674
2 & Lim Cons Roe 708
Non-Cons Roe 604

Table 4.3: NACA 4412 airfoil. Number of iterations needed for the convergence of

the adjoint problem.

In order to compute the SDs with the adjoint method, both the primal and the
adjoint equations must be solved. In what follows, adjoint and primal equations
always use the same numerical scheme and order of accuracy. Moreover, adjoint
SDs are compared with those computed by FDs using the same order of accuracy,

too. Finally, zeroing the SD5 term in eq. the Severed-SI’s (SevSI) SDs emerge.
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Figure 4.11: NACA 4412 airfoil. Comparison of SDs computed by adjoint FVS
scheme and 2" order scheme.
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Figure 4.12: NACA 4412 airfoil. Comparison of SDs computed by adjoint conser-
vative Roe scheme and 2" order scheme.
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Figure 4.13: NACA 4412 airfoil. Comparison of SDs computed by Adjoint non-
sonservative Roe and 2" order scheme.

All the SDs presented in Figures[4.11]to are computed by second-order schemes
without a limiter. The main goal is the adjoint SDs be close to FDs. In this way,
a N-independent, i.e. less cost-expensive, optimization algorithm can be developed,
as described in Chapter [I The first two schemes, FVS and Conservative Roe, do
not exhibit a good enough performance. For many design variables the difference
between the adjoint and FD SDs is big, especially on the suction side. On the other
hand, all the derivatives have the correct sign. Thus, an optimization is possible,
but it might be less efficient. The main reason for this is that the adjoint equations
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have a non-conservative form. Because of that, a mathematical error emerges during
the discretization using conservative schemes, which for many SDs is not negligible.
In support of this view, the Non-Conservative Roe scheme results to much more
accurate SDs. In Figures[4.14 and [4.15] the SDs computed by the Non-Conservative
Roe scheme with first- and second order accuracy with limiter are presented.
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Figure 4.14: NACA 4412 airfoil. Comparison of SDs computed by adjoint non-
conservative Roe and 1t order scheme.
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Figure 4.15: NACA 4412 airfoil. Comparison of SDs computed by adjoint non-
conservative Roe and 2" order scheme & limiter.

The first-order discretization doesn’t always perform as well as the second one,
especially close to the leading and trailing edge (the first and last design variables
of each diagram). Concerning the two adjoint methods, Sev-SI and E-SI, no major
differences can be noticed. Only in the computations of very few SDs, using first-
order schemes, E-SI is more accurate. The Limiter in second-order of accuracy
doesn’t noticeably affect the results. It has great influence on transonic flows [2§].
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4.2 The RAE 2822 Airfoil

4.2.1 Flow Evaluation

As in the previous case, the flow around the airfoil is predicted using the same
numerical schemes and discretization orders. Each primal solution’s convergence
history is presented in Figure [4.16]

Energy Equation Convergence Path
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Figure 4.16: RAFE 2822 airfoil. Impact of numerical scheme and order of accuracy
on convergence path.

Once again, it can be seen that Roe and FVS follow similar convergence paths. The
second-order schemes are more cost-expensive. Furthermore, the limiter doesn’t
have a great influence. To compare the results, four different grids, Table [4.4] are
used. For each grid, only the Roe scheme and the first- and second-orders of accuracy
without a limiter are used. The two force coefficients are shown in Table [4.5]

Grid Airfoil Nodes Nodes  Triangular Cells
A 80 864 1637
B 400 9345 18249
C 540 14674 28833
D 700 40448 80095

Table 4.4: RAE 2822 airfoil. Grid Characteristics. All unstructured grids comprise
only triangular elements.
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Order of Accuracy Grid Cy, Cp
A 4.320 107! 106.2 1073
1 B 4.911 107! 46.32 1073
C 5.364 107! 31.15 1073
D 5.500 10~! 26.88 1073
A 5.496 107! 23.22 1073
2 B 6.258 107! 5.187 1073
C 6.282 1071 3.704 1073
D 6.261 107! 3.618 1073

Table 4.5: RAFE 2822 airfoil. Lift and Drag Coefficient computed on different grids

and for two orders of accuracy.

As expected first- and second-order have different results. For the following para-

metric analysis grid B is used.

4.2.2 Comparison of SDs

Different numerical schemes and different discretization orders are applied to com-
pute the airfoil’s SDs with second-order FD.

SD Computation using Finite Differences ~ RAE 2822 - Suction Side

FVS ~ 15t Order
-1 Fvs ~ 2™ order
FVs ~ 2" Order & Limiter
Roe ~ 15t Order
Roe ~ 2™ Order
Roe ~ 2" Order & Limiter

-1.5

Sensitivity Derivatives &F / bby,

-2

7
A

i.l[::)l

iiiEi

| 1
1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Design Variable n

Figure 4.17: RAFE 2822 airfoil. Comparison of the SDs computed with FD using
different orders of accuracy and numerical schemes.



50

4. Numerical Parametric Analysis

Based on Figure [4.17, FVS and Roe have no differences. The limiter has almost no

effect. The implementation of a second-order scheme computes different SDs than
those computed by the first-order scheme.

For the sake of completeness, the convergence path of the adjoint equations is pre-
sented in Figure Conclusions are the same with those of the previous case.
First-order discretization converges much faster. Moreover, Non-Conservative Roe
scheme needs fewer iterations to meet the convergence criterion than Conservative

Roe.

Momentum-X Equation Convergence Path

Non-Conservative Roe Scheme ~ 15t Order ——
Conservative Roe Scheme ~ 1t Order = = =

" Non-Conservative Roe Scheme ~ 2" Order
“

ﬂn‘o‘ . Conservative Roe Scheme ~ 2" Order = = = - |

Non-Conservative Roe Scheme ~ 2" Order & Limiter

Tor 1
3 Conservative Roe Scheme ~ 2" Order & Limiter = = = -
.g .
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Figure 4.18: RAFE 2822 airfoil. Impact of adjoint numerical scheme and order of
accuracy on convergence path.

A comparison of the adjoint’s SDs with those emerging from FDs takes place in case
of the RAE 2822 airfoil, too. The parametric analysis confirms previous findings. As
presented in Figures and [4.20] conservative schemes don’t perform well enough
on computing SDs. On the other hand, non-conservative Roe computes much more
accurate SDs. Finally, the use of the E-SI adjoint doesn’t increase the accuracy of
SDs, especially if second-order schemes are implemented.
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Figure 4.19: RAFE 2822 airfoil. Comparison of SDs computed by adjoint non-
conservative Roe.
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Figure 4.20: RAFE 2822 airfoil. Comparison of SDs computed by adjoint conservative
Roe.

4.3 The FAUVEL Airfoil

4.3.1 Flow Evaluation

As Figure indicates, the implementation of first-order of accuracy leads to a less
cost-expensive flow evaluation. However, comparing each order’s pressure coefficient
on the surface of the airfoil, (Figure it is clear that first- and second-order
schemes do not produce the same results.
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Energy Equation Convergence Path

FVS Scheme ~ 15t Order

Roe Scheme ~ 15t Order = = =

FVS Scheme ~ 2"4 Order

Roe Scheme ~ 2"d Order
FVS Scheme ~ 2"d Order & Limiter
Roe Scheme ~ 2"d Order & Limiter = = =

Convergence Criterion

Logyp(Residual)
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Figure 4.21: FAUVEL airfoil. Impact of numerical scheme and order of accuracy
on convergence path.
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Figure 4.22: FAUVEL airfoil. Comparison of pressure distribution over the airfoil
contour for different order of accuracy.

4.3.2 Comparison of SDs

Likewise the previous airfoils, the SDs are computed with both numerical schemes
and all discretization orders. Based on Firgure [£.23] the SDs computed with FD
and the implementation of first-order scheme are different from those computed with
second-order scheme.
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Sensitivity Derivatives &F / &b,
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Figure 4.23: FAUVEL airfoil. Comparison of the SDs computed with FD using
different orders of accuracy and numerical schemes.

Finally, in order to asses the developed software on a third case and analyse the
impact of the adjoint methods and numerical schemes, the SDs are computed using
eq. [3.23] The convergence paths of the two numerical schemes used for the adjoint
problem are presented in Figure (FVS has the same path as Conservative Roe).

Momentum-X Equation Convergence Path

Log1o(Residual)

Non-Conservative Roe Scheme ~ 15t Order

Conservative Roe Scheme ~ 15t Order = = = - |
Non-Conservative Roe Scheme ~ 2"d Order

Conservative Roe Scheme ~ 2™ Order = = = - |
Non-Conservative Roe Scheme ~ 2"d Order & Limiter
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Convergence Criterion
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Figure 4.24: FAUVEL airfoil. Impact of adjoint numerical scheme and order of
accuracy on convergence path.
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As expected, the Non-Conservative Roe converges faster for every order of accuracy.
The SDs computed can be seen in Figures and [£.26] Non-Conservative Roe
has indisputably better approach. Another important conclusion is that the E-SI
and Sev-SI adjoint methods do not differ noticeably. The only exceptions are some
design variables close to leading and trailing edge of the airfoil.
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Figure 4.25: FAUVEL airfoil. Comparison of SDs computed by adjoint non-
conservative Roe.
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Chapter 5

E-SI Adjoint-Based Shape

Optimization

In this chapter, the three aforementioned reparameterized airfoils are optimized.
Their farfield conditions are the ones mentioned in Chapter [4]

5.1 Adjoint Optimization Parameters

Because the cost of computing all SDs is constant and doesn’t depend on N if the
adjoint method is used, it makes it suitable for large scale optimization problems.
However, there are other parameters that need to be selected in order to achieve an
efficient optimization.

To begin with, the numerical schemes need to be determined. Concerning the adjoint
equations, non-conservative Roe results to a better approximation of SDs and needs
less iterations to converge, in comparison with FVS and conservative Roe. This
makes it the best choice. Although the primal schemes do not have any noticeable
differences, Roe is implemented. The reason for that is for adjoint and primal
equations to have consistent schemes. Furthermore, second-order of accuracy is
selected without limiter.

Moreover, the E-SI adjoint method is applied, although the SDs do not differ much
from those emerging from the adjoint Sev-SI method. In more complicated cases,
where the flow is viscous and the objective functions doesn’t consist only from lift
coefficient, E-SI adjoint method is noticeably more accurate than Sev-SI [17], [13],
[14].
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5.2 The Optimization Process

In this section, the three airfoils presented in Chapter [4| are optimized. The goal is
to increase their lift by either 20% or 40%.

5.2.1 20% Lift increase

Based on eq. [3.6] that has been programmed in the developed software, the objective
functions are presented on Table

Reparameterized Starting C,  Target C, Objective Function
Airfoil
NACA 4412 0.789 0.94 Folbj = (Cp —0.94)?
RAE 2822 0.625 0.75 Ffbj = (Cp —0.75)?
FAUVEL 0.161 0.2 F3. = (Cp —0.2)?

Table 5.1: The objective function, based on eq. used to optimize NACA 4412,
RAFE 2822 and FAUVEL airfoils. The target is to increase Cp, by 20%.

The optimization process terminates if
|F; — Fy_y| < 107*

where F is the objective function and i the index of the optimization cycle. All
three cases optimization histories are presented in Figure[5.1} 7 = 1072 for all three
optimizations.

NACA 4412 RAE 2822 FAUVEL
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Figure 5.1: The three optimization paths. The target is to increase Cy, by 20%.
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In Figure [5.2] the optimized airfoils are presented.

Starting Airfoil = = =
Optimized Airfoil ——

(a) NACA /412

Starting Airfoil = = =
Optimized Airfoil

(b) RAE 2822

Starting Airfoil = = =
Optimized Airfoil

(c) FAUVEL

Figure 5.2: Optimized airfoils (on scale). The target is to increase Cr, by 20%.

However, because the shape changes are not clear in-scale, in Figures [5.3| to [5.5] the
airfoils are plotted out of scale. Moreover, the different Mach number fields and
pressure distribution between the starting and optimized airfoils are presented.
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(¢) Starting Mach field
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Figure 5.3: NACA 4412 airfoil. Optimization results. The target is to increase Cp,
by 20%.
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Figure 5.4: RAFE 2822 airfoil. Optimization results. The target is to increase C'r, by

20%.
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Figure 5.5: FAUVEL airfoil. Optimization results. The target is to increase Cr, by
20%.
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The main changes in order to increase the airfoil’s lift happens near the trailing
edge. The camber is increased. Concerning the FAUVEL airfoil, the target lift
coefficient is not very different from the starting one. Thus, the optimization cycles
are fewer than those of the other two cases and the airfoil shape doesn’t change a
lot. Furthermore, the Mach number field, although it alters it is not very clear in
the Figures above. For that reason another optimization is performed for all three
airfoils targeting to increase their lift by 40%.

5.2.2 40% Lift increase

In Table [5.2] the new objective functions are defined. Moreover, a new finish criteria

is set
|F; — Fy_1| < 107°

Reparameterized Airfoil — Starting C;,  Target Cp, Objective Function

NACA 4412 0.789 1.10 Fl. = (Cp —1.1)?
RAE 2822 0.625 0.87 F2. = (Cp, —0.87)’
FAUVEL 0.161 0.22 F3. = (Cp —0.22)?

Table 5.2: The objective function, based on eq. used to optimize NACA 4412,
RAE 2822 and FAUVEL airfoils. The target is to increase C, by 40%.

The three new optimization paths are presented in Figure and the optimized
geometries, in real life scale, in Figure
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Figure 5.6: The three optimization paths. The target is to increase Cy, by 40%.
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Starting Airfoil = = =
Optimized Airfoil ———
(a) NACA 4412
Starting Airfoil = = =
Optimized Airfoil
(b) RAE 2822
Starting Airfoil = = =
“ Optimized Airfoil

(c) FAUVEL

Figure 5.7: Optimized airfoils (on scale). The target is to increase Cr, by 40%.

Similar to previous optimization process, the differences between the starting and
the optimized geometry are better presented if the airfoils are not plotted in-scale.
The new Mach number fields and pressure coefficient are also presented (Figures

to.

Concerning NACA 4412 and FAUVEL airfoils, the Mach number fields are slightly
different between the starting and optimized geometry. On the other hand, the flow
prediction around the optimized RAE 2822 results to a much different shape and
Mach number field. A better representation of the increased lift is the pressure
coefficient. As pressure gets bigger on the airfoil pressure side and lower on the
suction side, the lift is increased. Moreover, one should also pay attention to the
relation between Mach number and pressure. In places where the Mach number gets
increased, the pressure drops and vice-versa.
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Figure 5.8: NACA 4412 airfoil. Optimization results. The target is to increase Cp,

by 40%.
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Figure 5.9: RAE 2822 airfoil. Optimization results. The target is to increase Cp, by
40%.
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Figure 5.10: FAUVEL airfoil. Optimization results. The target is to increase Cy, by
40%.
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Chapter 6

Summary - Conclusion

In this diploma thesis, a practically abandoned FORTRAN code for almost a decade
or so, developed by the PCOpt/NTUA, was updated in order to perform shape op-
timization using the E-SI adjoint method, instead of the Sev-SI adjoint, which was
already programmed. E-SI adjoint has a low computational cost as Sev-SI adjoint,
but without compromising the accuracy of the computed sensitivities. The main tar-
get is to make this code "equivalent” to the well-developed PUMA software. PUMA
is programmed by the PCOpt/NTUA in C++ and CUDA to run on GPUs and is
the main software that the PCOpt/NTUA uses for optimization on compressible
flows (though PUMA also simulates incompressible flows).

Concerning the FORTRAN code, at the moment, it predicts the flow around an
airfoil using the Euler equations in a 2D and unstructured FV grid, using the node-
centered approach. For the computation of the SDs, the continuous adjoint method
is used. The main optimization goal is the increase of lift and the minimization of
drag coefficient. The latter is expected to be zero. However, it is programmed in
order for this to be ready when its Navier-Stokes counterpart will be in place.

The flow of primal problem (flow prediction) can be solved with the use of either
the FVS or the Roe scheme. Moreover, different orders of accuracy and a limiter
can be implemented. Another important aspect is the density of the grid. Likewise,
for the adjoint problem, similar numerical schemes and orders of accuracy are de-
veloped. The only difference is the use of another variant of Roe scheme, namely
the non-conservative one.

The software’s accuracy in computing each case’s SDs is tested with a second-order
Finite Differences scheme.
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Regarding the primal equations’ solver, the two numerical schemes are practically
the same. No major differences are noticed. The order of accuracy highly affects
the results. First-order leads to a fast convergence. Its results differ from those
emerging from second-order schemes. However, as the density of the grid increases,
first-order results tend to become similar to those of second-order. The use of the
Van Leer Van Albada limiter doesn’t have any worth mentioning differences.

The adjoint equations are non-conservative. Thus, the conservative schemes (FVS
and Roe) are not mathematically correct and have low accuracy. That’s why the
Non-Conservative Roe is implemented. The orders of accuracy have the aforemen-
tioned influence on the adjoint field, too. In the conducted analysis, which involves
the Euler equations and the increase of lift, E-SI doesn’t differ from Sev-SI.

The adjoint method is a very economical one. With only a few equivalent flow
solutions the three airfoils, presented in Chapter [5] are optimized and reached the
target lift coefficient. They tend to increase their camber in order to increase their
lift. The main changes happen near their trailing edge. Moreover, on each airfoil’s
pressure side, the Mach number decreases and pressure increases. On the suction
side, the opposite phenomenon takes place.

Concluding this thesis, the developed software has achieved to predict 2D, com-

pressible inviscid flows around an airfoil and increase their lift using the adjoint
E-SI method.

Before closing, let us make clear that the purpose of this work was to make a first
step in bringing the Fortran CFD code (primal and adjoint for shape optimization)
closer to the well-developed GPU-enabled PUMA code of the same group. Since,
during the last decade, development is exclusively based on the GPU-enabled PUMA
code, there are good reasons to upgrade the Fortran code too, given the CPU cluster
of the PCOpt/NTUA. Upgrading should, sooner or later, pass from 2D to 3D, from
inviscid to viscous/turbulent flows and should finally include parallelization using
MPI.



Appendix A

Bezier-Curve Shapes

On this dimploma thesis the airfoil’s parameterization is based on the Bezier theory
[8]. According to it, the geometry emerges from M +1 control points (CPs) P;, with
0

70, j=0,---, M position vectors.

To begin with, a parameter t € [0, 1] is defined. Using the de Casteljau algorithm

2

7o) = (1 — )7 (1) + 7,971 (t) (A.1)

where a =1,--- ,M and 1 = 0,--- , M — a. This process eventually ends up in the
7™M (t) quantity, which is the Bezier-Curve. A visualization of the algorithm and
its physical meaning is presented in Figure [A.T] Each column creates the next one,
except from the first which is given.

(a) Steps in diagramm (b) Geometrical meaning of each term (The con-
tinuous line is the bezier curve)

Figure A.1: The de Casteljau algorithm

Despite the method’s simlicity a more direct and analytic expression of the curve is
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72 A. Bezier-Curve Shapes

needed. Thus, the Bernstein, B (t), polyonyms are used

MY\ . .
BMit)y= |tra-oM (A.2)
7
where
M B M!
1 B il(M —i)!

THOED WA (A3)

and called Bezier-Bernstein. Likewise 7, (t) = (x(t), y(t)), the coordinate of each
curve point can be expressed as

o(t) = Y @B (1)

u(t) = B (A4)

where (z;,y;) are the cartesian coordinates of the P; CP. Only under special condi-
tion can a y = y(z) expression be extracted. In general, they are connected through
the t parameter.

Differentiating the bezier curve w.r.t. the CPs’ coordinates

ox; 0y; :
ox(t) _ oy(t)
S on 0 (A.5)

However, (x;,y;) are the design variables for a shape optimization case. Thus, eq
[A.5| gradients can be also stated as dx(t)/db,, dy(t)/db, (bezier curve’s SDs).



Appendix B

Useful Mathematical Equations

Below are listed some equations on which the analysis of the adjoint method is
based. [24]

1. Leibniz Integral Theorem

o
5bn Q(bn)

B, » L
F(U,b,) dQ —/ _F(0,b,) dQ+/ F(U, b)) =500 (B.1)
Q(bn) In 0Q(bn) by,

It is a formula for differentiation of a definite integral whose limits are functions of
the differential variable.

2. Green-Gauss Theorem

/ (VF)dQ — / (Fi) dS (B.2)
Q S

It relates the volume to surface integrals. More specificall the surface integral of a
vector field over a closed surface (flux through the surface) is equal to the volume
integral of the divergence over the region inside the surface. Intuitively, it states
that the sum of all sources of the field in a region (with sinks regarded as negative
sources) gives the net flux out of the region.

3. Material Derivative of ¢

E = a—bn—f—a—ka (B?))

The material derivative shows that the §/0b,, and 0/0b,, derivation symbols refer to
different physical meanings. Their distinction is of great importance. ® is considered
as a flow quantity calculated on node P of the grid. A variation of b,, as a geometric
variable, results in the change of the flow field. This change is described by the
0®/0b,, term, computed on P. However, b, also causes the deformation of grid.
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This creates the second term on the RHS of the eq. [B.3] which refers to the influence
of the dissplacement of P in the unchanged flow field. Both these terms describe
the total alteration of ®, expressed as §/0b, . The influence of b, on ® can be
graphically presented in Figure [B.1]

Figure B.1: Physical representation of the total change of the quantity ®. The term

g% refers to the flow alteration on the same location P and the g—i%—: to the change

of the location where ® is computed for constant flow field.

4. Material Derivative of

axi

5 [08] _ 0 [58] 00 0 [on -
ob, |0z | Ox; | ob, Oxy 0x; | db, ’
The proof of the equations is briefly presented below. Replacing ® with 0®/dx; in
oq.
b (0D o [0d 0 (0P oxy
2 — 7 Ok B.
5bn (8@-) b, (ax) T o (axi) 5 (B-5)
Differantiating eq. with 0/0x;
o [0 o (0 PP Sz, 0P O [Oxy
22 = il I L i B.
o, (5bn) o1, (am) w0, b, | O Oy <§bn> (B-6)
Substracting eq. from eq. [B.6] the eq. [B.4] arrises.
0?P

5. Material Derivative of D0z,

182@_62 @_821%_8285& od 0
ob,, | Ox;0z; 78:61-8]:]- ob,, Ox;0xy, Ox; | by, Ox;j0xy Ox; | by,

53:]4

B.7)
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H IledieEn tng Povc

H por} Yewpeiton uoévir, cuumiesth xou un-cuvextixr. 'Etot, yenoyomowivto ol e€i-
owoelc Euler

ou  of,
- =0 1
ot ' ox (1)
P pU;
ue U= |pil, fi= | pusii + 6P (2)
Et (Et + P)U,z

O e€lowoeg TN ypovixd péviung eong Abvovton Ue TN yefon Tou eudoypdvou t.
Ou petoffAntéc mou epgaviCovton ebvar p 1 TUXVOTNTA, U TO OLEVUCUA TG ToyUTNTA,

E, = pE = o + 37 7”1 ouvouh evépyeta avd wovéda dyxou xau P 1) oot
’y j—

7 8fl 7 7 14 4 4
TELEOT]. o Az = ﬁ TEOXUTITEL T] OUVT’{]QY}TD{U [J.Op(PT] WYy EELO(OOE(OV TY]Q pong

oU oU

5 +A18xi =0 (3)
Q¢ opraéc cuviixeg oplCovton aUTES TNG ABLITAEUXTNS POTC GTO €T AMELPOY TEDIO Xou 1)
oLVIn un-cloywpenong ota oTEEEd Tovywuata. H emlivorn vhonoeltoan e un dounuevo
TAEYH TEMEQUOUEVLY OYXWY PE TN YENON TNS XEVTPo-xoufhc mpootyyiong. [o
Sroxprronolnon twv e&iotoewy ypnotdonootvion ta oyfuoto FVS (eZ. [2.38) xo Roe
(eE. . H tdén axpifeiac opiletar and tic edionoeic - . Avorutind
1 Sdxacta €DpEcNE TOU POIXOL TEDIOL TEPLYPAUPETAL GTO XEQPHANO [2] TOU oyYALXOU
XEWEVOL.

H Yuveyne Xuluyre Mé£doodog

H ouveytic cuCuynic pédodoc umopet va avamtuydel axoroudnviac teelc uedodoroylec,
ot onoieg xatahyouv 670 (B0 oo TN SLULLYOY EEIGMCEWY Xl GLLUYMY OPLIXWDY CUV-
Unudv, BlopopeTnés dune exgpdocic tapaywywy evoncdnoioc, [14]. H SI diatdnwon
odnyel oe wo éxgpaon Yy Tic SDs 1 omolo mepthouBdvel uévo emipaveloxd OhoxAT-
POUATA, EYEL UXPO UTOAOYLOTIXG X0GTOG oA umopel xatd mepintwon va uvoTepel o
axeifBeio. H FI dwatinwon odnyel oe wa éxgpaor yio tic SDs 1 onola nepthopBdvet
TOC0 ETLPAVELAXT OGO XU YWELXd OhoxAne®uaTa, yopaxTnetletar amd vhnir axplBeia,
OAAG o a6 LPNAG xOOTOC AOYW TNS AVAYHNG UTOAOYLOHO) TV TORAY DY Y EVALoUT-
oo Tou TAéypatog 6z /db, otov dyxo € tou unohoyoTixol ywelou. H mpocéyyion
Enhanced SI (E-SI), mou avartoydnxe oand tn MIITP&B/EMII, eZoheiper v avdyxn
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UTOAOYIOUOU TOoL 0, /b, 070 €, 00N YWVTAS OE x00To¢ avtioTotyo Tng SI xou axpifBeia
avtiotoryng tneg FI npocéyylong.

H cuvdptnon-ctéyog elvoun 1
F =w (Cp— Cy,,)* +waCh (4)

OmoL Wy X wq cLuvaETHoelS Bdpoug xou Cf,,, 1 EMVUUNTY| TWAC TOU GUVTEAESTY| dvw-
onc Cr. Téhog, Cp ebvan o cuvtereotrc avtiotaone. H ouvdptnon auts anotehel
ETUPAVELIXO OAOXAARWUN TNG LOPPTC

F:/&Mﬁ (5)
S

Ewdyovtag T culuyt| cuvaptrion tng poric ¥; xou Tou TAEypatog my, YemphvTog 0Tt
T0 tehevtalo Biémeton and Tic e€lonoelc Laplace, o moporywyiCoviag tny mapamdve
oyéon

0F svc oF 0

5b, = E—i_% \PRdQ—i-—/mR dS) (6)

6mou {1 1o LTOAOYIOTIXO Ywelo, R; Ta uTOAOLTA TV POIXWY EIGHOEWY xat R* tov
avtiotoywv Laplace. Xuyxevipmvovtag 6Aouc Tou 6pouC ToL ATOTEAOUYVTOL AT To-
PUYWYOUS WE TEOS TIC HETUPBANTES OYEDBIAOUOV TWVY TAEYHATIXOY EELOWOEWY GTOV OYXO
XL TOV POIXWY UEYEDDY GTOV OYXO0 X0l TIC ETMLPAVEIEC TOU UTOAOYLOTIXOU ywplou xou
Vé€tovtog Undév Toug GUVTEAEGTEC TOug, TEOXOTTOUV Ol GULUYELS EELOMOELS, OPLUXES
ouvihixeg xau oL Topdywyot evatoinaiag (SD), €. - . o Aoyoug cuvtoulog
Topovotdlovial wévo ot SD

5FAUG N CL — CLtM 5ny (571_90 X
5, = 2wy, . / {5[) cos(a) 5, sm(a)}
SD!
Cp g omy - 0(Tg)
2y~ 2 oMy Upp— U, fi
+2wy . Swp |:5bn cos(a) + 5, sm(a)] +/SW [ k+1D sz} 5b,
sD? SD?
= (.22

U, im0 omé  dx; o pm
_/wap b A ndeW &) TS dS+/ R —dS

D SD DS

O 6poc SD5 drayweler v SI mpocéyyion and v E-SI. Katd ™ mewtn 1 oulu-
Y1c e&lowon Tou TAEypaTog BEV LloTUTL XL O GPOC BEV ONULOUEYE(TAL.  MMUAvVTIXN
Topatienon amotekel axdua OTL o avtileon Ue TIC e€LOWOE TOU TAEYUOTOS, Ol O-
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vtioToyeg ouluyeic €youv un-cuvtrentiny woper. 'Etol, xplveton emitonctinn 1 avdryxn
ELOAYWYNS VEOU UNFoUVTNENTO) G UoTog dloxpltonolnong. XTny mopolod epyaoia
YenolomoLeiton To pn-cuvtnentxd Roe.

Iapapetewxry Avdiuvuon Agtduntixng Enilvong
INo tig poixeg egiowoelg

Korapydc v tny enthuon e€ilomoewy Tng porg 10 AoYlopixd Tou dnutovpyunxe olo-
Vétel Suo apriunTnd oy fuata, duo dlapopeTixés Talel axplBelag, meMTn xaL delTeET,
xou TNV egappoyy| teptoptoth]. H emppor) xodevog otolyelov eéetdletan oe TEEIC dEPO-
TOUES. LN ouYXEXEWEVT TepiAndm avapépeTton povo 1 avanapaueteomonuévny NACA
4412, 1 yewuetpla xon oL cuVIKeS ablaTdpaxTng PoYic TS onolag Tapouctdlovial GTo
TOEOXATEL Oy AL

NACA 4412 Airfoil

5
- &

7 Bezier CPs and polygon - Suction Side - -A- -
8 9

T
Airfoil Shape

Bezier CPs and polygon - Pressure Side --@®- -

oA 10

En" ‘Anepov medio:

e 'wvia tpdontwong = 27

L
0.4

L
0 0.2

i
0.8 1
x/c

o Apwiuéc Mach = 0.3

Xy 1: H Moper) ka1 ta onpeia - todUywra Bezier
g aepotouns NACA 4412

Energy Equation Convergence Path

FVS Scheme — 15t Order
Roc Scheme — 15t order — — —
FVS Scheme — 279 Order
Roe Scheme — 279 Order
FVS Scheme —~ 279 Order & Limiter

Roe Scheme — 2nd Order & Limiter — — —

Convergence Criterion

. Logyg(Residual)

50

100 1s0 zo00 250 S00 S50 aoo aso s00
Iteration Number

Yy 2: Aeporoury NACA 4412. Xidykpion apidunuikor oxnudtwv kar tdéewy
axpifeias avagopikd e tny mopela oUyKAI0OTS.

Hopoatnedvtag Ty mopeior GUYXAONG TwV eElOOOEWY EVEPYELNS 6TO Lyrfud [2 mopo-
Teeiton e Tor duo oyruata bvor opoto UETaEy toug. Ot Blapopéc Toug dev elvor
TOEUTNENOWES 6TO Olorypdupoto. ATo Tnv dAAT, ol tdlelc oxplBetag dadpopatilouy
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onuavTixd poho otn ddwacio emiivong twv ediohoswy. H ypron mpwtng tding o-
xp(Betag xdver Tov akybpripo ToAD o YEHYopo ot owovouwxod. O TEpLopIo TG EYEL
uer| enintwon oty nopeta olyxhiong. T'a 0 olyxplon Tng ToLOTNTAC TWV ATOTEAE-
OUATWY YENOUOTOLOUVTOL TECCERA TAEYHOTOL BLPOPETIXAC TTUXVOTHTOS ( Xy U Ol
Hivoxac [4.1). To anoteréopota Topouctdlovtol GToV ToEaxdTe Tvoxa.

Tdnn AxpBetag ITA&ypa Cr Ch Enoavahieg
A 4.948 107! 123.5 1073 101
B 6.188 10! 53.44 1073 338
1 r 6.587 107! 34.02 1073 573
A 6.849 107! 27.59 1073 830
A 7.231 10~ 14.54 1073 172
B 7.891 107! 3.788 1073 572
2 r 7.803 1071 3.078 1073 1103
A 7.851 1071 3.055 1073 1515
A 6.463 107! 31.74 1073 180
B 7.871 1071 5.416 1073 579
2 & Ileplopioic r 7.779 107! 3.433 1073 1115
A 7.840 10~ 3.283 1073 1530

ITivaxag 1: Aepotounn NACA 4412. Xuvtedeotés dvwong kar avtiotaons yia dago-
PETIKES TUKVOTNTES TAEYUaTos kal Tdées akpifelas Kar meplopioTn).

‘Onwe gofveton o amotehéoyata Tng d0e0TEENE TAENE oplBetag efvan Ue xalr| TpooEyyion
aveldoTNTa amd TNV TUXVOTNTY ToU TAEYUATOSC. XE avTiVeor autd Tne meaTng Téing
veTtoBdhhovtar xadoe to mhéyua yivetoaw mo muxvéd (Eyfua O . OzwpenTtind
o€ TAEYHA GMELPNG TUXVOTNTOC, 1) TPWOTN TA&N axpBetag €yl (B amotehéopata Ye
oevTeEPn). AuZdvoviag Ouwe Toug xOUPouc TOU UTOAOYIOTXOU Ywelou, auEdveTon Xou
10 x6070¢ avd enavdindm. IHopduolo cuunepdopota eZdyovtar xon and TN olyXELo
TOU GUVTEAECTY| TlEOTC VL OTNV ETULPAVELX TNG AEQOTOUNG (Exﬁpoc . Kadohn
METETELTOL aVdAUCT] Yenodoroteltar To TAéyua B.

I'ae Tov umoAoyiopd Twv SDs

‘Onog avagépinxe vopltepa ta 500 CLUYTNENTXE Gy AUATA OEV TUEOUGCLACOLY BLUPORES
petalld toug. Emlong wixer enintwon €yel xa o mepoplothc. ‘Etot, yio Adyoug cu-
vTopiog TopouctdlovTal HOVo To AMOTEAECUOTA TOU EEAYOVTAL oo TIC 800 TOPUANXYES
Tou oyfuatog Roe yia mpdtng xon devtepnc TéENg axpifeia 6Ty Thevpd uToTleong NG
oepOTOUAC (Byhua . To umdhoima aroteréoyato umopolv vo Beedoly oto ayyAxd
xeluevo.

Ou SDs umohoyiCovtan ye T ouluyy| uédodo xou cuyxplvovTol UE TS avTioTOLYES ToU
TEOXUTITOLY OO TEMEQUOUEVES DLaPOPES BELTEPNG TAENG, YPNOHLOTOLOVTAUS XAUE Popd
10 (Blo oy fua xou TaEN axpifeloc xatd Tn Soxpttomoinom Twy edlohoewy. Ot culuyeic
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edlowoelg emnpedlovton amd auTd PE TOV (B0 TEOTO ToU EMNEEALOVTOL XoL Ol POIXEC
eZIoWOoELS, OTWS QalveTal 6To Ly rud

| =
= 0.2 T T T T T T 1
o 01 ﬁ é —
5 o . L e o o
g 01 ! -
-s_“ii;..ﬁﬁg L R
=2 . : =N
=1
ERREE S x g >|< BEIRES NS IR R Sy
O .04 AdjointE-SI @ oo B w0
£ os| Adjoint Sev-si K g
g2 06 Finite Differences [ e e H]
5 07 I T R N R T T S A M A M A A N N B .
el 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
Design Variable n
17 Tégne Axp(Betag - Mn-Xuvtnpitind oyrua Roe - ITieupd unorieong
[
= 0.2 I e e I I
5 L BEE = 5 .
n E3]
>
B _0_2—---!--!:!--!'-!-'.-_!_- i .
O 04 - AdjcintE-sl @ oo B
.%“ 05 | Adjoint Sev-SI K
2 06 - Finite Differences [] T R S S B St B ! i
5 0.7 | | | | | | | | | | | | | | | | | | | | | | | |
wl

33 34 35 36 37 36 39 40 41 42 43 44 45 46 47 45 49 50 51 52 53 54 55 56 37 58

Design Variable n

27° Tagng AxpiBelag - Mn-Xuvinprtixd oyrua Roe - ITkeupd uronieong

0-2!!‘!!!!!!!!|||||||||||||

0

o e BT
02 - ! T O | SO
0.4 Adjoint E-SI @
05 - Adjoint Sev-SI kK R R R
06 - Finite Differences [ I
07 AN N S [ N N A
33 34 35 36 37 3B 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Sensitivity Derivatives GF / Gby,

Design Variable n

27° TéEne Axpifelag -Xuvtneitind oyfuoe Roe - ITheupd uronicong

Yy 3: Aepotoury NACA 4412. Xbykpion oxnudtwr, tdéns akpifeag kar mpooéy-
Y10ng§ katd twy vrodoyiopo twy SDs tng
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‘Ocov agopd o cuvtnenuxd oyfua Roe, autd amoxAlvel apxetd and Ti¢ TEayUaTIXES
Twég. To otoyeio autod elvon avouevouevo, xadng dnuoveyoldvIal oAUt x0T TN
OLOXQLTOTIOMNOT UN-OUVTNENTIXGY EEIGMOEWY PE CLUVTNENTIXG oY AUt ATO TNV G,
T0 un-cuvtnenTixd oyfue Roe €yel wavomointiny axp{Beio. H pédodor Sev-SI xou E-
ST Bev €youv peydhec dugpopéc, ue e€aipeor optopéves PETUBANTEC oyeEdloUol 6Tay
Yenotonoteiton Te®TNg TUENg oxpifBeLag.

Hopopola amoTeAéoUTo TAPUUETELXTG AVAAUCTE TaEOLCLALOUY Xal Ol GAAES BUO UEPO-
TOUEG TTOU UEAETOVTOL OTO XEPAAOLO

Emiloy? BErTioTwY TopouéTpwy BeATticTtonolnong

H ouluyrc pédodog unoroyilel Tic mapaywyoug euoncinolag xdie yewuetplog amat-
TOVTag otadepd x6oToc. Anhody| ev audveTon cUVAPTACEL ToL TANYOUC TV UETO-
Brntov oyedaouol N. KadiloTator Aotndy xatdAAnAn yio tohunopadetoixy Behtioto-
Tolnon.

‘Ocov agopd ta apriuntixd oyfuata, Yy Tig culuyels e€loOOEC TO Mo XATIAANAO,
amo oUTE ToU BLETEL O xWOWAG Tou dnutoueYRdnxe, ebvar To Roe xan cuyxexpiuéva
1 un-ouvTnenTxy wop@r tou. Ot mapdywyol Tou utohoyilovTon Ue Tn yenorn Tou elvor
o oxpB3nc xan anantel AryoTepeC UTohOYIo TixéC emavah|pelc Yo vo ouyxAivet. TTapdho
TOL Yl TIC €EICMOELC TNS PUOXTE POMC BEV TapaTneEiTon dlapopd oTa BLO UTdEYOVTA
oyfuata, emhéyetar o Roe yio Adyoug cuvdgelag ue tig ouluyelg e€lonoelg. Xenot-
pomoLeltan 6e0TeEENG TAENG oxpifBetLaL.

Téhog, 1 ouluyrc uédodog mou emhéyeton etvan 1 E-SI, napdho mou or drapopéc tng
ue ) pédodo Sev-SI tuyalver va uny etvan yeydheg ota mpofAfuata Tou e&eTdlovTol.
To yeyovée autd ogeileton otic edlowoel Euler xou oto 611 1 cuvdptnon-otoyog
amoTEAE(TL HOVO aTd TO GUVTEAEOTY| AVWOT.

BeAtiotonoinon pe tn 2uluyn Medodo E-SI

Metd tnv avdmtuln, xon alloAdynon Tou AoYLoUXoU, xadde XaL TNV TURUUETEIXT| UE-
AT TV puiuicedy Tou, Teaypatonoteiton BeAtiotonoinon tng NACA 4412 otig (Bieg
oLVUTXES € AMELPOY PO UE OXOTO TNV AOENOT TOU CUVTEAEGTY| AVKOOTG XATH 40%.
H ouvdptnon-otéyog mou yenouomoteiton bvon 1
F; = (Cp—1.1)°

H Behtiotonoinon teppatiletar €dv 1 Slapopd 500 Stadoyxwy Fiuy; etvar uxpdtepr anod
107, To BAua n Tou ypNotuoToLelToL XATd TNV AVAVEWOT] TV LETABANTOV GYEDLIOUOD
tieton (oo pe 1073. H Topeia TN PehtioTonolnong galvetal 0To My ud .
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NACA 4412

=
© !
o O

0.7 I I I I I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18

Optimization Cvcles
Yynuo 4: H aetorour) NACA 4412. Ilopeia PeAtiotomoinong e otdyo Cr, = 1.1.

Lift Coefficient (C|)

Y10 Myfua 5| mapovctdlovton ol ahhayES OTY YEWUETEIL TNG AEEOTOUNG OF QUOLXEC
XoU UN-puUoéS SlaoTdoels. ‘Omeg yivetar avTAnmTo oL xVpleg SLapopéc HeTald apyXhg
xou BeATiotomonuevng Yewuetplag Boloxovtar xovtd otny oxuy| exguync. H agpotoun
Tebvel vor auEAOEL TNV XUUTUAGTNTA TNC.

Starting Airfoil = = =
Optimized Airfoil

(") Puoikég daotdoeg

NACA 4412

0.12 T T T

T
Starting Airfoil = = =
ptimized Airfoll ——

0.08
0.06
io.oa
0.02

-0.02
-0.04

T
0 0.2 0.4 0.6 0.8 1
X/c

(B") Mn-guoikés dotdoes

Yy 5: H aetotoury) NACA 4412. AMayn yewpetpiag katd tn PeAtiotonoinon e
otoxo Cr, = 1.1.
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Téhog, mapovcidletar xan to medio Tou aprduol Mach tng poric yia TV apyixr xou
el yeopetplo (Syfuo[6).

(") Apxixd medio Mach

(B") TeAiké medio Mach

Yy 6: H aetotoury NACA 4412. MetafoAr) tov mediov touv apidpod Mach xatd T
PeAtiotonoinon pe otdyo Cr, = 1.1.

‘Onwg otn yewuetpla, €tol xar oto medio tou apruol Mach ou ahhayég Sev ebvon
ueydiec. Ilepiopilovton puévo otnv meptoyy| xdtw and Ty mhevpd mieong. To amote-
Aéopata tng BeAtiotomoinong yivovton mo aoInTéd amd TNy xoTovour| ToU CUVTEAES T
nieong. ‘Oco 1 nieon auidveton TNV TAELUEE TECTC XoL UEKDVETOL GTNY TAELEE UTOTE-
ong, 1600 peyahlTeEn YiveTon 1) dvwan (Lyfua E[)
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NACA 4412
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(]
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Starting Airfoil —
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in
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=
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— —

Optimize_d_ﬁ_;iEJ_il_/-;

o
I
;%]

0.4 0.6

Optimization Cycles

PressureICoefﬁcient (Cp)

Yy 7: H aetotour) NACA 4412. MetafoAr) touv ovrteleotn mieons Cp katd

BeAtioronoinon pe otdyo Cr, = 1.1.
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