
National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Sparse Polynomial Chaos Expansions for Uncertainty
Quantification in Aerodynamic Problems

Diploma Thesis

Titos - Georgios Dellis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA

Athens, September 2025



ii



Acknowledgments

First and foremost, I would like to express my deepest gratitude to Professor Kyri-
akos Giannakoglou for his invaluable guidance, inspiration, and continuous support
throughout the course of this thesis. His insights, encouragement, and trust were
instrumental not only in shaping the technical direction of this work but also in
developing my understanding of research in computational science and engineering.

I am also sincerely thankful to Dr. Varvara Asouti for her generous assistance and
expertise in the setup of the aerodynamic software used in this thesis. Her sup-
port in understanding the simulation environment and her practical advice greatly
facilitated the successful execution of the aerodynamic applications.

Their combined mentorship played a crucial role in the completion of this thesis,
and I am truly grateful for their time, patience, and willingness to help.

i



National Technical University of Athens
School of Mechanical Engineering
Fluids Section
Parallel CFD & Optimization Unit

Sparse Polynomial Chaos Expansions for Uncertainty
Quantification in Aerodynamic Problems

Diploma Thesis

Titos - Georgios Dellis

Advisor: Kyriakos C. Giannakoglou, Professor NTUA Athens, September 2025

Abstract

This thesis investigates the use of non-intrusive, regression-based Polynomial Chaos
Expansions (PCE) for Uncertainty Quantification (UQ) in aerodynamic simulations.
While regression PCE is more efficient than Monte Carlo methods, it suffers from
the curse of dimensionality, as the number of polynomial terms (unknown PCE co-
efficients) grows rapidly with input dimension, leading to large demands in costly
model evaluations. To address this limitation, the thesis employs sparse regres-
sion PCE techniques that exploit sparsity in the expansion coefficients to construct
accurate surrogates with fewer samples.

Unlike Ordinary Least Squares (OLS), which requires oversampling (typically at
least twice as many samples as unknown coefficients) to ensure accurate approxi-
mation, sparse regression can succeed in undersampled regimes where the number
of samples is smaller than the polynomial basis size. Reducing the sample require-
ments is crucial, since sample evaluations via complex simulation models constitute
the largest portion of computational cost in a PCE application.

Two widely used approaches for sparse PCE are considered: convex optimization
methods such as LASSO and greedy algorithms such as Orthogonal Matching Pur-
suit (OMP). In addition, enhanced variants—post-LASSO and relaxed LASSO—are
employed, which reduce the basis by first identifying the most relevant terms and
then re-estimating their coefficients. Software was developed to implement these
solvers (LASSO, OMP, post-LASSO, relaxed LASSO) in the context of regression
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PCE, which were validated on a variant of the Borehole benchmark and two aero-
dynamic applications: (i) an XFOIL-based simulation of a NACA 2412 airfoil under
uncertain operating conditions, and (ii) a CFD-based simulation of a NACA 16103
airfoil with geometric uncertainties represented via a Karhunen–Loève Expansion
(KLE).

Results show that OLS requires oversampling by a factor of about two to achieve
stable approximation. In contrast, LASSO and OMP provide reliable estimates
with only 75–80% as many samples as unknown coefficients, while post-LASSO
and relaxed LASSO maintain robust performance even when this ratio drops to
around 65–70%. These findings demonstrate that incorporating sparsity and basis
reduction into regression-based PCE substantially reduces computational cost while
maintaining accuracy, establishing sparse PCE as an efficient framework for UQ in
aerodynamics.
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Περίληψη

Η παρούσα διπλωματική εργασία εξετάζει τη χρήση μη-επεμβατικών, βασισμένων σε

παλινδρόμηση Επεκτάσεων Πολυωνυμικού Χάους (Polynomial Chaos Expansions ,
PCE) για την Ποσοτικοποίηση της Αβεβαιότητας (Uncertainty Quantification , UQ)
σε αεροδυναμικές προσομοιώσεις. Αν και η μέθοδος PCE είναι αποδοτικότερη από
τις μεθόδους Monte Carlo, υφίσταται τον «κατάρα της διαστατικότητας», καθώς ο
αριθμός των πολυωνυμικών όρων (άγνωστοι συντελεστές PCE) αυξάνεται ραγδαία με
τη διάσταση των εισόδων, οδηγώντας σε μεγάλο αριθμό απαιτούμενων αξιολογήσεων

από υπολογιστικά δαπανηρά μοντέλα. Για την αντιμετώπιση αυτού του περιορισμού,

η εργασία επικεντρώνεται σε τεχνικές αραιής παλινδρόμησης με PCE, οι οποίες εκμε-
ταλλεύονται την αραιότητα των συντελεστών της επέκτασης ώστε να κατασκευάσουν

ακριβή υποκατάστατα με μικρότερο αριθμό δειγμάτων.

Σε αντίθεση με την Κλασική Μέθοδο Ελαχίστων Τετραγώνων (Ordinary Least Squares
, OLS), η οποία απαιτεί υπερδειγματοληψία (τυπικά περίπου διπλάσιο αριθμό δειγμάτων
από άγνωστους συντελεστές) για να επιτευχθεί ακριβής λύση, οι μέθοδοι αραιής παλιν-

δρόμησης μπορούν να επιτύχουν σε σενάρια όπου ο αριθμός δειγμάτων είναι μικρότερος

από το μέγεθος της πολυωνυμικής βάσης. Η μείωση των απαιτήσεων σε δείγματα είναι
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καθοριστικής σημασίας, καθώς οι αξιολογήσεις δειγμάτων μέσω πολύπλοκων προσο-

μοιωτικών μοντέλων αποτελούν το μεγαλύτερο μέρος του υπολογιστικού κόστους σε

μια εφαρμογή PCE.

Στην εργασία εξετάζονται δύο ευρέως χρησιμοποιούμενες προσεγγίσεις για αραιή PCE:
η μέθοδος LASSO, που ανήκει στις κυρτές βελτιστοποιήσεις, και ο αλγόριθμοςOrthog-
onal Matching Pursuit (OMP), που αποτελεί χαρακτηριστικό παράδειγμα greedyαλγορίθμου.
Επιπλέον, μελετώνται βελτιωμένες εκδοχές όπως η μέθοδος post-LASSO και η παραλ-
λαγή relaxed LASSO, οι οποίες μειώνουν τη βάση εντοπίζοντας αρχικά τους σημαντι-
κότερους όρους και επανεκτιμώντας στη συνέχεια τους συντελεστές. Αναπτύχθηκε

λογισμικό για την υλοποίηση των παραπάνω μεθόδων (μέθοδος LASSO, αλγόριθμος
OMP, μέθοδος post-LASSO, παραλλαγή relaxed LASSO) στο πλαίσιο της παλινδρόμη-
σης με PCE. Το λογισμικό επικυρώθηκε σε εφαρμογή της συνάρτησης Borehole και
σε δύο αεροδυναμικές περιπτώσεις μελέτης: (ι) προσομοίωση με XFOIL της πτέρυ-
γας NACA 2412 υπό αβέβαιες συνθήκες λειτουργίας και (ιι) προσομοίωση με CFD
της πτέρυγας NACA 16103 με γεωμετρικές αβεβαιότητες, οι οποίες μοντελοποιούνται
μέσω Karhunen–Loève Expansion (KLE).

Τα αποτελέσματα δείχνουν ότι η μέθοδος OLS απαιτεί περίπου διπλάσιο αριθμό δειγ-
μάτων από άγνωστους συντελεστές για να επιτύχει σταθερή προσεγγιστική λύση.

Αντίθετα, η μέθοδος LASSO και ο αλγόριθμος OMP παρέχουν αξιόπιστες εκτιμήσεις
με μόλις 75–80% του αριθμού δειγμάτων σε σχέση με τους αγνώστους, ενώ οι εκδοχές

post-LASSO και relaxed LASSO διατηρούν ικανοποιητική απόδοση ακόμη και όταν ο
λόγος αυτός πέσει στο 65–70%. Τα ευρήματα αυτά καταδεικνύουν ότι η ενσωμάτω-

ση αραιότητας και μείωσης βάσης στην παλινδρόμηση με PCE μειώνει σημαντικά το
υπολογιστικό κόστος διατηρώντας παράλληλα την ακρίβεια, καθιστώντας τις μεθόδους

αραιής PCE ένα αποδοτικό πλαίσιο για την Ποσοτικοποίηση της Αβεβαιότητας στην
αεροδυναμική.
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BPDN Basis Pursuit De-Noising
CD Drag Coefficient
CL Lift Coefficient
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DoE Design of Experiments
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LASSO Least Absolute Shrinkage and Selection Operator
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MC Monte Carlo
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OLS Ordinary Least Squares
OMP Orthogonal Matching Pursuit
PCE Polynomial Chaos Expansion
PDF Probability Density Function
QoI Quantity of Interest
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RNG Random Number Generator
SD Standard Deviation
SR Sampling Ratio
SVD Singular Value Decomposition
UQ Uncertainty Quantification

Symbols Table

ξ Uncertain Input Variable
Ψ Polynomial Basis
p Chaos Order
N Sample size
P Basis size
u Quantity of Interest
c PCE Coefficient
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λ LASSO regularization parameter
k Number of Non-Zero terms
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Chapter 1

Introduction

1.1 Uncertainty Quantification of Deterministic

Models

In engineering and applied sciences, numerical models are commonly used to de-
scribe physical systems and predict their behavior under user-defined conditions.
For example, the flow field around an airfoil at known environmental conditions
can be simulated using Computational Fluid Dynamics (CFD). The input of such
a model includes the airfoil’s geometry, the freestream velocity, the angle of attack,
and the fluid’s properties, such as viscosity, density, etc. After the simulation has
been carried out, quantities of interest (QoI) can be computed from the flow field.
These are usually integral quantities, such as the Lift-to-Drag ratio of the airfoil,
which quantifies its aerodynamic performance under these fixed conditions.

While these models operate on deterministic input, real-world applications are sub-
ject to uncertainties due to measurement errors, material properties, environmental
influences, and modeling assumptions. These uncertainties can propagate through
the system and significantly affect the output, leading to discrepancies between
predictions and actual performance. Therefore, if the input of the model actually
shows stochastic behavior, the output (QoI) should also be modeled as an uncertain
quantity.

Uncertainty Quantification (UQ) aims to assess the effect of these input uncertain-
ties on the QoI. UQ typically involves three key steps: (1) identifying sources of
uncertainty, (2) propagating uncertainties through the model, and (3) analyzing the
statistical behavior of the output.

2



1.2 Polynomial Chaos Expansions for UQ

Traditional methods such as Monte Carlo (MC) simulations are often employed for
UQ, but they suffer from slow convergence, requiring a large number of samples to
achieve accurate statistical estimates. In CFD-related applications, the computa-
tional cost of sample evaluation is an important obstacle for UQ and methods that
require much less samples than MC are of interest.

An alternative, more efficient approach is Polynomial Chaos Expansions (PCE),
which builds a surrogate model to approximate the relationship between uncertain
inputs and outputs. The QoI is modeled as a polynomial expansion, with its ba-
sis polynomials being functions of the input variables. Similar to other spectral
methods, like the Fourier Transform, the goal is the computation of the basis func-
tions’ coefficients. In PCE, not only does the acquiring of the coefficients produces
a metamodel for the stochastic process of interest, but information about the un-
certain QoI’s moments can be obtained by merely post-processing the coefficient
vector. The foundation of PCE lies in the theory of homogeneous chaos [33], where
Hermite polynomials were used as basis functions for random processes with Gaus-
sian input. This framework was later extended to include non-Gaussian cases, [35],
based on the generalization of orthogonal polynomials [2]. Within this framework,
named Generalized PCE, broader classes of random variables can be accommodated
by employing polynomial bases, orthogonal to the joint probability density function
(PDF) of the inputs. The method’s accuracy was originally demonstrated by apply-
ing it to stochastic differential equations and comparing the resulting expectations
with analytical solutions [35]. This success motivated their implementation in var-
ious UQ problems of different engineering sectors [28]. In a PCE implementation,
one must define the polynomial basis (size and type of polynomials) and decide on
applying the expansion in an intrusive or non-intrusive manner.

For a given joint PDF of the model input, specific polynomial families are applica-
ble, according to the generalized PCE theory. Once these are obtained, a crucial
next step for PCE is the truncation of the polynomial basis. The infinite basis func-
tions are truncated based on the limit of the total order of the multidimensional
polynomials. This value is named chaos order.

With the basis defined, the intrusive vs. non-intrusive dilemma occurs. In the
intrusive approach, the uncertain quantities of the physical model are replaced by
spectral expansions in the polynomial basis. By projecting the governing equations
onto this basis and exploiting the orthogonality of the polynomials, the expansion
coefficients can be computed through inner product integrals. Applying the intrusive
approach to complex models, such as those governed by nonlinear partial differential
equations, is significantly challenging. The mathematical reformulation is involved,
since the already complex equations must be redefined for the stochastic variables to
be introduced. This dictates a tedious procedure of applying fundamental changes
to an already complicated source code, such as CFD software. To address these
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difficulties, non-intrusive methods were introduced. These are divided into two main
categories, projection-based and regression-based PCE [19],[6]. These methods allow
for UQ without altering the original evaluation software, making them particularly
suitable for CFD and other scientific, simulation-heavy domains. Moreover, the non-
intrusive approach allows for the development of PCE-related software, applicable
to any deterministic software of choice.

The non-intrusive projection approach, also named Galerkin method, relies on the
numerical calculation of the same inner product integrals that intrusive PCE method
solves, via quadrature rules. Although this method can guarantee the accuracy of
the expansion, its computational requirements render it infeasible in cases of high
input dimensionality (many uncertain variables).

The regression-based method (rPCE) is an Ordinary Least Squares (OLS) approach.
Samples of the input probability distribution are acquired via Design-of-Experiments
(DoE) techniques and their corresponding QoI values are computed. Typical DoE
methods include random sampling, Latin Hypercube Sampling (LHS) etc. With
the truncation of the polynomial basis and the obtaining of the sample set and its
corresponding model evaluations, a linear system of equations can be defined. The
basis functions evaluations of all samples yield a design matrix, the model evaluations
serve as the right hand side, and the solution vector of the linear system corresponds
to the PCE coefficients. For accuracy this system needs to be overdetermined.
With sample size being larger than the basis size, there are fewer unknowns than
equations. The solution to the oversampled OLS problem is acquired by computing
the pseudo-inverse of the design matrix and multiplying it with the right hand side.
While rPCE encounters explosive growth in sample requirements in cases with many
uncertain variables, these are moderate compared to those of the projection-based
method. The characteristics of non-intrusive, rPCE is indeed a suitable choice for
CFD-related UQ [18]. For this reason, all PCE applications in this work refer to
rPCE

1.3 Sparse PCE

Although less costly than the projection-based method, rPCE still suffers from the
curse-of-dimensionality. This is evident in the truncation formula, which describes
how the number of basis terms grows rapidly with the increase in the input variables’
dimensionality and chaos order. This growth, along with the need for oversampling,
results in the requirement of large sample sizes for regression in high-dimensional
rPCE, and the need for methods which rely on small experimental sets is still high.
In such cases, the sparsity-of-effects principle [20] can be assumed. According to this
hypothesis, few terms of the large basis play a significant role in the solution vector.
This is explained by the fact that in physical systems, only a limited number of
features or low-order interactions significantly affect the output. The true solution
can be either sparse, with only a few non-zero terms, or compressible, where few
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terms are of significantly larger magnitude and influence than the rest.

Due to the sparsity or compressibility present in high-dimensional rPCE solutions,
sparse regression techniques are in use. The crucial property of such regression
techniques is that they require fewer samples than unknowns to produce results of
reasonable accuracy. Therefore, their successful implementation can yield accurate
PCE estimates in undersampled cases, while the OLS approach requires oversam-
pling. This advantage is crucial, due to the significant decrease in the number of
required, costly, model evaluations. The use of sparsity in undersampled settings
to find sparse solutions is an approach thoroughly documented and explained by
the field of Compressed Sensing (CS) [8], whose applications are found primarily in
signal processing applications [24]. . The goal of sparse regression is to produce an
accurate solution with limited samples, by enforcing sparsity in the solution of an
OLS problem, since the omission of unimportant features is not expected to signif-
icantly affect the quality of the results. This can be formulated as a constrained
optimization problem where the L0 norm of the solution vector, i.e. the number of
its non-zero entries, is minimized and the satisfaction of the Least-Squares equation
is the constraint. This problem is not convex due to its combinatorial nature. To
surpass this problem, CS literature proposes two strategies: (a) greedy algorithms
can select iteratively select a small subset of active terms in the solution and cal-
culate their coefficients, (b) the replacement of the L0 norm by the L1 norm (the
sum of a vector’s absolute values), which is a technique that makes the optimization
convex, and still enforces sparsity to the solution due to its interaction with the OLS
constraint.

For a greedy implementation, software applying the Orthogonal Matching Pursuit
(OMP) algorithm [25] is developed in this diploma thesis. OMP is a greedy algorithm
that iteratively selects the basis term that is most correlated with the Least-Squares
residual. For L1 minimization, the popular Least Absolute Shrinkage Operator
(LASSO) [29] is adopted in this thesis. LASSO is a linear optimization problem,
where both the Least-Squares Residual and the L1 norm are minimized, with the
introduction of a regularization parameter, which acts as a Lagrange operator for
the L1 term. Since the LASSO method requires an optimization algorithm, an
optimizer must be defined. An optimization method that yields the solution to the
LASSO problem is the Iterative Shrinkage Thresholding Algorithm (ISTA) [4]. This
method relies on the proximal gradient method, a mathematical framework designed
to handle locally non-differentiable functions, such as the L1 norm. The algorithm
proceeds by computing a gradient descent step on the differentiable component
of the objective function (in this case, the Least Squares residual), followed by
the application of a soft-thresholding operator. This step acts as the proximal
operator for the L1 norm, effectively incorporating its influence into the update rule
and encouraging sparsity in the solution. Software implementing this algorithm is
developed and used in this diploma thesis.

The ability of sparse regression to produce accurate solutions with low-size experi-
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mental designs has been the motivation behind many successful sparse PCE appli-
cations. Notably, sparse PCE has been used in CFD and other simulation-related
applications of UQ, [27],[11],[7].

1.4 Robustness of the Regression Algorithm

However, as the size of the chosen sample set decreases, the sensitivity of the PCE
result to the quality of the set increases. Samples produced by classical DoE meth-
ods, such as random sampling and Latin Hypercube Sampling, include randomness,
which affects the result. While randomness is a crucial property for the represen-
tation of the sampled distribution, sample sets of the same size can differ in their
capability in producing accurate regression results. The capability of the sparse al-
gorithm to provide accurate results is thoroughly explored in the foundation of CS.
According to the CS literature, the lower the mutual coherence of the linear system’s
matrix, i.e. the normalized inner product of its least orthogonal columns, the higher
the probability of accurate estimation of the sparse terms [15]. Lowering matrix
coherence can ameliorate PCE results in low sample-size, resulting in lowering the
necessary computational cost for UQ. This is the motivation behind basis reduction,
i.e. the utilization of a limited subset of the potentially large truncated basis set.
This reduction can be done a-priori, with hyperbolic truncation [7], or during the
regression algorithm. Since the motivation of this study is to compare the accuracy
of sparsity-promoting algorithms with those of the OLS in similar conditions, hy-
perbolic truncation is not employed. While basis reduction is a fundamental part
of OMP, its greedy nature, while providing computational efficiency, can limit its
capability in identifying the sparse solution [31]. For this reason, a method where
the reduction of basis size will be done via an impartial screening of the full basis
set is desired. The standard LASSO method does not introduce any basis reduction
and considers all the given basis terms. Its regularization parameter is tuned via
Cross-Validation so the activated terms emerge from the data without the need of
either a-priori assumptions or greedy processes. Consequently, a two-stage LASSO
approach is implemented where the first LASSO run simply serves as a basis ac-
tivation step, where the basis terms with non-zero coefficients are members of the
active set. The basis of the second run contains only the active set from the first
run. With significantly fewer features and lower coherence, the second regression
can estimate the important terms with greater accuracy. Different approaches that
use LASSO for basis reduction exist, using OLS on the active set (post-LASSO) [5],
or a second LASSO with smaller regularization parameters (relaxed LASSO) [22].

1.5 Thesis Objective and Layout

The objectives of this work are:

• to develop and implement Orthogonal Matching Pursuit (OMP) and LASSO
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as representative sparsity-promoting regression algorithms,

• to extend the analysis with reduced-basis strategies, namely post-LASSO and
relaxed LASSO,

• to compare these sparse and reduced-basis methods against OLS in terms of
required sample evaluations,

• and to assess their ability to construct accurate UQ surrogates for aerodynamics-
related applications under limited sample availability.

The remainder of this thesis is structured to develop the theoretical framework of
sparse PCE and demonstrate their application to aerodynamic UQ through progres-
sively more complex applications. Chapter 2 introduces the theoretical background
necessary for understanding rPCE and sparse regression. It covers the construction
of orthogonal polynomial bases, methods for sampling and coefficient estimation,
and the statistical interpretation of the resulting expansions. The sample require-
ments of rPCE motivate the use of sparsity-promoted techniques. Sparse regression
on undersampled linear systems is thoroughly examined by the field of CS, and the
two main approaches consist of either greedy algorithms (such as OMP) and L1

minimization (such as LASSO). Crucial for robust sparse solutions is the mutual
coherence of the regression matrix, with low coherence dictating high probability
for an accurate sparse result. For PCE-related sparse regression, it is demonstrated
that the regression matrix in high-dimensional settings suffers from high mutual
coherence, which degrades the quality of sparse regression. This issue motivates
the need for basis reduction strategies. For this reason, different sparse regression
techniques, which involve basis reduction are discussed.

Chapter 3 presents the numerical validation of the aforementioned methods through
three applications. The first is the Borehole function [17], a low cost benchmark in
which the different sparse algorithms can be compared in their ability in undeter-
mined rPCE. Initial conclusions are drawn from this analysis and the comparison
of the sparse regression methods is repeated in the aerodynamics-related cases that
follow. The second case applies sparse PCE to the simulation of the NACA 2412
airfoil using the XFOIL [12] solver under uncertain flow conditions. The third case
involves a CFD simulation [3] of the NACA 16103 airfoil, incorporating geometric
uncertainties modeled via the Karhunen-Loève Expansion (KLE). [32]. Chapter 4
summarizes the main conclusions of the thesis, highlighting the trade-offs between
accuracy, sparsity, computational efficiency, and discussing possible directions for
future work.
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Chapter 2

Theoretical Background

2.1 PCE

PCE [35] is a way to represent the response of a system as a series expansion in terms
of polynomials orthogonal to the probability distribution of input uncertainties. This
concept, originally introduced as the Wiener-Hermite expansion, has evolved into
a powerful meta-modeling technique for UQ. The key advantage this method holds
over a MC simulation is its ability to compute the statistical moments of the QoI
distribution with a significantly lower number of samples.

2.1.1 Homogeneous Chaos and Basis Selection

PCE is based on the theory of homogeneous chaos [33], where a Gaussian process is
represented using a basis of Hermite polynomials, which in turn are orthonormal to
the Gaussian PDF. This was later generalized for other cases of input distributions,
via generalized PCEs [35]. The expansion is given by:

u(ξ) =
P−1∑
α=0

cα Ψα(ξ), (2.1)

where: - u(ξ) is the QoI,

- ξ represents the vector of random input variables,

- Ψα(ξ) are the multivariate orthonormal polynomials,

- P is the number of basis functions,

- cα are the expansion coefficients, which must be estimated.

The orthonormality of the basis polynomials Ψα(ξ) is defined with respect to the
joint PDF ρ(ξ) of the input variables. This condition must hold as follows:
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∫
Rd

Ψα(ξ)Ψβ(ξ)ρ(ξ) dξ = δα,β, (2.2)

where: - δα,β is the Kronecker symbol, which equals 1 when α = β and 0 otherwise,
- ρ(ξ) is the joint PDF of the input variables ξ.

Eq. (2.2) ensures that the expansion is capable of converging to an accurate solution.
It is important to note that orthogonality is the necessary condition, and the method
can converge even if the norms of the polynomials are not unitary. However, the
normalization of the basis functions facilitates important calculations, which will be
seen below. In conclusion, the choice of polynomials corresponds to the distribution
of the input variables. For example, Legendre and Hermite polynomials are the
associated orthogonal polynomial families for uniform and Gaussian distributions,
respectively. These polynomials can be modified for their norms to be unitary, which
makes the moment extraction more straightforward, as it will be seen later.

2.1.2 Normalized Hermite Polynomials for Gaussian Distri-
butions

For the Gaussian distribution with mean µ = 0 and variance σ2 = 1, the orthonormal
polynomials are the Hermite polynomials, Hn(x), defined as follows:

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

The normalized Hermite polynomials are given by:

ψn(x) =
1√

2n n!
√
π
Hn(x) e

−x2/2 (2.3)

These polynomials are orthogonal with respect to the Gaussian PDF ρ(x):

ρ(x) =
1√
2π
e−x2/2.

The orthonormality condition holds:

∫ ∞

−∞
ψm(x)ψn(x)ρ(x) dx = δm,n.

By using the appropriate orthonormal polynomial families, such as Hermite poly-
nomials for Gaussian distributions, the PCE provides a structured and convergent
way to represent the uncertain QoI, regardless of the underlying complexity of the
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relationships between input variables and the QoI. The generalized PCE framework
[35] describes the different types of polynomials that correspond to different types
of input PDFs (Table 2.1).

Table 2.1: Orthogonal polynomials used in PCE for selected input probability distri-
butions.

Distribution Support Orthogonal Polynomial PDF

Uniform U [a, b] [a, b] Legendre Constant Weight

Gaussian N (0, 1) (−∞,∞) Hermite e−x2

Gamma Γ(α, β) [0,∞) Laguerre xα−1e−x

Beta Beta(α, β) [0, 1] Jacobi xα−1(1− x)β−1

Exponential [0,∞) Laguerre λe−λx Gamma with α = 1

2.1.3 Total-Order Truncation of Polynomial Basis

Before constructing the PCE surrogate, the polynomial basis must be truncated to
a finite set of multivariate polynomials. A common choice is total-order truncation
[35], in which all multivariate polynomial terms up to a fixed total degree p across
d uncertain variables are retained. This truncation scheme is named total order, to
differentiate it from methods that keep a subset of those variables, like hyperbolic
truncation [7]. It must be noted that the truncation of the polynomial basis is
necessary for all types of PCE approaches and sparsity, which will be discussed later
refers to the activation of a fraction of the already truncated basis. The size of this
basis is given explicitly by the combinatorial formula:

P =

(
d+ p

p

)
=

(d+ p)!

d! p!
(2.4)

This value determines the number of terms in the expansion, the dimension of
the coefficient vector c, and the minimal number of model evaluations required by
regression-based methods. It also governs the quadrature growth rate in projection-
based approaches.

2.1.4 Moment Extraction

The most important information that an expansion provides are the statistical mo-
ments of the QoI distribution. Simple post-processing of the expansion’s coefficients
can directly compute the first two moments.
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1. Mean

The mean is the expectation of u, given by:

E[u] = E

[∑
α

cαΨα(ξ)

]
=
∑
α

cαE[Ψα(ξ)] =
∑
α

cα

∫
Ω

Ψα(ξ) dP(ξ).

By orthonormality of the basis functions with respect to the probability measure P:∫
Ω

Ψα(ξ) dP(ξ) =
∫
Ω

Ψα(ξ)Ψ0(ξ) dP(ξ) = δα0, since Ψ0(ξ) = 1.

Thus, the mean is:

E[u] = c0

∫
Ω

Ψ0(ξ) dP(ξ)︸ ︷︷ ︸
=1

+
∑
α ̸=0

cα

∫
Ω

Ψα(ξ) dP(ξ)︸ ︷︷ ︸
=0

= c0 .

2. Variance and Standard Deviation

The variance is given by:

Var(u) = E[(u− E[u])2] = E

(∑
α ̸=0

cαΨα(ξ)

)2
 =

∫
Ω

(∑
α ̸=0

cαΨα(ξ)

)2

dP(ξ).

Expanding the square:

Var(u) =
∑
α ̸=0

∑
β ̸=0

cαcβ

∫
Ω

Ψα(ξ)Ψβ(ξ) dP(ξ).

By orthonormality,
∫
Ω
Ψα(ξ)Ψβ(ξ) dP(ξ) = δαβ. Therefore:

Var(u) =
∑
α ̸=0

c2α

∫
Ω

Ψ2
α(ξ) dP(ξ)︸ ︷︷ ︸

=1

=
∑
α ̸=0

c2α .

For the Standard Deviation (SD):

σu =
√

Var(u) =

√∑
α ̸=0

c2α. (2.5)

It is evident how the unitary norm of the basis polynomials facilitates the moment
extraction since there is no need to divide the expectation integrals with the poly-
nomials’ norm.
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2.1.5 Non-Intrusive PCE

In this work, rPCE is used. For the choice of this method to be understood, the
difference between intrusive and non-intrusive approaches as well as projection and
regression-based expansions must be examined.

Intrusive methods [9] involve modifying the underlying governing equations of the
model. Expressions, such as equation (2.1), replace the uncertain variables and
the unknown functions in the model equations. This method, while used in the first
applications of the PCE method, mainly in stochastic ordinary differential equations,
can become really challenging when dealing with engineering problems. Not only
is it mathematically more challenging to introduce these expansions in complicated
systems of partial differential equations, but fundamental changes to usually already
complex software need to be implemented.

On the other hand, non-intrusive approaches [14], treat the model as a black box
and require simulations of the original deterministic model for the computation of
the PCE coefficients. The black box use of the deterministic model is in the form of
necessary evaluations of experimental sets in the non-intrusive rPCE, or collocation
points for the non-intrusive Galerkin projection approach. Non intrusive PCE allows
for the development and implementation of general use PCE software, regardless of
the physical problem in which UQ is performed.

2.1.6 Galerkin-Projection vs. Regression

In non-intrusive PCE, the two main approaches for computing the coefficients of the
expansion are Galerkin projection and regression.

In Galerkin projection, [13], [34], these coefficients are computed by applying
projection integrals to equation 2.1:

ci =
⟨u,Ψi⟩
⟨Ψi,Ψi⟩

=

∫
u(ξ)Ψi(ξ)ρ(ξ) dξ∫
Ψ2

i (ξ)ρ(ξ) dξ
,

where ρ(ξ) is the joint PDF. The integral in the denominator is known, equal to the
norm of the basis functions, whereas that in the numerator must be computed. It
is approximated using a numerical quadrature rule:

cν ≈
Nq∑
j=1

w(j)u(ξ(j))Ψν(ξ
(j)),

where:

• ξ(j), j = 1, . . . , Nq, are the quadrature nodes,

• w(j), j = 1, . . . , Nq, are the corresponding quadrature weights,
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• Nq is the total number of quadrature points.

Size of the Quadrature Grid To exactly integrate all basis functions up to
total degree 2p, the quadrature rule must have a degree of precision at least 2p. The
required number of quadrature nodes depends on the dimensionality d and the type
of quadrature used:

• For tensor product Gauss quadrature (exact in 1D for polynomials of
degree up to 2p− 1), the number of nodes grows exponentially:

Nq = (p+ 1)d.

• Sparse grid quadrature (e.g., Smolyak) can be used in PCE [34] which
results in the more moderate growth of required nodes. Not to be confused
with the sparse PCEs, sparsity in this context means that low-order terms are
kept from the large tensor product of univariate quadrature rules. While sparse
grids significantly reduce computational requirements, there still is exponential
growth with dimensionality, and their use can be practically infeasible in cases
with a large number of input variables and considerable computational cost of
model evaluation.

The rPCE method [6] avoids quadrature by casting the coefficient estimation as a
least-squares problem. Given N samples {ξ(j), u(j)}Nj=1, the system is written as:

Ac ≈ u,

where A ∈ RN×P with entries Aji = Ψi(ξ
(j)), c ∈ RP is the vector of unknown

coefficients, and u ∈ RN contains the model outputs. In cases with costly simula-
tion software, such as CFD, the computation of u takes up the largest portion of
computational cost, which is why the sample size N is limited to the computational
capabilities of the application. The least-squares solution minimizes ∥Ac − u∥22.
This approach is more computationally feasible for high-dimensional problems, but
it requires oversampling (i.e., N > P ) to ensure that the problem is well-conditioned,
with the optimal oversampling ratio depending on the smoothness of the response,
sparsity of the true coefficients, and noise levels in the data.

In summary, Galerkin projection offers higher theoretical accuracy but is computa-
tionally intensive in high dimensions due to evaluation costs. The rPCE approach
is more flexible and better suited for high-dimensional UQ, provided that careful
attention is paid to the sampling strategy and oversampling level.

2.1.7 rPCE Methodology

The rPCE methodology is an OLS approach, organized into four main steps: (1)
definition and truncation of the polynomial basis, (2) DoE and construction of the
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linear system, where samples are defined and evaluated and the largest portion
of the method’s computational cost is found (3) coefficient estimation via singular
value decomposition (SVD)–based pseudoinverse, and (4) extraction of statistical
moments.

Basis Definition and Truncation

A multivariate orthogonal polynomial basis {Ψi(ξ)}P−1
i=0 is selected (Table 2.1), of

total degree up to p using truncation. The total number of terms is explicitly given
by eq. (2.4).

DoE

To construct a well-conditioned regression system, N samples {ξ(j)}Nj=1 are generated
in the d-dimensional input domain, using a sampling ratio SR > 1:

N = SR× P, SR ≈ 1.5–5,

where P is the total number of basis terms. Oversampling ensures accuracy of the
least-squares fit by controlling the condition number of the design matrix.

Common sampling methods include random sampling and LHS [21]. These methods
produce N samples of input dimensionality with the sample size being a user-defined
parameter. Both of these methods require a random-number-generator (RNG),
i.e. a method that produces random (or pseudo-random) numbers and the inverse
cumulative distribution function related to the multivariate distribution of the input.

Random Sampling: With the help of RNG, N samples on the unit cube [0, 1]d

are generated.

LH Sampling: The unit interval [0, 1] is divided into N equal-probability strata

for each marginal. Using the RNG, one uniform sample u
(j)
k is drawn from each

stratum, then these samples across strata are randomly permuted to form u(j) ∈
[0, 1]d, adding random behavior to the sampling algorithm.

Since both LHS and random sampling produce samples in [0, 1]d, each coordinate is
mapped to its true marginal via inverse transform sampling:

ξ
(j)
k = F−1

k

(
u
(j)
k

)
,

where F−1
k is the inverse cumulative distribution function of ξk. This is possible

because of the independence of the random variables, and the joint cumulative
density function is just the product of the individual components. This preserves
the uniformity or low-discrepancy structure in the target probability space, provided
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the cumulative density functions are continuous and monotonic. In this work, LHS
is preferred, due to its space-filling capabilities in cases of high dimensionality.

Each basis function is evaluated at the N samples to build the design matrix A ∈
RN×P with entries:

Aji = Ψi

(
ξ(j)
)
,

and the model outputs of these samples are collected into u = [u(1), . . . , u(N)]T .

Figure 2.1: Random (blue) and LH (orange) samples in a 2D input space of Uniform
variables.

SVD for the solution of OLS

With the linear system defined, Ac = u, the OLS approach is completed with its
solution. The overdetermined system is solved for the coefficient vector c ∈ RP using
the Moore-Penrose pseudoinverse. While the pseudoinverse can be obtained through
the normal equations, c = (A⊤A)−1A⊤u, the most popular method is Singular
Value Decomposition (SVD), due to its robustness to ill-conditioned matrices. After
performing the SVD on the regression matrix:

A = UΣVT

The pseudoinverse can be calculated:

A† = VΣ†UT

With the pseudoinverse, the coefficient vector can be computed:

c = A†u.
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2.2 Motivation for Sparse PCE

As described above, the number of needed samples is proportional to the number of
unknowns (oversampling factor) in rPCE, which depends on the number of uncertain
variables and chaos order, as demonstrated in eq. (2.4). High-dimensional problems
can lead to a prohibitively large necessary sample size. The steep growth in basis
terms (Fig. 2.2) is a case of Curse of Dimensionality. The large number of terms
implies that potentially, only a small portion of them will play a significant role in
the PCE solution. The justification for sparsity arises from the sparsity-of-effects
principle [20], which suggests that physical systems are primarily governed by a
few dominant variables and low-order interactions. Even when exact sparsity is not
present, many models are compressible, i.e. their PCE coefficients tend to decay
rapidly in magnitude when sorted, allowing the system behavior to be captured
effectively using only a few terms. Hence, if few terms are important, it is desirable to
take advantage of sparsity or compressibility of PCEs, in order to reduce the required
sample size. Sparse regression and CS techniques can be utilized to achieve this goal.
Their correct use results in the activation and calculation of the few important terms
in undersampled settings. To sum up, in high-dimensional regression problems such
as rPCE, it is reasonable to assume that only a subset of basis terms carries most of
the information. Exploiting this sparsity reduces the number of required evaluations
and thus lowers the overall computational cost.

Figure 2.2: Growth of Basis Terms with respect to dimensionality, with chaos order
p = 2 (blue line) and p = 3 (orange line).
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The following chapter explores how CS theory and algorithms can be employed to
construct sparse PCEs efficiently and reliably.

2.3 CS–Inspired Sparse PCE

CS [8] is a revolutionary signal processing technique that allows for the reconstruc-
tion of sparse signals from a small number of measurements. This technique leverages
the fact that many natural solutions are sparse or compressible in some basis, hence
they can be represented with only a few non-zero coefficients. The foundational
work in CS [8] demonstrated that if a vector is sparse in some basis (e.g. Fourier
coefficients), it can be recovered from far fewer samples than traditionally required
(e.g. by the Nyquist-Shannon sampling theorem). This can also be implemented in
rPCE applications of high-dimensionality, where the coefficient vector is expected
to be sparse in the truncated polynomial basis, in order to limit sample size require-
ments. For this reason, apart from applications in signal processing-related fields,
including medical imaging, radar, and wireless communications [24], CS approaches
have been recently implemented in rPCE [20], including CFD-related applications
[27].

2.3.1 Sparsity and Its Importance

A vector c ∈ RP is said to be k-sparse if it contains only k non-zero entries, where
k ≪ N . Of interest are sparse solutions to linear systems:

Ac = u,

where:

- c is a sparse vector with ∥c∥0 = k

- ∥c∥0 (L0 norm) denotes the number of non-zero elements in c,

- A ∈ RN×P

- u ∈ RN

In rPCE, we expect the model response u to have a sparse solution c in the polyno-
mial basis Ψ, due to the importance of few terms. The importance of sparsity lies
in its ability to enable the recovery of solutions to undersampled problems. In tradi-
tional linear algebra, solving an under-determined system Ac = u, with N < P , is
not possible, because there are infinitely many solutions. However, if c is known to
be sparse, it is possible to recover it accurately using sparsity-promoting techniques,
provided that the number of active terms is small compared to the basis terms
(k ≪ N < P ). The key goal of the sparsity-promoting algorithms is to modify the
OLS approach, in order to activate a few dominant terms. Hence, not only should
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the solution be sparse, but the algorithm must correctly identify the significant basis
terms.

2.3.2 L0 Minimization

The L0 norm of a vector is the number of its non-zero entries, and therefore an
optimization problem with the goal of recovering the sparse solution of a Least-
Squares problem is the following:

min
c
∥c∥0 subject to Ac = u (2.6)

However, given that a k-sparse vector is the true solution to the system, the solution
to this optimization problem could fail to identify it. Firstly, for the L0 minimization
to be properly defined, the number of active terms in the sparse solution needs to be
smaller than the number of matrix rows in eq. (2.6) (k ≪ N). If this is not true, a
solution to the problem comes from arbitrarily selecting N basis terms and omitting
the rest, the matrix may be inverted and a solution with zero (or practically zero)
Least-Squares residual is obtained. This would serve as a solution since the Least-
Squares constraint would be satisfied and the minimum L0 would be achieved. While
this solution would satisfy the optimization conditions, it would be of no actual
predictive value, as it would be a Least-Squares fit of an arbitrarily selected basis
subset. Hence, for the true sparse solution to be searched for, it is essential that the
L0 norm of the true sparse solution is smaller than the number of rows. Secondly,
handling an expected Least-Squares error is crucial. In undersampled rPCE, sources
of error exist and influence the outcome of the sparse optimization problem. The
desired sparse solution would exhibit a small, non-zero Least-Squares error due to
the truncation of basis terms and the avoidance of overfitting to a small dataset. If
the Least-Squares constraint is an equality, this effect will not be accurately modeled,
and the arbitrary solutions described earlier would still be preferred. The original
sparsity-promoting optimization problem needs to be redefined:

min
c
∥c∥0 subject to ∥Ac− u∥2 < ϵ (2.7)

where the small value of ϵ is an important hyperparameter that needs to be tuned.
Both problems of eq. (2.6) and eq. (2.7) are non-convex due to the combinatorial
nature of the L0 norm. To surpass this problem, there are two fundamental ways,
proposed by CS literature: (a) Greedy algorithms [31], such as OMP, (b) L1 instead
of L0 minimization with methods such as Basis Pursuit [10] and the LASSO [29].

2.3.3 The OMP algorithm

Orthogonal Matching Pursuit (OMP) [25] is a greedy algorithm for sparse regression
that builds the support, i.e. the active basis terms, of c one index at a time, using
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the correlation of a basis with the current residual, which is their inner product.
This method’s greedy nature qualifies it as an optimizer to the nonconvex sparse
problem eq. (2.7). At each iteration, the algorithm: (a) selects the column of A
most correlated with the current residual, (b) augments the active set, (c) computes
the best least-squares fit on that support, and (d) updates the residual. Termination
occurs when the residual reaches a certain tolerance, or a user-defined number of
basis terms is included.

The procedure in detail:

1. Initialize: residual r(0) = u, support S(0) = ∅, iteration j = 0, coefficients
c(0) = 0.

In the start of the algorithm, the solution vector is an array of zeros, the active
basis set (the terms whose coefficients are non-zero) is empty and the residual
is equal to the right hand side. The algorithm will terminate if a user-defined
number of terms is selected, or prior to that the Least-Squares residual drops
below a fixed tolerance.

2. Loop: while |S(j)| < k and ∥r(j)∥2 > ϵ, do

(a) Atom selection (greedy step):

i(j+1) = arg max
i∈{1,...,P}

∣∣a⊤
i r

(j)
∣∣ (if columns are not normalized, use |a⊤

i r
(j)|/∥ai∥2).

Update the support: S(j+1) = S(j) ∪ { i(j+1)}.

In the atom selection step, the column of the regression matrix that
exhibits the highest correlation with the current residual is selected, and
the active basis set is augmented with this term. This greedy strategy is
inherently path-dependent: at each iteration, the choice of the next basis
function relies solely on the present residual, which is itself determined
by all previous selections

(b) Coefficient update (restricted least squares):

c
(j+1)

S(j+1) = argmin
c

∥∥AS(j+1)c− u
∥∥2
2
, c

(j+1)

[P ]\S(j+1) = 0.

With the basis set defined, the coefficients are updated via simple OLS
(which can be done via SVD).

(c) Residual update:
r(j+1) = u−Ac(j+1).

3. Return: c← c(j) (and the support S(j)).

The new coefficients yield a new residual for the loop to continue.
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where:

• A ∈ RN×P is the regression/design matrix ; its ith column (atom) is ai.

• [P ] = {1, . . . , P} is the column index set.

• S ⊆ [P ] is the support (selected indices); AS is the submatrix of A with
columns in S.

• For a vector c ∈ RP , cS (resp. xSc) denotes c restricted to indices in S (resp.
its complement).

• u ∈ RN are the observations/data; c ∈ RP are the coefficients to estimate.

• r is the residual u−Ax; ∥ · ∥2 is the Euclidean norm; (·)⊤ denotes transpose.

• k is the desired sparsity level; ϵ is the stopping tolerance on the residual norm.

2.3.4 L1 Minimization and the LASSO

The use of the L1 instead of the L0 norm is also predominant in CS literature, due
to the convexity of the L1 minimization problem. The L1 norm ∥c∥1 is defined as
the sum of the absolute values of the entries of c:

∥c∥1 =
n∑

i=1

|ci|.

The L1 minimization problem, similar to eq. (2.6) is defined:

min
c
∥c∥1 subject to Ac = u

This optimization problem is formally named Basis Pursuit (BP) [10]. As was the
case for the L0 minimization, this problem can be modified for real-world scenarios
where Least-Squares error is expected:

min
c
∥c∥1 subject to ∥Ac− u∥2 < ϵ (2.8)

This is the error-aware variant of BP, formally named Basis-Pursuit-Denoising (BPDN).

With the L0 norm being a direct metric for sparsity, it is important that its re-
placement by the L1 norm still promotes sparse solutions. The L1 norm may not
measure sparsity, but its minimization promotes sparse solutions in undersampled
linear regression problems, due to its interaction with linear constraints. While this
phenomenon is theoretically explained in CS literature ([8],[10]), it can also be il-
lustrated by the geometry of the L1 ball, i.e. the shape of iso-L1 values in a simple
two-dimensional example (Fig. 2.3). In two dimensions, the L1 ball is diamond-
shaped, with lines of opposite slopes in the different quadrants, resulting in sharp
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corners on the coordinate axes. As demonstrated in Fig. 2.3, points that satisfy
linear constraints (represented by a line in the two-dimensional space) obtain the
minimum L1 value in their intersection with these corners, where one of the di-
mensions is inactive. In practice, the number of dimensions for cases with sparse
solutions is large and visualization of this effect is impossible, but this example
serves as a simple demonstration of how the L1 promotes sparse solutions to linear
problems.

Figure 2.3: The minimum L1 (black rhombus), with L1 = 1 and linear constraint
(blue line) intersect on a point where x2 is 0. The sharp corners of the L1 ball produce
sparse solutions to linear problems. The L1 = 2 shape (orange rhombus), is illustrated
to show how the iso-L1 shape is scaled.

The LASSO optimization problem

The constrained L1 problem of BPDN (eq. (2.8)) can be reformulated with the use
of Lagrange multipliers. More specifically, The LASSO problem [29] is an uncon-
strained alternative to the BPDN Algorithm, with a Lagrange multiplier term of
the L1 norm. The LASSO problem is formulated as:

min
c

1

2

∥∥Ac− u
∥∥2
2
+ λ ∥c∥1 (2.9)

where λ is a regularization parameter that controls the trade-off between the quality
of the Least - Squares fit and the sparsity of the solution. In this unconstrained
formulation, it is crucial that the regularization parameter is tuned, obtaining a role
similar to the Least-Squares residual in BPDN (ϵ, in eq. (2.8)). A common strategy
for hyperparameter tuning in regression problems is cross-validation.

In this work, the LASSO approach was preferred for L1 minimization since its un-
constrained nature facilitates the optimization procedure. The LASSO optimization
problem is solved with the use of the Iterative Shrinkage-Thresholding Algorithm
(ISTA) as an optimizer. ISTA is a simple algorithm for solving L1-regularized opti-
mization problems, based on gradient-descent and proximal operators [4].
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ISTA - LASSO Optimizer

The ISTA [4] is a first-order method tailored to efficiently solve the LASSO prob-
lem (eq. (2.9)). The important aspect of ISTA is its ability to handle the non-
differentiability of the L1 norm at 0. The theoretical foundation behind ISTA is
the proximal operator [23], a mathematical framework for objective functions that
include the Least-Squares function and a non-differentiable convex term, where clas-
sical gradient descent cannot be defined. The proximal operator is the solution to a
quadratic subproblem, whose minimum is in the direction of the original’s objective
optimum. ISTA can find the proximal operator for the LASSO problem by decom-
posing the objective into a smooth part, f(c) = 1

2
∥Ac− u∥22, and a non-smooth

part, λ∥c∥1.

ISTA proceeds with two main steps in each iteration j:

1. Gradient Descent Step: The smooth part f(c) is minimized via a steepest
descent with a fixed step t:

z(j) = c(j) − t∇f
(
c(j)
)
,

where the gradient is given by

∇f(c) = A⊤(Ac− u).

The fixed step size t is critical for ensuring convergence. It must satisfy

t ≤ 1

L
,

with L being the square of the spectral norm of A, i.e. its largest singular value,
(which can be found via SVD).

2. Soft-Thresholding Step: To enforce sparsity, a soft-thresholding operator is
applied to the Least-Squares gradient-descent update z(j):

c(j+1) = Sλt
(
z(j)
)
,

where the soft-thresholding operator is defined element-wise as

Sλt(zi) = sign(zi)max{|zi| − λt, 0}.

3. Termination: These steps are repeated until the change in c between succes-
sive iterations is below a predetermined tolerance:

|c(j+1) − c(j)|2 <= ϵ,
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Negligible change in c (with ϵ being close to 0) means that the proximal operator
has approached the minima of the optimization problem enough that the output
can be considered the solution of the LASSO.

Fig. 2.4 illustrates the effect of the soft-thresholding operator on the gradient descent
step. For a component of the solution vector, if the absolute value of the gradient
descent update is larger than the threshold λt it is simply shrunk towards 0 by λt
(two opposite slope lines in Fig. 2.4) , which is the gradient update of the L1 outside
0. If not, then for the current optimization step, this component is not important
enough for the Least-Squares problem to survive the L1 penalty. Components that
do not manage to escape this range are attributed the value of 0, and this is how
this optimizer yields sparse solutions.

Figure 2.4: Soft-thresholding Sλt(·) (black line) on the gradient descent update z, the
vertical lines denote +- λt.
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Cross-Validation for LASSO

The regularization parameter λ in LASSO governs the trade-off between model
sparsity and fidelity to the training data. To systematically choose an optimal λ, a
grid search is employed with k-fold cross-validation using mean squared error (MSE)
as the evaluation metric.

Grid Construction: Firstly, a set of candidate λ must be defined. In order to
systematically select a range of values that covers all the important candidates, the
maximum number must be known. The approach proposed by Friedman et al. is
followed [16], where the largest value of λ, denoted λmax, is the smallest value for
which the entire LASSO solution is zero. It is given by:

λmax = max
j

∣∣aT
j u
∣∣ , (2.10)

where aj is the j-th column of the design matrix A, and u is the output vector.

A logarithmically spaced grid of J values is constructed between λmax and a smaller
value λmin = ϵλmax, where a typical choice is ϵ = 10−4:

λj ∈ [λmax, ϵλmax] , log-spaced for j = 1, . . . , J.

This strategy ensures that a wide range of estimates, from nearly Least-Squares
solutions with low regularization, up to significantly sparse ones, will be compared.

Cross-Validation with Mean Squared Error: For each λj, k-fold cross-validation
is applied to estimate predictive accuracy. In this process:

• The dataset is randomly split into k folds, i.e. equal subsets.

• For each fold, the model is trained on k−1 folds and validated on the held-out
fold.

• The mean squared error (MSE) on the validation data is recorded.

The MSE for fold i is computed as:

MSE(i) =
1

Ni

Ni∑
j=1

(uj − ûj)2 ,

where ûj is the prediction for sample j in the i-th fold. The average MSE across all
folds gives the performance metric for that λ.

The preference of MSE as an evaluation metric over Mean Absolute Error (MAE),
is due to MSE being more sensitive to outliers. The use of MAE would result in
variance underestimation.
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The optimal regularization parameter is selected as the one minimizing cross-validated
MSE:

λ∗ = argmin
λk

CV-MSE(λk).

LASSO Procedure: With a selected range of regularization parameter values,
a k-fold Cross validation stage with multiple LASSO optimizations performed with
ISTA, the optimal λ is found. With this value as input, a final LASSO is solved
(again with ISTA) using the full dataset for regression. This constitutes the full
LASSO procedure, and since some other LASSO variants will be explored, it will be
referred to as standard LASSO.

2.3.5 Numerical Example

To illustrate the ability of the OMP and LASSO algorithms in finding the sparse
solution to an undersampled rPCE problem, a simple numerical example is defined.
A PCE case with 10D input is defined, including 2 important variables, while the
remaining 8 contribute only small-amplitude noise. Firstly, the 2D function with
the important variables is defined:

u(ξ) = 5 ξ1 + 10 ξ22 ,

where ξ1, ξ2 ∼ N (0, 1).

In this simple example the PCE coefficients can be computed algebraically. The
univariate orthonormal Hermite basis functions are

ψ0(x) = 1, ψ1(x) = x, ψ2(x) =
x2 − 1√

2
,

and the multivariate basis is constructed as

Ψ(α1,α2)(ξ1, ξ2) = ψα1(ξ1)ψα2(ξ2).

The function can be expressed directly in terms of the multivariate basis:

u(ξ1, ξ2) = 5Ψ(1,0)(ξ1, ξ2) + 10
√
2Ψ(0,2)(ξ1, ξ2) + 10Ψ(0,0)(ξ1, ξ2).

From this expansion, the nonzero PCE coefficients are read off immediately:

c(0,0) = 10, c(1,0) = 5, c(0,2) = 10
√
2,

with all other coefficients equal to zero.

To make an example case with a sparse solution, 8 other Gaussian variables are
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introduced, each of which affects the outcome via random amplitudes:

u(ξ) = 5 ξ1 + 10 ξ22 +
10∑
j=3

wj ξj,

with each wj drawn from N(0, 0.1), so it is different from evaluation to evaluation,
to simulate an arbitrary, small-amplitude, noisy influence of the 8 variables, which
should not show in the sparse solution.

With chaos order set as p = 2 the truncated basis in 10D contains

M =

(
10 + 2

2

)
= 66

orthonormal Hermite basis functions, with an equal number of unknown PCE coef-
ficients. Two regression experiments were conducted:

• LASSO and OMP was performed using N = [20, 30, 40, 50] LH samples.

• Least-squares Regression (OLS) was applied using N = 66 LH samples, where
the square linear system is probably not adequate for coefficient estimation,
and the noisy variables are likely to influence the otherwise simple model.

Firstly, the OLS rPCE solution is examined. As expected, the OLS is not immune to
noise, especially considering that the system has as many equations as unknowns,
since no oversampling is used. As illustrated in Fig. 2.6, coefficients that should
be zero are activated and the important terms do not acquire the values of the
analytical solution.

As far as the sparse PCE results are concerned, the only expansion that does not
approximate the analytical solution is the OMP solution with 20 LH samples. OMP
solutions using 30,40 and 50 samples, as well as all the LASSO expansions obtain
zero or near-zero values in the terms that must be inactive and nearly identical
values to the analytical solution in the important terms, demonstrating the sparse
regression techniques’ ability in finding the sparse solution.

In the subject of feature selection, it is important to note that while LASSO so-
lutions obtain nonzero values on some terms that ideally would be zero, these are
orders of magnitude smaller than the coefficients of interest, such that they can
be considered negligible in the PCE solution. Therefore, the LASSO and cross-
validation procedure successfully detected the important basis terms. The same can
be said for OMP, excluding the first solution with 20 samples, whose failure indi-
cates how OMP’s greedy nature may render it less robust in severely undersampled
applications (something that will also be illustrated in the case study of Chapter
3). The remaining OMP solutions activated the important terms and excluded the
insignificant ones almost as well as the LASSO solutions. Fig. 2.7 illustrates the
mean value of the coefficients that should be zero, in different sample sizes, where
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Figure 2.5: Numerical Example: Comparison of OLS PCE Coefficients (blue) with
the Analytical Solution (black).

Figure 2.6: Numerical Example: Comparison of OMP solution Coefficients with 20
samples (blue), OMP with 30 samples (orange), LASSO with 20 samples (green), with
Analytical Solution (black).

all sparse results perform well except for the first OMP expansion.

Of interest are the termination conditions for both OMP and LASSO solutions. All
the ISTA executions for the LASSO method were terminated due to the solution
being unchanged (ISTA ϵ set to 1e − 6) and never reached the maximum number
of iterations, implying that the LASSO optimization problem is solved. For the
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termination hyperparameters of OMP, the maximum sparsity level k was fixed to 10
terms (15% of the basis size) and the tolerance to 1e−6. Even in the successful OMP
solutions, the error target proved too low for the algorithm to stop in the activation
of three terms, and small non-zero values were assigned to terms that should be
zero, always yielding solutions with an L0 norm of 10. However, as was in the
LASSO case, these values are considered negligible and OMP solutions with sample
size greater than 20 are good-quality approximations of the analytical solution. For
this reason, cross-validation for the tuning the sparsity level and the error tolerance,
while possible, was deemed unnecessary for OMP and was omitted in this study,
giving this algorithm a large computational advantage over LASSO, where cross
validation is necessary.

Figure 2.7: Numerical Example: Mean Absolute Value of coefficients that should be
zero for OMP (orange) and LASSO(blue) solutions of different sample sizes.

Given that LASSO solutions across all sample sizes and OMP solutions for sizes
greater than or equal to 30 select the correct features, it is important to evaluate
how the accuracy of these features’ coefficients changes with sample size. In Fig. 2.8
it is clear that, for both OMP and LASSO, results ameliorate and converge as sample
size increases. For sample sets larger than 20 (where both approaches succeed), no
method between LASSO and OMP is clearly outperforming the other.

In summary, the sparse algorithms were able to compute the sparse solution provided
with the undersampled PCE experimental sets, with LASSO needing slightly fewer
samples to produce an approximation of the analytical solution. Variables that
should not be present in the sparse solution were excluded in the sparse expansions,
while the OLS solution was inaccurate. In addition to this simple demonstration, this
example served as a benchmark to test the LASSO software. The LASSO results,
produced by the developed LASSO-ISTA C software were compared to those of the
popular Python Library Scikit-learn [26], observing nearly identical output.

28



Figure 2.8: Numerical Example: Predicted Coefficients by LASSO (blue), OMP
(orange) and the analytical solution (black). The mean value (top), the coefficient of
ξ1 (middle) and the coefficient of ξ22 (bottom) are presented.

2.3.6 Conditions for Accurate Sparse Regression - the need
for Basis reduction

As the previous numerical example shows, the accurate solution of the undetermined
linear system is possible if the true solution is sparse. However, it is not guaranteed
and an important part of CS theory has been coming up with conditions that de-
termine how probable this recovery is. These depend on the design matrix, which,
in turn, depends on the samples. The most fundamental property for the design
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matrix is the Restricted Isometry Property [1]. Related to RIP is the coherence of
the regression matrix [15], which is significantly high in cases of undersampled PCE,
presenting a potential lack of robust results that needs to be tackled.

Restricted Isometry Property (RIP)

The Restricted Isometry Property (RIP) is a fundamental concept in CS [8] that
ensures the design matrix A preserves the distance between sparse signals. A matrix
A satisfies the RIP of order k if there exists a constant δk ∈ (0, 1) such that for all
k-sparse vectors x, the following inequality holds:

(1− δk)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δk)∥x∥22.

The RIP ensures that the measurement matrix A acts as a near-isometry on the set
of sparse signals, which is crucial for accurate signal recovery, either by greedy or L1

methods. It is however computationally infeasible to compute the δk value because
it requires the use of all possible k-sparse vectors. For this reason, the coherence of
the regression matrix is considered, which is related to RIP.

Coherence

Mutual coherence is another measure of the quality of the measurement matrix A.
The coherence µ of a matrix A is defined as:

µ(A) = max
1≤i,j≤N, i̸=j

|⟨ai, aj⟩|
∥ai∥2∥aj∥2

,

where ai and aj are columns of A. Coherence measures the largest correlation (inner
product) between two normalized columns of A. A lower coherence implies that the
columns are more orthogonal or mutually incoherent, which is desirable for accurate
sparse estimation. Contrary to the RIP constant, coherence is computationally
simple to evaluate, and low coherence is a practical indicator of RIP-like behavior
[15].

Specifically, it has been shown ([30]) that for anm×nmatrixA, Restrictive Isometry
Principle for k sparse solutions is guaranteed if:

k <
1

2

(
1 +

1

µ(A)

)
. (2.11)

Although this is a sufficient (but not necessary) condition and may be overly strict
or difficult to satisfy in high-dimensional PCE settings, it nonetheless highlights the
practical importance of designing low-coherence measurement matrices. Keeping
coherence low increases the likelihood of accurate sparse estimation, even when RIP
cannot be verified directly.
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In the numerical example of 2.3.5, the coherence of the different design matrices is
examined, and it is obvious that the limit of eq. (2.11) is stricter than needed. The
solution of the numerical example contained three terms, meaning that coherence
should be as low as 0.2. As it can be seen in Fig. 2.9, coherence values exceed that
limit, but as it was described, the sparse solutions were good quality approximations
of the analytical solution and both OMP and LASSO were successful. Nevertheless,
it was also evident that with the increase in sample size results ameliorated, and as
illustrated Fig. 2.9, the increase of sample size lowers the coherence of the regres-
sion matrix. Furthermore, the design matrix coming from 20 LH samples exhibits
significantly high coherence, serving as an indication to OMP’s failure in that case.

Figure 2.9: Numerical Example: Mutual coherence µ(A) vs. sample size.

The problem with PCE

The foundations of CS are rooted in signal-processing, where the full (square) linear
regression system (e.g of Nyquist samples) can be solved exactly and serves as the
gold-standard benchmark for sparsity-promoting methods that use fewer samples.
In contrast, in rPCE, as already mentioned, oversampling is critical for the accuracy
of the solution.

One key consequence of this difference is in the mutual coherence of the design ma-
trix. In a square signal-processing regression problem, the design matrix is orthonor-
mal and hence has zero coherence. However, neither square nor undersampled PCE
design matrices enjoy this property: their columns are more strongly correlated,
which degrades sparse-recovery guarantees. For example, this differnce in coherence
can be shown when comparing randomly undersampled matrices from Discrete Co-
sine Transform (DCT) applications and Hermite matrices from undersampled LHS
sets. DCT is a common basis for signal-processing and CS applications and there-
fore is an appropriate case to compare with PCE. In particular, when the system is
undersampled, the coherence of Hermite-PCE matrices falls off much more slowly
with the number of samples than does the coherence of a randomly sub-sampled
DCT basis.

Figure 2.10 plots the mutual coherence µ(A) versus the sample size for three cases:
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• Randomly sub-sampled DCT in P = 45 Nyquist size (blue),

• Hermite-PCE in d = 8, p = 2, P = 45 using Latin Hypercube samples of the
joint Gaussian distribution (orange), and

• Hermite-PCE in d = 8, p = 3, P = 165 using Latin Hypercube samples of the
joint Gaussian distribution (green).

At every sample size, the DCT design achieves substantially lower coherence than
either Hermite case.

Figure 2.10: Mutual coherence µ(A) vs. sample size for DCT (green) and Hermite-
PCE in 8D with p = 2(blue) and 8D with p = 3 (orange).

Basis Reduction Strategies

It is also clear from Figure 2.10 that the quality of design matrices for undersampled
PCE decreases with the rise in basis size. This is expected since the large number
of matrix columns increases the probability of correlated pairs. Thus, reducing the
basis size can substantially lower coherence and improve stability of the sparse so-
lution. This motivated the development of reduced-basis sparse methods, especially
for PCE, where coherence is high. The reduction of basis terms can be done a-priori
or produced via the sparse regression algorithm, during the solution.

1. A-priori Basis Reduction

Hyperbolic truncation schemes [7] discard high order terms and terms with variable
interactions. For a user-defined variable q, the reduced basis set is defined as:
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Ip,q =
{
α = (α1, . . . , αd) ∈ Nd

0 : ∥α∥q ≤ p
}

=
{
α :

d∑
i=1

αq
i ≤ pq

}
(2.12)

To avoid another hyperparameter (q-norm) and to demonstrate the performance of
sparse PCE compared to OLS-based PCE, hyperbolic truncation was not used in
this study.

2. Basis reduction in the regression algorithm

The LASSO method does not introduce any basis reduction and considers the whole
set of the matrix columns before suppressing those that its solution dictates. On
the other hand, OMP relies on reducing the basis size greedily, which may result in
the omission of important terms and decrease robustness. It would be preferable, if
the selection of a basis subset would result from the consideration of the whole set
and then a design matrix of lower coherence could be produced.

Two stage LASSO algorithms

Basis reduction can be achieved with the help of L1 minimization and the absence
of greedy-related pitfalls. Certain methods exist that use a LASSO regression as a
first step, in order to determine the basis subset containing the important terms.
Since the whole polynomial basis is considered in a LASSO solution, the selection
of an important subset may be impartial.

Firstly, the LASSO problem is solved on the full PCE basis to obtain an initial active
set S1, i.e the basis functions with non-zero coefficients. The polynomial basis is
then restricted to only the terms in S1 and the regression problem is re-solved. The
basis is drastically cut down, due to the sparsity in the LASSO solution, and the
mutual coherence of the resulting submatrix is much lower, potentially yielding more
stable recovery and reduced estimation error.

After obtaining the active set S1 from the first-stage LASSO, the solution can be
acquired with one of two ways:

1. Post-LASSO OLS (pLASSO): [5] If the solution of the first LASSO is
significantly sparse, the new problem may be overdetermined enough that
OLS on the reduced support can be solved

cOLS = argmin
cS1

∥u− AS1 cS1∥22.

The problems with sparse regression do not affect the final coefficient values,
and an oversampled OLS (with the same sample set as before) can produce a
better result.

2. Relaxed LASSO (rLASSO): [22] A second LASSO can be solved on S1,
whose design matrix has likely much smaller coherence, using the λ penalty
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chosen in stage 1 by cross-validation as maximum for the cross-validation of
the second step (λmax):

crelax = argmin
cS1

1

2
∥u− AS1 cS1∥22 + λ

∑
j∈S1

|cj|, λ ∈
[
10−4 λmax, λmax

]
,

With the reduced basis and lower coherence, LASSO now is more likely to
accurately estimate the sparse solution.

It is important to note that the standard LASSO method is of significantly higher
computational cost than OMP, due to Cross-Validation. Therefore, the two-stage
LASSO approaches require even more computational cost. However, this augmenta-
tion of computational cost may be negligible if the model of the UQ case is intensive,
the two-stage approaches are yield more accurate results, and sample economy is of
much greater value than the computational efficiency of the sparse algorithm. In
other words, if a more tedious approach in the regression stage allows for further
reduction of sample size, it is advantageous. For the sake of clarity, it is noted that
sampling ratios (SR) for the reduced basis approaches refer to the initial truncated
basis size, for a fair comparison.

The performance of the standard LASSO, OMP as well as of the two-stage LASSO
methods, will be analyzed in the first case, and compared for the aerodynamics-
related cases (Cases 2 and 3).

34



Chapter 3

Applications

3.1 Case 1 - Borehole Function

In order to evaluate the ability of sparse rPCE methods on undersampled settings
to compute accurate UQ results, a test function with both a considerable number of
uncertain variables and nonlinearity in the QoI seems an appropriate choice before
moving on to applications in aerodynamics.

3.1.1 Problem Formulation

The Borehole function [17] models water flow through a borehole drilled through
two aquifers, given by the analytical expression:

Q =
2πTu(Hu −Hl)

ln
(

r
rw

)[
1 + 2LTu

ln( r
rw
)r2wKw

+ Tu

Tl

] (3.1)

To define a UQ problem, a distribution of uniform type was defined for each one of
8 stochastic variables:

• rw ∈ U [0.05, 0.15]m: Borehole radius

• r ∈ U [100, 50000]m: Radius of influence

• Tu ∈ U [63070, 115600]m2/yr: Upper aquifer transmissivity

• Hu ∈ U [990, 1110]m: Upper aquifer potentiometric head

• Tl ∈ U [63.1, 116]m2/yr: Lower aquifer transmissivity

• Hl ∈ U [700, 820]m: Lower aquifer potentiometric head

• L ∈ U [1120, 1680]m: Borehole length
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• Kw ∈ U [9855, 12045]m/yr: Borehole hydraulic conductivity

The Chaos Order for the truncation of basis functions was set to p = 2. This value
is commonly used in rPCE for engineering problems. According to the total-order
truncation formula (eq. (2.4)) for d = 8 dimensions and a chaos order of p = 2 the
number of PCE terms is: P = 45.

Figure 3.1: Case 1: Borehole flow illustration, adapted from [17].

Since the aerodynamic cases to be examined are of Gaussian type and software for
this type of application was developed, the uncertain variables are first mapped to
independent standard Gaussian random variables. Specifically, the Borehole pa-
rameters are transformed into a set of eight variables ξ1, . . . , ξ8 ∼ N (0, 1), where
N (0, 1) denotes the standard normal distribution with mean zero and unit variance.
These ξi serve as the stochastic inputs to the PCE. Their corresponding physical
parameters (denoted by θi below) are then recovered by applying the transform:

θi = ai + (bi − ai) Φ(ξi), (3.2)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal
distribution, namely:

Φ(ξ) =
1√
2π

∫ ξ

−∞
e−t2/2 dt. (3.3)

3.1.2 MC Simulation

Due to the low computational cost of the Borehole function, a MC simulation is non-
prohibitive. Statistical moments were acquired using N = 500000 samples, yielding
the values of Table 3.1.
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Table 3.1: Case 1: MC Simulation Results

Statistic Value

Mean 134.39724
SD 54.6927

Figure 3.2: Case 1: Results in terms of the number of samples (N) processed by
MC. Mean (Top) and SD (bottom).

The evaluation of PCE solutions is now possible, since the mean value and SD
of any PCE solution (sparse or non-sparse) can be compared with the values of
Table 3.1, considered to be the ”ground truth”. While the mean is generally easy to
approximate and the SD is a better indicator of the quality of a UQ method, accurate
moment estimation alone may be misleading. There is always a possibility that an
expansion may approximate the statistical moments well by activating, however, the
wrong basis terms (eq. (2.5)), which might lead to wrong approximations at points
of interest, generating thus a non-dependable surrogate for the analytical expression
(eq. (3.1)). To avoid this, predictive accuracy is also evaluated through the Mean
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Absolute Relative Error (MARE) on a randomly selected test set:

MARE =
1

Ntest

Ntest∑
i=1

|ui − ûi|
|ui|

,

where ui and ûi are the ”ground truth” and predicted QoIs (by any of the PCE
models)of the selected test samples. Thus, both reliable moment estimation and
low MARE are required for a good PCE model.

With the reference values known from the MC simulation, an OLS PCE solution
is computed. By gradually oversampling the case with LHS sets and repeating the
same computation of the PCE expansion, the statistical moments and the MARE
(for a randomly selected test set of 45 samples) have been computed. The same
test set will also be used in the evaluation of the sparse expansions. With the OLS
PCE method, runs showed that acceptable results can be obtained with as many as
N = 125 function calls, resulting to overampling with SR = 2.7 (Table 3.2).

Table 3.2: Case 1: OLS (N = 125) PCE Metrics

Statistic MC OLS (N = 125)

Mean 134.39724 134.605411

SD 54.6927 55.41519

MARE — 0.077

Examining the OLS PCE solution (Fig. 3.3) there are important differences in co-
efficient magnitude. If only 8 of the 45 PCE coefficients (those with the larger
magnitude) are kept by repeating the OLS PCE run and retaining only the cor-
responding bases, the SD changes from 55.41519 to 53.71927, which is considered
to be a comparatively small change. This is an encouraging outcome and implies
that sparse regression on undersampled sets is expected to reduce the computational
cost (much less function calls) without practically damaging the computed statisti-
cal moments. One should keep in mind that, in the above, the user has firstly to
run a full regression PCE to select the most important bases, and then run least
squares for the selected bases, but this does not make any sense since it increases,
rather than decreases, the computational cost, so we definitely need sparse PCE
methods that can simultaneously select the bases and compute the reduced PCE
model using a reduced number of samples (undersampling). The ranking of the most
important terms’ coefficients (Table 3.3) shows that the borehole diameter (rw) and
the potentiometric head of the upper aquifier (Hu) are the most influential, with
their univariate terms as well as their interaction term being present. The two least
influential uncertain variables are the radius of influence (r) and borehole length
(L).
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Figure 3.3: Case 1: The computed 44 OLS PCE coefficients (the 0th one is omitted)
using N = 125 function calls (top). The same coefficients (absolute value) are re-
plotted in descending order (bottom). It is clear (plot at bottom) that there are 7 PCE
coefficients which are the most important compared to the rest.

Table 3.3: Dominant PCE terms for Case 1 (Borehole function).

PCE Coefficient Multi-index Gaussian Variable Borehole Variable

134.60541 (0,0,0,0,0,0,0,0) Constant Constant
43.82374 (1,0,0,0,0,0,0,0) ξ1 rw
16.67048 (0,0,0,1,0,0,0,0) ξ4 Hu

-14.28694 (0,0,0,0,0,0,1,0) ξ7 L
-13.63271 (0,0,0,0,1,0,0,0) ξ5 Tl
-10.46278 (0,0,0,0,0,1,0,0) ξ6 Hl

9.76451 (1,0,0,1,0,0,0,0) ξ1ξ4 rwHu

9.62043 (0,0,1,0,0,0,0,0) ξ3 Tu

3.1.3 Use of Sparse Methods

Firstly, the different sparse regression methods are used to compute PCE solu-
tions, by processing three LHS sets of sizes N = 20, 30, 40, corresponding to SR =
0.44, 0.67, 0.89 respectively. As one may see, all three of them correspond to un-
dersampling conditions (N < 45). The statistical moments computed from sparse
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Figure 3.4: Case 1: Computed Values of the OLS PCE Mean (top-left), SD (top-
right), and MARE (bottom), using the OLS method, for various numbers of N samples
(function calls).

expansions based on N = 20, 30, 40 samples are shown in Tables 3.4 and 3.5.

Table 3.4: Case 1: Sparse PCE predictions of Mean value N = 20, 30, 40 function
calls.

Method N = 20 N = 30 N = 40

OMP 132.04120 137.66399 133.77910
LASSO 129.79700 134.26191 129.73971
rLASSO 129.83148 134.60418 129.69034
pLASSO 129.84134 135.02873 129.46614

MC Mean: 134.39724

Table 3.5: Case 1: Sparse PCE predictions of SD N = 20, 30, 40 function calls.

Method N = 20 N = 30 N = 40

OMP 61.04043 56.99045 57.48194
LASSO 52.70903 47.82519 56.71651
rLASSO 53.46150 52.55117 56.83270
pLASSO 53.69978 53.15840 57.43193

MC SD: 54.6927
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Sparse PCE Moments

The Mean and SD predictions for all the sample sets are illustrated in Fig. 3.5
and 3.6. Generally, it is expected (but not guaranteed) that the higher the sample
size, the better the ”ground truth” values are approximated. OMP seems to do a
better job in predicting the mean value of the QoI, while it is not clear whether a
method is consistently better in SD prediction in this instance. Statistical moments
predicted by rLASSO and pLASSO are significantly similar with each other and
their values do not fluctuate as much as those of OMP and LASSO, having however
a significant deviation from the MC value.

Figure 3.5: Case 1: Sparse PCE predictions of the mean value of the QoI for N =
20, 30, 40 samples. Results for LASSO (blue), OMP (orange), rLASSO (green) and
pLASSO (red) are compared with the MC mean (black line).

Test Set Prediction

As far as the prediction of the random test set is concerned, OMP shows the worst
performance in MARE values (Fig. 3.7). The difference of the methods’ predictive
capabilities can also be seen in Fig. 3.8 where the predicted QoI values from the
sparse PCE are compared with the sorted values of the test set. OMP is the only
method out of the four that is purely based on OLS solutions and is not influenced
by any form of Cross-Validation, which explains why its expansions showcase the
worst predictive behavior, but also why it has the lowest computational cost. The
computational advantage, however, of OMP is not important in cases where the
evaluation cost is high.
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Figure 3.6: Case 1: Sparse PCE predictions of SD for N = 20, 30, 40 samples.
Results for LASSO (blue), OMP (orange), rLASSO (green) and pLASSO (red) are
compared with the MC SD (black line).

Figure 3.7: Case 1: MARE values from the prediction of the random test set. Results
are shown for LASSO (blue), OMP (orange), rLASSO (green) and pLASSO (red)
expansions.

Sparse PCE Coefficients

The accuracy of the sparse PCE coefficients is examined. Firstly, the comparison
of the expansions with the OLS (N = 125) expansion is illustrated in Fig 3.9. It is
evident that unimportant terms are rarely activated. OMP seems to be the method
that is most likely to activate and overestimate unimportant features.
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Figure 3.8: Case 1: Predicted QoI values by expansions, computed from LH sets
of size 20 (top), 30 (middle), and 40 (bottom) (single LH set shown). Predictions
obtained from LASSO (orange), OMP (green), rLASSO (red) and pLASSO (purple)
are compared to the sorted test QoI values (blue).

As far as the dominant coefficients of 3.3 are concerned, the sparse PCE coeffi-
cients of the corresponding terms are compared with the OLS (N = 125) results
in Tables 3.6, 3.7 3.8. First, the same features that LASSO activates are activated
by rLASSO and pLASSO, which is expected since their reduced basis comes from
LASSO. OMP misses important terms more frequently than the other two high-
lighting how its greedy nature may result in problems during basis selection. For all
the sparse methods, the most difficult basis term to activate is the one with variable
interaction (rwHu). Overall, the number of important coefficients that are kept by
sparse PCE is greater when sample size (N) is greater and coefficients with larger
magnitudes are more consistently approximated.
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Figure 3.9: Case 1: PCE coefficients from LH sets of size N = 20 (top), N =
30 (middle), and N = 40 (bottom) (single LH set shown). Solutions obtained from
LASSO (orange), OMP (green), rLASSO (red) and pLASSO (purple) are compared
to the OLS solution of N = 125 samples (blue). The basis terms are ordered so that
the OLS expansion is sorted.

Table 3.6: Case 1: Dominant PCE coefficients for N = 20 samples.

Variable OLS (125) LASSO OMP rLASSO pLASSO

Constant 134.60541 129.79700 132.04120 129.83148 129.84134
ξ1(rw) 43.82374 45.29723 49.49111 45.53064 45.59736
ξ4(Hu) 16.67048 12.43989 16.49772 11.90102 11.74702
ξ7(L) -14.28694 -12.02545 -22.47253 -12.38711 -12.49048
ξ5(Tl) -13.63271 -12.15403 0.00000 -13.27839 -13.59976
ξ6(Hl) -10.46278 -8.17673 0.00000 -8.15487 -8.14862
ξ1ξ4(rwHu) 9.76451 0.00000 0.00000 0.00000 0.00000
ξ3(Tu) 9.62043 10.72800 13.49208 10.82414 10.85163
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Table 3.7: Case 1: Dominant PCE coefficients for N = 30 samples.

Variable OLS (125) LASSO OMP rLASSO pLASSO

Constant 134.60541 128.50583 132.18683 129.33844 129.66759
ξ1(rw) 43.82374 38.10129 41.39600 39.77577 40.21008
ξ4(Hu) 16.67048 10.17371 16.34657 10.90124 11.08653
ξ7(L) -14.28694 -10.70003 -12.90204 -11.77124 -12.63863
ξ5(Tl) -13.63271 -17.03072 -22.46348 -19.10447 -19.20202
ξ6(Hl) -10.46278 0.00000 0.00000 0.00000 0.00000
ξ1ξ4(rwHu) 9.76451 0.00000 0.00000 0.00000 0.00000
ξ3(Tu) 9.62043 6.65012 11.94291 8.56902 9.36017

Table 3.8: Case 1: Dominant PCE coefficients for N = 40 samples.

Variable OLS (125) LASSO OMP rLASSO pLASSO

Constant 134.60541 129.73971 133.77910 129.69034 129.46614
ξ1(rw) 43.82374 45.89034 49.95365 45.87930 45.86002
ξ4(Hu) 16.67048 13.93794 11.45381 14.03383 14.42260
ξ7(L) -14.28694 -9.24736 -16.02597 -9.16721 -8.85309
ξ5(Tl) -13.63271 -13.44677 -10.77520 -13.51446 -13.79977
ξ6(Hl) -10.46278 -3.73596 0.00000 -3.79763 -4.05277
ξ1ξ4(rwHu) 9.76451 9.81284 0.00000 9.91108 10.37662
ξ3(Tu) 9.62043 3.19169 5.98320 3.08780 2.68464

3.1.4 Multiple LHS Sets Analysis

The previous analysis may provide some indicative results, but the negligible com-
putational cost of Case 1 allows for a thorough comparison of the four sparse
PCE approaches. The following procedure is applied. For each sample size N ∈
{15, 20, 25, 30, 35, 40, 45}:

(1) 50 different LH samples of size N are generated.

(2) A sparse PCE is fitted via LASSO, OMP, pLASSO and rLASSO on each LHS
set of size N .

(3) For each N , the average moments and MARE are computed from the resulting
expansions.

Results (Figures 3.10, 3.11, 3.12) show that there are clear differences in the strengths
and weaknesses of each method. With OMP performing well, only on Mean pre-
dictions, where it is the most accurate method, LASSO having the best MARE
performance but struggling in both SD and Mean, pLASSO and rLASSO seem the
two best methods in having satisfiable results for all metrics. The fact that pLASSO
gives higher SD predictions than rLASSO is due to it being produced by an OLS
solution, whereas coefficients are shrunk in rLASSO. For the same reason OMP
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Figure 3.10: Case 1: Average predicted Mean. Results from LASSO (blue), OMP
(orange), rLASSO (green) and pLASSO (red) are compared with the MC Mean (black
line).

Figure 3.11: Case 1: Average predicted SD. Results from LASSO (blue), OMP
(orange), rLASSO (green) and pLASSO (red) are compared with the MC SD (black
line).
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Figure 3.12: Case 1: Average prediction MARE on the random test set. 50th (top)
and 90th (bottom) Percentile. Results from LASSO (blue), OMP (orange), rLASSO
(green) and pLASSO (red).

significantly overestimates the SD, while standard LASSO underestimates the SD.

3.1.5 Conclusions from Case 1

As far as Case 1 is concerned, it has become evident that:

• The Borehole function, with d = 8 uncertain variables and significant non-
linearity, constitutes a challenging regression problem for UQ (high MAREs,
MC sample size, OLS oversampling etc.). Regardless of its straightforward for-
mulation and implementation the complexity of the function is what disturbs
the quality of PCE results.

• Due to the complexity of the function, the comparison of the sparse methods
was not initially clear when 3 sets of difference sizes were used, and making the
sample size (N) larger did not guarantee improvement in PCE performance.

• The strengths and weaknesses of each sparse method became clear once mul-
tiple sets were used for each size and average performance was considered.

• Sparsity-promoting algorithms can produce satisfactory results by using less
samples than the unknowns (undersampling).

• OMP tends to struggle in predictive accuracy, while both OMP and standard
LASSO show weaknesses in estimating the SD consistently.
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• Standard LASSO also exhibits reduced accuracy in estimating the mean com-
pared to other sparse approaches.

• Among the tested methods, pLASSO and rLASSO, while producing estimates
with deviation from the MC values, seem to have the most balanced perfor-
mance in computing the statistical moments and predicting the test set.
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3.2 Case 2 - Aerodynamic Analysis with Flow Un-

certainties

3.2.1 Problem Formulation

In this study, XFOIL is employed to perform an UQ analysis of a NACA 2412 airfoil,
with a focus on the aerodynamic efficiency as the QoI. The model is subjected to
flow uncertainties, modeled as independent Gaussian random variables:

• Freestream velocity U ∼ N (25 m/s, 0.52)

• Angle of attack α ∼ N (1.5◦, 0.12)

• Dynamic viscosity µ ∼ N (1× 10−5, (0.1× 10−5)2)

• Air density ρ ∼ N (1.5, 0.22)

The QoI is the Lift-to-Drag ratio of the airfoil (CL/CD). Due to the low-dimensionality
of the input variables, using p = 3 as Chaos Order is computationally feasible. While
accurate results are likely captured with p = 2, the number of basis terms introduced
by p = 3 make the basis large enough for sparse rPCE to be useful compared to
OLS rPCE. The number of basis polynomials and unknown coefficients is computed
P = 35 (eq. (2.4)).

The goal is to propagate these input uncertainties through XFOIL and analyze
their effect on the CL/CD response using the sparse promoting techniques on the
rPCE. It is examined whether compressibility or sparsity on the PCE solution can
be taken advantage of for sample economy. The success of sparse PCE on this
simple aerodynamic case motivates their use on a more complex case, with a model
of higher fidelity (Case 3).

3.2.2 Simulation Parameters

The flow around an isolated NACA 2412 airfoil (Fig. 3.13) is simulated. Since
XFOIL models incompressible flow, its input consists of angle of attack and Reynolds
number. Hence, the velocity, density and viscosity components are firstly used to
calculate the Reynolds number. While the Reynolds number could be treated as
an uncertain variable, omitting velocity, density and viscosity, their treatment as
uncertain input and the use of the Reynolds number as a dependent parameter is
useful for two reasons: (a) the influence of these parameters due to their difference
in orders of magnitude is of interest, (b) their use is crucial for the case to have a
large enough number of unknowns for sparsity to be useful. The Reynolds number,
Re, is a dimensionless quantity defined by

Re =
ρ v L

µ
=

v L

ν
(3.4)
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where:

ρ fluid density, kgm−3

v characteristic velocity, m s−1

L characteristic length scale, m

µ dynamic viscosity, Pa s

ν = µ/ρ kinematic viscosity, m2 s−1

The Reynolds number represents the ratio of inertial forces to viscous forces in a
flow, and it is an indicator of whether the flow is laminar or turbulent. In this case,
the baseline Reynolds number is 3700000, which lies in the turbulent region.

XFOIL implementation

XFOIL is a widely used, moderate-fidelity aerodynamic analysis tool designed for
the prediction of airfoil performance. It solves the coupled inviscid/vortex panel
method and boundary layer equations [12], which simulate incompressible flows,
and can accurately model the flow around isolated airfoils in steady conditions of
subsonic flight. Despite its simplicity compared to high-fidelity CFD solvers, XFOIL
captures key flow features and is especially effective for the range of Reynolds num-
bers associated with small, subsonic aircraft, such as Unmanned Aerial Vehicles
(UAVs).

Figure 3.13: Geometry of the NACA 2412 airfoil.

3.2.3 MC simulation

The computational cost of an XFOIL simulation, while higher than that of Case 1
is still manageable for a MC simulation. Using N = 30000 samples, it yields the
moments:

Table 3.9: Case 2: MC Simulation Results

Statistic Value

Mean 80.46513
SD 2.39540
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Figure 3.14: Case 2: Results of MC using different sample sizes. Mean QoI value
(top) and SD (bottom) are shown.

The OLS PCE solution is also computed. Good quality results are obtained with
N = 75 function calls, with a sampling ratio of SR = 2.14. The expansion approxi-
mated the MC moments with significant accuracy (Table 3.10), Compared to Case
1, a smaller number of samples is needed for MC convergence, as well as a smaller
SR for an accurate OLS solution. This is explained by the fact that algebraically,
this function turned out to be less complex than the borehole function, which was
expected. The low non-linearity in combination with the lower dimensionality con-
stitutes an easier PCE and UQ case.

The small percentage of high-magnitude coefficients in the OLS solution (Fig. 3.21)
implies that the QoI function is moderately non-linear and a small set of terms
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Table 3.10: Case 2: OLS PCE Results.

Statistic OLS Prediction MC

Mean 80.47456 80.46513
SD 2.36943 2.39540
MARE 0.00149 —

Figure 3.15: Case 2: Computed Values of the OLS PCE Mean (top-left), SD (top-
right), and MARE (bottom), using the OLS method, for various numbers of N samples
(function calls).

Table 3.11: Case 2: Dominant PCE coefficients.

PCE Coefficient Multi-index Variable

80.47456 (0,0,0,0) Constant
2.32334 (0,0,0,1) α
0.35359 (0,0,1,0) ρ
-0.22734 (0,1,0,0) µ
-0.09439 (0,0,2,0) ρ2

is important. If only the terms of Table 3.11 are used in the PCE basis, the SD
drops from 2.36943 to 2.36295, remaining close to the MC estimate. Therefore, the
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Figure 3.16: Case 2: OLS Solution using N = 75 evaluations (0th term omitted).
The solution coefficients (top) and their sorted absolute values (bottom) are illustrated.

use of sparse methods is likely to produce results with acceptable accuracy using
undersampled sets.

As far as the dominant terms are concerned, it is expected for the angle of attack
to have a significant influence on the aerodynamic performance, even with such
small perturbations. This is evident if the CL/CD polar is examined (Fig. 3.17. On
the contrary, freestream velocity does not significantly influence the uncertainty of
aerodynamic efficiency, since in the given range of values, the Reynolds number is
not affected in the same magnitude as it is changed by perturbations in density and
velocity. Density and viscosity are important, with density obtaining a larger PCE
coefficient in its univariate linear term. This is why its quadratic term also comes up
in the dominant terms, showing that the Reynolds number has a non-linear influence
in aerodynamic efficiency.
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Figure 3.17: CL/CD polar

.

3.2.4 Use of Sparse Methods

With the conclusions of Case 1, the different sparse methods are implemented for
different sizes of LHS sets. Sample sizes of size N = 10, 12, 14, .., , 34 are used. Since
it is important to not only examine the sparse PCE methods’ accuracy, but also show
their efficiency in reducing sample size, OLS expansions derived from moderately
oversampled sets of 40 (SR = 1.11) and 50 samples (SR = 1.43 are produced. With
the SR not having reached the empirical range it is possible for sparse expansions
to outperform OLS expansions that use more function calls.

General Observations

Compared with Case 1, this UQ example proved less challenging. Before the use of
sparse methods, there were several indications that show that Case 2 is governed by
a less complex function than Case 1. Firstly, both the MC simulation and the OLS
solution required fewer samples. The OLS solution has even less important terms
than that of Case 1 (Fig. 3.21) and its quality in predicting statistical moments and
test samples is significantly lower than those of the previous benchmark.

The lower difficulty of this regression problem is also present in the sparse PCE
results (Tables 3.12, 3.13). Sparse expansions accurately predict the mean, SD and
the test set samples, even in severely undersampled regimes. The easiest UQ goal is
the prediction of mean and the hardest is SD prediction. Sparse results demonstrate
sample economy, where undersampled sets produce expansions, which occasionally
outperform moderately oversampled PCEs and approximate the MC and benchmark
results (Figures 3.19, 3.20).
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Table 3.12: Case 2: Sparse PCE predictions of Mean value N = 10, 20, 30 function
calls. OLS solutions with N = 40, 50 samples are also reported for comparison.

Method N = 10 N = 20 N = 30 N = 40 (OLS) N = 50 (OLS)

OMP 80.533334 80.430529 80.485890 — —
LASSO 80.160669 80.431773 80.426907 — —
rLASSO 80.418796 80.440956 80.472847 — —
pLASSO 80.438995 80.445114 80.472848 — —

OLS 80.257755 80.496018

MC Mean: 80.46513

Table 3.13: Case 2: Sparse PCE predictions of SD N = 10, 20, 30 function calls.
OLS solutions with N = 40, 50 samples are also reported for comparison.

Method N = 10 N = 20 N = 30 N = 40 (OLS) N = 50 (OLS)

OMP 2.36497 2.28434 2.42672 — —
LASSO 1.92110 2.28960 2.31155 — —
rLASSO 2.17705 2.29640 2.37353 — —
pLASSO 2.19746 2.29997 2.37353 — —

OLS 2.49357 2.38921

MC SD: 2.39540

Prediction of Mean

While there are differences in the accuracy of mean prediction across different meth-
ods (OLS-sparse-reduced basis), even the highest deviations from the MC value are
relatively small and this UQ goal was easily achieved. This is clear in Fig. 3.18.
Standard LASSO illustrates the worst performance in the mean value metric. Sparse
PCE expansions using more than 15 function calls (N > 15) estimate the mean value
with greater accuracy than the OLS expansion using N = 40 samples, with OMP,
pLASSO and rLASSO also outperforming the expansion using N = 50 in the highest
sample range. This illustrates the capability of sparse expansions to achieve better
or similar results to OLS based solutions using less samples.

SD and MARE

With all expansions approximating the mean value accurately, the calculation of
SD and the prediction of the random test set serve as the main metrics that show
PCE performance. For the prediction of SD, the worst performance is detected
in the standard LASSO expansions, similar to Case 1, as seen in Fig. 3.19. In
contrast with Case 1, the OMP algorithm is significantly more successful, showing
accurate SD prediction across all the sample sizes. pLASSO and rLASSO show
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Figure 3.18: Case 2: Predicted Mean Value across different sample sizes (N). Re-
sults for OLS with 40 samples (purple line) and 50 samples (red line), LASSO (blue
dots), pLASSO (red dots), rLASSO (green dots), OMP (orange dots) are compared
with the MC estimate (black line).

similar results in SD, clearly outperforming standard LASSO, with their accuracy
being comparable to that of OMP. SD predictions by OMP, pLASSO and rLASSO
are better approximations to the MC estimate than the ones made by the OLS
expansion using N = 40 samples for N > 15. While these values do not reach
the accuracy of the predicted SD by the OLS expansion using N = 50 function
calls, they remain significantly close to the MC value for N < 20 sample sizes.
Observing the order of predicted values for each sample set, it is consistent with
Case 1 results, with LASSO predictions obtaining the smallest values, OMP the
highest and rLASSO and pLASSO predictions lying in between.

As far as test set prediction is concerned, low errors are present for all methods,
highlighting how easier the regression problem of Case 2 is, compared with Case
1. It is also clear that undersampled sparse PCE expansions perform better in this
task than moderately oversampled OLS-based expansions, showing their efficiency
in evaluation costs.

Sparse PCE Coefficients

The coefficients of the sparse expansions using N = 10, 20, 30 samples are plotted
with the OLS solution of N = 75 samples in Fig. 3.21. Unimportant features are
generally not kept and therefore the expansions’ accuracy is tested in the values
of the important coefficients (Tables 3.14, 3.15, 3.16). The term that the sparse
expansions are most frequently ignoring, is the one referring to the quadratic term
of density (ρ2). In terms of accuracy, OMP initially outperforms pLASSO and
rLASSO for N = 10 and the opposite happens for N = 30, with standard LASSO
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Figure 3.19: Case 2: Predicted SD across different sample sizes (N). Results for
OLS with 40 samples (purple line) and 50 samples (red line), LASSO (blue dots),
pLASSO (red dots), rLASSO (green dots), OMP (orange dots) are compared with the
MC estimate (black line).

Figure 3.20: Case 2: MARE of test set across different sample sizes. Results for OLS
with 40 samples (red line) and 50 samples (black line), LASSO (blue dots), pLASSO
(red dots), rLASSO (green dots), OMP (orange dots).

having slightly worse performance.

3.2.5 Conclusions from Case 2

Compared with Case 1, the second case study proved to be a less challenging UQ
problem, leading to improved performance of both OLS and sparse PCE approaches.
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Figure 3.21: Case 2: PCE coefficients from LH sets of size N = 10 (top), N = 20
(middle), and N = 30 (bottom). Solutions obtained from LASSO (orange), OMP
(green), rLASSO (red) and pLASSO (purple) are compared to the OLS solution of
N = 75 samples (blue). The basis terms are ordered so that the OLS expansion is
sorted.

The main conclusions are:

• The low dimensionality of the problem and the moderate non-linearity of the
QoI enabled accurate approximations with fewer samples. MC convergence
was reached with a relatively small number of evaluations, and OLS provided
accurate results with only N = 75 function calls.

• The dominant PCE terms were mostly univariate, with angle of attack having
the largest effect on aerodynamic efficiency, followed by viscosity and density.
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Table 3.14: Case 2: Dominant PCE coefficients for N = 10 samples.

Variable OLS (75) LASSO OMP rLASSO pLASSO

Constant 80.47456 80.16067 80.53333 80.41880 80.43900
α 2.32334 1.90435 2.31787 2.14953 2.16872
ρ 0.35359 0.16445 0.36582 0.31395 0.32564
µ -0.22734 0.00000 -0.20293 0.00000 0.00000
ρ2 -0.09439 0.00000 0.00000 0.00000 0.00000

Table 3.15: Case 2: Dominant PCE coefficients for N = 20 samples.

Variable OLS (75) LASSO OMP rLASSO pLASSO

Constant 80.47456 80.43177 80.43053 80.44096 80.44511
α 2.32334 2.25536 2.23847 2.25638 2.25684
ρ 0.35359 0.32052 0.36309 0.33960 0.34823
µ -0.22734 -0.22683 -0.23414 -0.24751 -0.25687
ρ2 -0.09439 0.00000 -0.05589 0.00000 0.00000

Table 3.16: Case 2: Dominant PCE coefficients for N = 30 samples.

Variable OLS (75) LASSO OMP rLASSO pLASSO

Constant 80.47456 80.42691 80.48589 80.47285 80.47285
α 2.32334 2.28133 2.38511 2.33326 2.33327
ρ 0.35359 0.33546 0.35773 0.36363 0.36363
µ -0.22734 -0.14017 -0.23770 -0.20734 -0.20734
ρ2 -0.09439 -0.04963 0.00000 -0.03811 -0.03812

In contrast, freestream velocity had negligible influence in the given range.

• Sparse PCE methods achieved lower test set errors than both OLS(N = 40)
and OLS(N = 50), confirming their advantage in predictive accuracy despite
using fewer samples.

• The prediction of the SD followed the same order as in Case 1: standard
LASSO produced the lowest values, OMP the highest, and rLASSO/pLASSO
lay in between. This consistency across cases highlights the characteristic
biases of each method.

• OMP recovered compared to Case 1 and achieved accurate SD predictions,
but pLASSO and rLASSO were again the most stable methods overall. They
outperformed OLS(N = 40) in mean and SD prediction and reached accuracy
close to OLS(N = 50), while also maintaining superior test set performance.
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3.3 Case 3 - Airfoil Shape Uncertainty

3.3.1 Problem Formulation

The aerodynamic efficiency of the N16103 airfoil with geometric uncertainties was
examined. With the Karhunen-Loève expansion the uncertainty was parametrized.
Evaluating the eigenvalues of the covariance matrix, the first 18 terms of the expan-
sion were able to retain 97% of the variance. Therefore, the uncertain geometry was
parametrized to 18 KLE modes with uncertain amplitudes. All 18 of the uncertain
variables are of Gaussian type:

• ξ ∈ N [0, 0.32] : KLE mode amplitude

The airfoil geometry is parametrized:

X(x, ξ) =
18∑

i=1

√
λiϕi(x)ξi,

The QoI is again CL/CD. Setting 2 as maximum Chaos Order was sufficient in the
highly non-linear example of Case 1 and a higher order significantly decreases the
computational feasibility of this application due to both the computational cost of
a CFD evaluation and the high input dimensionality. Via the total-order truncation
formula the number of basis polynomials and unknown coefficients is 190.

3.3.2 Simulation Parameters

The flow around an isolated N16103 airfoil (Fig. 3.22) was simulated. The computa-
tions were carried out with the in–house code Puma [3], which solves the compress-
ible, Reynolds-Averaged Navier–Stokes equations. For the modelling of turbulence,
the Spalart–Allmaras model is used in this case. A second-order Roe scheme is
used for the spatial flux, while time marching employs a multi-stage Runge–Kutta
scheme. Steady flow is assumed and pseudo-time marching occurs until convergence.
The CFD simulations of Case 3 were performed on the NTUA GPU cluster equipped
with 4 NVIDIA Tesla V100 GPUs. Each simulation required approximately 3 min-
utes of wall-clock time on a single V100 GPU.

Table 3.17: Freestream and inlet boundary conditions (SI units).

Quantity Value Unit

Total pressure, p∞ 21662.72 Pa
Total temperature, T∞ 216.65 K
Dynamic viscosity, µ∞ 2.39824e-5 Pa s

Angle of Attack, α 1.0 ◦

Maximum CFL 10 (dimensionless)
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The freestream Mach number is 0.86, which lies in the transonic region, so it is
expected for shockwave formation to occur on the airfoil’s suction side.

Figure 3.22: Geometry of the N16103 airfoil

Figure 3.23: Case 3: Grid in the airfoil region.

3.3.3 Nominal Solution

Firstly, the flow around the undisturbed airfoil is examined. The sudden jump in
pressure detected in the suction side (Fig. 3.24) denotes the existence of a shockwave.
The output of the nominal simulation is presented (Table 3.18).

Table 3.18: Nominal case aerodynamic forces and performance

Quantity Value

Lift (L) 2202.12406
Drag (D) 45.97910
Lift-to-Drag (L/D = CL/CD) 47.89402

3.3.4 OLS solution - Ground Truth

Due to the high computational cost of a CFD run and the high dimension of input
variables, an MC simulation is infeasible. Hence, the only way to obtain the moments
with which the sparse PCE will be evaluated is via an over-sampled Least-Squares
expansion. By constantly increasing the oversampling factor, the moments and the
prediction error to a randomly selected test set of 50 samples are evaluated. The
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Figure 3.24: Case 3: Pressure distribution of the Nominal Solution.

sample size needed for an OLS solution was N = 600 (SR = 3.15). The mean and
SD predicted by this expansion can be used as the ground truth. The need for high
oversampling factors stems from the large number of basis functions and uncertain
variables.

Table 3.19: Oversampled PCE (N = 600) Results

Statistic Value

Mean 48.5462
SD 1.1658
MARE 0.0097

It is evident that the mean value is not equal to the output of the nominal case,
which underlines that the mean value is important to accurately estimate for UQ.

The solution is characterized by rapid decrease in coefficient magnitude, similar to
that of Case 2 so success in the implementation of similar methodologies is expected.
The OLS solution if the 6 most dominant basis terms are kept yields an SD of 1.097,
(−5.9% decrease from the ”ground truth” value of Table 3.19).

As expected, the first KLE modes are more influential to the uncertainty of the
aerodynamic efficiency. The importance of the first mode is such that its second
order term and non-linear effects are more important than the first order effects of
most modes. To understand how these eigen functions influence the aerodynamics,
an exaggerated example of disturbed airfoils by each mode were compared to the
baseline shape, along with an unimportant mode to illustrate the difference. The
11th mode was one of the least activated ones with its PC coefficients being orders of
magnitude lower than those of the aforementioned terms. In Fig. 3.27 it is illustrated
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Figure 3.25: Case 3: OLS Solution (0th term omitted). The solution coefficients
(top) and their sorted absolute values (bottom) are illustrated.

Figure 3.26: Case 3: OLS PCE Mean (Left) and SD (Right)
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Table 3.20: Case 3: Dominant PCE coefficients (OLS, N = 600). Order: Constant;
ξ1 (1st lin.); ξ3 (3rd lin.); ξ2 (2nd lin.); ξ21 (1st quad.); ξ6 (6th lin.).

PCE Coefficient Term Interpretation

48.54616 Constant Mean
-0.95106 ξ1 1st KLE mode
0.41544 ξ3 3rd KLE mode
-0.24811 ξ2 2nd KLE mode
-0.20512 ξ21 1st KLE mode (quadratic)
-0.15057 ξ6 6th KLE mode

how the important modes influence large regions of the foil and especially the suction
side where Lift is produced and shock waves occur. They are characterized by low
spatial frequency in contrast with the unimportant 11th term. The odd shape of
this term is explained by the fact that it expresses a less important base shape of
the airfoil as far as covariance is concerned.

3.3.5 Use of Sparse Methods

Sparse PCE expansions are created with LH sample sets of sizeN = 40, 60, 80, ..., 160.
Their performance in the three used metrics (Mean value, SD, MARE) is com-
pared with the reference OLS solution (N = 600) as well as an OLS expansion
using N = 300 samples. Firstly, the moments of the sparse expansions for sizes
(N = 40, 100, 160) are presented (Tables. 3.21, 3.22).

Table 3.21: Case 3: Sparse PCE predictions of Mean value with N = 40, 100, 160
function calls. OLS solution with N = 300 samples is also reported.

Method N = 40 N = 100 N = 160 OLS (N = 300)

LASSO 48.4224 48.4174 48.4763

48.5358
OMP 48.4382 48.4208 48.5260
rLASSO 48.4406 48.4270 48.5126
pLASSO 48.4502 48.4311 48.5170

Reference OLS Mean (N = 600): 48.5462

Mean Prediction

With evident differences in accuracy, significantly small deviations are present for
all mean predictions, as seen in Fig. 3.28.
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Figure 3.27: Case 3, KLE modes visualization, 1st (top), 2nd (second), 3rd (third)
and 11th (bottom), axes not in scale

Table 3.22: Case 3: Sparse PCE predictions of SD with N = 40, 100, 160 function
calls. OLS solution with N = 300 samples is also reported.

Method N = 40 N = 100 N = 160 OLS (N = 300)

LASSO 0.9194 1.0318 0.9890

1.3182
OMP 1.3522 1.2974 1.2462
rLASSO 1.0223 1.1930 1.1439
pLASSO 1.0741 1.2280 1.1643

Reference OLS SD (N = 600): 1.1658
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Figure 3.28: Case 3: Absolute Relative Deviation of predicted Mean from the MC
value across different sample sizes. Results for OLS with 300 samples (black line),
LASSO (blue dots), pLASSO (red dots), rLASSO (green dots), OMP (orange dots).

SD and MARE

The differences in test set predictions emulate the results from Case 1, shown in
Fig. 3.30. Standard LASSO expansions obtain the lowest MARE values, with
pLASSO and rLASSO showing slightly worse predictions. OMP is consistently the
worst method in the MARE metric. Undersampled sparse expansions consistently
exhibit lower prediction errors than the OLS expansion that processes N = 300
samples (SR = 1.58).

Test Set Prediction

The predicted test set values for the expansions with sample size N = 100 (SR =
0.53) and the OLS expansion with N = 300 are examined in Fig. 3.31. The worst
prediction is seen by the moderately oversampled OLS expansion and the best by
LASSO-based solvers, in accordance to the MARE results of Fig. 3.30.

sparse PCE Coefficients

In Case 3, the comparison of dominant PCE coefficients with the OLS (N = 600)
reference (Tables 3.23, 3.24, and 3.25) shows that all sparse methods are able to
recover the most important terms with satisfactory accuracy, even when the number
of samples is severely limited. The constant term is predicted almost exactly across
all sample sizes, while for the linear terms the same pattern observed in the previous
cases is repeated: LASSO systematically underestimates the coefficients, OMP tends
to overestimate them, and rLASSO and pLASSO provide values in between. The
quadratic term ξ21 exhibits larger differences, particularly for N = 40, where OMP
significantly overshoots, but the accuracy improves as the sample size increases. At
N = 160, the coefficients obtained by sparse methods are very close to those of
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Figure 3.29: Case 3: Absolute Relative Deviation of predicted SD from the MC value
across different sample sizes. Results for OLS with 300 samples (black line), LASSO
(blue dots), pLASSO (red dots), rLASSO (green dots), OMP (orange dots).

Figure 3.30: Case 3: MARE of test set across different sample sizes. Results for
OLS with 300 samples (black line), LASSO (blue dots), pLASSO (red dots), rLASSO
(green dots), OMP (orange dots).

OLS (N = 600), confirming the convergence of the expansions. Overall, rLASSO
and pLASSO again demonstrate the most reliable and balanced performance, while
OMP and standard LASSO retain their characteristic weaknesses.

67



Figure 3.31: Case 3: Predicted QoI values by expansions, using N = 100 function
calls. Predictions obtained from LASSO (blue), OMP (yellow), rLASSO (green) and
pLASSO (red) are compared to the sorted test QoI values (black) and the OLS predic-
tions of N = 300 (grey) and N = 600 (purple) samples.

Table 3.23: Case 3: Dominant PCE coefficients for N = 40 samples. OLS(N = 600)
serves as reference.

Term (order) OLS (600) LASSO OMP rLASSO pLASSO

Constant 48.54616 48.42241 48.43823 48.44061 48.45019
ξ1 -0.95106 -0.82200 -1.05467 -0.88847 -0.92034
ξ3 0.41544 0.28022 0.29532 0.26702 0.24668
ξ2 -0.24811 -0.14332 -0.37963 -0.13694 -0.11918
ξ21 -0.20512 -0.16849 -0.40351 -0.19680 -0.20769
ξ6 -0.15057 0.00000 0.00000 0.00000 0.00000

Table 3.24: Case 3: Dominant PCE coefficients for N = 100 samples. OLS(N =
600) serves as reference.

Term (order) OLS (600) LASSO OMP rLASSO pLASSO

Constant 48.54616 48.41744 48.42083 48.42700 48.43109
ξ1 -0.95106 -0.84683 -0.97869 -0.92078 -0.93242
ξ3 0.41544 0.37192 0.43075 0.40893 0.41930
ξ2 -0.24811 -0.25417 -0.34535 -0.28895 -0.29663
ξ21 -0.20512 -0.26565 -0.37152 -0.35378 -0.37233
ξ6 -0.15057 -0.05810 -0.11730 -0.09876 -0.10649

3.3.6 Conclusions from Case 3

The analysis of Case 3, which involved uncertainty propagation with d = 18 KLE
variables and costly CFD evaluations, demonstrates the following:
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Table 3.25: Case 3: Dominant PCE coefficients for N = 160 samples. OLS(N =
600) serves as reference.

Term (order) OLS (600) LASSO OMP rLASSO pLASSO

Constant 48.54616 48.47627 48.52602 48.51257 48.51701
ξ1 -0.95106 -0.89305 -1.02352 -0.95523 -0.96057
ξ3 0.41544 0.29840 0.36052 0.36247 0.36938
ξ2 -0.24811 -0.22429 -0.28803 -0.26280 -0.26708
ξ21 -0.20512 -0.10192 -0.20725 -0.11079 -0.11162
ξ6 -0.15057 -0.03121 -0.07526 -0.10436 -0.11214

• This is the first case where sparse PCE expansions provide a substantial prac-
tical benefit, since each CFD evaluation requires approximately 3 minutes.
With N = 100 samples, rLASSO and pLASSO achieved more accurate SD
predictions and MARE, and only a slightly underestimated mean compared
to the OLS expansion with N = 300, corresponding to roughly 10 hours of
saved computation.

• The overall behavior of the sparse methods resembles Case 1, in that OMP
struggles under high input dimensionality, showing unstable performance and
frequent overestimation of SD, while standard LASSO systematically underes-
timates the coefficients and remains insufficient. rLASSO and pLASSO again
prove to be the most robust and balanced methods.

• At the same time, in terms of complexity, Case 3 is more similar to Case 2,
since the results converge steadily as the sample size increases. For N = 160,
all sparse expansions approach the reference OLS (N = 600) solution with
high accuracy in both statistical moments and coefficients.

• In test set predictions, sparse expansions outperform the moderately oversam-
pled OLS(N = 300), confirming their efficiency in surrogate modeling tasks
where predictive accuracy is essential.

• Coefficient analysis confirms that the first KLE modes dominate the uncer-
tainty in aerodynamic efficiency. The non-linear influence of the first mode is
strong enough that its quadratic term is more important than the first-order
effects of many higher modes.
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Chapter 4

Overall Conclusions

This thesis investigated the use of rPCE and sparse regression strategies for UQ in
aerodynamic applications. The central aim was to assess the potential of sparsity-
promoting methods to reduce the computational cost of UQ in fluid dynamics prob-
lems while maintaining accuracy. The analysis, carried out through progressively
more challenging applications, has led to several important conclusions.

Firstly, it has been demonstrated that rPCE can approximate MC statistics with
far fewer samples. OLS, while straightforward to implement, was found to provide
stable solutions only under oversampling conditions, typically requiring the number
of samples to exceed the basis size by a factor of about two. In square systems
(N = P ), OLS solutions proved inaccurate. In undersampled settings (N < P ), the
system becomes unsuitable for OLS. Sparse regression, on the other hand, is capable
of exploiting the inherent compressibility of rPCE representations. In aerodynamic
problems, only a limited subset of basis functions contributes significantly to the
response, which means that sparse methods can identify and recover these dominant
terms with substantially fewer samples. This compressibility underlies the efficiency
of sparse regression and demonstrates that sparsity can be translated into sample
economy without sacrificing accuracy.

The three applications examined in this work illustrate these conclusions from dif-
ferent perspectives. The first case, the classical borehole function, served as a bench-
mark in which the relative robustness of the methods could be directly compared.
Here it became clear that while OLS is not robust under no not adequately over-
sampled sets, while sparse methods such as OMP and LASSO succeed in recovering
the dominant terms of the expansion under moderate undersampling. The bore-
hole function also revealed another important aspect: the dependence of regression
quality on the sample set. Different LHS sets of the same size produced noticeably
different results, underscoring the need for careful DoE when only limited data are
available. Importantly, the benchmark also showed that reduced-basis approaches
were the most stable, with pLASSO and rLASSO consistently outperforming LASSO
and OMP and needing less samples to produce estimations of good quality,
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The second case extended the investigation to an aerodynamic setting: the simu-
lation of a NACA 2412 airfoil using XFOIL under uncertain flow conditions. This
case provided the first aerodynamic application of sparse rPCE within this thesis.
The results confirmed that sparse regression is able to capture the UQ statistics of
the aerodynamic QoI with accuracy comparable to OLS, but at a significantly lower
computational cost. This demonstrated the practical ability of sparse methods in
realistic engineering problems, bridging the gap between benchmark functions and
full CFD simulations.

The third case, involving a CFD simulation of a NACA 16103 airfoil with geometric
uncertainty modeled via the KLE, represented the most computationally demanding
test. In this setting, the benefits of sparse regression became even more apparent.
By identifying only the important terms of the expansion, sparse methods rendered
feasible an analysis that would otherwise have been prohibitively expensive. The
findings of this case closely paralleled those of the borehole function, in the sense
that dimensionality played a crucial role in determining robustness. At the same
time, it became evident that geometric uncertainty introduces an additional layer
of difficulty compared to flow uncertainty: the regression task is more challenging
and requires higher dimensionality for accurate modeling, leading to a difficult PCE
setting. Among the tested approaches, rLASSO and pLASSO consistently provided
the most stable performance.

Taken together, these findings support a clear comparison between the studied meth-
ods. OLS remains a useful baseline, but its applicability is restricted to oversampled
regimes and it fails completely in underdetermined settings. OMP offers efficiency
and often accurate results when moderate undersampling is allowed, but its greedy
nature limits its robustness. Standard LASSO is also prone to bad results in sig-
nificantly undersampled applications. On the other hand, reduced-basis variants
of LASSO, namely pLASSO and rLASSO, substantially improve performance by
eliminating irrelevant terms before re-estimation; this held both in the Borehole
benchmark and in the aerodynamic cases.

In conclusion, sparse regression rPCE methods, and especially reduced-basis LASSO
variants, offer a powerful framework for UQ in aerodynamic problems. They enable
the construction of accurate surrogate models under limited sample availability,
which is critical when model evaluations are costly, as in CFD. Beyond the results
of this thesis, future research should explore adaptive basis construction strategies,
DoE techniques that consistently provide sample sets of good quality and extensions
to three-dimensional CFD problems to further enhance efficiency and applicability
in aerospace design and analysis.

71



Bibliography

[1] AllenZhu, Z., Gelashvili, R., Razenshteyn, I.: Restricted Isometry Property for
General p-Norms. In: 31st International Symposium on Computational Geom-
etry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 34, pp. 451–460. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015).
https://doi.org/10.4230/LIPIcs.SOCG.2015.451

[2] Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that
generalize jacobi polynomials. In: Memoirs of the American Mathematical So-
ciety, vol. 54. American Mathematical Society (1985)

[3] Asouti, V., Trompoukis, X., Kampolis, I., Giannakoglou, K.: Unsteady CFD
computations using vertex–centered finite volumes for unstructured grids on
Graphics Processing Units. International Journal for Numerical Methods in
Fluids 67(2), 232–246 (May 2011)

[4] Bayram, I.: On the convergence of the iterative shrinkage/thresholding algo-
rithm with a weakly convex penalty. IEEE Transactions on Signal Process-
ing 64(6), 1597–1608 (Mar 2016). https://doi.org/10.1109/tsp.2015.2502551,
http://dx.doi.org/10.1109/TSP.2015.2502551

[5] Belloni, A., Chernozhukov, V.: Least squares after model selection in high-
dimensional sparse models. Bernoulli 19(2), 521–547 (2013)

[6] Berveiller, M., Sudret, B., Lemaire, M.: Stochastic finite element: a non in-
trusive approach by regression. European Journal of Computational Mechanics
15(1–3), 81–92 (2006). https://doi.org/10.3166/remn.15.81-92

[7] Blatman, G., Sudret, B.: Adaptive sparse polynomial chaos expansion based
on least angle regression. Journal of Computational Physics 230(6), 2345–2367
(2011). https://doi.org/10.1016/j.jcp.2010.10.010

[8] Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa-
tion. IEEE Transactions on Information Theory 52(2), 489–509 (2006).
https://doi.org/10.1109/TIT.2005.862083

[9] Chatzimanolakis, M., Kantarakias, K., Asouti, V.G., Giannakoglou, K.C.:
Setting up the intrusive polynomial chaos method for uncertainty quantifica-

72

http://dx.doi.org/10.1109/TSP.2015.2502551


tion and adjoint-based optimization in compressible fluid flows. In: Proceed-
ings of the Tenth International Conference on Computational Fluid Dynam-
ics (ICCFD10). pp. 1–12. Barcelona, Spain (2018), https://www.iccfd.org/
iccfd10/papers/ICCFD10-320-Paper.pdf, paper No. ICCFD10-2018-320

[10] Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1998)

[11] Diaz, P., Doostan, A., Hampton, J.: Sparse polynomial chaos ex-
pansions via compressed sensing and d-optimal design. Computer
Methods in Applied Mechanics and Engineering 336, 640–666 (2018).
https://doi.org/10.1016/j.cma.2018.03.020, https://www.sciencedirect.

com/science/article/pii/S0045782518301603

[12] Drela, M.: Xfoil: An analysis and design system for low reynolds number
airfoils. Low Reynolds number aerodynamics (1989)

[13] Eldred, M.S.: Evaluation of non-intrusive approaches for wiener-askey poly-
nomial chaos. Tech. Rep. SAND2008-5855, Sandia National Laboratories
(2008). https://doi.org/10.2172/1145845, https://www.osti.gov/servlets/
purl/1145845

[14] Eldred, M.S., Burkardt, J.: Comparison of non-intrusive polynomial chaos and
stochastic collocation methods for uncertainty quantification. In: 44th AIAA
Aerospace Sciences Meeting and Exhibit. No. 2009-0976, American Institute of
Aeronautics and Astronautics (2009)

[15] Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing.
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