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Abstract

This diploma thesis focuses on mathematical formulating, programming and im-
plementing high-accuracy methods to compute curvature over unstructured surface
meshes, with the goal of incorporating curvature as a constraint in shape or topol-
ogy adjoint-based optimization. Curvature-constrained optimization has attracted
significant attention in recent years due to its critical role in ensuring durability,
manufacturability, and other curvature-related properties of optimized shapes across
various engineering applications.

According to the literature, efforts to incorporate curvature revealed significant ac-
curacy issues in existing computational methods. Many state-of-the-art approaches
fail to capture local point-wise curvature accurately, leading to misleading estimates
of total surface curvature. The performed research revealed a critical sensitivity
of curvature estimates to the geometry of mesh elements. This sensitivity is par-
ticularly pronounced in unstructured meshes, where local irregularities are often
unavoidable. The problem intensifies during an optimization loop, since the mesh
might become distorted. This can lead to divergence, as constraints based on inac-
curate curvature values may no longer reflect the true surface geometry.

To address these challenges, this diploma thesis presents an in-depth analysis of the
fundamental shortcomings present in conventional curvature estimation techniques.
The findings identify ill-posed vertex-centered finite volume formulations as a pri-
mary source of inaccuracy in the widely used methods. In response, a novel and
improved approach is introduced here: the Smoothed Geometry-Adaptive Corrected
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(SGAC) Voronoi method, applicable to both mean and Gauss curvature estimation.

The SGAC method builds upon the widely adopted Voronoi-based framework, ad-
dressing two key limitations observed in its application to nodal finite volume con-
struction: (i) the assumption that obtuse triangles can be treated as right-angled,
and (ii) the uniform area distribution to the vertices in each obtuse triangle, irre-
spective of its specific geometric configuration.

The SGAC method overcomes these limitations by incorporating geometry-aware
corrections for obtuse triangles and ensuring a smooth transition from the original
method (used for acute and right triangles) to the corrected one for obtuse triangles.
As a result, the proposed method offers enhanced precision in curvature computa-
tion, making it well-suited for applications in shape and topology optimization.

Custom algorithms were developed in C++ to compute two fundamental curva-
ture metrics, mean and Gauss curvature, which were subsequently used to define
the total surface curvature. These algorithms were designed to handle meshes with
triangular and quadrilateral elements, ensuring compatibility with various compu-
tational frameworks. To evaluate the accuracy of the proposed method, this was
compared with analytical results on surfaces described by closed form expressions
and benchmarked against state-of-the-art software for CFD simulation or visualiza-
tion and post-processing of computed flow fields. In all examined cases, the method
demonstrated superior accuracy. Finally, the resulting total curvature function was
formulated for use as constraint function in optimization problems and validated for
its effectiveness in an example used as a surface roughness metric.
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Περίληψη

Αντικείμενο της παρούσας διπλωματικής εργασίας αποτελεί η μαθηματική διατύπωση, ο

προγραμματισμός και η υλοποίηση μεθόδων υψηλής ακρίβειας για τον υπολογισμό της

καμπυλότητας σε μη-δομημένα πλέγματα επιφανειών, με τελικό στόχο την ενσωμάτωση

της καμπυλότητας ως περιορισμό σε προβλήματα βελτιστοποίησης μορφής ή τοπολογίας

με χρήση της συζυγούς μεθόδου. Η βελτιστοποίηση με περιορισμό στην καμπυλότη-

τα έχει προσελκύσει σημαντικό ερευνητικό ενδιαφέρον τα τελευταία χρόνια, καθώς

διαδραματίζει κρίσιμο ρόλο στη διασφάλιση της αντοχής, της κατασκευασιμότητας και

άλλων ιδιοτήτων που σχετίζονται με την καμπυλότητα των βελτιωμένων σχημάτων σε

πληθώρα εφαρμογών μηχανικής.

Σύμφωνα με τη σχετική βιβλιογραφία, οι προσπάθειες ενσωμάτωσης της καμπυλότη-

τας έχουν αποκαλύψει σημαντικά προβλήματα ακρίβειας στις υπάρχουσες αριθμητικές

μεθόδους. Πολλές από τις πλέον διαδεδομένες προσεγγίσεις αποτυγχάνουν να απο-

δώσουν με ακρίβεια την τοπική σημειακή καμπυλότητα, οδηγώντας έτσι σε παραπλανη-

τικές εκτιμήσεις της ολικής καμπυλότητας επιφάνειας. Η έρευνα που πραγματοποιήθη-

κε ανέδειξε μία κρίσιμη ευαισθησία των εκτιμήσεων καμπυλότητας στη γεωμετρία των

στοιχείων του πλέγματος. Το φαινόμενο αυτό είναι ιδιαίτερα έντονο σε μη-δομημένα

πλέγματα, όπου οι τοπικές ανωμαλίες είναι συνήθως αναπόφευκτες. Το πρόβλημα

εντείνεται κατά τη διάρκεια της βελτιστοποίησης, όπου το πλέγμα ενδέχεται να παρα-

μορφωθεί, οδηγώντας εν δυνάμει σε αποκλίσεις λόγω εσφαλμένης εκτίμησης της κα-

μπυλότητας, που δεν αντιπροσωπεύει πλέον την πραγματική γεωμετρία της επιφάνειας.
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Για την αντιμετώπιση αυτών των προκλήσεων, η διπλωματική αυτή εργασία προβαίνει σε

εις βάθος ανάλυση των βασικών ελλείψεων των συμβατικών τεχνικών προσδιορισμού

καμπυλότητας. Η ανάλυση κατέδειξε ότι η κύρια πηγή σφαλμάτων στις ευρέως χρησι-

μοποιούμενες μεθόδους είναι η προβληματική διατύπωση των κεντροκομβικών όγκων

ελέγχου. Για την αντιμετώπιση αυτών των προβλημάτων, προτείνεται μία νέα και βελ-

τιωμένη προσέγγιση, η οποία ονομάζεται Εξομαλυμένη Γεωμετρικά-Προσαρμοσμένη

(SGAC) Voronoi Μέθοδος, κατάλληλη για τον υπολογισμό τόσο της μέσης όσο και
της Gauss καμπυλότητας.

Η μέθοδος SGAC βασίζεται στην ευρέως χρησιμοποιούμενη μέθοδο Voronoi, αλλά
έρχεται να διορθώσει δύο σημαντικές αδυναμίες της που παρατηρούνται κατά τον ορι-

σμό των κόμβο-κεντραρισμένων όγκων ελέγχου: (i) την υπόθεση ότι τα αμβλυγώνια
τρίγωνα μπορούν να αντιμετωπιστούν ως ορθογώνια, και (ii) τον ομοιόμορφο τρόπο
κατανομής του εμβαδού στις κορυφές των αμβλυγώνιων τριγώνων, ανεξάρτητα από την

ακριβή γεωμετρία τους.

Η μέθοδος SGAC ξεπερνά αυτές τις αδυναμίες εισάγοντας διορθώσεις που λαμβάνουν
υπόψη τη γεωμετρία για τα αμβλυγώνια τρίγωνα και εξασφαλίζοντας μία ομαλή μετάβα-

ση από τη συμβατική μέθοδο (που χρησιμοποιείται για οξυγώνια και ορθογώνια τρίγω-

να) στη διορθωμένη μέθοδο για τα αμβλυγώνια. Ως εκ τούτου, η προτεινόμενη μέθοδος

προσφέρει βελτιωμένη ακρίβεια στον υπολογισμό της καμπυλότητας, καθιστώντας την

κατάλληλη για χρήση σε εφαρμογές βελτιστοποίησης μορφής ή τοπολογίας.

Αναπτύχθηκαν ειδικοί αλγόριθμοι σε C++ για τον υπολογισμό των δύο βασικών με-
τρικών καμπυλότητας, της μέσης και της Gauss καμπυλότητας, οι οποίες στη συνέχεια
χρησιμοποιούνται για τον υπολογισμό της ολικής καμπυλότητας επιφανείας. Οι αλ-

γόριθμοι αυτοί σχεδιάστηκαν ώστε να υποστηρίζουν πλέγματα με τριγωνικά και τε-

τραγωνικά στοιχεία, εξασφαλίζοντας συμβατότητα με ένα ευρύ φάσμα υπολογιστικών

πλαισίων. Για την αξιολόγηση της ακρίβειας της προτεινόμενης μεθόδου, αυτή επα-

ληθεύτηκε έναντι αναλυτικών αποτελεσμάτων σε επιφάνειες που περιγράφονται από

κλειστού τύπου εκφράσεις και συγκρίθηκε με ευρέως γνωστά λογισμικά προσομοίω-

σης CFD, καθώς και με λογισμικά για την απεικόνιση και τη μετεπεξεργασία των
υπολογισθέντων πεδίων ροής. Σε όλες τις περιπτώσεις, η μέθοδος παρουσίασε σημα-

ντικά βελτιωμένη ακρίβεια. Τέλος, διαμορφώθηκε η συνάρτηση ολικής καμπυλότητας

ώστε να μπορεί να χρησιμοποιηθεί ως συνάρτηση περιορισμού σε προβλήματα βελτιστο-

ποίησης, και επαληθεύτηκε ως προς την αποτελεσματικότητά της σε ένα παράδειγμα

χρήσης της ως μέτρου της τραχύτητας επιφανειών.
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Chapter 1

Introduction

Design optimization is widely used in mechanical engineering fields such as aeronau-
tics, automotive, and turbomachinery, where it involves using advanced computa-
tional techniques to solve complex Computational Fluid Dynamics (CFD) equations,
such as the Navier-Stokes equations. The primary goal is to create the best design
while adhering to the governing field equations. This involves controlling the design
variable space under specific constraints to improve the predefined characteristics
like performance or weight. In recent years, structural optimization has evolved into
shape and topology optimization, which reflects the growing recognition of the im-
portance of modifying a structure’s shape and topology to meet design requirements,
capabilities that are inherently difficult to achieve merely through size optimization
[6, 8]. Some characteristic examples could be the aerodynamic shape optimization
of airfoils for drag minimization [11] or topology optimization of two fluid heat ex-
changers [10]. Producing the desired 3D geometries in shape optimization involves
appropriately adjusting the points that define the initial shape, whereas topology
optimization focuses on identifying which regions of the design domain should be
filled with solid material.

Among various constraints used in design optimization, curvature constraints are
of great importance across a wide range of applications. More specifically, they are
essential when designing mechanical parts to ensure structural durability by avoid-
ing complex shapes that cause stress concentrations [16]. At the same time, they
have a crucial role in maintaining the manufacturability of structures, given that
optimized shapes or topologies are of limited value if their production is not feasi-
ble. For instance, curvature limitations in milling and cutting processes help avoid
sharp corners, which are difficult and consequently costly to process using milling
machine cutters [25]. In additive manufacturing processes, curvature restrictions
prevent geometric singularities that pose challenges related to resolution and sup-
port structures during fabrication [23]. In many applications, curvature constraints
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can also help satisfy functional and aesthetic preferences of the improved geome-
try. Given the importance of applying curvature limitations in CFD-based shape or
topology optimization frameworks, it is important to develop reliable methods for
accurately determining curvature measures on the boundary surfaces of the struc-
tures under consideration and incorporating them as inequality constraints. This
objective forms the central focus of the research presented in this diploma thesis.

1.1 Curvature - Mathematical Background

In this section, an introduction of fundamental concepts related to the measurement
of curvature is provided. Curvature is one of the important geometric quantities
and helps on determining how a surface bends or deviates from being flat in case
of surfaces or straight in case of curves, providing a precise measure of its local
geometric shape. For a plane curve, curvature quantifies the rate of change of the
tangent vector’s direction along the curve, whereas for a surface, curvature becomes
more complex, indicating the surface’s bending in various directions at each point.

A brief definition of the curvature of a plane curve and a surface is given as described
in Chapters 4 and 9 of [13]. Firstly, a regular plane curve C represented using the
arc - length parameter s by x⃗ = x⃗(s) is assumed. The tangent vector to C at the
point x⃗(s) is defined by the derivative ˙⃗x(s) = dx⃗

ds
, which is given by:

˙⃗x(s) = lim
∆s→0

x⃗(s+∆s)− x⃗(s)

∆s
(1.1)

where x⃗(s+∆s)−x⃗(s)
∆s

is a secant to C, Fig. 1.1. ˙⃗x(s) has unit length due to arc-length
parameterization and this is referred to as unit tangent vector to the curve C at x(s)

and is usually denoted as t⃗ = t⃗(s) = ˙⃗x(s) = dx⃗/dt
ds/dt

, where t is the parameterization
of the curve.

Figure 1.1: Tangent direction of a
plane curve.[13]

Figure 1.2: Normal plane, tangent
vector t⃗ and curvature vector k⃗ at
point A of curve C [13].
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Secondly, the normal plane to curve C at A is the plane through A, which is orthog-
onal to the tangent vector t⃗ at point A, Fig. 1.2.

The curvature vector k⃗ of a regular C2 curve at point A on x⃗(s) is the derivative of

the tangent vector: k⃗(s) = ˙⃗t(s) = d2x⃗
ds2

. Unlike the unit tangent vector, k⃗ is generally

not unit length. Its direction is always orthogonal to the tangent vector t⃗ and thus
lies in the normal plane of the curve at point A. Its magnitude is called curvature

of a curve at point A: κ =
∣∣∣⃗k∣∣∣. This scalar quantity describes how sharply the curve

bends at a given point by measuring the rate at which the tangent vector changes
direction and is one of the two essential local invariants that define a plane curve,
which means that it doesn’t change when subjected to rigid transformations.

Figure 1.3: Differential position vector dr⃗ between nodes of a surface mesh.

Similarly to the plane curve, there are two local invariant quantities called first
and second fundamental forms that characterize a surface mesh, which means that
they remain unchanged under parameter transformation. Consider a surface which
is parameterized by coordinates u and v, Fig. 1.3. The first fundamental form
describes the squared length of any displacement vector on the surface and is given
by:

I = dr⃗ · dr⃗ = (
∂r⃗

∂u
du+

∂r⃗

∂v
dv) · (∂r⃗

∂u
du+

∂r⃗

∂v
dv) = Edu2 + 2Fdudv +Gdv2 (1.2)

where E = r⃗u · r⃗u, F = r⃗u · r⃗v and G = r⃗v · r⃗v are the first fundamental coefficients
that characterize each point.

Each point of the surface mesh has a unit normal vector N⃗ , Fig. 1.4, which is given
by the following expression:

N⃗ =
r⃗u × r⃗v
|r⃗u × r⃗v|

(1.3)

and is dependent only on the surface variables u and v. The variation of this vector

3



Figure 1.4: Unit normal vector to the surface S at point r⃗ [13].

Figure 1.5: Local shape of the surface S with respect to the distance |d| [13].

can be expressed as dN⃗ = N⃗udu + N⃗ vdv, which lies in the tangent plane at point
A. Since d(N⃗ · N⃗) = 2N⃗ · dN⃗ = d(1) = 0, dN⃗ and N⃗ are orthogonal vectors.

The second invariant is the second fundamental form, which describes how the nor-
mal vector changes as one moves along the surface. In other words, it characterizes
how the surface bends within the R3 space and is given by:

II = −dr⃗ · dN⃗ = −(r⃗udu+ r⃗vdv) · (N⃗udu+ N⃗ vdv) = Ldu2 + 2Mdudv +Ndv2

(1.4)

where L = Ω11 = −r⃗u · N⃗u, M = Ω12 = Ω21 = −1
2
(r⃗u · N⃗ v + r⃗v · N⃗u) and N = Ω22 =

−r⃗v · N⃗ v are the second fundamental coefficients. However, in order for its sign to
remain unchanged, the orientation of N⃗ must also be preserved.

The physical meaning of the second fundamental form is closely bonded with the
nature of a surface around a node. More specifically, assuming P (u, v) to be a point
on the surface S and point Q(u + du, v + dv) to be a near neighbor point on the

surface then |d| = P⃗Q · N⃗ is the projection of P⃗Q onto N⃗ at point P, Fig. 1.5. The

sign of d⃗ = |d|N⃗ , Eq. (1.5), depends on which side of the tangent plane the point Q

lies. It is considered positive when Q lies on the same side with normal vector N⃗ ,
and negative otherwise,

4



d⃗ =
1

2
d2r⃗ · N⃗ +O(du2 + dv2) =

1

2
II +O(du2 + dv2) (1.5)

which means that II is approximately twice the projection of P⃗Q to N⃗ .

Figure 1.6: Normal curvature vector k⃗n of curve C at point P , parallel to the surface
normal vector N⃗ [13].

Now that the necessary background has been provided, the curvature of a surface
can be defined. The normal curvature of a curve C lying on a surface S at a point P
is defined as the projection of the curvature vector of C onto N⃗ at P, Fig. 1.6, and
is given by:

k⃗n = (k⃗ · N⃗) · N⃗ (1.6)

k⃗n is independent of the sense of curve C. Its magnitude is called normal curvature
of C at P and is given as κn = k⃗ · N⃗ . The normal curvature depends on the direction
of vector N⃗ but not on the direction of C and can be expressed as:

κn =
Ldu2 + 2Mdudv +Ndv2

Edu2 + 2Fdudv +Gdv2
=

II

I
(1.7)

where du refers to du/dt and dv refers to dv/dt. It is important to note that κn, as a
function of du/dt and dv/dt, depends only on the ratio of (du/dt)/(dv/dt), in other
words on the direction of the tangent line to the curve C at point P. This implies
that all curves lying on the surface S and passing through P which are tangent to
the same line through P, have the same normal curvature κn. Furthermore, given
that fundamental forms I and II are invariant under parameter transformation (i.e.
by changing the surface mesh), the normal curvature at point P on curve C is also
invariant.

There is a convenient local coordinate system in which the normal curvature at P,
Eq. (1.7), can be expressed as:
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κn =
Ldu2 + 2Mdudv +Ndv2

du2 + dv2
(1.8)

Assuming that du2 + dv2 = 1, the parameter derivatives can be set as du = cos θ
and dv = sin θ, where θ is the angle representing the direction of motion in the local
coordinate system. By changing the angle, different tangent lines corresponding
to normal sections are obtained, producing various curves C passing through P on
surface S. It can be shown that two specific angles, and thus two curves, exist where
the normal curvature at P reaches its maximum and minimum values, Fig. 1.7).
These mutually perpendicular directions are called principal directions, and their
normal curvatures are the principal curvatures, denoted κ1 and κ2, respectively.
Given the invariance of κn at point P on curve C, κ1 and κ2, are invariant too.
Furthermore, any change in the orientation of the surface will reverse the sign of
κn, meaning that the magnitudes of the principal curvatures remain the same, but
their signs are reversed.

Figure 1.7: Principal curvature normal sections among various normal sections with
varying angle θ at point P on surface S.

A number κ is principal curvature if and only if κ is a solution of the following
equation:

(EG−F 2)κ2−(EN+GL−2FM)κ+(LN−M2) = 0 ⇒ κ2−2Hκ+K = 0, (1.9)

where

H =
EN +GL− 2FM

2(EG− F 2)
and K =

LN −M2

EG− F 2
.

In Eq. (1.9), 2H equals the sum of the two roots, and K equals their product. That
being said, the average of the two roots κ1 and κ2 is defined as the mean curvature
H at point P, and is given by:
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H =
1

2
(κ1 + κ2) =

EN +GL− 2FM

2(EG− F 2)
(1.10)

In addition, the product of the two roots κ1 and κ2 is defined as the Gauss curvature
at P, and is given by:

K = κ1κ2 =
LN −M2

EG− F 2
(1.11)

The physical meaning and methods for computing the mean and the Gauss curva-
tures of surfaces will be examined in more detail in the following chapters of this
work.

1.2 The Curvature as a CFD-based Optimization

Constraint

Curvature constraints have previously been incorporated into shape and topology
optimization in structural mechanics across various applications, such as composite
laminates [9], infinite plates with circular holes [21], and compliant mechanisms [22].
In these contexts, Finite Element Analysis (FEA) is typically used, where different
methods are employed for computing curvature measures. Among these, the most
widely used approaches are the Smooth Surface Fit (SSF) using a triple-node knot
[21], and curvature based on the Discrete Local Laplace–Beltrami (DLLB) operator
[3]. As analyzed in [3], the most accurate method for computing the mean curvature
is the DLLB approximation.

In contrast, CFD problems, such as those examined in this work, commonly use
the Finite Volume Method (FVM) for discretization. FVM is widely adopted due
to its strictly conservative nature, which is important for satisfying the conserva-
tion equations that govern fluid fields, and its ease in handling boundary condi-
tions for primary variables. However, incorporating curvature constraints within
the FVM framework presents three major challenges: (i) the need to demonstrate
that the DLLB method for mean curvature is applicable and equally effective for
FVM meshes, (ii) the requirement to transform the widely used cell-centered FVM
structure to a vertex-centered representation for curvature computation, as curva-
ture measures are originally defined at surface mesh nodes, and (iii) the need to
define, within the FVM, a single metric that effectively characterizes the total cur-
vature of the structure’s surface geometry.

All these challenges have been addressed in this diploma thesis.
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1.3 Thesis Outline

This diploma thesis focuses on the mathematical formulation, programming, and
implementation of high-accuracy methods for curvature approximation over unstruc-
tured surface meshes, aiming to incorporate curvature as a constraint in shape or
topology optimization. The mathematical framework improves upon existing liter-
ature methods and introduces a novel approach for defining vertex-centered finite
volumes, significantly enhancing curvature estimation accuracy.

The existing and newly proposed methods were implemented in a C++ framework,
supporting structured and unstructured meshes with triangular and quadrilateral
elements. Their accuracy was validated and compared with state-of-the-art software
for CFD simulation or visualization and post-processing of computed flow fields,
using test cases with known analytical curvature values.

The structure of the diploma thesis is as follows:

Chapter 2: Presents a detailed analysis of mean curvature estimation over trian-
gulated surfaces. Existing methods are reviewed and their limitations identified.
A novel method for vertex-centered finite volume definition, named the Smoothed
Geometry-Adaptive Corrected (SGAC) Voronoi method, is introduced. Its accuracy
is evaluated in test cases with known analytical mean curvature, such as the sphere.

Chapter 3: Focuses on Gaussian curvature estimation over triangulated surfaces.
The existing methods are reviewed. The SGAC method is extended to this metric
and validated in benchmark cases with analytical Gauss curvature.

Chapter 4: Extends the proposed curvature estimation framework to quadrilateral
meshes. Different triangulation techniques are examined, and a dual-triangulation
averaging method is introduced. The approach is tested in additional cases, such as
a surface adjacent to a sphere.

Chapter 5: Evaluates the accuracy of the implemented methods on structured and
unstructured meshes over geometries like the torus and saddle surface. The proposed
method is benchmarked against literature methods and state-of-art software for
CFD simulation or visualization and post-processing of computed flow fields. The
final expression of the total surface curvature function is formulated for use as a
constraint in optimization and tested for its effectiveness in an arbitrary surface
roughness example.

Chapter 6: Provides a summary of the diploma thesis, along with conclusions
drawn from this research and recommendations for future work.
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Chapter 2

Computation of Mean Curvature

on Surface Meshes

2.1 Introduction

In this section, a quick introduction to the meaning of the mean curvature measure
at points over a surface is provided.

Figure 2.1: Principal directions and curvatures at point P on surface S.

As described in Chapter 1, mean curvature H at point P, Fig. 2.1, is the average
value of the maximum and minimum normal curvature of a surface point. Its sign
depends on the orientation of N⃗ . In this work, the sign of H, which indicates
the direction of HN⃗ , will be taken opposite to the one of normal vector N⃗ , such
that for convex surfaces (e.g., a sphere), the mean curvature vector at each point
points inward. This convention allows the sign of H to convey information about
the local shape of the surface: positive H indicates a locally convex region, negative
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H indicates a locally concave region, and H = 0 corresponds to a locally minimal
surface, where the principal curvatures are equal in magnitude but opposite in sign.

As regards its physical meaning, the mean curvature of a smooth surface measures
how much the surface area changes compared to neighbor surfaces. In simpler terms,
it measures how the surface is evolving when it moves in the direction of its normal.
More specifically, the surface is minimal if H = 0, which indicates that it does not
expand or contract during this motion. The surface tends to expand or contract
in the case of negative and positive curvature, respectively. This can be illustrated
by observing that the same local surface geometry can appear as a peak or pit
depending on the sign of H. This is clearly demonstrated in the simple example of
surfaces with Gauss curvature K = 0, but differing signs of H, Fig. 2.2.

(a) H > 0, K = 0 (Valley) (b) H < 0, K = 0 (Ridge) (c) H = 0, K = 0 (Flat)

Figure 2.2: Surface shapes based on the sign of H.

2.2 Mean Curvature Approximation on a Surface

This section explores methods for computing H at the nodes of an unstructured
surface mesh. In structured meshes, the parameterization is correlated with the
mesh itself. H is a local invariant quantity on any surface mesh, derived from
the two principal curvatures κ1 and κ2 at a point on the surface S. This implies
that the local curvature properties belong to the surface and are not affected by
any change in parameterization. In contrast, for unstructured meshes, where global
parameterization of the entire mesh is not feasible, alternative methods must be
employed. The Laplace - Beltrami surface operator applied to the position vector r⃗
is equal to (Appendix A):

∆sr⃗ = ∇2
s r⃗ = 2HN⃗ (2.1)

The Laplace - Beltrami operator ∆s is the generalization of the Laplacian operator
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Figure 2.3: Discretized surface with triangular elements.

to functions defined on surfaces.

The task of determining H is now framed as computing the Laplace - Beltrami
operator of the position vector and N⃗ on a smooth surface.

Instead of computing the continuous Laplacian operator in the global coordinates
of R3, an approach is employed that projects it into a finite-dimensional space.
The surface, parameterized by u and v, is discretized using triangular finite volume
elements, Fig. 2.3. Consequently, the continuous differential operator is transformed
into a discrete form by expressing Eq. (2.1) in its weak formulation, utilizing test
basis functions. This transformation is derived from the Galerkin method, commonly
used in the FEM.

Eq. 2.1 is written as:

∇2
S r⃗ = f⃗ in S (2.2)

where S ⊂ R3 is a bounded, simply connected domain and f⃗ = 2HN⃗ . Given that r⃗ is
known at the nodes of the elements, Dirichlet boundary conditions can be imposed:

r⃗ = g⃗(D) in ϑS (2.3)

So, since the surface S is approximated by a collection of triangles Sh, Eq. (2.2) can
be discretized by integrating over the triangulated surface and, thus, be written as:

∫∫
Sh

∇2
Sh
r⃗Sh

dSh =

∫∫
Sh

f⃗ dSh (2.4)

where r⃗Sh
is linear for every element. If Xh denotes the finite-dimensional approxi-
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mation space over Sh, and if r⃗Sh
interpolates the Dirichlet boundary condition g⃗(D)

along the boundary ϑSh, then the solution r⃗ can be approximated by r⃗Sh
∈ Xh.

The next stage in the Galerkin method, [12], is to multiply each term by an appro-
priate test shape function ϕ so that ϕ ⊂ Xh and ϕ satisfies the Dirichlet condition
of Eq. (2.3). Since r⃗Sh

is prescribed on the boundary by the given condition, the
trial shape function ϕ is zero on the boundary ϑS (ϕ = 0 on ϑS), ensuring that the
boundary value of r⃗Sh

remains unchanged,

∫∫
Sh

ϕ∇Sh
· ∇Sh

r⃗Sh
dSh =

∫∫
Sh

ϕf⃗ dSh∫∫
Sh

∇Sh
· (ϕ∇Sh

r⃗Sh
) dSh −

∫∫
Sh

∇Sh
r⃗Sh

· ∇Sh
ϕ dSh =

∫∫
Sh

ϕf⃗ dSh (2.5)

The Green - Gauss theorem is then applied in Eq. (2.5) to express the first term as
an integral on the boundary of the region:

∮
ϑSh

ϕ∇Sh
· n⃗ dSh −

∫∫
Sh

∇Sh
r⃗Sh

· ∇Sh
ϕ dSh =

∫∫
Sh

ϕf⃗ dSh (2.6)

Given that ϕ = 0 on ϑS, the boundary integral term vanishes and the final Galerkin
formulation gives:

∫∫
Sh

∇Sh
r⃗Sh

· ∇Sh
ϕ dSh =

∫∫
Sh

ϕf⃗ dSh (2.7)

where the surface gradient ∇Sh
r⃗Sh

= ∇r⃗Sh
− (∇r⃗Sh

·nh)nh is the tangential gradient
on Sh, ∇ is the 3D gradient and nh is the normal vector to Sh.

The surface gradient ∇Sh
r⃗Sh

is also constant since the operation is done in a linear
triangular finite element where nh and ∇r⃗Sh

are constant. Therefore, ϕh1 ,...,ϕhN
,

where N = 3, are considered to be piecewise linear functions on Sh that are globally
continuous and ϕhj(xk) = δjk, so that r⃗Sh

=
∑N

j=1 r⃗jϕhj
. Eq. (2.7) is now rewritten

as a linear system of N equations:

N∑
j=1

r⃗j

∫∫
Sh

∇Sh
ϕhj

· ∇Sh
ϕhk

dSh =

∫∫
Sh

ϕhk
f⃗ dSh (2.8)

where k = 1,...,N.

The formulation of Eq. (2.8) is comparable to the analogous one when using the
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Figure 2.4: Definition of Node-Centered Finite Volume.

Galerkin method to a pure 2D (planar) problem, as stated in [5]. The sole difference
when the surface is embedded in R3 is that each vertex has three coordinates rather
than two.

Thus, it has been shown that the Laplace–Beltrami operator on a surface can be
effectively approximated using the Laplacian operator within triangular elements,
which are by nature 2D. In the proof, certain techniques from FEM were employed.
However, this approximation of the Laplace–Beltrami operator can also be applied
in the context of finite triangular volumes. As a result, this method can be used to
compute the gradient of the position vector at each vertex, with the modification
that the finite volumes must be transformed to a vertex-centered formulation. The
details of these elements will be defined in the following section.

2.3 Definition of the Finite Volume in Triangular

Elements

Given that the mean curvature is a node-based quantity, the finite volumes of the un-
structured mesh, need to be formed into a vertex-centered representation. To achieve
this, various methods for defining the Vertex-Centered Finite Volume (VCFV), Fig.
2.4, are presented in the following subsections. Three different methods for defining
the sub-volume within each triangular element are presented. These approaches
provide alternative ways to construct vertex-centered finite volumes and determine
their area AM and normal vector N⃗M , which are essential for computing H.
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Figure 2.5: Definition of sub-volume based on the barycenter of △ABC, where A = 1,
B = 2 and C = 3.

2.3.1 Barycentric Definition of the VCFV

In this method, the sub-volume associated with each node is determined using the
barycenter of the triangle, which is the intersection of its medians and the mid-
points of all triangle edges. The barycentric approach ensures that the triangle’s
area is equally divided, assigning a fair share to each node. In Fig. 2.5, the blue area
A2 represents the sub-volume assigned to node B, with corresponding sub-volumes
allocated to the other nodes in a similar manner.

It is known that the barycenter of a planar triangle with vertices at coordinates
A(u1, v1), B(u2, v2) and C(u3, v3), is given by:

(uc, vc) =

(
u1 + u2 + u3

3
,
v1 + v2 + v3

3

)
(2.9)

where ui and vi are the local parametric coordinates of the surface.

The areas associated with each vertex, written as A1, A2 and A3 in Fig. 2.5 are
equal:

A1 = A2 = A3 =
A

3
(2.10)

where A is the area of △ABC.

Consequently, the corresponding AM area of each node is determined by:

AM =

Cmi∑
m=1

Ami
(2.11)
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where m = 1, ...Cmi
are the neighbor triangles of node i and Ami

is the portion
of the area of the neighbor triangle m that corresponds to node i of the triangle.
The contribution of the triangle dimensional normal vector N⃗ to each vertex can be
easily deduced as follows:

N⃗1 = N⃗2 = N⃗3 =
N⃗

3
(2.12)

N⃗ is dimensional, with its magnitude equal to the surface area, thus possessing the
same units as an area

Similarly with the area, the normal vector N⃗M that corresponds to each node is
given by:

N⃗M =
Cm∑
m=1

N⃗mi
(2.13)

where m = 1, ...Nmi
and N⃗mi

is the portion of the normal vector of the neighbor
triangle m that corresponds to node i of the triangle.

2.3.2 Voronoi Definition of the VCFV

In this method, the portion of the triangle’s area attributed to each node is de-
termined using the circumcenter, which is the point of intersection of the three
perpendicular bisectors of the triangle’s sides. The circumcenter approach ensures
that the division is made in such a way that the center (denoted as O) maintains
the minimum distance from the triangle’s vertices.

The circumradius R of the triangle, Fig. 2.6, is given by (its proof is provided in
Appendix B):

R =
abc√

(a+ b+ c)(b+ c− a)(c+ a− b)(a+ b− c)
(2.14)

where a = (BC), b = (AC) and c = (AB) the lengths of the edges of the triangle.

The area Ai sections of the triangle, where i=1,2,3, are given by:
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(a) (b)

Figure 2.6: Definition of sub-volume based on the circumcenter of (a) an acute and
(b) an obtuse triangle △ABC, where A = 1, B = 2 and C = 3.

Ai = A△BKO + A△BOM

Ai =
1

2
|xB(yK − yO) + xK(yO − yB) + xO(yB − yK)|

+
1

2
|xB(yO − yM) + xO(yM − yB) + xM(yB − yO)| (2.15)

The dimensioned normal vector N⃗i of the sections, where i=1,2,3, are given by the
formula:

N⃗i =
Ai

A
N⃗ (2.16)

where A and N⃗ represent the area and the dimensional normal of the triangle
△ABC, respectively. The node’s AM and N⃗M are similar to those before given
by Eq. (2.11) and Eq. (2.13).

It is important to note that this method is applicable only to acute triangles, as
the circumcenter lies outside the triangle for obtuse triangles, Fig. 2.6, making it
questionable to assign a valid area section to each vertex.
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Figure 2.7: Definition of sub-volume based on the corrected circumcenter of an obtuse
triangle △ABC, where A = 1, B = 2 and C = 3.

2.3.3 Corrected Voronoi Definition of VCFV

In this section, the portion of the triangle’s area assigned to each node is determined
using the circumcenter, following the same approach as in the previous method.
The key distinction lies in how Eq. (2.14) is modified for obtuse triangles, where
the circumcenter lies outside the triangle. To ensure that Eqs. 2.11 and 2.13 yield
valid area portions in such cases, a correction to the circumcenter placement is
required. A practical solution [15] is to treat the obtuse triangle as a right triangle
by positioning the circumcenter at the midpoint of the edge opposite the obtuse
angle, as illustrated in Fig. 2.7. Based on this correction, the sub-area distribution
within triangle △ABC, with ∠B to be obtuse, is given as follows:

AA =
1

4
A△ABC , AB =

1

2
A△ABC , AC =

1

4
A△ABC (2.17)

The comparison of H results obtained using different definitions of VCFV is pre-
sented in a subsequent section.

2.4 Computation of the Position Vector Gradient

at Each Node

Now that the three VCFV definition methods have been prescribed in the previous
sections, the mean curvature normal vector HN⃗ at a point M on the surface is
derived through Eq. (2.1) by integrating it in the VCFV area AM , Fig. 2.4, as
follows:

∫∫
AM

∇2
s r⃗ dS = 2HN⃗

∫∫
AM

dS (2.18)
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Figure 2.8: Triangular element of the surface mesh.

Using the established approximation of the Laplace–Beltrami operator on a trian-
gulated surface, ∇2

s ≈ ∇2
u,v, where u and v denote the parameters of triangular

elements, Eq. (2.19) can be expressed as follows:

∫∫
AM

∇2
u,vr⃗ dS = 2HN⃗

∫∫
AM

dS (2.19)

By applying the Green-Gauss theorem in Eq. (2.19), the final expression for the HN⃗
of each node is obtained:

∮
ϑAM

∇u,vr⃗ · n⃗ dS = 2HN⃗

∫∫
AM

dS (2.20)

where AM the surface area corresponding to node M, ϑAM the boundary of the area
AM and n⃗ the dimensionless normal vector of the boundary ϑAM , Fig. 2.4.

In the subsequent sections, two approaches for computing H based on Eq. (2.1) are
presented.

2.4.1 1st Approach: Computation of the Position Vector

Gradient Using Edge Normals

Computing H at each node of an unstructured surface mesh involves the following
steps:

1. Compute the Local Reference Parameters u and v of the Triangular Element

In order to compute H at node 1, the triangulated surface mesh is considered,
Fig. 2.8. The dimensional normal vector N⃗ of the element is calculated as:
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Figure 2.9: Normal vectors to the edges of the triangular element.

N⃗ =
1

2
(r⃗12 × r⃗13) (2.21)

where r⃗12 = r⃗2 − r⃗1 and r⃗13 = r⃗3 − r⃗1, with r⃗i representing the position vector
of node i.

The magnitude of the normal vector, is equal to twice the area of the triangle.
The dimensionless normal vector of the element is defined as:

N⃗ =
N⃗

∥N⃗∥
(2.22)

The two dimensionless tangent vectors along the edges that intersect at node
1 of the triangle are then computed as follows:

t⃗1 =
r⃗13
∥r⃗13∥

, t⃗2 =
r⃗12
∥r⃗12∥

=
t⃗1 × N⃗

∥t⃗1 × N⃗∥
(2.23)

Thus, the local reference parameters for each node of the triangle are:

(u1, v1) = (0, 0)

(u2, v2) = (r⃗12 · t⃗1, r⃗12 · t⃗2)
(u3, v3) = (r⃗13 · t⃗1, r⃗13 · t⃗2) (2.24)

2. Compute the Normal Vectors to the Edges of the Triangular Element

19



The normal vectors to the edges of the triangular element, Fig. 2.9, are com-
puted with respect to the local reference coordinates as follows:

n⃗1 = (v3 − v2, u2 − u3)

n⃗2 = (v1 − v3, u3 − u1)

n⃗3 = (v2 − v1, u1 − u2) (2.25)

The corresponding dimensionless normal vectors to the edges are given by
n⃗j =

n⃗j

∥n⃗j∥ , where j = 1, . . . , 3.

3. Compute the Position Vector Gradient of the Triangular Element

The gradient of a vector field Φ⃗ is constant within a triangular element and is
represented by a gradient tensor. If Φ⃗ = r⃗, this tensor is expressed as:

∇u,vr⃗ =

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v

 (2.26)

If rik denotes the coordinates (k = 1,2,3) of each triangular vertex (i = 1,2,3)
of the position vector and (niu , niv) represents the coordinates of the normal
vector along the edges, then the components of the gradient tensor are given
by:

∂rk
∂u

= − 1

2AT

(r1kn1u + r2kn2u + r3kn3u)

∂rk
∂v

= − 1

2AT

(r1kn1v + r2kn2v + r3kn3v) (2.27)

for each k coordinate of r⃗ = (x, y, z). AT is the area of the triangular element
and is given by AT = 1

2
(u1v2 + u2v3 + u3v1 − u1v3 − u2v1 − u3v2).

4. Compute the Dimensioned Normal Vector n⃗ of ϑAM

The normal vector of each VCFV at node M is determined by contributions
from the neighboring triangles, Fig. 2.4. Within each triangle, the normal
vector n⃗ at the corresponding edges of border ϑAM is equal to the normal
vector of edge 45, which connects the midpoints of edges 12 and 13 of triangle
△123, Fig. 2.10.

Given that △123 and △145 are similar triangles, it follows that Area[△145] =
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Figure 2.10: Normal Vector n⃗ of ϑAM corresponding to each triangle.

1
2
Area[△123]. Additionally, since the position vector gradient remains con-

stant within each triangle, the normal vector relation holds as n⃗45 = n⃗23

2
.

Generalizing this equation, let i denote a vertex of the triangle and j denote
the edge opposite to vertex i. Then, the following relation holds:

n⃗i =
n⃗j

2
(2.28)

where i,j =1,2,3.

Substituting Eqs. (2.26), (2.27) and (2.28) into Eq. (2.20), HN⃗M at each node
is obtained as follows:

Cm∑
m=1

1

2

∂x
∂u
vn⃗1 +

∂x
∂u
un⃗1

∂y
∂u
vn⃗2 +

∂y
∂v
un⃗1

∂z
∂u
vn⃗3 +

∂z
∂v
un⃗3

 = 2HN⃗MAM (2.29)

where m = 1, .., Cm represents the neighboring triangular elements of node
i, AM is the area corresponding to node, and N⃗M is the dimensionless mean
curvature normal vector associated with node i.

5. Compute the Nodal Mean Curvature

Finally, H value of the i-th node of the mesh is computed by rewriting Eq.
2.29 as:

Hi =
1

2AM

Cm∑
m=1

1

2

∂x
∂u
vn⃗1 +

∂x
∂u
un⃗1

∂y
∂u
vn⃗2 +

∂y
∂v
un⃗1

∂z
∂u
vn⃗3 +

∂z
∂v
un⃗3

 · N⃗M (2.30)
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2.4.2 2nd Approach: Computation of the Position Vector

Gradient Using Cotangent Formula

Figure 2.11: Flux of a node in a triangular element.

Using Eqs. (2.27) and (2.16) for the triangle shown in Fig. 2.11, the flux for node 1
through the c′b′ segment is defined as follows:

flux1 = ∇sr⃗ ·
n⃗1

2
= − 1

4AT

(r1n⃗1 · n⃗1 + r2n⃗2 · n⃗1 + r3n⃗3 · n⃗1)

flux1 = − 1

4AT

(r1a⃗ · a⃗+ r2a⃗ · b⃗+ r3a⃗ · c⃗) (2.31)

It should be noted that the edge normal vectors n⃗1, n⃗2, and n⃗3, as well as the tangent
vectors a⃗, b⃗, and c⃗, are defined within the planar triangle. However, in Eq. (2.31),
their definition in either 2D or 3D space is irrelevant, as only their inner product is
of interest.

As shown in Appendix B:

a⃗ · b⃗ = 2⃗3 · 3⃗1 = −3⃗2 · 3⃗1 = −2AT cotγ

a⃗ · c⃗ = 2⃗3 · 1⃗2 = −3⃗2 · 2⃗1 = −2AT cotβ (2.32)

Substituting Eq. (2.32) into Eq. (2.31), one gets the following:
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Figure 2.12: Voronoi area for a surface mesh node.

flux1 = − 1

4AT

r⃗1(⃗a · a⃗) +
1

2
(r⃗2 − r⃗1)cotγ +

1

2
(r⃗3 − r⃗1)cotβ +

1

2
r⃗1cotγ +

1

2
r⃗1cotβ

(2.33)

Then, in Eq. 2.33, some of the terms are further expanded as follows:

− 1

4AT

r⃗1(⃗a · a⃗) +
1

2
r⃗1cotγ +

1

2
r⃗1cotβ

=
1

2
r⃗1[−

1

2AT

(2⃗3 · 2⃗3) + 3⃗2 · 3⃗1
2AT

+
2⃗1 · 2⃗3
2AT

]

=
1

4AT
r⃗1(−2⃗3 · 2⃗3 + 3⃗2 · 3⃗1 + 2⃗1 · 2⃗3) (2.34)

Given that 2⃗3 = 2⃗1 + 1⃗3, the last term in Eq. 2.34 is expanded as −2⃗3 · 2⃗1 − 2⃗3 ·
1⃗3 + 3⃗2 · 3⃗1 + 2⃗1 · 2⃗3 = 0. Therefore, the contribution of ∇2

s r⃗ to node 1 is given by
the remaining terms of 2.35 and the final expression of flux at node 1 is given by:

flux1 =
1

2
(r⃗2 − r⃗1)cotγ +

1

2
(r⃗3 − r⃗1)cotβ (2.35)

Node O of the surface mesh shown in Fig. 2.12 is examined. The Laplacian of the
position vector of node O gets a contribution from all neighbor triangles:

∇2
s r⃗

∣∣∣∣
o

=
Cm∑
i=1

1

2

(
r⃗pi |m − r⃗po

)
cot li +

1

2

(
r⃗pi+1

∣∣
m
− r⃗po

)
cot ki+1 (2.36)
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where Cm the number of neighbor triangles of node O.

Eq. 2.36 can otherwise be expressed as the sum of the contributions of all edges
emanating from node O:

∇2
s r⃗

∣∣∣∣
o

=
1

2

Cg∑
i=1

(r⃗pi − r⃗po) [cot ki + cot li] (2.37)

where Cg the number of the aforementioned edges and cot ki and cot li, the cotan-
gents of the angles opposite to edge i of the two triangles that share this edge.

Overall, this method concludes with the following formula for H for each node of
the surface mesh:

Hi =
1

2AM

∇2r⃗
∣∣∣
o
N⃗M (2.38)

which is similar to the formula given in [15].

In this method, H is computed using the geometric properties of the triangular
elements, specifically the edge lengths and angles. Therefore, N⃗M and AM corre-
sponding to each node must be expressed in terms of the same geometric quantities.
In the VCFV methods defined in the previous subsection, the Barycentric Definition
assumes that the portion is constant and equals 1/3. However, the Voronoi defini-
tion can be expressed differently from Eq. (2.41), as shown by the following formula
from [15]:

AM =
1

8

Cm∑
m=1

(
r⃗pi |m − r⃗po

)2
cot li +

(
r⃗pi+1

∣∣
m
− r⃗po

)2
cot ki+1 (2.39)

where nodes pi and pi+1, and angles ki+1 and li are shown in Fig. 2.12.

The proof of Eq. (2.39) is given in Appendix B. It can also be expressed as the sum
of the contribution of edges emanating from node O:

AM =
1

8

Cg∑
i=1

(r⃗pi − r⃗po)
2 [cot ki + cot li] (2.40)

From Eq. (2.39), the contribution of each triangle to the node area can be derived
as:

Aim =
1

8

(
r⃗pi |m − r⃗po

)2
cot li +

(
r⃗pi+1

∣∣
m
− r⃗po

)2
cot ki+1 (2.41)
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Similarly to Eq. (2.15) in the first approach, the Voronoi area formula in 2.41 is
valid only for acute triangles. For obtuse triangles, a correction must be applied, as
described in Section 2.3.3.

The normal vector of each node is given from Eq. (2.16) and Eq. (2.13) that were
given in the previous approach.

2.4.3 Comparison of 1st and 2nd Approach

In this section, the accuracy of the two approaches for computing H at each node
of the triangulated surface is compared. In addition, the three different definitions
of VCFV are evaluated in terms of their effectiveness in determining AM and N⃗M

at each node.

To perform the comparisons, the different formulas are applied to two cases in which
H value is analytically known.

A) 1st Case: Computation of H at a single nodal surface mesh

In this application, an example surface is used, which is defined by:

x⃗ = (u+ v)e⃗1 + (u− v)e⃗2 + (uv)e⃗3 (2.42)

where u and v are the local coordinates of the surface, e1, e2, e3 the basis
vectors of the 3D coordinate system and x⃗ the position vector of the node.
According to [13], H of this surface at the point located at u = 1 and v = 1
in local coordinates is equal to H = 1

8
√
2
.

Figure 2.13: Triangular nodal mesh consisting of one central node and six neighbor-
ing nodes on a circle.

The surface is approximated using an unstructured mesh with triangular ele-
ments, where u and v represent the local coordinates of the triangle to which
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the node belongs. Specifically, a simple mesh is generated around the node
by subdividing a circle of radius r and center c, within the parametric space,
into Nt triangular elements, Fig. 2.13. The coordinates of the neighbor nodes
of the center node (1, 1) are computed as follows:

θ =
2πi

Nt

, u = uc + r cos θ, v = vc + r sin θ (2.43)

where i is the index of the neighboring node, θ is the angle corresponding to
the edge that the i-th node belongs to, measured counterclockwise, and (uc, vc)
are the local coordinates of the center node.

Figure 2.14: Nodal Surface in 3D space, colored by the z-coordinate.

Applying Eq. (2.42) to Eq. (2.43), the coordinates of the nodes are transformed
from the local coordinate system to the global one, and the nodal surface for
(uc, vc) = (1, 1), r = 0.1 and Nt = 6 is generated, Fig. 2.14.

Firstly, the two approaches for computing the position vector gradient and,
consequently, H at each node, are examined. The three different methods
of defining the VCFV are used and compared for their accuracy against the
analytical result. To evaluate their accuracy, an error measure is used as
follows:

Error =
|Hcomputed −Htrue|

|Htrue|
(2.44)

Obviously, only H at the central node, which is shared by all six neighboring
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triangles, is considered.

VCFV Definition Mean curvature He Error

Barycentric 0.088277175363 0.131%

Voronoi 0.088235571286 0.173%

Corrected Voronoi 0.088235571286 0.173%

Table 2.1: Comparison of VCFV definitions for the 1st case using the 1st approach,
with the expected value to be He =

1
8
√
2
.

VCFV Definition Mean curvature He Error

Barycentric 0.088272728665 0.131%

Voronoi 0.088235588150 0.173%

Corrected Voronoi 0.088235588150 0.173%

Table 2.2: Comparison of VCFV definitions for the 1st case using the 2nd approach,
with the expected value to be He =

1
8
√
2
.

In this case, the Barycentric definition demonstrates higher accuracy, while
the Voronoi and Corrected Voronoi definitions produce identical results due
to the absence of obtuse triangles. Additionally, the two approaches used for
computing the position vector gradient yield nearly identical results. To draw
a more comprehensive conclusion about the accuracy of the different VCFV
definitions, a larger surface case is examined.

B) 2nd Case: Computation of H on a spherical surface mesh

Figure 2.15: H distribution on a spherical surface mesh using 1st approach.
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In this case, a spherical surface mesh composed of 522 nodes and 1040 trian-
gular elements is generated, Fig. 2.15. The sphere is assumed to have a unit
radius (R = 1), which means that the expected H at each node is equal to one.
To compare the different definitions, the accuracy of the computed maximum
and minimum H values across the mesh nodes is examined.

VCFV
Definition

Min Value of
Mean Curvature Error

Max Value of
Mean Curvature Error

Barycentric 0.758948018446 24.105% 1.69839015932 68.398%

Voronoi 0.765953911577 24.305% 1.000518315891 0.052%

Corrected Voronoi 0.941681791673 5.832% 1.222835972957 22.283%

Table 2.3: Comparison of VCFV definitions for the 2nd case using the 1st approach,
with the expected value to be He = 1.

VCFV
Definition

Min Value of
Mean Curvature Error

Max Value of
Mean Curvature Error

Barycentric 0.758949773150 24.105% 1.689380160545 68.938%

Voronoi 0.756967168630 24.303% 1.000725975853 0.073%

Corrected Voronoi 0.941683572258 5.832% 1.222835972957 22.286%

Table 2.4: Comparison of VCFV definitions for the 2nd case using the 2nd approach,
with the expected value to be He = 1.

This case, along with the previous observations, demonstrates that both ap-
proaches for computing the position vector gradient yield similar results. This
observation supports the statement that the second approach is essentially
an extension of the first, differing only in the form of the final expression,
where cotangent formula is used for area and gradient of position vector com-
putation. Consequently, the only difference in the performance between the
two approaches lies in the computational time. The second approach avoids
computing the normal vectors n⃗j at the edges of each node for H estimation,
resulting in significantly lower computational time, Fig. 2.16, with respect to
mesh size. Therefore, the second approach, based on the cotangent formula
for mean curvature computation, is selected for its effectiveness and superior
efficiency.

In addition, it is shown that the Voronoi definitions yield better accuracy than
the Barycentric one. However, it is not evident whether the Corrected Voronoi
definition provides a significant improvement over the standard Voronoi ap-
proach. To better evaluate the effectiveness of the correction, a larger test case
is examined: a spherical surface mesh consisting of 65404 nodes and 130804
triangular elements, Fig. 2.17. Table 2.5 demonstrates that the Corrected
Voronoi definition reduces the maximum error, but it simultaneously increases
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Figure 2.16: Diagram of computation time in respect of the number of mesh nodes.

Figure 2.17: H distribution on a spherical surface with a denser mesh using 1st

approach.
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VCFV
Definition

Min Value of
Mean Curvature Error

Max Value of
Mean Curvature Error

Voronoi 0.667805595388 33.219% 1.000006092205 0.001%

Corrected Voronoi 0.855245023023 14.475% 1.172605969246 17.261%

Table 2.5: Comparison of VCFV definitions for the 2nd case with a denser mesh and
using the 1st approach, with the expected value to be He = 1.

the error in the maximum value of H. Consequently, it can be inferred that
the Corrected Voronoi approach gives a lower average error compared to the
original Voronoi definition. However, the accuracy of the Corrected Voronoi
method remains insufficient and requires further improvement, which will be
investigated in a subsequent section.

2.5 Improving the Computation Method of Mean

Curvature

In Subsection 2.4.3, it was demonstrated that, among the methods suggested in the
literature, the most effective and efficient approach to compute H at each node is
to use the Voronoi area for the VCFV definition and the Cotangent Formula for the
gradient of the position vector. In this section, the weaknesses of this method are
demonstrated and further improvements are suggested.

Firstly, the two cases mentioned in subsection 2.4.3 are used to investigate the factors
that reduce the accuracy of the method.

A) 1st Case: Computation of H at a node surrounded by triangular elements

In this case, various combinations of r and Nt are tested, and their results are
compared in terms of accuracy in capturing the expected value at the central
node (1,1).

In Table 2.6, it is shown that increasing the number of triangles in the nodal
mesh requires a larger radius of the local coordinate system’s circle to compute
H with higher accuracy. This behavior can be attributed to the fact that, as
more triangles surround a node, the internal angles at the central node become
more acute which means that their cotangent are bigger. According to Eq.
(2.38), H depends on the gradient of the position vector and the nodal area,
both of which are expressed in terms of the cotangent of the triangle angles and
the lengths of their edges, as shown in Eqs. (2.36) and (2.41). Consequently,
to maintain a balanced curvature measure as the number of triangles and the
cotangent of their angles increase, the edge lengths must also increase. To
achieve this, the radius of the surrounding cycle needs to be appropriately
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Number of triangles Nt Radius r Mean curvature H Error

4 0.01 0.000000000001 100%

4 0.1 0.000000000000 100%

4 1 0.000000000000 100%

5 0.01 0.072800299907 17.627%

5 0.1 0.067947125457 23.127%

5 1 0.042823296080 51.551%

6 0.01 0.048223929680 11.511%

6 0.1 0.088235588150 0.173%

6 1 0.071299164710 19.334%

8 0.01 0.109777805277 24.199%

8 0.1 0.109319938405 23.681%

8 1 0.087570226432 0.926%

10 0.01 0.125554136686 45.023%

10 0.1 0.119588786695 35.299%

10 1 0.094460160490 6.869%

12 0.01 0.121375158747 37.320%

12 0.1 0.124723147891 41.108%

12 1 0.097167953030 9.933%

Table 2.6: H error of 1st case for various values of r and Nt.

enlarged.

Furthermore, Table 2.6 shows that for each triangle count, there exists a spe-
cific radius that yields the lowest error. This relationship is further explored
by running simulations with varying numbers of triangles and various radii
to identify the combinations that produce the desired H at the central node.
Each triangle count corresponds to a specific radius at which the computed
curvature matches the target value, Fig. 2.18. It is important to note that
for fewer than six triangles, the curvature vs. radius curves do not intersect
the target value. This indicates that with fewer than six peripheral nodes, it
becomes more challenging to accurately capture H at the center. One way
to address this limitation is to rotate the nodal mesh about its center so that
the peripheral nodes align more closely with the surface geometry, thereby
improving the accuracy of the curvature estimation at the central node. This
approach is examined for small numbers of triangles and a relatively small
cycle radius of r = 0.005, Fig. 2.19.

These observations show that in a mesh, having fewer than six triangles around
a node can reduce the accuracy of H for two reasons: first, it’s physically hard
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Figure 2.18: H values at the central point of a nodal mesh for different numbers of
triangles and radii.

Figure 2.19: H values at the central point of a nodal mesh for low numbers of
triangles and radius r = 0.005.

to capture the shape of a surface with so few triangles; second, the method
used to calculate the nodal area can give wrong results in the presence of
obtuse triangles. These problems will be explored further in the next case.

B) 2nd Case: Computation of H on a spherical surface mesh

This section examines the spherical surface mesh with radius R = 1, Fig. 2.15,
to investigate the causes of the deviation ofH from its expected value of 1. The
nodes with the largest errors are identified and displayed in Fig. 2.20. These
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(a) 1st perspective view of nodes with deviation
in H.

(b) 2nd perspective view of nodes with deviation
in H.

Figure 2.20: Different perspectives of view of nodes with deviation in H from the
expected value.

nodes are shown to belong to at least one obtuse triangle and are surrounded
by fewer than six neighboring triangles, supporting the observations made in
the previous case.

Of special interest is the example shown in the upper right of Fig. 2.20b,
where two nodes with four neighboring triangles appear identical in terms of
geometry and structure, yet their computed H differ. Upon closer analysis,
it becomes evident that these two cases are not entirely identical, as they
exhibit small but significant geometric differences, specifically in the angles
of the obtuse neighboring triangles. More precisely, the node with the higher
error has an obtuse angle of 104◦, while the node with the lower error has
an obtuse angle of 100◦, which indicates that the larger the obtuse angle,
the greater the error in computing H. These observations suggest that the
mean curvature computation model is highly sensitive to small changes in the
angles of obtuse triangles, a point that will be explored further in the following
subsections. Since the challenge of accurately capturing surface curvature
with too few surrounding nodes is not easily addressed, this section explores
potential improvements to the computational model. Specifically, it separately
examines the behavior of the position vector gradient and the Voronoi area
formulations in the presence of obtuse triangles.
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2.5.1 Behavior of the Position Vector Gradient Model in

Obtuse Triangles

For the computation of the position vector gradient, Eq. (2.39) is employed. This for-
mula evaluates the flux passing through the boundaries of the VCFV, as discussed in
Section 2.4.2. The method used to compute the flux associated with each triangular
element is applicable to all triangle types, including obtuse triangles. This indicates
that Eq. (2.36), along with the integral form of the Laplace–Beltrami operator, re-
mains valid even in the presence of obtuse angles. Therefore, no modifications are
strictly required for the computation of the gradient of the position vector. However,
in triangles with obtuse angles, the cotangent of those angles becomes negative. In
Eq. (2.36), one might interpret the cotangent terms as weights assigned to the edges
of the triangle. This becomes questionable for obtuse triangles, as negative weights
lack a clear physical interpretation. Therefore, changes to Eq. (2.36) are considered
to better handle cases with obtuse angles.

1. Evenly distributing the weight of an obtuse angle among the other angles

The first approach handles an obtuse angle in a triangle by setting its cotangent
to zero and redistributing its value equally to the cotangents of the other two
angles. This ensures that all weights remain non-negative while preserving
their total sum. For example, consider a triangle △ABC, where α is the
obtuse angle at vertex A, and β and γ are the acute angles at vertices B and
C, respectively. In this case, the adjusted cotangent values are given by:


cot β = cot β + cotα

2

cot γ = cot γ + cotα
2

cotα = 0
(2.45)

Eq. (2.45) is appropriately adapted when either β or γ is the obtuse angle. This
method is applied to the second case of the spherical surface mesh described
in Section 2.4.3, and the results are presented in Table 2.7.

Cotangent
Weights

Min Value
of Mean
Curvature

Error
Max Value
of Mean
Curvature

Error

Original Method 0.941683572258 5.832% 1.222835972957 22.286%
Equal distribution
to acute angles 1.000000983861 0.0001% 1.290301563957 29.030%

Table 2.7: Comparison of the 1st modification of Cotangent Weights with the Original
Method in a spherical surface mesh, with the expected value to be H = 1.
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(a) 1st perspective view of nodes with deviation
in H.

(b) 2nd perspective view of nodes with deviation
in H.

Figure 2.21: Different perspectives of view of nodes with deviation in H from the
expected value after the 1st cotangent weights modification.

Table 2.7 shows that the average error in the computed H did not improve
with this modification. Furthermore, the problematic nodes identified in Fig.
2.20 continue to produce the highest errors. The key difference is that both
the minimum and maximum values of H have increased, Fig. 2.21.

2. Distributing the weight of an obtuse angle proportionally to the cotangent val-
ues of the other angles

In the previous approach, the cotangent of the obtuse angle was evenly dis-
tributed to the two acute angles, regardless of the triangle’s shape. In this
approach, the distribution is weighted: each acute angle receives a portion of
the obtuse angle’s cotangent proportional to its own cotangent relative to the
sum of the two acute cotangents. This way, the sharper the angle, the larger
the share it receives.

Similarly to Eq. (2.45), here the adjusted cotangent values are given by:


S = cot β + cot γ

cot β = cot β + cotβ
S

cotα
cot γ = cot γ + cotγ

S
cotα

cotα = 0

(2.46)

By applying Eq. (2.46) to the spherical surface mesh, the results presented in
Table 2.8 are obtained. This modification yields slightly improved accuracy.
To further validate this improvement, the denser spherical surface mesh, Fig.
2.17, is also examined, and the corresponding results are reported in Table 2.9.
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Cotangent
Weights

Min Value
of Mean
Curvature

Error
Max Value
of Mean
Curvature

Error

Original Method 0.941683572258 5.832% 1.222835972957 22.286%
Cot-based distribution

to acute angles 1.000000983861 0.0001% 1.221313445349 22.131%

Table 2.8: Comparison of the 2nd modification of Cotangent Weights with the Orig-
inal Method in a spherical surface mesh, with the expected value to be H = 1.

Cotangent
Weights

Min Value
of Mean
Curvature

Error
Max Value
of Mean
Curvature

Error

Original Method 0.855245023012 14.475% 1.1726059692463 17.261%
Cot-based distribution

to acute angles 1.000000000012 10−9% 10.085489146948 908.548%

Table 2.9: Comparison of the 2nd modification of Cotangent Weights with the Orig-
inal Method in a denser spherical surface mesh, with the expected value to be H = 1.

In this case, the error in the maximum H, Table 2.9, is significantly high. The
nodes with the largest errors are mostly shared by four triangles, , Fig. 2.22,
with the obtuse ones causing the biggest deviations. In addition, these obtuse
triangles strongly influence nearby nodes, which exhibit large errors even when
connected to six triangles. Consequently, this modification of the weights fails
to improve the accuracy of the mean curvature computation.

3. Distributing the weight of an obtuse angle proportionally to the edges opposite
to the other angles

In this approach, the distribution is weighted differently: each acute angle
receives a portion of the obtuse angle’s cotangent proportional to the length
of the edge opposite it, relative to the sum of the lengths of the two opposing
edges.

In a similar way to Eq. (2.46), the cotangent values are modified as follows:


S = LAB + LAC

cot β = cot β + LAC

S
cotα

cot γ = cot γ + LAB

S
cotα

cotα = 0

(2.47)

By applying Eq. (2.47) to the spherical surface mesh, the results presented in
Table 2.10 are obtained. As shown, this modification does not improve the
accuracy of the mean curvature computation. Similar to the first modification,
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(a) 1st perspective view of nodes with deviation in H.

(b) 2nd perspective view of nodes with deviation in H.

Figure 2.22: Different perspectives of view of nodes with deviation in H from expected
value after 2nd the cotangent weights modification.

it increases both the maximum and minimum curvature values, while the error
remains high for nodes that are shared by four triangles.

Cotangent
Weights

Min Value
of Mean
Curvature

Error
Max Value
of Mean
Curvature

Error

Original Method 0.941683572258 5.832% 1.222835972957 22.286%
Edge-based distribution

to acute angles 1.000000983861 0.0001% 1.400338639440 40.034%

Table 2.10: Comparison of the 3rd modification of Cotangent Weights with the Orig-
inal Method in a spherical surface mesh, with the expected value to be H = 1.

Consequently, none of the proposed modifications to the cotangent weights improved
the accuracy of mean curvature computation. Based on these adjustments, it can
be concluded that setting negative cotangent values to zero and redistributing their
weight, as frequently proposed in the literature, did not reduce the deviation in
computed H for meshes with obtuse triangles. Therefore, further improvement in
the curvature computation depends on the behavior of the VCFV definition in the
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presence of obtuse triangles, which will be investigated in the following subsection.

2.5.2 Behavior of the Voronoi Area Model in Obtuse Trian-

gles

As shown in Section 2.4.3, the Corrected Voronoi Model is the most accurate VCFV
definition identified so far. This model is generally based on treating an obtuse
triangle as a right triangle, placing the circumcenter at the midpoint of the edge
opposite the obtuse angle. However, this assumption still results in accuracy issues
when obtuse triangles are present. This indicates the need to explore alternative
methods for element area partitioning and subarea distribution to each node that
belongs to obtuse triangle, which will be examined later in this section. Since
the Corrected Voronoi definition performs well for acute triangles, the proposed
improvements by this diploma thesis will apply only to the obtuse triangles in the
mesh, while the others will remain unchanged.

1. Barycentric area distribution in obtuse triangles

In this approach, the Barycentric definition of VCFV, often favored in liter-
ature due to its simplicity, described in Section 2.3.1 is applied only in the
case of the obtuse triangles of the mesh. This definition is often favored in the
literature and widely used in software implementations due to its simplicity.
This modification is applied in the spherical surface mesh of Fig. 2.15.

VCFV Definition
for obtuse triangles

Min Value
of Mean
Curvature

Error
Max Value
of Mean
Curvature

Error

Corrected Voronoi 0.941683572258 5.832% 1.222835972957 22.286%

Barycentric 0.854380453757 14.562% 1.577471699278 57.747%

Table 2.11: Comparison of the 1st modification of VCFV definition for obtuse tri-
angles with the original one in a spherical surface mesh, with the expected value to be
H = 1.

Table 2.11 shows that this modification worsens the mean curvature compu-
tation at nodes associated with obtuse triangles. This suggests that assigning
a smaller area contribution of 1

3
to the vertex with the obtuse angle, instead

of 1
2
, increases the error, indicating that equal or larger contributions should

also be investigated.

2. Fixed area portioning for Corrected Voronoi in obtuse triangles

This section examines different methods of distributing a triangle’s area among
its vertices. Specifically, it aims to determine the optimal portion assigned
to the vertex with the obtuse angle, assuming the remaining area is equally
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divided between the two acute-angle vertices. To achieve this, the minimum
and maximum values of H on the two spherical surface meshes that were
previously used, are examined for their proximity to the expected value of 1.

Figure 2.23: H values on two spherical surface meshes for different area portions at
obtuse vertices.

There is a specific portion in each mesh that is higher than the portion of
1
2
that was suggested in the Corrected Voronoi model, which minimizes the

discrepancy between the minimum and maximum value of H from the target
one, Fig. 2.23. However, this approach may not be optimal for each mesh, as it
only considers the nodes with the highest errors while neglecting other nodes
that belong to obtuse triangles. For a more precise investigation, all nodes
belonging to obtuse triangles are examined to determine which area portion
associated with the obtuse angle yields the expected H value.

There is a distinct area portion at the obtuse angle of each node that results
in the computed H to be equal to the expected value, Fig. 2.24. It is also
observed that as the obtuse angle of a node increases, the corresponding area
portion of the obtuse triangle required to achieve accurate H also increases.
Additionally, it is worth noting that for nodes 21 and 510, which have nearly
identical obtuse angles, the required area portions are not exactly the same.
This difference arises because the two nodes have different lengths for the edge
opposite the obtuse angle, with the node having the longer edge requiring a
larger portion of the area. That being said, it can be concluded that the
optimal area portions assigned to each vertex are not constant for all obtuse
triangles, but are strongly dependent on their specific shape. To validate this
observation, a spherical surface mesh is examined by assigning to the obtuse-
angle vertex the area portion that minimizes the error across most obtuse
triangles. This optimal portion in the case of the spherical surface mesh is
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Figure 2.24: H at nodes belonging to obtuse triangles in a spherical surface mesh of
522 nodes versus the area portion at obtuse vertex.

approximately 0.57 for the vertex with the obtuse angle, Fig. 2.24, so the area
distribution goes as follows:

AA = 0.57A△ABC , AB = 0.215A△ABC , AC = 0.215A△ABC (2.48)

where A is assumed to be the obtuse angle in the triangle △ABC. Using this
distribution, the error in the maximum value of H is reduced, while the error
in the minimum value increases, Table 2.12.

VCFV Definition
for obtuse triangles

Min Value of
Mean

Curvature
Error

Max Value of
Mean

Curvature
Error

Corrected Voronoi 0.941683572258 5.832% 1.222835972957 22.286%
Fixed Portions

for Area Distribution 0.937547225940 6.245% 1.117369313942 11.737%

Table 2.12: Comparison of the 2nd modification of VCFV definition for obtuse tri-
angles with the original one in spherical surface mesh, with the expected value to be
H = 1.

The nodes with the maximum and minimum H are shown in Fig. 2.20(b). As
illustrated, the node with the maximum curvature and the highest error (node
12) is a vertex shared by two triangles with obtuse angles. This indicates that
the selected area portion for obtuse angles effectively reduces the error. This
observation is further supported by Fig. 2.24, where the selected obtuse-angle
portion at node 12 more closely matches the region intersecting the target
value than before. On the other hand, the error at the node with the minimum
curvature increases, suggesting that the selected area portion for acute angles
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in obtuse triangles is suboptimal. To enable a more comprehensive comparison
with the original Corrected Voronoi Method, the Relative Mean Absolute Error
(RMAE) of the H should be introduced. This gives a clearer representation
of the error distribution across all nodes, rather than focusing only on the
extreme cases.

RMAE =
1

N

N∑
i=1

|Hcomputed
i −H true

i |
|H true

i |
(2.49)

VCFV Definition for Obtuse Triangles Relative Error
Corrected Voronoi 0.223%

Fixed Portions for Area Distribution 0.148%

Table 2.13: RMAE of the 2nd modification of the VCFV definition for obtuse trian-
gles, compared to the original method on a spherical surface mesh.

The relative mean absolute error improves when using the mean area por-
tion for obtuse angles in order to reach target value, Table 2.14. To draw
more general conclusions, the case of the denser spherical surface mesh is also
examined.

VCFV Definition for Obtuse Triangles Relative Error
Corrected Voronoi 0.059%

Fixed Portions for Area Distribution 0.047%

Table 2.14: RMAE of the 2nd modification of the VCFV definition for obtuse trian-
gles, compared to the original method on a denser spherical surface mesh.

In both cases, the RMAE of H is reduced, but this improvement does not hold
for each node individually. Due to the local nature of the H, it is essential
to achieve optimal accuracy at every point of the mesh. The results from
the two cases suggest that, in obtuse triangles, assigning a greater portion
than 1

2
of the area to the vertex with the obtuse angle leads to more accurate

curvature estimation. However, as demonstrated in the first case, distributing
the remaining area equally between the acute angles does not yield equally
effective results. Additionally, different triangles have different ideal portions
for the obtuse vertex, indicating that a fixed portion is insufficient. These
findings highlight the need for a new method that adapts the correction of the
Voronoi area according to the specific geometry of each obtuse triangle.

3. Angle-based modification of Corrected Voronoi area distribution in obtuse tri-
angles

In this approach, the area of the triangle is distributed to the obtuse vertex
and the two acute-angle vertices based on the relative sizes of their angles,
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rather than with a constant portion. Assuming that α is the obtuse angle at
vertex A of triangle △ABC, and β and γ are the acute angles at vertices B
and C, respectively, the area assigned to each vertex is determined as follows:


S = α + β + γ
AA = α

S
A△ABC

AB = β
S
A△ABC

AC = γ
S
A△ABC

(2.50)

Eq. (2.50) is appropriately adapted when either β or γ is the obtuse angle. The
method is applied in the spherical surface mesh of Fig. 2.15 and the results of
H measures are presented in Table 2.15.

(a) 1st perspective of view of nodes with devia-
tion in H.

(b) 2nd perspective of view of nodes with devi-
ation in H.

Figure 2.25: Different perspectives of view of nodes with deviation in H from expected
value after the 3rd modification of Corrected Voronoi area.

VCFV Definition
for obtuse triangles

Min Value of
Mean

Curvature
Error

Max Value of
Mean

Curvature
Error

Corrected Voronoi 0.941683572258 5.832% 1.222835972957 22.286%
Angle-based modification
of Corrected Voronoi 0.957099947443 4.290% 1.106193049107 10.619%

Table 2.15: Comparison of the 3rd modification of VCFV definition for obtuse tri-
angles with the original one in a spherical surface mesh, with the expected value to be
H = 1.

The error in the maximum value of H is reduced, Table 2.15. However, a de-
tailed analysis of the spherical surface mesh in Fig. 2.25 reveals that although
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the maximum value improves, new nodes - previously unaffected under the
Corrected Voronoi definition - now show significant errors. This raises con-
cerns that the improvement may be coincidental rather than systematic. To
investigate this further, the denser spherical mesh is also examined and its
results are given in Table 2.16. As shown, while H error may improve at
certain nodes with this modification, there is a risk that it may worsen at oth-
ers. This indicates that the correction is not universally effective, and further
investigation into alternative improvement methods is necessary.

VCFV Definition
for obtuse triangles

Min Value of
Mean

Curvature
Error

Max Value of
Mean

Curvature
Error

Corrected Voronoi 0.8552450230 14.475% 1.172605969246 17.261%
Angle-based modification
of Corrected Voronoi 0.7887844490 21.122% 1.089335782697 8.933%

Table 2.16: Comparison of the 3rd modification of VCFV definition for obtuse trian-
gles with the original one in a denser spherical surface mesh, with the expected value
to be H = 1.

4. Geometry-adaptive modification of Corrected Voronoi area distribution in ob-
tuse triangles

In this approach, a new correction to the previously described Corrected
Voronoi Method is proposed in this diploma thesis, taking into account the
fact that the circumcenter of an obtuse triangle lies outside the triangle. In
the existing correction discussed in Section 2.3.3, an obtuse triangle is treated
as if it were a right triangle. While this approximation may be effective when
the obtuse angle is close to 90o, the accuracy of the Voronoi area computation
decreases as the angle becomes more obtuse. To address this limitation, a new
modification of the Corrected Voronoi Method is proposed. This enhanced
correction adapts according to the degree of deviation of the obtuse triangle
from a right triangle. Assuming an obtuse triangle △ABC, with C being the
vertex with obtuse node, the area distributed to each vertex is given as:

AA =
1

4
pAA△ABC , AB =

1

4
pBA△ABC , AC =

1

2
pCA△ABC (2.51)

where pA, pB and pC are the corrective portions applied to the right triangle
distribution in the case of obtuse triangles.

To determine the appropriate correction, the area portions of the obtuse tri-
angle are compared to those of its corresponding right triangle. Following the
same model used for acute triangles, the sub-area associated with each vertex
is composed of two triangular regions. Each of these regions is defined by a
bisector, a radius R connecting the circumcenter to the vertex, and half of the
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adjacent edge passing through that vertex. This geometric correspondence is
illustrated analytically in Fig. 2.26.

Figure 2.26: Correspondence of sub-areas from acute to obtuse triangle.

The correspondence to the right triangle is the same as for the obtuse one,
with the key difference that point O lies at the midpoint of the hypotenuse
and as a result areas A4 and A5 are not visible.

Now that the desired sub-area distribution has been defined, a correction based
on a corresponding right triangle can be proposed. To do so, each acute vertex
of the obtuse triangle is the approximation of a corresponding right triangle,
Fig. 2.27.

Figure 2.27: Corresponding right triangles for the acute vertices A and B of the
obtuse triangle △ABC.

For the vertex A of the obtuse △ABC and following Section 2.3.3, the area of
△AOK is assigned. This can be viewed as the approximation of the sub-area
△AOK ′ in the corresponding right triangle △ABC ′. For the vertex B of the
obtuse △ABC as well, the area of △BOL is assigned. This can be viewed as
the approximation of the sub-area △BOL′ in the corresponding right triangle
△ABC ′′.
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In the right triangle△ABC ′, the area distribution portion is defined as Area[△AOK′]
Area[△ABC′]

.
In order to find to appropriate correction p1 for the corresponding vertex of
the obtuse one, the correction of the sub-area of the vertex and the area of
the triangle from the obtuse to the right triangle needs to be provided. The
sub-area of vertex A and the area of the right triangle are given as follows:

A△AOK′ =
1

2
|K ′O| · |AK ′|, A△ABC′ =

1

2
|C ′B| · |AC ′| (2.52)

where

|AK ′| = b

2
cos(∠K ′AK), |K ′O| =

√
c2

4
− b2

4
cos2(∠K ′AK).

Given that
∠K ′AK =

π

2
− (π − ∠C) = ∠C − π

2
,

and denoting the deviation of the obtuse angle from the right as ∠∆C, we
have:

|AK ′| = b

2
cos(∠∆C), |K ′O| = 1

2

√
c2 − b2 cos2(∠∆C).

Similarly,

|AC ′| = b cos(∠∆C), |C ′B| =
√
c2 − b2 cos2(∠∆C).

As a result, Eq. (2.52) becomes:

A△AOK′ =
1

8
b cos(∠∆C)

√
c2 − b2 cos2(∠∆C)

A△ABC′ =
1

2
b cos(∠∆C)

√
c2 − b2 cos2(∠∆C) (2.53)

The corresponding areas in the case of the obtuse triangle △ABC are given
as:

A△AOK =
1

8
ab cos(∠∆C), A△ABC =

1

2
ab cos(∠∆C) (2.54)

The corrective portion pA is derived by applying corrections to both the sub-
area associated with vertex A sub-area and and the overall area of the triangle.
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Therefore, by appropriately dividing the expressions in Eqs. (2.54) and (2.53),
the correction for the vertex A is given as:

pA =
A△AOK

A△AOK′
· A△ABC

A△ABC′
=

a2

c2 − b2 cos2(∠∆C)
(2.55)

By following the exact same procedure for vertex B, its correction is given by:

pB =
A△BOL

A△AOL′
· A△ABC

A△ABC′′
=

b2

c2 − a2 cos2(∠∆C)
(2.56)

Following the same approach as in Eqs. (2.55) and (2.56), and considering that
the area attributed to vertex C in the corresponding right triangle consists of
the sum of the sub-areas assigned to the other two vertices, it follows that the
correction portion pC is given by:

pC =
c2

(a2 + b2) cos2(∠∆C)
(2.57)

Portions pA, pB, and pC represent the adjustments made to the sub-area distri-
bution when an obtuse triangle is approximated as a right triangle. However,
this approach neglects the fact that, in an obtuse triangle, the circumcenter
lies outside the triangle. This causes areas A4 and A5 to appear behind the
other area regions, Fig. 2.26. As a result, the sub-areas attributed to vertices
A and B are underestimated, since they miss the parts distorted by this ge-
ometric folding, while the sub-area of vertex C is overestimated. To address
this issue, additional corrections must be introduced to properly account for
the redistribution of areas A4 and A5. Specifically, the overestimated portions
of A1 and A2, which extend in front of A4 and A5, should be subtracted from
the area attributed to vertex C. Meanwhile, the portions of A3 and A6 that
lie in front of A4 and A5 should be added to the areas assigned to vertices A
and B, respectively.

These additional corrections can be expressed as the ratio of the folded areas
to the corresponding areas in the case of a right triangle. However, since these
areas are not easily identifiable in the right triangle configuration, the correc-
tions can alternatively be formulated as the product of the area attributed to
each vertex in the obtuse triangle with the corresponding relative area when
the triangle is right. More specifically, for vertex A, the correction correspond-
ing to the folded region can be expressed as the ratio of area A6, attributed
to vertex A, to the total area of the triangle, multiplied by the corresponding
portion in the right triangle case. To formulate this, the area A6 is defined as
follows:
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A△AOM =
1

2
|MA| · |OM | = 1

2
|MA|

√
R2 − |MA|2 (2.58)

Denoting the edges of the obtuse triangle in Fig. 2.26 as |BC| = a, |AC| = b,
and |AB| = c, and using the expression for R given in Eq. (B.3), Eq. (2.58)
becomes:

A△AOM =
1

2
· b
2
·

√(
b

2 sin(∠B)

)2

−
(
b

2

)2

=
1

8
b

√
b2(1− sin2(∠B))

sin2(∠B)
=

1

8
b2

√
cos2(∠B)

sin2(∠B)

A△AOM =
1

8
b2 cot(∠B) (2.59)

Using the cotangent formula of ∠B, Appendix C, Eq. (2.59) becomes:

A△AOM =
1

32
b2
a2 + c2 − b2

A
(2.60)

The area of the obtuse triangle is given by the 2nd Eq. of (2.54). Dividing Eq.
(2.60) with Eq. (2.54), one gets:

A△AOM

A△ABC

=
1

32
b2
a2 + c2 − b2

A2
=

1

32
b2

a2 + c2 − b2

1
4
a2b2 cos2(∠∆C)

A△AOM

A△ABC

=
1

8

a2 + c2 − b2

a2 cos2(∠∆C)
(2.61)

As previously discussed, for a right triangle, the circumcenter O coincides
with the midpoint of the edge opposite to the right angle. In this scenario, the
sub-areas A4 and A5 vanish. However, this simplification poses a difficulty for
defining additional corrections for vertex C, since the corresponding portion in
the right triangle would be zero and the number of sub-areas reduce from six
to four. To resolve this, the corresponding portion of A6 in the right triangle
is considered to be half of the sub-area attributed to vertex A. This sub-area
is equal to 1

8
of the total area of the right triangle. Taking this into account,
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the corrective portion pA must be adjusted by an additional correction due to
the contribution of A6, which lies outside the obtuse triangle. This correction
is given by 1

8
· A△AOM

A△ABC
.

Therefore, the final corrected portion for vertex A, using Eqs. (2.55) and (2.61),
is expressed as:

pA =
a2

c2 − b2 cos2(∠∆C)
+

1

64

a2 + c2 − b2

a2 cos2(∠∆C)
(2.62)

Similarly, for vertex B, the additional correction is expressed as the ratio of
area A3, attributed to vertex A, to the total area of the triangle, multiplied
by the corresponding portion in the right triangle case. Following the same
procedure as for the additional correction of vertex A, the following correction
is obtained:

pB =
b2

c2 − a2 cos2(∠∆C)
+

1

64
· b2 + c2 − a2

b2 cos2(∠∆C)
(2.63)

Similarly to vertices A and B, vertex C requires an additional correction due
to portions of areas of A1 and A2 that lie outside the obtuse triangle and a
and are incorrectly attributed to it. Applying the same methodology used
for the other two vertices, it can be shown that the term to be subtracted
from pC has the same form as the corrections for pA and pB but with the
appropriate substitution of geometric quantities corresponding to vertex C.
The final corrective portion pC is thus given as follows:

pC =
c2

(a2 + b2) cos2(∠∆C)
− 1

64
· a2 + b2 − c2

c2 cos2(∠∆C)
(2.64)

By applying the proposed geometry-adaptive correction method to the pre-
viously discussed first case involving a spherical mesh, the results shown in
Table 2.17 were obtained. As illustrated, a significant reduction in error is
achieved when obtuse triangles are treated in accordance with their geometric
characteristics. To enable a more comprehensive evaluation, the RMAE of
the proposed method is compared with that of the original Corrected Voronoi
Method for both the initial and the denser spherical surface meshes, as pre-
sented in Tables 2.18 and 2.19. In all cases, the RMAE is reduced by up to an
order of magnitude. Furthermore, all nodes previously identified as outliers,
due to their deviation from expected values, Fig.2.15, demonstrate notable
improvement, which leads to a smoother distribution of H across the spherical
mesh, Fig.2.28.

In order to achieve a smoother and more uniform distribution of H across the
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VCFV Definition
for obtuse triangles

Min Value of
Mean

Curvature
Error

Max Value of
Mean

Curvature
Error

Corrected Voronoi 0.941683572258 5.832% 1.222835972957 22.286%
GAC Voronoi 0.995123547932 0.488% 1.006219135819 0.622%

Table 2.17: Comparison of the 4th modification of VCFV definition for obtuse tri-
angles with the original one in spherical surface mesh, with the expected value to be
H = 1.

VCFV Definition for Obtuse Triangles Relative Error
Corrected Voronoi 0.223%

GAC Voronoi 0.025%

Table 2.18: RMAE of the 4th modification of the VCFV definition for obtuse trian-
gles, compared to the original method on a spherical surface mesh.

VCFV Definition for Obtuse Triangles Relative Error
Corrected Voronoi 0.059%

GAC Voronoi 0.0066%

Table 2.19: RMAE of the 4th modification of the VCFV definition for obtuse trian-
gles, compared to the original method on a denser spherical surface mesh.

(a) 1st perspective view of nodes with deviation
in H.

(b) 2nd perspective view of nodes with deviation
in H.

Figure 2.28: Different perspectives of view of nodes with deviation in H from expected
value after 4th modification of Corrected Voronoi.

mesh, a smooth transition between area attribution formulas is introduced.
Specifically, the transition between the Corrected Voronoi formula for acute
triangles and the Geometry-Adaptive Corrected (GAC) Voronoi formula for
obtuse triangles near the right-angle threshold is carefully treated. A smooth
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blending is applied between the standard Corrected Voronoi area attribution
and its geometry-adaptive version that accounts for obtuse triangle configu-
rations. The objective is to avoid abrupt changes in area distribution when a
triangle’s internal angle approaches or slightly exceeds 90◦.

To achieve this, a smooth transition function is defined using a sigmoid-type
function centered at 90◦. The transition is controlled by two parameters: steep-
ness k, which controls the steepness of the transition function, and threshold,
which is the central angle value (in degrees) at which the transition is bal-
anced. When the angle at a vertex falls within a predefined interval around
90◦, specifically [88◦, 92◦], the method computes a weighted average of the area
values obtained from the two methods. The transition weight t is calculated
using a sigmoid-like function, defined as:

t =
1

1 + e−k·(θ−90)
,

where θ is the vertex angle in degrees. The final area attributed to each vertex
is given as a convex combination:

Ai = (1− t) · AVoronoi
i + t · AObtuse

i ,

ensuring smooth variation and numerical stability when involving obtuse tri-
angles. For a moderately smooth transition, a value of k = 2 was used. By
applying this transition, the error in minimum value of H is further improved,
Table 2.20.

VCFV Definition
for obtuse triangles

Min Value
of Mean
Curvature

Error
Max Value
of Mean
Curvature

Error

Corrected Voronoi 0.9416835723 5.832% 1.2228359730 22.286%
SGAC Voronoi 0.9980752485 0.192% 1.0062191358 0.622%

Table 2.20: Comparison of the 4th modification with smooth transition of VCFV
definition for obtuse triangles with the original one in spherical surface mesh, with the
expected value to be H = 1.

As demonstrated, the Smoothed Geometry-Adaptive Corrected (SGAC) Voronoi
Method achieves the highest level of accuracy. The SGAC Voronoi method
is also important for the case of adjoint-based design optimization, as it re-
assures differentiability, when combining the Corrected Voronoi Method for
the acute and right triangles with the GAC Voronoi Method for the obtuse
ones. In a subsequent section it will be further illustrated that this method
surpasses all others proposed in the literature. Therefore, it has been chosen
as the foundation for the methodology employed in this study.
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Chapter 3

Computation of Gauss Curvature

on Surface Meshes

3.1 Introduction

In this section, a quick introduction to the meaning of the Gauss curvature measure
os a surface in the R3 space is provided. As described in Chapter 1, Gauss curvature
of a point is the product of the two principal curvatures κ1 and κ2. To ultimately
compute the principal curvatures κ1 and κ2 for determining the total curvature at
each node, it is necessary to define both the mean curvature H and the Gaussian
curvature K. Therefore, similarly to the mean curvature H, computational methods
for estimating the Gauss curvature K must also be thoroughly investigated. In this
work, the magnitude of Gauss curvature will be denoted asK and its sign depends on
the signs of the principal curvatures, which can be defined from the way the normal
vector N⃗ changes along tangent directions. For the smooth surface it measures the
infinitesimal bending of the surface compared to the flat tangent plane. Instead of
comparing the surface with the tangent plane, it can equally be considered as the
turn of the normal vector along the surface. That being said, the sign of K conveys
information about the local shape of a surface at a point. Positive K means that
both principal curvatures have the same sign, which means that surface curves in
the same direction along all direction. This indicates that the surface is locally
convex or elliptic. K = 0 means that the surface is flat or cylindrical at that point,
according to if one or both principal curvatures are zero. Finally, negative K means
that he surface curves upward in one direction and downward in the perpendicular
direction and indicates that the surface is saddle-shaped or hyperbolic at that point.

Regarding the physical meaning of the Gauss curvature can be obtained by consid-
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ering how triangles behave on different types of surfaces. More specifically, if K = 0
that means that a triangle embedded in the surface will have sum of angles equal to
π. The cylindrical surface is behaving similarly to the flat one as regards the sum
of triangle’s angles. If K is positive, the surface bends outward like a dome, which
means that an embedded triangle to it will have sum of angles greater than π. If K
is negative, the surface bends like saddle, which means that an embedded triangle
to it will have sum of angles less than π. These observations are demonstrated in
the simple example of surface with mean curvature H < 0, but different signs of
Gauss curvature K, Fig. 3.1.

(a) K > 0, H < 0 (Bowl surface). (b) K < 0, H < 0 (Saddle surface).

(c) K = 0, H < 0 (Parabolic Cylin-
der).

Figure 3.1: Surface shapes with different signs of Gauss curvature K.

3.2 Approximation of Gauss Curvature on a Sur-

face

This section explores methods for calculating K at the nodes of an unstructured
mesh. Similar to H, K is invariant quantity for a structured mesh, meaning that
it depends solely on surface geometry and remains unaffected to any change in
parameterization. However, since an unstructured mesh cannot be parameterized
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in a straightforward way, alternative computational methods must be considered.
To achieve this, as described in Section 1.4 of [19], the Gauss map function must
be introduced. This function g : S → S2 maps each point p on the surface patch S
to the tip of its normal vector n(p), translated onto the unit sphere S2 ⊂ R3, Fig.
3.2. All the image points constitute a region on the unit sphere, whose area is called
image area and is equal to the total K of the patch. It is easy to see that the flatter
the surface patch, the more its normal vectors at p and q align on the unit sphere,
leading to a smaller image area consequently near- zero K. However, the reverse is
not necessarily true, as even when the image area on the unit sphere is small, the
patch may not be flat. This can happen when the normal vectors vary in direction
and change sign across the patch, causing the Gauss map to fold the surface over
itself and concentrate the image into a small region, despite the curvature being
significant.

Figure 3.2: Gauss map of the normal vectors at points on a patch S of a smooth
surface onto the unit sphere S2.

The above definition is extended to the case of a discretized surface by computing
the Gaussian curvature at each mesh node. As described above, K over a domain
Ω ⊂ S is given by the area of the image to the unit sphere, which is expressed as
k(Ω) = Area(g(Ω)). In the case of the discretized surface, K is evaluated at each
point, which means that the domain Ω here corresponds to a small area around a
node, denoted as AM . The normal vectors that are mapped to the unit sphere are
those of the node’s adjacent faces. As a result, the total K at point p shown in Fig.
3.3 is given by:

K(p) = lim
diam(A)→0

AG
M

AM

(3.1)

where AG is the area of the region on the unit sphere formed by the image of the
normals of faces around p.

As mentioned, in the discretized surface the curvature measure is defined in its nodes,
while its elements, when triangles, are flat and thus contribute zero curvature. Since
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Figure 3.3: Gauss map function of normal vectors of the faces adjacent to a point p
on a discretized surface onto the unit sphere S2.

Figure 3.4: Variation of local curvature around node p with respect to the vertex
angle excess 2π − θ(p).

K is an invariant geometric quantity, its total value at each node remains constant
even as the associated area AM shrinks, as the topological structure is preserved.
This leads to a fundamental issue in Eq. (3.1) as the denominator tends to zero,
while the total curvature remains fixed, which makes the limit to diverge whenever
the neighborhood is not locally flat. Therefore, Eq. (3.1) is not suitable for defining
Gauss curvature on unstructured meshes and another definition of it is required.

To define discrete Gauss curvature, the total vertex angle definition needs to pro-
vided. If p is a point in surface S with N number of adjacent elements, then the
vertex angle of the adjacent face fi at vertex p is denoted as θi. Then, the total
vertex angle is given as:

θ(p) =
N∑
i=1

θi(p) (3.2)

If the local neighborhood (star) of a vertex is flat, the total vertex angle is equal to
2π. Otherwise, the sign of the vertex angle excess 2π − θ(p) provides information
about the local curvature at point p, Fig. 3.4.
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In order to derive the formula of K at each point, the Gauss-Bonnet Theorem is
used. This theorem has multiple expressions, but the one that is more useful in this
scope is the Gauss-Bonnet Formula for an embedded triangle. Assuming a surface
S in R⊯ and T to be a a triangle embedded in surface and ∂T to be the boundary
of this triangle, then the Gauss-Bonnet Theorem is expressed as follows:

∫∫
T

K dA+

∫
∂T

κg ds+
3∑

i=1

αi = 2π, (3.3)

where κg is the geodesic curvature along the boundary ∂T , which is a measure that
describes how much a curve on a surface deviates from being perfectly embedded to
it, and αi are the exterior jump angles at the three corners of the triangle.

If Eq. (3.3) is applied to a triangulated discrete surface, then each triangle T is
considered flat. This implies that K = 0 almost everywhere inside each triangle.
Consequently, the total K is concentrated only at the nodes of the mesh. As de-
scribed in the definition of Eq. (3.1), the discrete Gauss curvature at a node is
computed over its corresponding area AM , which represents the area of its finite
volume cell, Fig. 2.4. Therefore, Eq. (3.3) can be expressed for each node p as:

∫∫
AM

K dA+

∫
∂AM

κg ds+
Nt∑
i=1

αi = 2π, (3.4)

where Nt is the number of triangles adjacent to the node, and αi denotes the exterior
angle at each vertex of the polygonal boundary ∂A, Fig. 3.5.

The boundary ∂AM is comprised by straight lines in the embedding space and
the geodesic curvature along each edge is zero. Therefore, the boundary integral
vanishes:

∫
∂AM

κg ds = 0,

Hence, Eq. (3.4) reduces to:

∫∫
AM

K dA+
Nt∑
i=1

αi = 2π (3.5)

In order to express the angle αi in terms of quantities from the triangular elements, it
is necessary to specify which definition of the VCFV area is being used. As discussed
in Section 2.4.3, the most accurate formulation is the GAC Voronoi area. This
method defines the area as the standard Voronoi method when the triangles adjacent
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Figure 3.5: Exterior jump angles αi and interior angles θi of Voronoi area AM that
corresponds to node p.

to the node are non-obtuse, while for obtuse triangles, it applies corrections to the
sub-area distributions assigned to each vertex. In the context of mean curvature
computation, these corrections primarily aim to improve the accuracy of the node-
associated area, which directly influences the precision of the curvature calculation,
Eq. (2.38). This is achieved by adjusting the way in which the area of each triangle
is distributed among its vertices. Consequently, the corrective approach focuses on
redistributing sub-areas without altering the definition of the circumcenter, even in
the case of obtuse triangles.

Therefore, it is acceptable to use the original Voronoi area definition for both obtuse
and non-obtuse triangles in order to derive the K formula. In this definition, the
polygonal AM of the node is constructed by connecting the midpoints of edges
and the circumcenters of the adjacent triangles, Fig. 3.5. As a result, when this
construction is applied to the Voronoi region, the external angles along each edge
are zero, since the boundary segments remain perpendicular to the corresponding
triangle edges. Furthermore, the external angle at each circumcenter is equal to the
interior angle θj of the corresponding triangle at vertex p, since it is formed by edges
that are perpendicular to the edges forming θj.

Using these observations, the formula for K at a node p can be expressed as:

∫∫
AM

K dA = 2π −
Nt∑
j=1

θj (3.6)

where θj are the interior angles at vertex p across all adjacent triangles. Given that,
as discussed, K at a node p remains constant over its associated area AM , Eq. (3.6)
can be rewritten as:
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K

∫∫
AM

dA = 2π −
Nt∑
j=1

θj

K(p) =
1

AM

(2π −
Nt∑
j=1

θj) (3.7)

or in a simpler form:

K(p) =
1

AM

(2π − θ(p)) (3.8)

where θ(p) is the total vertex angle of node p, Eq. (3.2).

Eq. (3.7) can also be written as a sum over the edges incident to node p, where each
angle θj is assigned to one of the two edges of the element that define it, as follows:

K(p) =
1

AM

(2π −
Ne∑
j=1

θj) (3.9)

where Ne is the number of edges incident to node p.

In Eqs. (3.7) and (3.9) the contribution to total vertex angle from each triangle can
be derived as follows:

θj = arccos

(
(r⃗pj − r⃗po) · (r⃗pj+1

− r⃗po)∣∣r⃗pj − r⃗po
∣∣ ∣∣r⃗pj+1

− r⃗po
∣∣
)

(3.10)

3.3 Comparison of the VCFV Definitions

Now that the final formula for Gauss curvature computation has been specified,
the computation methods are going to be analyzed. More specifically, in Eq. (3.7),
K, similarly to H, is heavily influenced by the nodal area AM , as in both cases it
appears in the denominator, a positioning that significantly affects the accuracy of
the result. To further verify the conclusions drawn in Section 2.5 regarding the
optimal method for defining the VCFV, the five different approaches of Barycentric,
Voronoi, Corrected Voronoi, GAC Voronoi and SGAC Voronoi area will be compared
in terms of their accuracy in Gauss curvature computation. The five methods will
be compared based on their error in the maximum and minimum K values, as well
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as their Relative Mean Absolute Error (RMAE), when applied to the two spherical
mesh cases presented in Section 2.4.3. As it is well known, the K of a unit sphere
with radius R = 1 is expected to be K = 1 at every point, Fig. 3.6. The reason
for analyzing the errors at the extreme cases separately from the RMAE is that K,
just like H, is a local property of a surface. This means it must be computed as
accurately as possible at each individual node.

Tables 3.1 and 3.2 show that, among the different methods, the Geometry-Adaptive
approaches demonstrate the highest accuracy. There is no significant difference in
the error between the Smoothed and the original GAC Voronoi method. This is
attributed to the fact that only 1.9% of the triangles in the mesh are nearly right-
angled, resulting in a negligible impact on the final result. The case of the denser
spherical mesh yields similar results. Indicatively, the comparison of the RMAE
for the Geometry-adaptive methods is presented in Table 3.3, demonstrating that
the Smoothed variant gives practically the same accuracy in the computation of the
Gauss curvature.

VCFV Definition
for obtuse triangles

Min Value of
Gauss

Curvature
Error

Max Value of
Gauss

Curvature
Error

Barycentric 0.764502115632 23.520% 1.696782700131 69.678%
Voronoi 0.762505006729 23.750% 1.008347475541 0.835%

Corrected Voronoi 0.948572762938 5.143% 1.228222737202 22.822%
GAC Voronoi 1.002448622644 0.245% 1.011539116559 1.154%
SGAC Voronoi 1.002448622644 0.245% 1.011539116560 1.154%

Table 3.1: Comparison of different VCFV definitions for K on a spherical surface
mesh, with the expected value to be K = 1.

VCFV Definition for obtuse triangles Relative error
Barycentric 7.237%
Voronoi 0.833%

Corrected Voronoi 0.774%
GAC Voronoi 0.613%
SGAC Voronoi 0.616%

Table 3.2: RMAE comparison of different VCFV definitions for K on a spherical
surface mesh.

VCFV Definition for obtuse triangles Relative error
GAC Voronoi 0.896%
SGAC Voronoi 0.870%

Table 3.3: RMAE comparison of different VCFV definitions for K on a denser
spherical surface mesh.
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(a) 1st perspective view of nodes with deviation in K .

(b) 2nd perspective view of nodes with deviation in K.

Figure 3.6: Different perspectives of view of nodes with deviation in K.
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Chapter 4

Computation of Curvature

Measures on Quadrilateral Meshes

4.1 Introduction

Figure 4.1: 3D quadrilateral element.

This chapter examines several techniques for computing Gauss and mean curvature
on quadrilateral meshes. The main objective is to generalize the curvature estima-
tion methods that were initially created for triangular meshes and introduced in
earlier chapters to other kinds of meshes. Since quadrilateral meshes can be both
structured and unstructured, they provide a useful test case for this generaliza-
tion. While many curvature computation approaches for quadrilateral meshes are
adapted from those used for triangular elements, a key distinction arises: unlike
triangles, which are inherently planar, quadrilateral elements may not lie on a single
plane, Fig. 4.1. This property introduces a new challenge in the computation, as
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the elements themselves may exhibit non-zero curvature. To address this, a method
for properly defining VCFV and computing the required differential operators are
investigated, which are based on triangulating the quadrilateral elements effectively.

4.2 Triangulation Methods

An easy and effective way to handle quadrilateral meshes is to subdivide each quadri-
lateral into two triangles and then apply methodologies developed for triangular
meshes. However, a key challenge lies in selecting the triangulation method that
yields the highest accuracy for computed geometric quantities. As discussed in [26]
and [14], different triangulations of the same quadrilateral mesh can result in varying
values for both mean and Gauss curvature. This observation is further investigated
here through a simple example where the exact values of these curvatures are known.

Suppose a surface S lying upon a sphere of radius R = 1, Fig. 4.2. The mean and
Gauss curvature at central point p, which is tangent to the sphere, should be H = 1
and K = 1. Fig. 4.3 presents the different triangulation strategies used to compute
curvature at point p. Both globally consistent and alternating triangulations across
the entire mesh that give specific properties to central node are examined. It is
important to note that each quadrilateral can be divided in two ways, which means
that there exist 2n possible triangulation combinations for a mesh of n quadrilaterals,
as for example different combinations with consistent triangulations over a line or a
row in the mesh, and examining all of them is impractical and out of the scope of
this part of study.

Figure 4.2: Unit sphere with surface S tangent to it at point p.

The strategies illustrated in Figs. 4.3a and 4.3b aim to produce a uniform triangula-
tion of the mesh, which in this case results mixed type of triangulation for the central
point p. However, the approaches shown in Figs. 4.3c and 4.3d focus on alternating
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(a) Upper-right to
lower-left.

(b) Upper-left to
lower-right.

(c) Mixed, doubling
neighbors.

(d) Mixed, preserving
neighbors.

Figure 4.3: Different triangulation patterns applied to the same surface mesh for
curvature computation at point p.

triangulations for the entire mesh, targeting a particular number of neighbors for
central point p. While it is possible to target specific number of neighbor triangles
to every point in the mesh, this is beyond the scope of the current study, as only the
point p, tangent to the sphere, has known expected curvature values and is therefore
examined to assess the accuracy of the computed results. H and K are computed
according the methodology presented in Chapters 2 and 3, using the SGAC Voronoi
method and their errors are presented in Table 4.1.

Triangulation
methods

Mean curvature
Hp error

Gauss curvature
Kp error

Method of 4.3a 0.140% 0.733%
Method of 4.3b 0.140% 0.733%
Method of 4.3c 0.280% 0.760%
Method of 4.3d 0.002% 0.706%

Table 4.1: Accuracy of H and K at the central point p for different methods of
triangulation.

There are important conclusions derived from Table 4.1. Firstly, as it is shown in the
first two triangulations, curvature measure in symmetrical geometries is independent
of the directions of the diagonals splitting when uniformly divided. To confirm this
conclusion, the same test is done in a more complex geometry, like a saddle. A saddle
surface, defined by z = x2 − y2, exhibits zero mean curvature along the diagonals
y = x and y = −x, which connect opposite corners of the domain boundary. Fig.
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4.4 shows one of the two uniform triangulations applied to the saddle surface and
the resulting mean curvature computed across the mesh.

Figure 4.4: Mean curvature deviation in a triangulated quadrilateral mesh in saddle
surface.

Triangulation
methods

Maximum error of
mean curvature

Mean error of
mean curvature

Upper-left to lower-right 0.003% 0.001%
Upper-right to lower-left 0.003% 0.001%

Table 4.2: Accuracy of H at the diagonals of saddle for different methods of trian-
gulation.

The mean and maximum error computed in the diagonals of the saddle are compared
for two different directions of uniform triangulation of the saddle in Table 4.2. As
shown, the two methods give in this case give same results for the two triangulations,
which confirms the previous observation.

Another observation from Table 4.1 is that certain triangulation methods yield better
results for a given geometry. Moreover, the triangulation that provides the best
accuracy for mean curvature also performs best for Gauss curvature. To ensure
that this observation is not coincidental for the specific example, the same test is
conducted for the case examined in Section 2.4.3, where the H and K values are
evaluated on a nodal surface mesh defined by the surface equation given in Eq. (2.42).
The expected values of mean and Gauss curvature at node (1, 1) are H = 1

2
√
8
and

K = 1
16
, respectively. For two different mixed triangulations of the surface, similar

to those of Figs. 4.3c and 4.3d, with the outer and inner radii of the nodal star of
quadrilaterals, show in Fig. set to R = 1.2 and r = 1, respectively, the resulting
values are presented in Table 4.3.

Both mean and Gauss curvatures have better performance at the same type of
triangulation, Table 4.3. Another important observation from the surface examples
presented in Tables 4.1 and 4.3 is that the most accurate triangulation method
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Triangulation
methods

Mean Curvature Error Gauss Curvature Error

Similar to Fig. 4.3c 0.109720795125 24.135% 0.097661200251 19.334%
Similar to Fig. 4.3d 0.071299164710 56.257% 0.058407593841 6.548%

Table 4.3: Accuracy of H and K at the nodal star of quadrilaterals for different
triangulation methods.

Figure 4.5: Nodal star of quadrilateral elements.

at each node appears to be the one in which the number of triangles associated
with a node matches the number of surrounding quadrilaterals. To ensure this
investigation, another surface equation is also examined for the central node of a
nodal star of quadrilaterals of R = 0.12 and r = 0.1, which is given as follows:

x⃗ = (coshu cos θ)e⃗1 + (coshu sin θ)e⃗2 + ue⃗3 (4.1)

where u and θ are the surface parameters. For this surface, the expected value of
the H is zero at every point. In Table 4.4, the error in the computed H at node
(1, 1) is examined. As shown, in this case as well, the triangulation method that
preserves the number of elements around the node yields the most accurate results.

Triangulation
methods

Mean Curvature Error

Similar to Fig. 4.3c 0.000386735572 0.039%
Similar to Fig. 4.3d 0.000315361906 0.032%

Table 4.4: Accuracy of mean curvature at nodal star of quadrilaterals for different
triangulation methods, with the expected value to be H = 0.

Based on the examples examined, it can be concluded that the best practice of
triangulation of a quadrilateral mesh is node-specific. In the cases analyzed, the best
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results were obtained when the quadrilaterals around each node were divided in a
way that preserved the number of neighboring elements. However, this observation
cannot be generalized to all quadrilateral meshes. Furthermore, as previously noted,
both mean and Gauss curvatures are intrinsic properties of a surface and should
remain invariant under changes in mesh resolution or triangulation. Therefore, a
general method for computing these curvatures should be used, which could account
for the different triangulation possibilities of each quadrilateral. To this end, the
average of the two possible triangulations is used as the basis for the computational
methods, which will be explored in the following sections.

4.3 VCFV Definition on Quadrilateral Meshes

As was shown in Chapters 2 and 3, both mean and Gauss curvature computations
are dependent on the way the VCFV is defined. In this section, the way that the
average VCFV is derived for the average of the triangulation methods, Fig. 4.6.
More specifically, the Voronoi area is defined as the mean value of the sub-areas of
each element that occur from two different triangulations. For the central node, the
first triangulation attributes both triangles to it, while the second attributes only
the one that belongs to. As a result, the mean Voronoi area is given as follows:

AM =
Nt∑
t=1

(
A1 + A2 + A3

2

)
t

(4.2)

where Nt is the number of triangles that the central node belongs to. Eq. 4.2, the
resulting mean Voronoi area is the same whether it is calculated by first averaging
the sub-areas of each individual element and then summing them, or by computing
the Voronoi area for each triangulation and then taking the average.

Figure 4.6: Voronoi sub-areas resulting from two different triangulation methods
applied to each element.
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4.4 Mean Curvature on Quadrilateral Meshes

The mean curvature at a triangular mesh node is computed based on Eq. 2.1, which
shows that it largely depends on the application of the Laplace–Beltrami operator
to the position vector, along with the normal vector at that node. To proceed with
the computation, the Laplace - Beltrami operator in quadrilateral elements need to
be defined. While it may seem reasonable to extend the previously defined VCFV
framework to this case, such an extension must also be proven.

Firstly, following the foundation that is provided in [26], the mean curvature can be
defined as follows:

H(p) = − lim
diam(A)→0

1

2

∇A(p)

A(p)
(4.3)

where A(p) is the area attributed to node p on the surface, diam(A(p)) the diameter
of the region of area A(p) and ∇A(p) is the gradient of A(p) with respect to the
surface parameters.

Using Eq. 4.2, the gradient of the area around the node p, can be expressed as:

∇AM =
1

2

Nt∑
t=1

(∇A1 +∇A2 +∇A3) (4.4)

Applying Eq. (2.39) in Eq. (4.4) the gradient of each sub-area is expressed as follows:

∇Aj =
1

4

(
(r⃗pj − r⃗po) cot lj + (r⃗pj+1

− r⃗po) cot ki+j

)
(4.5)

If wj is denoted as the weight that correspond to the edge r⃗po − r⃗pj from the first
triangulation, while w′

j is the weight that corresponds to the imaginary edge r⃗po− r⃗pj
from the second triangulation of element popj+1p

′
jpj, Fig. 4.7, then combining Eq.

(4.5) and Eq. (4.4), one gets:

∇AM =
1

4

(
Nt∑
t=1

(
wj

(
r⃗pj − r⃗po

)
+ w′

j

(
r⃗p′j − r⃗po

)))
(4.6)

where wj and w′
j are weights derived based on the cotangents of the angles adja-

cent to the edges of the element popj+1p
′
jpj under consideration. More specifically,

following the way a sub-area is expressed in Eq. (2.41), the cotangent of each angle
adjacent to an edge of the element is used in the computation. As a result, for
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Figure 4.7: Average triangulation of each element of point p[14].

each area gradient corresponding to the two possible triangulations, similar to the
expressions in [14], the following expressions are obtained:

∇Aj(T1) =
1

2

(
cotαj2(r⃗pj′ − r⃗p) + cotαj3(r⃗pj+1

− r⃗p)
)
, (4.7)

∇Aj(T2) =
1

2

(
cotαj5(r⃗p′j − r⃗p) + cotαj4(r⃗pj − r⃗p)

)
, (4.8)

∇Aj(T3) =
1

2

(
cotαj1(r⃗pj − r⃗p) + cotαj6(r⃗pj+1

− r⃗p)
)

(4.9)

Substituting in Eqs. (4.10) the index pj+1 with pj and their corresponding weights,
then the weights of Eq. (4.6) are expressed as follows:

wj = cotαj1 + cotαj4 + cotα(j−1)3 + cotα(j−1)6, w′
j = cotαj2 + cotαj5 (4.10)

Substituting Eqs. (4.4), (4.6), (4.2) and (2.41) to Eq. (4.3) , the H of point p is
given by:

||H(p)|| = 1

8

(
Nt∑
t=1

(
wj

(
r⃗pj − r⃗po

)
+ w′

j

(
r⃗p′j − r⃗po

)))
(4.11)

67



Then, using the Eq. (2.1), it can be inferred that the Laplace - Beltrami is given as:

∇2
s r⃗(p) =

1

2

(
Nt∑
t=1

(
1

2
wj

(
r⃗pj − r⃗po

)
+

1

2
w′

j

(
r⃗p′j − r⃗po

)))
(4.12)

which by using Eq. (2.36) can be expressed as:

∇2
s r⃗(p) =

1

2

(
Nt∑
t=1

(
∇2

s r⃗(p)1 +∇2
s r⃗(p)2 +∇2

s r⃗(p)3
))

(4.13)

This means that the gradient of the position vector at the central node p of a
quadrilateral star can be expressed as the average of the gradients obtained from
the two possible triangulations of the surrounding elements.

From the above, it follows that the H at each node in a quadrilateral mesh can be
calculated either by averaging the nodal area and position vector gradient from the
two possible triangulations, or by using Eq. (4.13) together with the corresponding
nodal area formula, given as:

AM =
1

16

(
Nt∑
t=1

(
wj

(
r⃗pj − r⃗po

)2
+ w′

j

(
r⃗p′j − r⃗po

)2))
(4.14)

This computational model is evaluated on the saddle surface discussed in Section
4.2. More specifically, the maximum and mean errors of the H are computed using
the two-triangulation averaging method applied to each element and their results
are shown in Table 4.5. As it is shown, the two-triangulation averaging method
yields the most accurate results. This observation will be further evaluated in the
context of Gaussian curvature.

Triangulation
methods

Maximum error of
mean curvature

Mean error of
mean curvature

Similar to Fig. 4.3c 0.0028% 0.0014%
Similar to Fig. 4.3d 0.0028% 0.0016%
Two-triangulation

averaging 0.0028% 0.0014%

Table 4.5: Accuracy of mean curvature at the diagonals of saddle using two-
triangulation averaging in contrast to each individual triangulation.
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4.5 Gauss Curvature on Quadrilateral Meshes

The Gauss curvature at a triangulated mesh node is computed using Eq. (3.9), which
shows that it depends on the sum of the interior angles of the nodal area AM . Using
the observations for the case of the mean curvature to the Gauss curvature compu-
tation in the case of quadrilateral meshes, the methodology of the two-triangulation
averaging is using here as well, as it is mentioned to [14]. For the element popj+1p

′
jpj

shown in Fig. 4.7, the interior angles averaging from the two different triangulations,
is expressed as follows:

θj =
1

2
(θj + αj + βj) (4.15)

where θj is the interior angle of each element from the first triangulation, while
αj and βj are the interior angles that occur from the second triangulation of each
element.

Figure 4.8: Interior angles resulting from different triangulations of each element.

That being said, the Gauss curvature at a node belonging to a quadrilateral star is
computed using Eqs. (4.15) and (4.2), and is expressed as follows:

K(p) =
1

AM

(
2π −

Nt∑
t=1

(
θj + αj + βj

2

))
(4.16)

Eq. (4.16) is applied in the case of the surface lying upon a sphere of radius R = 1,
which was described in Section 4.2 and its results are shown in Table 4.6. The same
is done for the case of the nodal quadrilateral star in the surface given by Eq. (2.42),
Table 4.7. In both cases, the error is reduced compared to the triangulation with
the highest error. It is important to note that, in the case of Table 4.7, one of the
triangulations yields a very high error. However, as discussed in Section 2.4.3, this
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result is not fully representative, since the accuracy in this configuration is highly
sensitive to the chosen radius and rotation angle. However, this case is presented in
its current form here to highlight the effectiveness of the two-triangulation averaging
method in absorbing the influence of high-error triangulations and producing results
that are closer to those of the more accurate triangulation, as is demonstrated in
Table 4.6 as well.

Triangulation
methods

Gauss curvature
value Error

Method of 4.3c 1.007598423372 0.760%
Method of 4.3d 1.007060650620 0.706%

Two-triangulation
averaging 1.007009389981 0.701%

Table 4.6: Accuracy of Gauss curvature at the central point p for different methods
of triangulation, with the expected value to be K = 1.

Triangulation
methods

Gauss curvature
value Error

Method of 4.3c 0.097661200252 56.258%
Method of 4.3d 0.058407593840 6.548%

Two-triangulation
averaging 0.079626581635 27.403%

Table 4.7: Accuracy of Gauss curvature at the nodal star of quadrilaterals for differ-
ent triangulation methods, with the expected value to be K = 1

16 .
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Chapter 5

Proposed Curvature Computation

Method: Validation and

Benchmarking

5.1 Introduction

In this chapter, the proposed method for computing mean and Gauss curvature is
evaluated using various types of meshes. To this end, it is applied to a range of
general 3D geometries beyond the simple case of a sphere. The results obtained
on both unstructured and structured meshes, where the latter typically provide
higher accuracy in curvature estimation, are compared to analytical solutions by
evaluating the error at each node. For unstructured meshes, which often exhibit
irregular element shapes, varying sizes, and non-uniform node density, an additional
analysis is conducted to investigate the causes of higher errors in curvature compu-
tation. Furthermore, the accuracy of the proposed curvature computation methods
is benchmarked against those employed by widely used software tools, in order to
assess their performance and reliability.
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5.2 Validation of the Proposed Method on Struc-

tured Meshes

In this section, curvature measures in triangulated structured meshes in saddle and
torus geometries are evaluated, compared to the analytical expressions. Beginning
with a saddle surface given by:

z = αx2 − βy2 (5.1)

where α and β are scaling factors for the x and y dimensions, respectively, with
respect to the third dimension. These parameters control the degree and direction
of curvature of the surface in the R3 space. In this case, α = 0.5 and β = 0.5 are
selected to intensify the curvature of the surface, resulting in a wider variation in
curvature values across the domain. Eq. (5.2) can also be rewritten as:

z = x′2 − y′2 (5.2)

where x′ =
√
0.5x and y′ =

√
0.5y.

The mean and Gauss curvature expressions can easily be derived as described in
Chapter 1. However, as shown in Eqs. (1.10) and (1.11), the two curvature mea-
sures are computed using the first and second fundamental form coefficients over
a parameterized surface. The saddle surface is explicitly described in Eq. (5.2) in
the form of z = f(x, y), so in order to parameterize it, the coordinates x and y
can be used as parameters u and v, respectively. The first and second fundamental
coefficients can then be expressed as:

E = r⃗x · r⃗x = 1 + x2, F = r⃗x · r⃗y = −xy, G = r⃗y · r⃗y = 1 + y2,

L = r⃗xx · n⃗ =
−1√

1 + x2 + y2
, M = r⃗xy · n⃗ = 0, N = r⃗yy · n⃗ =

1√
1 + x2 + y2

.

(5.3)

Substituting this expressions to Eqs. (1.10) and (1.11), one gets the following ex-
pressions for the mean and Gauss curvature:
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H =
(1 + y2)(−1) + (1 + x2)(1)

2(1 + x2 + y2)3/2
=

−1− y2 + 1 + x2

2(1 + x2 + y2)3/2
=

x2 − y2

2(1 + x2 + y2)3/2

K =
(−1)(1)− 02

(1 + x2 + y′2)2
=

−1

(1 + x2 + y2)2
(5.4)

In order to proceed to the valuation of the computation method of the curvatures,
a single measure to express curvature should be defined. To do so, firstly the two
principal curvatures κ1 and κ2 are expressed using Eqs. (1.10) and (1.11), as follows:

κ1 = H +
√
H2 −K, κ2 = H −

√
H2 −K (5.5)

As discussed in Chapter 1, κ1 and κ2 represent the maximum and minimum princi-
pal curvature at each point on the surface. In order to condense the two principal
curvatures into a single scalar quantity, a measure of total curvature κ is defined.
This total curvature should reflect the combined contribution of both principal cur-
vatures, while also ensuring that κ = 0 when the surface is flat. The mean curvature,
given by κ1+κ2

2
, is not suitable in this context, since it can be zero even on non-flat

surfaces. For example, when κ1 = −κ2, the surface is not flat, but the mean cur-
vature still vanishes. Therefore, to ensure that the total curvature measure only
vanishes in the flat case, the Root Mean Square (RMS) curvature is introduced,
which is defined as:

RMS =

√
κ2
1 + κ2

2

2
(5.6)

For simplicity, and in order to provide a scalar measure that reflects the total curva-
ture while preserving the aforementioned property, the following expression is used:

κ = κ2
1 + κ2

2 (5.7)

For the case of saddle surface described in Eq. (5.2), the principal curvatures and
total curvature are given in Fig. 5.1.

Given that in geometries such as the saddle and the torus there are regions where the
expected total curvature is zero, an alternative error metric to the RMAE should be
used. In such cases, the Root Mean Square Error (RMSE) provides a more robust
measure of error, as it remains well-defined even when the reference curvature is
zero. The RMSE is defined as:
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(a) Maximum curvature κ1 variation over sad-
dle surface.

(b) Minimum curvature κ1 variation over saddle
surface.

(c) Total curvature κ variation over saddle sur-
face.

Figure 5.1: Principal curvatures and total curvature measures over a saddle surface.

RMSE =

√√√√ N∑
i=1

|κcomputed
i − κtrue

i |2
N

(5.8)

where N is the number of mesh nodes.

Now that a scalar measure for assessing the total curvature accuracy of a surface
has been established, the proposed curvature computation method can be evaluated.
To this end, the RMSE of the proposed method is compared against that of a well-
known visualization software [1]. According to its documentation, this software
computes Gauss and mean curvature values using the discrete differential geometry
approach described in [15].

The curvature computation method proposed in this diploma thesis achieves higher
accuracy than this popular software in determining the total curvature of a struc-
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Computation Method RMSE
Proposed Method 0.0726

Well-known visualization software 2.2944

Table 5.1: Comparison of the total curvature RMSE on the saddle surface between
the proposed computation method and a well-known visualization software.

tured triangular mesh on a saddle surface, Table 5.1. To further validate the robust-
ness of the method, an additional test is performed using a different geometry with
a structured triangular mesh. More specifically, the torus example described in [4] is
considered, with a major radius R = 2, minor radius r = 1, and a structured mesh
of size 36 × 36, Fig. 5.2. The total curvature error is then compared with other
well-known computation methods.

Figure 5.2: Total curvature κ over a torus surface mesh 36× 36.

Given that the torus surface is described by:

(√
x2 + y2 −R

)2
+ z2 = r2 (5.9)

Then, in [2], which follows the same procedure as in the case of the saddle, the mean
and Gauss curvature are derived:

H =
−(2r +R cos θ)

2r(R + r cos θ)
, K =

cos θ

r(R + r cos θ)
(5.10)

The proposed curvature computation method achieves the highest accuracy com-
pared to all other known approaches, Table 5.2. It is important to note that, except
for the visualization software, these methods estimate curvature directly by analyz-
ing variations in vertex positions or face normals using techniques such as polynomial
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Computation method RMSE
Proposed

Computation Method 0.02977

Well-known visualization software 2.2202
Libigl [18] 1.28

Meshlab [24] 2.7072
Trimesh2 [20] 1.0621

[Crane He Chen 2023] [4] 0.0372

Table 5.2: Comparison of the total curvature RMSE on the torus surface between the
proposed computation method and state-of-the-art software and established methods.

fitting, normal variation, or quadratic patch approximation, without first computing
the H and K.

5.3 Validation of the Proposed Method on Un-

structured Meshes

In this section, the accuracy of the proposed computation method is examined on
unstructured triangular meshes for the geometries analyzed thus far. More specifi-
cally, the H estimation is compared against that of another state-of-the-art software
for CFD simulation, not previously considered. In this software, the H is com-
puted based on the variation of the normal vector across mesh faces. This discrete
approach estimates curvature by measuring the angular deviation of face normals
within the mesh, which provides a scalar curvature value per face:

Hf =
1

2
∥∇n⃗∥ (5.11)

where n⃗ is the unit normal vector of a face and ∇n⃗ represents its discrete gradient
computed from neighboring faces.

This software approximates the curvature vector k⃗N on a mesh face f by summing
corrected edge vectors around the face:

k⃗N =
∑
e∈f

L⃗e · edgeLengthCorrection(e) (5.12)

where L⃗e is the edge vector along edge e, edgeLengthCorrection(e) is a correction
factor to improve integration accuracy and the sum is over all edges e bounding the
face f .
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Then, the divergence of the normal vector is approximated as:

∇s · n⃗ ≈ − k⃗N · S⃗f

|S⃗f |2
(5.13)

where S⃗f is the face area vector, which is the normal vector to the face with mag-
nitude equal to face area.

Since this software does not support Gauss curvature computation by default, only
mean curvature will be considered in the following comparison. Nevertheless, the
accuracy of both curvature measures in the proposed method strongly depends on
the Voronoi area computation. Therefore, analyzing one of them is sufficient for
evaluating the method.

(a) Mean curvature on a saddle. (b) Mean curvature on a torus.

Figure 5.3: Mean curvature on triangular unstructured surface meshes.

In Fig. 5.5, the H on unstructured meshes of a saddle and a torus is illustrated using
the proposed method. It is evident that the contour plots on both unstructured
meshes appear less smooth compared to those on structured meshes.

Computation method RMSE
Proposed

Computation Method 0.2783

Well-known visualization software 0.2763
Well-known CFD software 0.5564

Table 5.3: Comparison of the H RMSE on the saddle surface between the proposed
computation method and state-of-the-art software and established methods.

In Table 5.3, it is shown that in the case of the unstructured saddle mesh, the
proposed method has similar results with the visualization software [1], while the
CFD simulation software [17] has lower accuracy. However, unstructured meshes,
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due to their non-uniform cell shapes and sizes, typically exhibit lower accuracy
than structured ones and are more prone to extreme error outliers. To examine how
each method responds to significant variations in mesh quality, unstructured meshes
including problematic element types, such as highly skewed, or stretched triangles
are also considered in the analysis. Hence, it is not only important for a method to
achieve lower error than existing software, but also for that error to be consistent
and reliable for subsequent curvature-based analyses. For this reason, the Maximum
Relative Absolute Error (MRAE) is used in the comparison, as it reflects more easily
the validity of the curvature error at outlier points. In the case of the saddle surface,
where some points have zero analytical curvature and MRE becomes undefined, the
Maximum Absolute Error (MAE) is used instead.

Computation method MRAE
Proposed

Computation Method 30.197%

Well-known visualization software 66.786%
Well-known CFD software 31.670%

Table 5.4: Comparison of the H MRAE on the torus surface between the proposed
computation method and state-of-the-art software and established methods.

Computation method MAE
Proposed

Computation Method 67.161%

Well-known visualization software 68.880%
Well-known CFD software 67.284%

Table 5.5: Comparison of the H MAE on the saddle surface between the proposed
computation method and state-of-the-art software and established methods.

Tables 5.4 and 5.5 demonstrate that the proposed method for mean curvature com-
putation yields to slightly better accuracy than the widely-used CFD software [17].
However, it is important to be noted that the MRAE and MAE errors of the curva-
ture seem to be extremely high in order the results to be used an objective in the
context of the design optimization. For this reason, a further investigation needs to
be done for the nodes that exhibit the highest errors.

Beginning with the torus surface, the outliers, Fig. 5.4), appear to be surrounded by
five or six triangles. This number of elements is generally sufficient to capture the
local curvature at a node, as analyzed in Section 2.4.3. Furthermore, these nodes
do not exhibit any obtuse angles. Since the interpolation of the analytical surface
from the mesh did not introduce any errors, the source of the discrepancy appears
to be related to a subtle geometric property of these elements that is not immedi-
ately visible. Upon closer inspection, it was found that the elements surrounding
the problematic nodes each contained at least one stretched triangle, meaning that
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one of the triangle’s dimensions was significantly larger or smaller than the other
two. This introduced a non-uniformity in edge lengths. To evaluate the effect of this
distortion, a corrective method was introduced for these triangles, aimed at balanc-
ing the dominant direction in which the triangle is stretched. Because the curvature
vector is closely tied to the edge vectors of neighboring faces at a node, this balanc-
ing was applied directly to the corresponding component of the curvature vector. A
simple correction was chosen for this case: the component of the curvature vector in
the stretched direction was scaled by the ratio of the stretched edge component to
the mean of the other two edge components. When this modification was applied to
the outlier that originally exhibited a 30.197% error in Table 5.4, the error at that
node was significantly reduced. Consequently, applying this correction, or a similar
modification, to the dominant edges of the triangles surrounding problematic nodes
can substantially improve the accuracy of the method.

Figure 5.4: Zoomed-in view of the nodes with the highest curvature error in the
unstructured torus mesh.

Regarding the saddle surface, where the error reported in Table 5.5 is notably high,
mesh statistics revealed a more pronounced occurrence of stretched triangles. Addi-
tionally, the node with the highest error, along with several others, was surrounded
by only four neighboring triangles. As discussed earlier, this limitation is difficult
to be addressed to address due to physical constraints inherent in the domain. One
approach suggested by [7] is to use quadric surface fitting to estimate the curvature
at nodes with a low number of neighbors. However, this method has the risk of
falsely estimating the curvature due to the significant deviation of the fitted sur-
face from the actual geometry. Another possible solution is to improve the mesh
quality by refining the elements to eliminate nodes with a low number of neighbors.
Additionally, it is proposed here as a potential to include contributions from second-
order neighbors when the number of first-order neighbors is insufficient. This could
help enhance curvature estimation in sparsely connected regions without relying on
fitting techniques.
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5.4 Validation of the Curvature Aggregated Func-

tion

As was mentioned in 1, the final goal of total curvature computation to each node
was to extract a final measure of curvature for the boundary surface of the struc-
ture’s geometry in order this to be imposed as a constraint to shape or topology
optimization. The reason why one measure to characterize all the surface is used,
is because multi-constrained optimization, with a specific curvature constraint for
each node would make the convergence more difficult. For this reason, a measure
that gathers all the nodes constraints of total curvature and characterizes the total
curvature of the surface should be defined. There are various ways to gather all
the point-wise curvature measures into one. Among these, the p-norm aggregation
function is widely employed due to its ability to approximate the maximum value
of a distributed constraint field in a smooth and differentiable manner. Unlike the
true maximum function, the p-norm provides a continuously differentiable approx-
imation that enables efficient use of adjoint solvers. This smoothness is important
in curvature-constrained problems to ensure stable convergence. The p-norm aggre-
gation function is defined as:

fp(x1, x2, . . . , xn) =

(
n∑

i=1

xp
i

) 1
p

(5.14)

where xi represents the i-th local constraint value (here, nodal curvature), and
p ∈ R+ controls the closeness of the approximation to the maximum.

As p → ∞, the function fp converges to max(x1, . . . , xn), acting like a maximum
function. This property is particularly useful for curvature constraints, where it
is important not only to aggregate nodal curvature values but also to emphasize
regions of high curvature. In practice, moderate values such as p = 3 often often
are used as they balance smoothness and conservativeness effectively.

As a result the total curvature measure is given as:

f3(κ) =

(
n∑

i=1

κ3
i

) 1
3

(5.15)

To validate the effectiveness of the proposed curvature-based objective function, it
was applied to a surface roughness minimization problem. Specifically, an initially
rough surface was considered, Fig. 5.5a), and then smoothed through shape opti-
mization with the objective of reducing roughness, Fig. 5.5b. As expected, the initial
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surface exhibits significantly higher total surface curvature, which in this application
serves as a quantitative indicator of surface roughness. This correlation is clearly
reflected in the total curvature measure.

It is also observed that the difference in total curvature between the rough and
the smoothed surfaces is not as pronounced as one might expect based on visual
inspection. This is primarily due to a small number of localized regions on the
smoothed surface where curvature was not sufficiently minimized. Despite being
few, these regions have a significantly large impact on the final aggregated curvature
value. This outcome supports the effectiveness of the proposed aggregation function,
which successfully emphasizes regions with high curvature, as intended.

(a) Total curvature measure of rough surface κtot = 862.559.

(b) Total curvature measure of smoothed surface κtot = 763.604.

Figure 5.5: Total curvature measure of an arbitrary surface before and after rough-
ness minimization.
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Chapter 6

Conclusions and

Recommendations for Future work

6.1 Conclusions

The aim of this diploma thesis was to investigate the behavior of curvature metrics,
specifically, mean curvature and Gauss curvature, on both structured and unstruc-
tured surface meshes. The goal was to formulate a unified constraint function to
be used in gradient-based shape or topology optimization problems in CFD. How-
ever, further analysis of the key components used to compute total curvature, based
on methods proposed in the literature, revealed significant accuracy issues, even
for simple geometries, such as the surface of a sphere. These limitations raise a
critical question: How can curvature be reliably imposed as a constraint in CFD
optimization problems when its accurate computation is not guaranteed? In other
words, how can curvature be accurately computed on arbitrary surface meshes and
incorporated as a constraint function in optimization?

Accurately estimating surface curvature has long been a challenge, as existing meth-
ods are often inadequate for the intended applications. This research was driven by
the need to ensure that curvature constraints are properly defined and accurately
computed, so they do not unnecessarily restrict the optimization process. This is
translated into the minimization of the maximum computational error of curvature.
It is crucial to determine curvature accurately at each node on the surface mesh;
therefore, the maximum error, alongside the mean error, in curvature computation
has been considered.

The study investigated computational methods for triangular meshes and then gen-
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eralized these approaches to any structured or unstructured mesh, with a demon-
stration using quadrilateral meshes. The analysis of computation methods for both
mean and Gauss curvature showed that the principal cause of poor estimation in
these metrics is the inaccurate calculation of the area assigned to the nodes, which
corresponds to a poor definition of their VCFV.

The literature offers three different approaches to defining VCFV for triangular
meshes:

• Barycentric: This method distributes the subareas to each vertex of the ele-
ment using the barycenter of the triangle. Despite its simplicity, the accuracy
of the barycentric method is often insufficient for curvature computations,
exhibiting maximum errors of the order of 50% even for simple geometries.

• Voronoi: This method assigns subareas to each vertex based on the circumcen-
ter of the triangle. It involves dividing each triangle along its perpendicular
bisectors to define the Voronoi region associated with each vertex. Since the
subdivision depends on the specific geometry of each triangle, the area dis-
tribution better adapts to the actual shape of each element. This results in
a significant improvement, reducing maximum curvature computation errors
to approximately 30% for the same geometries. However, a notable drawback
arises for obtuse triangles: since the circumcenter lies outside the triangle in
these cases, the assigned subarea does not accurately reflect the true area
associated with the vertex.

• Corrected Voronoi: This method modifies the original Voronoi approach to
account for obtuse triangles. The circumcenter is replaced by the midpoint of
the edge opposite to the obtuse angle, effectively treating the obtuse triangle
as if it were right-angled. This correction reduces the maximum curvature
estimation error to approximately 20%. Nonetheless, the correction assigns
constant portions of subareas to the vertices for all obtuse triangles, regardless
of the magnitude of the obtuse angle, which can still lead to inaccuracies
depending on the case.

The accuracy of curvature estimation methods proposed in the literature was found
to be inadequate, highlighting the need to develop new and improved approaches
for defining VCFV. This work builds upon the most accurate existing approach,
the Corrected Voronoi Method, by introducing several enhancements aimed at ad-
dressing a key shortcoming: the method fails to account for the specific geometry
of obtuse triangles when distributing area to nodes. Through detailed analysis, it
was shown that the vertex opposite the the dominant angle in an obtuse triangle
should receive a significantly larger share of the area than the uniform half typically
assigned in right triangles. Modifications based on angle ratios or edge lengths were
investigated, resulting in error reductions to below 10%.

Following these observations, a new method was introduced in this diploma thesis,
called the Geometry-Adaptive Corrected (GAC) Voronoi Method. This method fo-
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cuses on addressing the primary flaw of the original Corrected Voronoi approach,
which assumes that obtuse triangles can be treated as right triangles. To do so, two
corrective factors were introduced to each subarea attributed to a vertex: one cor-
recting this assumption, and another addressing the fact that parts of the subareas
extend outside the actual obtuse triangle. Applying these corrections significantly
reduced the maximum curvature error to a satisfactory level under 1%, correspond-
ing to an order of magnitude improvement over the original method.

To smoothly integrate these corrections for obtuse triangles with the original method
for acute and right triangles, a sigmoid function was used to create a smooth tran-
sition between triangle types, resulting in the Smoothed Geometry-Adaptive Cor-
rected (SGAC) Voronoi Method, which slightly improves accuracy over the non-
smoothed version and reassures the differentiability. This proposed method was ap-
plied to both mean and Gauss curvature metrics, on different mesh types, structured
and unstructured, and consistently outperformed existing methods. It was further
validated against widely used methodologies from the literature and state-of-the-art
software for CFD simulation or visualization and post-processing of computed flow
fields, demonstrating outstanding performance improvements.

The SGAC Voronoi Method was also applied to more complex geometries, with spe-
cial focus on unstructured meshes, where irregularities are more common than in
structured meshes. Even here, the proposed methodology achieved better accuracy,
though significant errors, up to approximately 60%, were observed at some nodes.
These errors were further investigated to identify their root cause, confirming an
important observation when approximating curvature on discretized geometries: al-
though true curvature is an intrinsic geometric property of a smooth surface, its
computation on discrete surfaces is highly sensitive to mesh quality and irregulari-
ties. This imposes two key considerations for accurate curvature computation:

• The surface mesh must be of high quality, with minimal skewed or stretched
triangles, uniform element density, and a sufficiently large number of neighbors
per node (ideally more than 5) to ensure accurate curvature estimation.

• The mesh must have sufficiently high node and element density to capture all
relevant curvature features at smaller scales, providing good resolution and
reliable interpolation of the actual surface geometry.

These properties can be ensured through appropriate processing of the mesh within
the mesh generation software. For example, the unstructured meshes used in this
diploma thesis were produced using the Gmsh software, which allows control over
various statistical indices that determine mesh quality. One such index is the Signed
Inverse Condition Number (SICN), which reflects the quality of elements based
on the Jacobian determinant. Appropriate mesh refinement can also prevent the
presence of nodes with too few neighboring elements.

As a result, curvature computation accuracy is highly influenced by the geometry of
the mesh elements. In particular, unstructured meshes require special treatment to
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achieve the best possible accuracy. Nonetheless, in both structured and unstructured
meshes of any element type, vertices with obtuse angles are likely to be present;
these can be effectively handled using the proposed method, which is general and
applicable to any mesh type. Following these steps ensures the highest possible
point-wise accuracy in curvature computation. Consequently a more representative
and reliable final measure of curvature of the structure’s mesh is obtained, which
can be safely used as a constraint function for shape or topology optimization.

6.2 Recommendations for Future Work

In this diploma thesis, the method for accurately capturing the curvature of a struc-
ture’s surface was demonstrated, with the ultimate goal of applying it to shape and
topology optimization problems. Several important considerations should be taken
into account when implementing the curvature objective within the optimization
process:

• Curvature is, by definition, a point-wise measure. However, in software for
CFD simulation, flow quantities are typically computed and stored at cell cen-
ters, and boundary conditions are imposed on the boundary face centers. To
maintain consistency in data storage, the curvature at the boundary should
first be computed at each node using the proposed methods, and then inter-
polated to each boundary face.

• When face-centered curvature is used as a constraint in optimization, it is
advisable to normalize the face curvature values, due to their high dependence
on the geometry of triangular elements, as follows::

κfn =
κfSf∑

Sf

(6.1)

where Sf is the area of each face and
∑

Sf is the total area of all faces. This
normalization ensures that larger faces have proportionally greater influence.

• An appropriate aggregation function should be selected to combine all nodal
curvature constraints into a single scalar constraint, facilitating better conver-
gence in the optimization.

Especially for the last point, there exists a wide variety of aggregation functions
used in shape and topology optimization constraints, among these, the p-norm ag-
gregation function is widely used due to its ability to approximate the maximum
value of a distributed constraint field in a smooth and differentiable manner.

Thus, the curvature constraint can be expressed as:
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f3(κ) =

(
n∑

i=1

κ3
i

) 1
3

(6.2)

and constrained within the optimization as:

f3(κ) ≤ κmax (6.3)

The aggregated curvature function was used to facilitate smoother convergence in
CFD-based optimization. However, if curvature in specific regions is of critical
importance for the problem under consideration, it is advisable to impose separate
point-wise curvature constraints, or alternatively, apply aggregation functions over
smaller subregions rather than over the entire boundary surface.

Finally, as previously mentioned, it is critical to ensure appropriate mesh quality in
the beginning in order the curvature constraint to perform well. This can largely be
assured by pre-processing the mesh in the mesh generator software. However, even
if the initial mesh quality is satisfactory, mesh irregularities may develop during the
optimization cycles, where the mesh of the geometry changes. In order the proposed
method to work well, a few extra consideration should be taken when incorporated
in optimization:

• A small number of neighboring nodes should be avoided. When increasing
the number of neighbors is not feasible, a possible solution is to validate the
curvature estimation using second-order neighboring nodes.

• In cases where the surface geometry changes abruptly, extremely high or un-
defined curvature values may arise, potentially causing issues in the compu-
tational model. A practical solution is to apply local quadric surface fitting
to impose curvature bounds, which helps avoid large, non-physical curvature
values. Alternatively, a simple filtering condition can be introduced to auto-
matically exclude outlier points.
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Appendix A

Mean Curvature on Structured

Surface Meshes

Considering a surface in R3 with parameters u and v, the basic differential equation
that determines the structured mesh generation is given below:

∇2
s r⃗ = 2HN⃗ (A.1)

The right hand side of this equation comprises of two invariant quantities in the
right hand side, the mean curvature H and unit normal vector N⃗ . This indicates
that it can create the mesh based solely on the geometry of the surface and is not
affected by the surface parameters. In order to prove the Eq. (2.1), first some basic
concepts of 2D structured meshes need to be demonstrated.

Firstly, assuming a surface mesh, a curvilinear system of coordinates (CCS) is used
to determine the coordinates of each point. The 2D structured mesh is parameter-
ized using (ξ, η). Alongside the concept of the curvilinear coordinate system, there
is always the concept of a transformation or mapping. These two equivalent notions
indicate that there exists a one-to-one correspondence between each mesh node in
the physical space xi (i = 2 for 2D mesh), also referred to as the physical domain, and
a much simpler uniform mesh composed of square cells in the case of 2D structured
meshes with unit side length in the space ξi, also referred to as the computational or
transformed domain, Fig. A.1. This transformation allows the governing differential
equations to be expressed in a form independent of the surface parameterization,
using geometric metrics that fully describe the transformation. This makes it possi-
ble to apply numerical schemes like finite differences or finite volumes on a uniform
mesh more effectively.
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Figure A.1: Mapping of element 1234 from physical to computational domain.

Assume that for the computational domain of Fig. A.1 a curvilinear coordinate mesh
has been generated. Through the geometrical transformation mentioned above, a
node M of the mesh in the physical domain is mapped onto the node M ′ in the
transformed domain. Through the node M two families of mesh curves pass: one
curve along which ξ varies and one along which η varies. For these two mesh curves
the tangent vectors at node M are defined, which are given respectively by the
following:

g⃗i =
∂r⃗

∂ξi
, (i = 1, 2) (A.2)

where r⃗ is the position vector of point M , ξ1 = ξ and ξ2 = η. These are linearly
independent vectors (not necessarily of unit length) and form what is called the
covariant vector basis at M .

From the same point M emanate two curves: the curve corresponding to ξ =
constant and η = constant. The normals to these two curves at M (which are
not necessarily unit vectors) are given by:

g⃗i = ∇ξi, (i = 1, 2) (A.3)

where i = 1, 2 and (ξ1, ξ2) denote the curvilinear coordinates (ξ, η) respectively.
These normal vectors form the so-called contravariant vector basis at M . Fig. A.2
symbolically shows these two vector bases at point M in the 2D domain.

J and G are the Jacobian determinants of the transformation, given by:
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Figure A.2: The contravariant and covariant vector bases of mesh node M in the 2D
field.

J = det

xξ xη xζ

yξ yη yζ
zξ zη zζ

 and G = det

ξx ηx ζx
ξy ηy ζy
ξz ηz ζz

 (A.4)

The determinant of J has a clear physical meaning since it represents the measure
of the area (in 2D) or volume (in 3D) of a cell in the mesh.

Now some useful relations of tensor metric will be provided. The elementary vector
of displacement dr⃗ at any point is defined as

dr⃗ = g⃗i dξi (A.5)

and the differential of the covariant vector basis is expressed by:

dg⃗i = Γk
ij dξj g⃗k, (A.6)

where Γk
ij denotes the Christoffel symbols defined by:

Γk
ij =

1

2
gkm

(
∂gmj

∂ξi
+

∂gim
∂ξj

− ∂gij
∂ξm

)
. (A.7)

For the Laplace-Beltrami operator to be expressed over a surface mesh it is necessary
to give expressions for the the gradient of a scalar field Φ and the divergence of a
vector A⃗ as follows:

grad Φ = ∇Φ = gi∂Φ

∂ξi
, div A⃗ = ∇ · A⃗ =

1

J

∂(JAi)

∂ξi
(A.8)
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and by using the operators definitions of Eq. (A.8), the Laplacian operator is derived:

∆Φ = div
(
grad Φ

)
=

1

J

∂

∂ξj

(
J gij

∂Φ

∂ξi

)
. (A.9)

Now that key metrics and operators for 2D and 3D structured meshes have been
defined, the formulation can be extended to the case of surface meshes in the R3

space. Firstly, similar to the planar 2D case where each index takes values 1 and
2 and Eq. (A.9) applies, the following expression holds for the Laplace–Beltrami
operator of the position vector on a surface mesh:

∆sr⃗ =
1

J

∂

∂ξi

(
J gij

∂r⃗

∂ξj

)
(A.10)

where J denotes the Jacobian of the transformation, Eq. (A.4).

In order to process the previous expression further, two auxiliary relations concerning
the derivatives of the determinant J and the contravariant metric components are
stated without proof:

∂gij

∂ξκ
= − gajΓi

aκ − gaiΓj
aκ (A.11)

and

∂J

∂ξi
= JΓj

ji (A.12)

As derived from the Gauss–Weingarten framework, the Gauss equations take the
following form:

r⃗,ij = Γκ
ij r⃗,κ + ΩijN⃗ (A.13)

where Ωij the second fundamental coefficients, Eq. (1.4), and Γκ
ij the Christoffel

symbols of second kind as they are given by Eq. (A.7). As shown in their expression,
they depend only on the first fundamental coefficients E, F and G, as well as their
derivatives. In addition, by their definition, for Christoffel symbols it holds that
Γκ
ij = Γκ

ji.

Combining the definition of the covariant tensor and the definition of the first fun-
damental coefficient, Eq. (1.2), it follows that:
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E = g11, F = g12, G = g22 (A.14)

Substituting the Eqs. (A.14) to the expression of mean curvature as given by Eq.
(1.10), one gets:

H =
1

2
gijΩij (A.15)

Now that the geometric definitions for surface meshes have been established, the
proof of Eq. (A.1) can be developed. First, Eq. (A.10) can be expanded to obtain:

∆sr⃗ =
1

J

∂J

∂ξi
gij

∂r⃗

∂ξj
+

∂gij

∂ξi
∂r⃗

∂ξj
+ gij

∂2r⃗

∂ξiξj
(A.16)

Then, substituting Eqs. (A.11), (A.12) and (A.13) to Eq. (A.16), it follows:

∆sr⃗ =
1

J
JΓλ

λig
ij ∂r⃗

∂ξj
− gαjΓi

αi

∂r⃗

∂ξj
− gαiΓj

αi

∂r⃗

∂ξj
+ gijΓκ

ij

∂r⃗

∂ξκ
+ gijΩijN⃗ (A.17)

Since all indices λ, i, j, α and κ represent coordinate directions in 3D space, they
take values in 1, 2, 3. As a result, index substitution is acceptable in cases where it
results in more convenient expressions. Taking advantage of this and by substituting
Eq. (A.15) to Eq. (A.17), the final form of Eq. (A.1) is derived:

∆sr⃗ = [Γλ
λig

ij − gλjΓi
λi − gλiΓj

λi + giλΓj
iλ]

∂r⃗

∂ξj
+ 2µN⃗

∆sr⃗ = [Γλ
λig

ij − gijΓλ
iλ − gλiΓj

λi + giλΓj
iλ]

∂r⃗

∂ξj
+ 2µN⃗

∆sr⃗ = 2µN⃗ (A.18)

The above equation plays a key role in structured mesh theory, as it provides an
elliptic formulation for generating structured surface meshes. In particular, the
invariance of both the mean curvature and the unit normal vector under reparame-
terization gives the equations that together with others are governing the structured
surface mesh generation process.
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Appendix B

Cotangent Formula for Voronoi

Area

In this section the formula of Eq. (2.14) used for calculating the corresponding area
to each node will be proven. Firstly, in a triangle △ABC the circumradius is given
by:

R =
abc

4rs
⇒ 4Rrs = abc (B.1)

where R the radius of the circumscribed circle, r is the radius of the inscribed circle,
Fig. B.1, a, b and c the length of the triangle edges and s the semi-perimeter of the
triangle which is given by: s = a+b+c

2
.

To prove Eq. (B.1) the circumscribed circle of the triangle is assumed, Fig. B.2 . It

is true that ÂDB = ÂCB as inscribed angles in the same chord. Also, the triangles
△BAD and △BEC are similar and subsequently for their edges the relation BD

BC
=

BA
BE

is valid. Using this relation, the equations below are obtained:

Figure B.1: Inscribed circle of a triangle.
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Figure B.2: Circumscribed circle of a triangle.


2R

a
=

c

h

h =
2Area(△ABC)

b
=

2AT

b

 ⇒ 2Rh = ac

⇒ 2R · 2AT = abc ⇒ 4ATR = abc (B.2)

where AT = rs.

Figure B.3: Triangle △ABC.

Law of cotangents in the triangle shown in Fig. C.1 is then proved. According to
the law of sines it is true that:

a

sinα
=

b

sinβ
=

c

sinγ
= 2R (B.3)

The law is then expanded as:

cotα
2

s− a
=

cotβ
2

s− b
=

cotγ
2

s− c
=

1

r
(B.4)
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where r =
√

1
s
(s− a)(s− b)(s− c) and cotα

2
= (AK)

2
= s−a

r
.

In a triangle, it is true that α+β+γ
2

= π
2
and since cot(π

2
) = 0, this gives the cotangent

rule:

cot(
α + β + γ

2
) = 0 (B.5)

which is then expanded:

cotα
2
+ cotβ

2
+ cotγ

2
− cotα

2
cotβ

2
cotγ

2

1− cotα
2
cotβ

2
− cotβ

2
cotγ

2
− cotγ

2
cotα

2

= 0

cot
α

2
+ cot

β

2
+ cot

γ

2
= cot

α

2
cot

β

2
cot

γ

2
s− a

r
+

s− b

r
+

s− c

r
=

(s− a)(s− b)(s− c)

r3
=

3s− 2s

r
=

s

r
(B.6)

Additionally, the cotangent of any angle ϕ which is made by two vectors a⃗ and b⃗ can
be expressed by dividing a⃗ · b⃗ = abcosϕ with the law of sines in Eq. (B.3) as follows:

a⃗ · b⃗
c

=
ab

2R
cotϕ ⇒ cotϕ =

2Ra⃗ · b⃗
abc

(B.7)

which by using the Eq. (B.2) gives:

cotϕ =
2Ra⃗ · b⃗
4ATR

⇒ cotϕ =
a⃗ · b⃗
2AT

(B.8)

Finally, the cotangent formula of Voronoi area of [BKOM] in △ABC will be proved.

As it is shown in Fig. B.4, BO = AO = CO = R. Also, it is true that:

KO =
√

R2 − (KB)2 =

√
R2 − c2

4
=
√
R2(1− sin2γ) =

√
R2cos2γ = Rcosγ

(B.9)

MO =
√

R2 − (MB)2 =

√
R2 − a2

4
=
√

R2(1− sin2α) =
√
R2cos2α = Rcosα

(B.10)

Also, law of sine is expressed as:
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Figure B.4: Definition of sub-volume based on the circumcenter of an acute and an
obtuse triangle △ABC, where A = 1, B = 2 and C = 3.

2R =
c

sin γ
⇒ c = 2R sin γ ⇒ c2 = 4R2 sin2 γ (B.11)

So, the area [△BKO] is computed using Eq. (B.9) and Eq. (B.11):

[△BKO] =
1

2
(KB)(KO) =

c

4
Rcosγ =

c

4

c

2sinγ
cosγ =

c2

8
cotγ (B.12)

Respectively, for △BOM :

[△BOM ] =
α2

8
cotα (B.13)

Consequently, the area [BKOM] is given:

[BKOM ] =
1

8
(c2cotγ + a2cotα) (B.14)

which is the Voronoi area section from △ABC that corresponds to the node B.
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Appendix C

Cotangent Formula for Triangle

Angles

This section presents the formulae for the cotangent of each triangle angle in relation
to its geometric quantities.

Figure C.1: Triangle △ABC.

More specifically, consider △ABC shown in Fig. C.1. For this triangle, the Law of
Cosines holds, and is given below:

c2 = a2 + b2 − 2ab cos γ, a2 = b2 + c2 − 2bc cosα, b2 = a2 + c2 − 2ac cos β (C.1)

Then, the cosine of the triangle’s angles are expressed as follows:

cos γ =
c2 − a2 − b2

2ab
, cosα =

c2 + b2 − a2

2bc
, cos β =

c2 + a2 − b2

2ac
(C.2)
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The area of the triangle is given by the following expressions:

A =
1

2
ab sin γ =

1

2
cb sinα =

1

2
ac sin β (C.3)

Then, the sine of the triangle’s angles are expressed as:

sin γ =
2A

ab
, sinα =

2A

cb
, sin β =

2A

ac
(C.4)

Dividing cosine of each angle with its sine as given by Eqs. (C.2) and Eq. (C.4), the
following expressions for the cotangent of each angle are derived:

cot γ =
a2 + b2 − c2

4A
, cotα =

c2 + b2 − a2

4A
, cot β =

c2 + a2 − b2

4A
(C.5)
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Εισαγωγή

Η βελτιστοποίηση στο μηχανολογικό σχεδιασμό είναι ευρέως εφαρμοσμένη σε διάφο-

ρους τομείς της μηχανολογίας, όπως στην αεροναυπηγική και στην αυτοκινητοβιομη-

χανία, οι οποίοι συνήθως απαιτούν την επίλυση υπολογιστικά απαιτητικών εξισώσεων

ρευστοδυναμικής (CFD). Η βελτιστοποίηση κατασκευών έχει εξελιχθεί τα τελευταία
χρόνια σε βελτιστοποίηση μορφής και τοπολογίας, καθότι προσφέρουν τη δυνατότητα

μορφοποίησης της γεωμετρίας των κατασκευών ώστε να ανταποκρίνονται στις μηχα-

νολογικές απαιτήσεις. ΄Ενας από τους διαφόρους περιορισμούς που επιβάλλονται κατά

τη βελτιστοποίηση κατασκευών είναι ο περιορισμός της καμπυλότητας, ο οποίος έχει

εξέχουσα σημασία καθότι συμβάλλει στην εξασφάλιση της αντοχής, της κατασκευασι-

μότητας και άλλων ιδιοτήτων σχετικών με την καμπυλότητα των επιφανειών στις βελ-

τιωμένες κατασκευές. Ιδίως η εξασφάλιση της αντοχής και της κατασκευασιμότητας

μέσω της καμπυλότητας έχουν ιδιαίτερη σημασία σε πολλές μηχανολογικές εφαρμογές,

όπως στη βελτιστοποίηση τεμαχίων που παράγονται μέσω προσθετικών ή κοπτικών κα-

τεργασιών, καθότι μία βελτιωμένη λύση που δεν κατασκευάζεται ή δεν πληρεί βασικές

μηχανολογικές προϋποθέσεις είναι είσονος σημασίας. Δεδομένης της αναγκαιότητας

επιβολής περιορισμών καμπυλότητας σε CFD προβλήματα βελτιστοποίησης μορφής και
τοπολογίας, κρίνεται απαραίτητη η δυνατότητα ακριβούς προσδιορισμού της καμπυ-

λότητας των εξωτερικών επιφανειών των εκάστοτε γεωμετριών, ώστε να μπορούν να

επιβληθούν ως περιορισμοί, πράγμα το οποίο πραγματεύεται η παρούσα διπλωματική.

Η καμπυλότητα αποτελεί μία μετρική που τόσο σε δισδιάστατες καμπύλες όσο και σε

επιφάνειες χαρακτηρίζει κάθε σημείο ξεχωριστά και αποκαλύπτει τον τρόπο με τον ο-

ποίο η γειτονική περιοχή της καμπύλης ή της επιφάνειας αναπτύσσεται κατά τη μία ή

περισσότερες εφαπτομενικές κατευθύνσεις. Στην περίπτωση των επιφανειών, αποτελεί

αναλλοίωτη μετρική, που σημαίνει ότι παραμένει σταθερή μεταξύ των διαφόρων μετα-

σχηματισμών του πλέγματος της επιφανείας, καθότι ορίζεται μέσω άλλων αναλλοίωτων

μεγεθών του επιφανειακού πλέγματος. Συγκεκριμένα, ένα επιφανειακό πλέγμα χαρα-

κτηρίζεται από δύο αναλλοίωτες ποσότητες, την πρώτη I και δεύτερη II θεμελιώδη
μορφή, των οποίων η φυσική σημασία συνδέεται άμεσα με τοπικά γεωμετρικά χαρα-

κτηριστικά της επιφάνειας, καθώς μέσω αυτών προσδιορίζεται η κάθετη καμπυλότητα

κάθε καμπύλης που διέρχεται από το συγκεκριμένο σημείο της επιφάνειας. Η κάθετη

καμπυλότητα μίας καμπύλης ορίζεται ως το μέτρο του διανύσματος της καμπυλότητας

που είναι προβεβλημένο στο κάθετο διάνυσμα. Εφόσον στην επιφάνεια υπάρχουν πάνω

από μία εφαπτόμενες κατευθύνσεις για κάθε σημείο, η ολική καμπυλότητα σε ένα ση-

μείο λαμβάνει υπόψη μόνο δύο εξ αυτών των κατευθύνσεων, αυτών που αντιστοιχούν

στις καμπύλες με τη μεγαλύτερη και τη μικρότερη καμπυλότητα στο συγκεκριμένο ση-

μείο, κ1 και κ2 αντίστοιχα. Οι καμπυλότητες αυτές είναι οι κύριες καμπυλότητες και

είναι επίσης αναλλοίωτες. Δεδομένου ότι δεν υπάρχει άμεσος τύπος υπολογισμού των

κύριων καμπυλοτήτων για οποιοδήποτε τύπο πλέγματος, δύο νέες μετρικές της καμπυ-

λότητας εισάγονται, η μέση καμπυλότητα H και καμπυλότητα Gauss K, των οποίων ο
τρόπος υπολογισμού είναι εφαρμόσιμος τόσο στα δομημένα όσο και στα μη-δομημένα

πλέγματα. Οι μέση και Gauss καμπυλότητες σχετίζονται με τις κύριες καμπυλότητες
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ως εξής:

H =
κ1 + κ2

2
, K = κ1κ2 (1)

Στη παρούσα εργασία, εξετάζονται οι μέθοδοι υπολογισμού της μέσης και Gauss κα-
μπυλότητας σε οποιοδήποτε τύπο πλέγματος. Η μέθοδος για τη μέση καμπυλότητα

υιοθετείται από την αντίστοιχη στην ανάλυση των πεπερασμένων στοιχείων και προ-

σαρμόζεται κατάλληλα στην περίπτωση της ανάλυσης μέσω πεπερασμένων όγκων, η

οποία είναι η κατά κόρων χρησιμοποιούμενη στην περίπτωση των CFD προβλημάτων
βελτιστοποίησης μορφής και τοπολογίας. Η μέθοδος για τη καμπυλότητα Gauss είναι
γενική για κάθε διαφορική γεωμετρία. Οι μέθοδοι εξετάζονται ως προς την ακρίβεια

τους να αποτυπώνουν την πραγματική καμπυλότητα επιφανειών. Η διερεύνηση ανέδειξε

την εμφάνιση σημαντικών σφαλμάτων στον υπολογισμό της καμπυλότητας και δημιο-

ύργησε την ανάγκη δημιουργίας μίας νέας διόρθωσης των μεθόδων υπολογισμού που

θα προσφέρει μεγαλύτερη ακρίβεια από τις υπάρχουσες. Στην παρούσα εργασία α-

ποτυπώνεται η μαθηματική θεμελίωση, ο προγραμματισμός και η εφαρμογή της νέας

μεθόδου σε διαφόρων ειδών επιφανειακά πλέγματα. Η μέθοδος συγκρίνεται ως προς

την ακρίβεια της με ευρέως χρησιμοποιούμενα λογισμικά σε περιπτώσεις δομημένων και

μη-δομημένων επιφανειακών πλεγμάτων. Επιπλέον, αποτυπώνεται η μορφή της τελικής

συνάρτησης της καμπυλότητας θα χρησιμοποιηθεί ως περιορισμός στη βελτιστοποίηση

μορφής ή τοπολογίας.

Υπολογισμός της μέσης καμπυλότητας σε επιφα-

νειακά πλέγματα

Η μέση καμπυλότητα H σε ένα σημείο μιας επιφάνεια δίνεται ως:

∆sr⃗ = ∇2
s r⃗ = 2HN⃗ (2)

όπου N⃗ το αδιάστατο κάθετο διάνυσμα στο συγκεκριμένο σημείο. Ο Laplace - Beltrami
τελεστής ∆s είναι η γενίκευση του Laplacian τελεστή για συναρτήσεις ορισμένες πάνω
σε επιφάνεια.

Συνεπώς, ο προσδιορισμός της μέσης καμπυλότητας σε κάθε σημείο της επιφάνειας δια-

μορφώνεται στον υπολογισμό του τελεστή Laplace - Beltrami του διανύσματος θέσης
καθώς και του κάθετου διανύσματος του σημείου. Ακολουθώντας για την FVM έκ-
φραση του πλέγματος την αντίστοιχη μεθοδολογία με αυτή στην περίπτωση της FEM ,
αποδεικνύεται ότι ο τελεστής Laplace - Beltrami μίας επιφανείας μπορεί να προσεγγι-
στεί μέσω του διαφορικού τελεστή στη λογική των πεπερασμένων όγκων.

Για τον υπολογισμό τόσο του διαφορικού τελεστή όσο και του κάθετου διανύσματος σε

κάθε σημείο απαιτείται πρώτα η μετατροπή της έκφρασης των πεπερασμένων όγκων από

κεντροκυψελική σε κεντροκομβική. Η μετατροπή γίνεται μέσω κατάλληλου ορισμού

του πεπερασμένου όγκου ανά κόμβο λαμβάνοντας συνεισφορά από στοιχεία που τον
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απαρτίζουν. Υπάρχουν τρεις διαφορετικοί τρόποι ορισμού των VCFV , που βασίζονται
σε τρεις διαφορετικούς τρόπους απόδοσης της συνεισφοράς των γειτονικών στοιχείων

στον εξεταζόμενο κόμβο:

• Βαρυκεντρικός: Βασίζεται στο διαμοιρασμό του εμβαδού του εκάστοτε στοιχείου
σε κάθε κορυφή με βάση τα εμβαδά που σχηματίζουν οι διάμεσοι, διερχόμενοι

από το βαρύκεντρο, με τα μέσα των πλευρών του τριγώνου, Σχήμα 1.

• Voronoi ή περικεντρικός: Βασίζεται στο διαμοιρασμό του εμβαδού του εκάστοτε
στοιχείου σε κάθε κορυφή με βάση τα εμβαδά που σχηματίζουν οι μεσοκάθετοι,

διερχόμενες από το περίκεντρο, με τα μέσα των πλευρών του τριγώνου, Σχήμα

2α. Στην περίπτωση του αμβλυγωνίου, το περίκεντρο βγαίνει εκτός τριγώνου, με

αποτέλεσμα το άθροισμα των υποεμβαδών να είναι μεγαλύτερο από το εμβαδόν

του τριγώνου, Σχήμα 2β.

• Διορθωμένος Voronoi : Παρόμοιος με το Voronoi , μόνο που στην περίπτωση του
αμβλυγωνίου, με σκοπό το άθροισμα των υποεμβαδών να δίνει το εμβαδών του

τριγώνου, εφαρμόζεται μία διόρθωση στην οποία το αμβλυγώνιο προσεγγίζεται

ως ορθογώνιο, οπότε το περίκεντρο τοποθετείται στο κέντρο της πλευράς απένα-

ντι από την αμβλεία γωνία, Σχήμα 3.

Βάσει του ορισμού του εμβαδού κάθε VCFV , το κάθετο διάνυσμα που αντιστοιχεί σε
κάθε υποεμβαδό προκύπτει ως ο λόγος του υποεμβαδού προς το συνολικό εμβαδόν,

πολλαπλασιασμένος με το ολικό κάθετο διάνυσμα.

Σχήμα 1: Ορισμός του υποεμβαδού που αντιστοιχεί σε κάθε κορυφή με βάση το βα-

ρύκεντρο του τριγώνου △ABC, όπου A = 1, B = 2 και C = 3.

Για τον υπολογισμό του διαφορικού του διανύσματος θέσης δύο προσεγγίσεις εξετάζο-

νται, μέσω της χρήσης των κάθετων διανυσμάτων των πλευρών του τριγώνου και μέσω

της χρήσης της έκφρασης της συνεφαπτομένης, που δίνεται ως εξής:

∇2
s r⃗

∣∣∣∣
o

=
1

2

Cg∑
i=1

(r⃗pi − r⃗po) [cot ki + cot li] (3)

όπου Cg είναι ο αριθμός των ακμών που διέρχονται από τον κόμβο O και cot ki και
cot li είναι οι εφαπτόμενες των γωνιών που αντιστοιχούν στην ακμή i στα δύο τρίγωνα
που τη μοιράζονται, Σχήμα 4.
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(αʹ) (βʹ)

Σχήμα 2: Ορισμός του υποεμβαδού που αντιστοιχεί σε κάθε κορυφή με βάση το πε-

ρίκεντρο ενός (α) οξυγώνιου και (β) ενός αμβλυγώνιου △ABC, όπου A = 1, B = 2 και
C = 3.

Σχήμα 3: Ορισμός του υποεμβαδού που αντιστοιχεί σε κάθε κορυφή με βάση το διορ-

θωμένο περίκεντρο ενός αμβλυγωνίου △ABC, όπου A = 1, B = 2 και C = 3.

Σχήμα 4: Εμβαδόν Voronoi για το κόμβο O ενός επιφανειακού πλέγματος.

Οι δύο προσεγγίσεις δίνουν πανομοιότυπα αποτελέσματα, με τη δεύτερη να είναι υπο-

λογιστικά πιο αποδοτική, για αυτό και επιλέγεται μεταξύ των δύο για τη συνέχεια.

Μεταξύ των τριών διαφορετικών ορισμών των VCFV , η διορθωμένη Voronoi είχε την
μεγαλύτερη ακρίβεια στον υπολογισμό της μέσης καμπυλότητας στις διάφορες εφαρμο-

γές, όπως στη σφαίρα. Το μέγιστο σφάλμα σε αυτήν τη περίπτωση ήταν της τάξης του

20%, το οποίο κρίθηκε μη ικανοποιητικό για τη χρήση της υπολογισμένης καμπυλότη-

τας ως περιορισμό βελτιστοποίησης. Για το λόγο αυτό, κρίθηκε απαραίτητη η εισαγω-
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γή μίας νέα μεθόδου, η οποία αποκαλείται Εξομαλυμένη Γεωμετρικά-Προσαρμοσμένη

(SGAC)Μέθοδος Voronoi. Η μέθοδος βασίζεται στην υπάρχουσα Διορθωμένη Μέθο-
δο Voronoi, εφαρμόζοντας επιπλέον διορθώσεις που λαμβάνουν υπόψη τη γεωμετρία
του αμβλυγωνίου για τον διαμοιρασμό των υποεμβαδών, σε αντίθεση με τη Διορθω-

μένη Μέθοδο Voronoi που αποδίδει σταθερό ποσοστό εμβαδού σε κάθε κορυφή σε
κάθε αμβλυγώνιο. Παράλληλα, η διόρθωση αντισταθμίζει τα μέρη των υποεμβαδών

που βγαίνουν εκτός του αμβλυγωνίου στην αρχική μέθοδο Voronoi. Επιπλέον, η μέθο-
δος εξομαλύνει τη μετάβαση από τον κανονικό ορισμό Voronoi για τα οξυγώνια και
τα ορθογώνια με τον νέο διορθωμένο ορισμό για το αμβλυγώνιο. Η νέα μέθοδος δο-

κιμάστηκε σε δύο σφαιρικά πλέγματα, ένα αραιό (Πίνακας 1) και ένα πυκνό (Πίνακας

2), με το σχετικό απόλυτο σφάλμα (RMAE) να μειώνεται κατά μία τάξη μεγέθους
σε σχέση με την υπάρχουσα Διορθωμένη Μέθοδο Voronoi. Παρόμοια συμπεράσματα
αντλήθηκαν από τη σύγκριση των μεθόδων στο σφαιρικό πλέγμα μέσω του σφάλματος

της μέγιστης και της ελάχιστης τιμής της μέσης καμπυλότητας, Πίνακας 3. Στο Σχήμα

5 φαίνεται η κατανομή της μέσης καμπυλότητας με τη χρήση της νέας μεθόδου, όπου

παρατηρείται μικρή απόκλιση στα σημεία που περιτριγυρίζονται από τουλάχιστον ένα

αμβλυγώνιο.

(αʹ) Πρώτη προοπτική θέαση κόμβων με απόκλι-

ση μέσης καμπυλότητας.

(βʹ) Δεύτερη προοπτική θέαση κόμβων με α-

πόκλιση μέσης καμπυλότητας.

Σχήμα 5: Προοπτικές θέασης κόμβων με απόκλιση μέσης καμπυλότητας από την

αναμενόμενη τιμή με τη χρήση της SGAC Μεθόδου Voronoi.

VCFV Definition for Obtuse Triangles Relative Error
Corrected Voronoi 0.223%

GAC Voronoi 0.025%

Πίνακας 1: RMAE της GAC Μεθόδου Voronoi σε σύγκριση με την υπάρχουσα Διορ-
θωμένη Μέθοδο Voronoi σε σφαιρικό επιφανειακό πλέγμα.
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VCFV Definition for Obtuse Triangles Relative Error
Corrected Voronoi 0.059%

GAC Voronoi 0.0066%

Πίνακας 2: RMAE της GAC Μεθόδου Voronoi σε σύγκριση με την υπάρχουσα Διορ-
θωμένη Μέθοδο Voronoi σε πυκνό σφαιρικό επιφανειακό πλέγμα.

VCFV Definition
for obtuse triangles

Min Value of
Mean

Curvature
Error

Max Value of
Mean

Curvature
Error

Corrected Voronoi 0.941683572258 5.832% 1.222835972957 22.286%
SGAC Voronoi 0.995123547932 0.488% 1.006219135819 0.622%

Πίνακας 3: Σύγκριση της SGAC Μεθόδου Voronoi με την υπάρχουσα Διορθωμένη
Μέθοδο Voronoi του VCFV σε σφαιρικό επιφανειακό πλέγμα.

Υπολογισμός της Gauss καμπυλότητας σε επιφα-

νειακά πλέγματα

Ο υπολογισμός της Gauss καμπυλότητας σε τριγωνικά πλέγματα βασίζεται στο Gauss-
Bonnet θεώρημα. ΄Οταν εκφράζεται σε κάθε κόμβο p, η καμπυλότητα Gauss K δίνεται
ως:

K(p) =
1

AM

(
2π −

Nt∑
j=1

θj

)
(4)

όπου AM το εμβαδόν του VCFV όπως δόθηκε και στη μέση καμπυλότητα, θj η γωνία
κάθε τριγώνου που εφάπτεται στον κόμβο p και έχει ως κορυφή των ίδιο κόμβο και Nt

ο αριθμός των γειτονικών τριγώνων του p.

Η ακρίβεια της Gauss καμπυλότητας, όμοια με τη μέση, εξαρτάται σε μεγάλο βαθμό
από τον ορισμό VCFV. Η νέα SGAC Μέθοδος Voronoi εφαρμόστηκε και σε αυτή την
περίπτωση και αποδείχθηκε ως η πιο ακριβής από όσες δοκιμάστηκαν, Πίνακας 4.

VCFV Definition for obtuse triangles Relative error
Barycentric 7.237%
Voronoi 0.833%

Corrected Voronoi 0.774%
GAC Voronoi 0.613%
SGAC Voronoi 0.616%

Πίνακας 4: Σύγκριση RMAE για διαφορετικούς ορισμούς VCFV της καμπυλότητας
Gaussσε επιφανειακό πλέγμα σφαίρας.
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Υπολογισμός των μετρικών καμπυλότητας σε τε-

τραπλευρικά πλέγματα

Ο υπολογισμός των μετρικών της μέσης και Gauss καμπυλότητας στα τετραπλευρικά
πλέγματα βασίζεται στην τριγωνοποίηση αυτών και την εφαρμογή των μεθόδων που α-

ναλύθηκαν για τα τριγωνικά πλέγματα. Ωστόσο, διαφορετικοί τρόποι τριγωνοποίησης

οδηγούν σε διαφορετικά αποτελέσματα καμπυλότητας. Προκειμένου να οριστεί ένας

γενικός τρόπος υπολογισμού των καμπυλοτήτων που να λαμβάνει υπόψη, για κάθε κόμ-

βο, τους δύο διαφορετικούς τρόπους τριγωνοποίησης των στοιχείων στα οποία ανήκει,

ο μέσος όρος αυτών λαμβάνεται υπόψη για τον ορισμό του VCFV από τα τετραπλευρικά
στοιχεία. Χρησιμοποιούνται οι ίδιοι τύποι με τα τριγωνικά στοιχεία, απλά στη θέση των

βασικών όρων χρησιμοποιούνται οι μέσοι όροι από τους δύο τρόπους τριγωνοποίησης

κάθε στοιχείου. Για τη μέση καμπυλότητα κάθε κόμβου, η μέση τιμή των υποεμβαδών

από τις δύο τριγωνοποιήσεις κάθε γειτονικού στοιχείου χρησιμοποιείται για το εμβαδόν

του VCFV, Σχήμα 6, καθώς και η έκφραση της συνεφαπτομένης με βάρη από τις δύο
τριγωνοποιήσεις χρησιμοποιείται για το διαφορικό του διανύσματος θέσης, Σχήμα 8.

Για τη καμπυλότητα Gauss κάθε κόμβου, χρησιμοποιείται η μέση τιμή των γωνιών που
προκύπτουν από τις δύο τριγωνοποιήσεις σε κάθε γειτονικό στοιχείο, Σχήμα 7.

Σχήμα 6: Υποεμβαδά Voronoi
που προκύπτουν από δύο διαφορετι-

κές τριγωνοποιήσεις κάθε στοιχείου.

Σχήμα 7: Εσωτερικές γωνίες

που προκύπτουν από δύο διαφορετι-

κές τριγωνοποιήσεις κάθε στοιχείου.

Αυτή η μέθοδος εξασφαλίζει καλύτερη ακρίβεια υπολογισμού των καμπυλοτήτων σε

κάθε τετραπλευρικό πλέγμα, με το σφάλμα ανά κόμβο να τείνει πιο κοντά προς το

ελάχιστο εκ των δύο από τις δύο διαφορετικές τριγωνοποιήσεις κάθε γειτονικού στοι-

χείου του κόμβου.

Προτεινόμενη Μέθοδος Υπολογισμού Καμπυλότη-

τας: Επικύρωση και Συγκριτική Αξιολόγηση

Μετά τον υπολογισμό της μέσης και Gauss καμπυλότητας σε κάθε σημείο, οι κύριες
καμπυλότητες μπορούν να προσδιοριστούν. Η ολική καμπυλότητα πρέπει να λαμβάνει

υπόψη τη μέγιστη και την ελάχιστη καμπυλότητα, ενώ διατηρεί την ιδιότητα μηδενισμού
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Σχήμα 8: Μέση τριγωνοποίηση κάθε στοιχείου του σημείου p [14].

αν και μόνο αν και οι δύο κύριες καμπυλότητες μηδενίζονται, δηλαδή αν έχουμε επίπεδο.

Ως εκ τούτου, η ολική καμπυλότητα ορίζεται ως κ = κ2
1 + κ2

2.

Η ακρίβεια απόδοσης της με βάση την προτεινόμενη μέθοδο συγκρίθηκε με αυτήν από

ευρέως χρησιμοποιούμενα λογισμικά CFD [17], καθώς και με ξεχωριστά λογισμικά
για την απεικόνιση και τη μετεπεξεργασία των υπολογισθέντων πεδίων ροής [1] και

αναδείχθηκε ως η καλύτερη, Πίνακας 5.

Computation method RMSE
Proposed

Computation Method 0.02977

Well-known visualization software 2.2202
Libigl [18] 1.28

Meshlab [24] 2.7072
Trimesh2 [20] 1.0621

[Crane He Chen 2023] [4] 0.0372

Πίνακας 5: Σύγκριση του RMSE της ολικής καμπυλότητας στην επιφάνεια τορού
μεταξύ της προτεινόμενης μεθόδου υπολογισμού και προηγμένων λογισμικών καθώς και

καθιερωμένων μεθόδων.

Η σύγκριση έγινε σε δομημένα και σε μη-δομημένα επιφανειακά πλέγματα, με τα τε-

λευταία να παρουσιάζουν εμφανώς μικρότερη ακρίβεια σε σχέση με τα πρώτα λόγω

της ύπαρξης ακανόνιστων δομών των τριγωνικών στοιχείων, ανομοιογένειας στην πυ-

κνότητα των στοιχείων, κόμβων με ελάχιστο αριθμό γειτονικών στοιχείων ή άλλων

ιδιαιτεροτήτων που δεν είναι εμφανείς στην περίπτωση των δομημένων. Σημαντικά

μέγιστα σφάλματα αποδόθηκαν σε τοπικές ανωμαλίες του πλέγματος, για τις οποίες

υπάρχει τρόπος πρόληψης μέσω κατάλληλης προ-επεξεργασίας του πλέγματος με βάση

τους δείκτες ποιότητας του πλέγματος. Παράλληλα, δύναται αντιμετώπιση κάποιων

ανωμαλιών κατά τη διάρκεια υπολογισμού της καμπυλότητας. Για παράδειγμα, έντονα
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σφάλματα λόγω επιμήκυνσης των τριγώνων σε μία μόνο κατεύθυνση δύναται να αντιμε-

τωπιστούν με τη χρήση διορθωτικών παραγόντων που ελαττώνουν την έντονη διαφορά

σε σχέση με τις άλλες δύο κατευθύνσεις.

Στόχος της διαδικασίας υπολογισμού της συνολικής καμπυλότητας ανά κόμβο είναι η ε-

ξαγωγή ενός συνολικού μέτρου καμπυλότητας για την οριακή επιφάνεια της γεωμετρίας

της δομής, ώστε να μπορεί να χρησιμοποιηθεί ως περιορισμός κατά τη διαδικασία βελ-

τιστοποίησης μορφής ή τοπολογίας. Η χρήση ξεχωριστού περιορισμού για κάθε κόμβο

θα καθιστούσε το πρόβλημα πολύ-περιορισμένο και θα επηρέαζε αρνητικά τη σύγκλι-

ση της βελτιστοποίησης. Για αυτόν τον λόγο, υιοθετείται η συνάρτηση συσσώρευσης

p-norm, η οποία επιτρέπει την ομαλή και διαφορίσιμη προσέγγιση της μέγιστης τι-
μής ενός πεδίου κατανεμημένων περιορισμών. Συγκεκριμένα, για p = 3 η συνολική
καμπυλότητα δίνεται από τη σχέση:

f3(κ) =

(
n∑

i=1

κ3
i

) 1
3

(5)

Η παραπάνω μέθοδος εφαρμόστηκε σε πρόβλημα ελαχιστοποίησης τραχύτητας επι-

φάνειας. Μια αρχικά τραχιά επιφάνεια, Σχήμα 9α, εξομαλύνεται μέσω βελτιστοποίησης

σχήματος, οδηγώντας σε πιο λεία γεωμετρία, Σχήμα 9β. Η αρχική επιφάνεια εμφάνιζε

υψηλότερη συνολική καμπυλότητα (κτοτ = 862.559) σε σχέση με τη βελτιστοποιημένη
(κτοτ = 763.604), γεγονός που αποτελεί σε αυτήν την εφαρμογή ένας δείκτης για την
τραχύτητα. Παρατηρείται ότι, παρόλο που η διαφορά στις τιμές της συνολικής καμπυ-

λότητας δεν είναι τόσο έντονη όσο υποδεικνύει η οπτική διαφορά, αυτό οφείλεται σε

μικρές περιοχές με υψηλή τοπική καμπυλότητα που δεν εξομαλύνθηκαν επαρκώς. Η

συνάρτηση p-norm ενισχύει την επίδραση αυτών των περιοχών, αποδεικνύοντας την α-
ποτελεσματικότητά της στην ανάδειξη των πιο προβληματικών σημείων της επιφάνειας.

(αʹ) Μέτρο συνολικής καμπυλότητας αρχικής ε-

πιφάνειας: κτοτ = 862.559.
(βʹ) Μέτρο συνολικής καμπυλότητας εξομαλυ-

μένης επιφάνειας: κτοτ = 763.604.

Σχήμα 9: Συνολική καμπυλότητα επιφάνειας πριν και μετά από την εξομάλυνση τρα-

χύτητας.
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Συμπεράσματα και Προτάσεις Μελλοντικής ερ-

γασίας

Η ανάλυση των μεθόδων υπολογισμού καμπυλότητας που προτείνονται στη βιβλιογρα-

φία ανέδειξε σημαντικά ζητήματα ακρίβειας, ακόμη και για απλές γεωμετρίες, με τη

βασική αιτία να είναι ο λανθασμένος υπολογισμός των επιφανειών που ανατίθενται

στους κόμβους. Μία νέα μέθοδος εισήχθηκε για το σκοπό αυτό, η SGAC Μέθοδος
Voronoi, που λαμβάνει υπόψη τη γεωμετρία των αμβλειών τριγώνων και βελτιώνει ση-
μαντικά την ακρίβεια του υπολογισμού καμπυλότητας, μειώνοντας το μέγιστο σφάλμα

κάτω από 1%. Η μέθοδος είναι εφαρμόσιμη τόσο σε δομημένα όσο και σε μη-δομημένα

πλέγματα. ΄Οσον αφορά την εφαρμογή της ολικής καμπυλότητας ως περιορισμό στη

βελτιστοποίηση, θα πρέπει να ληφθούν υπόψη τα παρακάτω:

• Η καμπυλότητα, εκ φύσεως, είναι μέγεθος οριζόμενο σημειακά, ενώ σε λογισμικά
για CFD προσομοιώσεις, για λόγους συνέπειας στην αποθήκευση δεδομένων με
τα πεδία ροής που ορίζονται στις φάτσες, προτείνεται να υπολογίζεται αρχικά

στους κόμβους με τις προτεινόμενες μεθόδους και στη συνέχεια να παρεμβάλλεται

στις συνοριακές επιφάνειες.

• Λόγω της εξάρτησης της καμπυλότητας από τη γεωμετρία των τριγωνικών στοι-
χείων, συνιστάται η κανονικοποίηση των τιμών καμπυλότητας κάθε επιφανειακού

στοιχείου ως εξής:

κfn =
κfSf∑

Sf

(6)

όπου Sf είναι η επιφάνεια κάθε στοιχείου και
∑

Sf το άθροισμα όλων των επι-

φανειών. Αυτή η κανονικοποίηση εξασφαλίζει ότι τα μεγαλύτερα στοιχεία έχουν

ανάλογα μεγαλύτερη επιρροή στη συνολική μέτρηση.

• Είναι απαραίτητη η επιλογή κατάλληλης συνάρτησης συσσώρευσης για τη με-
τατροπή των σημειακών περιορισμών καμπυλότητας σε έναν ενιαίο αριθμητικό

περιορισμό, προκειμένου να επιτευχθεί καλύτερη σύγκλιση κατά τη βελτιστοπο-

ίηση. Προτείνεται η συνάρτηση συσσώρευσης τύπου p-norm, καθώς επιτρέπει
την ομαλή και διαφορίσιμη προσέγγιση της μέγιστης τιμής ενός πεδίου περιορι-

σμών.

Τονίστηκε επίσης η σημασία της ποιότητας του πλέγματος για την ακρίβεια στον υπο-

λογισμό της καμπυλότητας, ιδίως σε μη-δομημένα πλέγματα όπου οι τοπικές ανωμαλίες

είναι πιο συχνές. Σε περιπτώσεις όπου η βελτίωση της ποιότητας του πλέγματος δεν

είναι εφικτή, προτείνονται μέτρα για τη διατήρηση της αξιοπιστίας της μεθόδου, όπως

η επιπλέον επαλήθευση της καμπυλότητας σε κόμβους με μικρό αριθμό γειτόνων, α-

ντλώντας πληροφορίες από γείτονες δευτέρου βαθμού, καθώς και η χρήση τοπικής προ-

σέγγισης με δευτεροβάθμιες επιφάνειες για την αποφυγή απειρισμού της καμπυλότητας,

π.χ. σε περιοχές όπου η επιφάνεια παρουσιάζει απότομες αλλαγές ή τσακίσματα.
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