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Abstract

This diploma thesis focuses on mathematical formulating, programming and im-
plementing high-accuracy methods to compute curvature over unstructured surface
meshes, with the goal of incorporating curvature as a constraint in shape or topol-
ogy adjoint-based optimization. Curvature-constrained optimization has attracted
significant attention in recent years due to its critical role in ensuring durability,
manufacturability, and other curvature-related properties of optimized shapes across
various engineering applications.

According to the literature, efforts to incorporate curvature revealed significant ac-
curacy issues in existing computational methods. Many state-of-the-art approaches
fail to capture local point-wise curvature accurately, leading to misleading estimates
of total surface curvature. The performed research revealed a critical sensitivity
of curvature estimates to the geometry of mesh elements. This sensitivity is par-
ticularly pronounced in unstructured meshes, where local irregularities are often
unavoidable. The problem intensifies during an optimization loop, since the mesh
might become distorted. This can lead to divergence, as constraints based on inac-
curate curvature values may no longer reflect the true surface geometry.

To address these challenges, this diploma thesis presents an in-depth analysis of the
fundamental shortcomings present in conventional curvature estimation techniques.
The findings identify ill-posed vertex-centered finite volume formulations as a pri-
mary source of inaccuracy in the widely used methods. In response, a novel and
improved approach is introduced here: the Smoothed Geometry-Adaptive Corrected



(SGAC) Voronoi method, applicable to both mean and Gauss curvature estimation.

The SGAC method builds upon the widely adopted Voronoi-based framework, ad-
dressing two key limitations observed in its application to nodal finite volume con-
struction: (i) the assumption that obtuse triangles can be treated as right-angled,
and (ii) the uniform area distribution to the vertices in each obtuse triangle, irre-
spective of its specific geometric configuration.

The SGAC method overcomes these limitations by incorporating geometry-aware
corrections for obtuse triangles and ensuring a smooth transition from the original
method (used for acute and right triangles) to the corrected one for obtuse triangles.
As a result, the proposed method offers enhanced precision in curvature computa-
tion, making it well-suited for applications in shape and topology optimization.

Custom algorithms were developed in C+4 to compute two fundamental curva-
ture metrics, mean and Gauss curvature, which were subsequently used to define
the total surface curvature. These algorithms were designed to handle meshes with
triangular and quadrilateral elements, ensuring compatibility with various compu-
tational frameworks. To evaluate the accuracy of the proposed method, this was
compared with analytical results on surfaces described by closed form expressions
and benchmarked against state-of-the-art software for CFD simulation or visualiza-
tion and post-processing of computed flow fields. In all examined cases, the method
demonstrated superior accuracy. Finally, the resulting total curvature function was
formulated for use as constraint function in optimization problems and validated for
its effectiveness in an example used as a surface roughness metric.
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IlepiAndn

Avtixelyevo tng mopoloag Simhwpatinic epyaciog arotehel 1 wadnuatixy Statiewon, o
TEOYPUUUATIONOS ot 1) VhoTolnon Yedodwy uPnAfc oxplBetag yia Tov UTOAOYLOUS TNG
HOUTIUAGTNTOG OF UN-OOUNUEVO TAEYUUTA ETLPAVELDY, UE TEMXO GTOYO TNV EVOWUATOON
NG XOUUTLVAGTNTAS WS TEPLOPIOUO OE TPoPATuaTa fehTioTonolnong poperg 1 Totoioyiog
ue yeron tne ouluyolc pedodou. H Peitiotonoinom Ue meQLOplond OTNY XUUTUAOT-
Tot €YEL TEOCEAXDOEL ONUOVTIXO EPELVNTIXO EVOLAUPEPOY Tal TEAEUTAlAL YEOVLAL, Xadidg
otadpopatiCel xplowo pdho ot BUCPIACT) TNS AVTOY NS, TN XATUCHEVUCHIOTNTAS Xl
GAADY IBOTATWY ToU GYETILOVTOL PE TNV XOUTVAOTNTA TWV BEATIOUEVLDY OYNUATWY OE
TANUOEA EQUPUOYOY UMY AVIXTC.

Lopgova ye tn oyetnt| Pihoypagla, ot TpooTdlElEe EVOOUITWONS TNG XUUTUAOTT-
Tog €youv amoxaAlEL onuavTixd TeofAfuaTa owxplBelag oTIc uTdpyouoES aELiuNTIXES
uedodouc. ITohhéc amd Tic TAEOV BLUBEDOUEVES TPOCEYYIOELS AMOTUYYAVOUY VA ATO-
0WO0LY UE OXEIBEL TNV TOTXY| CNUELXT) XUUTUAOTN T, OONYWVTUSC ETOL GE TURUTAAVY-
TG EXTWNOELS TNG OAC XaUTUAOTNTOS mpdvetas. H épeuva mou mporyuatonoudn-
xe avédele o xplown evonoinola TV EXTUACEWY XUUTUAGTNTOS 0T YEWUETEIA TOV
otoyelwv Tou TAgypatog. To @avouevo autd elvor WOLULTERN EVTOVO OE UN-OoUNUEVL
TAEYHOTA, OTOU oL ToTxég avwuaAieg elvon cuvidog avoamdgeuxtee. To mpoBinua
evtelveTal xatd T didpxela TN BehTioTonolnong, 6Tou To TAEYUN EVOEYETAL VAL TP
Hop@eUEl, 0dNYOVTUC €V BUVAUEL O amoXACEC AOYw EGPUAUEVNC EXTIUNONG TNG X0
UTUAGTNTAG, TOU DEV AVTITPOCWTEVEL TAEOV TNV TEUYUATIXT] YEWUETELN TNG ETLPAVELG.
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[or Ty aVTIHETOTLOT AUTOY TOV TEOXANCEWY, 1) SimhwuaTixt| auth epyacta Tpofalvel oe
el Bardoc avdhuomn twv Baowidy eMelPeEmY TV GUUBITIXOY TEYVIXWY TEOGOLOPLEHOD
xoumuAdTnToc. H avdhuon xatédele 6Tl 1 xlplol TNy SQUAUATOY OTIC EURENS Y ENOt-
pomololpeveg Uedodoug etvar 1 TEOBANUATINY BLITUTWOT TWV XEVIPOXOULIXGY OYXGY
ehéyyou. o TNV avTWETOTOY AUTOV TV TEOPANUdT®wY, Tpoteiveton ula Vo xon PeA-
TIOUEVN Tpocéyyion, 1 onolo ovoudleton E€opaivuévn Fewuetpind-Ipocoupuoouévn
(SGAC) Voronoi Mébodoc, xatdhhnhn yio Tov UTOAOYIOUS TOGO TNC YEome 600 Xou
e Gauss xauUmuUAGTNTOG.

H pédodoc SGAC Baoiletar oty cupéng yenowponowolpevn uédodo Voronoi, ahhd
€pyETAL VoL BLopUMOEL 500 GNUAVTIXEG UBLVAUIEG TG TOU THEATNEOUVTAL XU T TOV Opl-
OUb TWY XOUBO-XEVTPUPLOUEVWY OYXwV EAEYYoU: (1) TNy unddeon dTL o ouPAvy OV
Tplywva Unopolv Vo avTETOTIOTOUV w¢ opdoydvia, xat (ii) Tov ogotéuoppo tpdmOo
XAUTAVOURC TOL EYPaBO) GTIC XOPUPES TV AUBALYOVILY TOLYMVOY, AVeEIOTNTO Ad TNV
oxeLBr) yewpetplo Toug.

H pédodoc SGAC Eemepvd autég Tig aduvapleg elodyovTag Slopdnaoeic Tou Aaufdvouy
unodn T yewueTela yior To aBALY VIO Tebywva xan eac@akilovTag uio opot ueTdfo-
on oo ) ouBatix pédodo (mou yenotponoteltar Yo 0ZUyMYLYL xat 0pV0YWVLL TElYw-
va) ot StopBwpévn uédodo yio ta opBAuydvia. ¢ ex to0tou, 1 tpotevouevn uédodog
TEOCPEREL BEATIOUEVT axp{Bela GTOV UTOAOYLIOUO TNG XUUTLAGTNTAS, XA IO TOVTASC TNV
XAUTIAANAT) Y1 YprioT oE epapuoyeg PehtioTonolnong popgrhc 1 Tomtohoyiag.

Avoamtiydnxay ewdwol ahyopriuor oe C++ yio Tov UTOAOYIOUO TV BUO Pactx®y Ue-
TEWOY XOUTVAGTNTAC, TNS Héong xou Tng Gauss xoUTUAGTNTAS, Ol OTOlEC OTr) GUVEYELN
YENOWOTOLUVTAL Yo TOV UTOAOYIOUO TNG OAXAC oumuhotTnTag emgaveioc. O oh-
Yopriuol autol oyYEdLIoTIXOY WOTE Vo UTOOTNEICOUY TAEYUATA UE TELYWVIXE XAl TE-
Tporywvixd ctotyela, e€acpalilovtag cuBatoTnTa U Eval EUPD PACUN UTOAOYLO TIXOVY
mhoustwy. Tty aglohdynon tng oxpeifeloc e mpotewduevne Yedddou, auty emo-
ANUElTNXE EVOVTL OVUAUTIXWY ATOTEAECUATWY OF ETLPAVELEG TOU TEQLYPAPOVTUL OO
XAELGTOU TUTOU EXPEAOELC Xal CUYXEIUNXE UE EVREWS YVOOTA AOYLIOUXE TROCOUOIw-
onc CFD, xadd¢ xou pe Aoylouxd yio TNy amemovion xou Tn YeTenedepyaoia Tomv
UTOAOYIGVEVTLY TEBIWY pofg. X OAEC TIC TEpITTWOELS, 1) péYodog Tapousiaoe onuo-
vid Bertiouévn axpifeia. Télog, Sopoppdinxe 1 cuVEETNOTN OMXAC XUUTUAGTNTOG
OOTE Vo unopel va yenotponomiel wg cuvdpTtnon Teploplool ot TpolAruaTa BeATio To-
molnong, xat ENOANUENTNXE WS TEOC TNV AMOTEAECUATIXOTNTA TNG OE €Vl TUPAOELY UL
XPNONS NS WG METEOL TNG TEAY UTNTAS ETLPAVELDV.
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Chapter 1

Introduction

Design optimization is widely used in mechanical engineering fields such as aeronau-
tics, automotive, and turbomachinery, where it involves using advanced computa-
tional techniques to solve complex Computational Fluid Dynamics (CFD) equations,
such as the Navier-Stokes equations. The primary goal is to create the best design
while adhering to the governing field equations. This involves controlling the design
variable space under specific constraints to improve the predefined characteristics
like performance or weight. In recent years, structural optimization has evolved into
shape and topology optimization, which reflects the growing recognition of the im-
portance of modifying a structure’s shape and topology to meet design requirements,
capabilities that are inherently difficult to achieve merely through size optimization
[0, 8]. Some characteristic examples could be the aerodynamic shape optimization
of airfoils for drag minimization [I1] or topology optimization of two fluid heat ex-
changers [10]. Producing the desired 3D geometries in shape optimization involves
appropriately adjusting the points that define the initial shape, whereas topology
optimization focuses on identifying which regions of the design domain should be
filled with solid material.

Among various constraints used in design optimization, curvature constraints are
of great importance across a wide range of applications. More specifically, they are
essential when designing mechanical parts to ensure structural durability by avoid-
ing complex shapes that cause stress concentrations [I6]. At the same time, they
have a crucial role in maintaining the manufacturability of structures, given that
optimized shapes or topologies are of limited value if their production is not feasi-
ble. For instance, curvature limitations in milling and cutting processes help avoid
sharp corners, which are difficult and consequently costly to process using milling
machine cutters [25]. In additive manufacturing processes, curvature restrictions
prevent geometric singularities that pose challenges related to resolution and sup-
port structures during fabrication [23]. In many applications, curvature constraints



can also help satisfy functional and aesthetic preferences of the improved geome-
try. Given the importance of applying curvature limitations in CFD-based shape or
topology optimization frameworks, it is important to develop reliable methods for
accurately determining curvature measures on the boundary surfaces of the struc-
tures under consideration and incorporating them as inequality constraints. This
objective forms the central focus of the research presented in this diploma thesis.

1.1 Curvature - Mathematical Background

In this section, an introduction of fundamental concepts related to the measurement
of curvature is provided. Curvature is one of the important geometric quantities
and helps on determining how a surface bends or deviates from being flat in case
of surfaces or straight in case of curves, providing a precise measure of its local
geometric shape. For a plane curve, curvature quantifies the rate of change of the
tangent vector’s direction along the curve, whereas for a surface, curvature becomes
more complex, indicating the surface’s bending in various directions at each point.

A brief definition of the curvature of a plane curve and a surface is given as described
in Chapters 4 and 9 of [I3]. Firstly, a regular plane curve C represented using the
arc - length parameter s by ¥ = Z(s) is assumed. The tangent vector to C at the
point (s) is defined by the derivative #(s) = %, which is given by:

f(s—I—AAsi — Z(s) (1.1)

7o) = 1o,

where W is a secant to C, Fig. f(s) has unit length due to arc-length
parameterization and this is referred to as unit tangent vector to the curve C at x(s)
and is usually denoted as t = #(s) = Z(s) = Ziﬁz,
of the curve.

where t is the parameterization

x(s) Z —  As Normal Plane
/r m ©)

Figure 1.2: Normal plane, tangent
Figure 1.1: Tangent direction of a vector t and curvature vector k at
plane curve.[13] point A of curve C [13].



Secondly, the normal plane to curve C at A is the plane through A, which is orthog-
onal to the tangent vector t at point A, Fig. .

The curvature vector k of a regular C2 curve at point A on Z(s) is the derivative of

the tangent vector: k(s) = #(s) = % . Unlike the unit tangent vector, k is generally
not unit length. Its direction is always orthogonal to the tangent vector ¢ and thus
lies in the normal plane of the curve at point A. Its magnitude is called curvature
of a curve at point A: Kk = ‘IZ ‘ This scalar quantity describes how sharply the curve
bends at a given point by measuring the rate at which the tangent vector changes

direction and is one of the two essential local invariants that define a plane curve,
which means that it doesn’t change when subjected to rigid transformations.

Figure 1.3: Differential position vector di between nodes of a surface mesh.

Similarly to the plane curve, there are two local invariant quantities called first
and second fundamental forms that characterize a surface mesh, which means that
they remain unchanged under parameter transformation. Consider a surface which
is parameterized by coordinates u and v, Fig. [1.3] The first fundamental form
describes the squared length of any displacement vector on the surface and is given

I =dr-dr= (gdu + ﬁdv) : (?du + ?dv) = Edu® + 2Fdudv + Gdv*  (1.2)
u u v

where £ =171, -1,, ' =1, -7, and G = 1, - 7, are the first fundamental coefficients
that characterize each point.

Each point of the surface mesh has a unit normal vector N , Fig. 1.4 which is given
by the following expression:

ﬁ _ Ty X Ty (13>

[T X 75|
and is dependent only on the surface variables u and v. The variation of this vector
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Tangent Plane

[ (S)

Tangent Plane

Figure 1.5: Local shape of the surface S with respect to the distance |d| [135].

can be expressed as dﬂ: = TN LAdu 4 N »dv, which lies in the tangent plane at point
A. Since d(N - N) =2N -dN = d(1) =0, dN and N are orthogonal vectors.

The second invariant is the second fundamental form, which describes how the nor-
mal vector changes as one moves along the surface. In other words, it characterizes
how the surface bends within the R? space and is given by:

I = —di- dN = —(F,du + 7,dv) - (N,,du + N, dv) = Ldu® + 2Mdudv + Ndv*
(1.4)

where L = Qll = _'Fuﬁua M = ng = le = _%(Fu&v—i_ﬁ‘v ﬁu) and N = QQQ =
— T - ﬁ , are the second fundamental coefficients. However, in order for its sign to
remain unchanged, the orientation of N must also be preserved.

The physical meaning of the second fundamental form is closely bonded with the
nature of a surface around a node. More specifically, assuming P(u,v) to be a point
on the surface S and pomt Q(u + du,v + dv) to be a near neighbor pomt on the
surface then |d| = PQ N is the projection of PQ onto N at point P, Fig. 1.5, The
sign of d = |d|ﬁ , Eq. (1.5)), depends on which side of the tangent plane the pomt Q
lies. It is considered positive when () lies on the same side with normal vector ﬁ ,
and negative otherwise,



- 1 ~ 1
d= §d2f’- N+ O(du® + dv?) = 5[] + O(du® + dv?) (1.5)

which means that I7 is approximately twice the projection of PZQ to ﬁ :

Figure 1.6: Normal curvature vector K, of curve C' at point P, parallel to the surface
normal vector N [13].

Now that the necessary background has been provided, the curvature of a surface
can be defined. The normal curvature of a curve C lying on a surface S at a point P
is defined as the projection of the curvature vector of C onto E at P, Fig. , and
is given by:

o
3

I
—
=~
=
S—
=

(1.6)

—

k, is independent of the sense of curve C. Its magnitude is called normal curvature
of C at P and is given as k, = k- N. The normal curvature depends on the direction
of vector N but not on the direction of C and can be expressed as:

Ldu? + 2M dudv + Nduv? 17 (1.7)
Ky, = = — )
Edu? + 2F dudv + Gdv? I

where du refers to du/dt and dv refers to dv/dt. It is important to note that ., as a
function of du/dt and dv/dt, depends only on the ratio of (du/dt)/(dv/dt), in other
words on the direction of the tangent line to the curve C at point P. This implies
that all curves lying on the surface S and passing through P which are tangent to
the same line through P, have the same normal curvature x,. Furthermore, given
that fundamental forms I and /7 are invariant under parameter transformation (i.e.
by changing the surface mesh), the normal curvature at point P on curve C is also
invariant.

There is a convenient local coordinate system in which the normal curvature at P,
Eq. (1.7)), can be expressed as:



B Ldu? + 2M dudv + Ndv?
n du? + dv?

Rn

(1.8)

Assuming that du? + dv? = 1, the parameter derivatives can be set as du = cos@
and dv = sin 6, where 6 is the angle representing the direction of motion in the local
coordinate system. By changing the angle, different tangent lines corresponding
to normal sections are obtained, producing various curves C' passing through P on
surface S. It can be shown that two specific angles, and thus two curves, exist where
the normal curvature at P reaches its maximum and minimum values, Fig. [1.7)).
These mutually perpendicular directions are called principal directions, and their
normal curvatures are the principal curvatures, denoted x; and ko, respectively.
Given the invariance of k, at point P on curve C, k; and ks, are invariant too.
Furthermore, any change in the orientation of the surface will reverse the sign of
kn, meaning that the magnitudes of the principal curvatures remain the same, but
their signs are reversed.

Principal Curvatures

Figure 1.7: Principal curvature normal sections among various normal sections with
varying angle 0 at point P on surface S.

A number k is principal curvature if and only if x is a solution of the following
equation:

(EG—F*r*—(EN+GL-2FM)s+(LN-M?) =0 = x*-2Hk+K =0, (1.9)

where
EN+GL —-2FM LN — M?

H 2(EG — F?) EG— F?’

In Eq. (1.9), 2H equals the sum of the two roots, and K equals their product. That
being said, the average of the two roots k1 and ks is defined as the mean curvature
H at point P, and is given by:



EN +GL —2FM
2(EG — F?)

H = %(1{1 + I{Q) = (110)

In addition, the product of the two roots k; and ks is defined as the Gauss curvature
at P, and is given by:

LN — M?

G- (1.11)

K:/illig =

The physical meaning and methods for computing the mean and the Gauss curva-
tures of surfaces will be examined in more detail in the following chapters of this
work.

1.2 The Curvature as a CFD-based Optimization
Constraint

Curvature constraints have previously been incorporated into shape and topology
optimization in structural mechanics across various applications, such as composite
laminates [9], infinite plates with circular holes [21], and compliant mechanisms [22].
In these contexts, Finite Element Analysis (FEA) is typically used, where different
methods are employed for computing curvature measures. Among these, the most
widely used approaches are the Smooth Surface Fit (SSF) using a triple-node knot
[21], and curvature based on the Discrete Local Laplace-Beltrami (DLLB) operator
[3]. As analyzed in [3], the most accurate method for computing the mean curvature
is the DLLB approximation.

In contrast, CFD problems, such as those examined in this work, commonly use
the Finite Volume Method (FVM) for discretization. FVM is widely adopted due
to its strictly conservative nature, which is important for satisfying the conserva-
tion equations that govern fluid fields, and its ease in handling boundary condi-
tions for primary variables. However, incorporating curvature constraints within
the FVM framework presents three major challenges: (i) the need to demonstrate
that the DLLB method for mean curvature is applicable and equally effective for
FVM meshes, (ii) the requirement to transform the widely used cell-centered FVM
structure to a vertex-centered representation for curvature computation, as curva-
ture measures are originally defined at surface mesh nodes, and (iii) the need to
define, within the FVM, a single metric that effectively characterizes the total cur-
vature of the structure’s surface geometry.

All these challenges have been addressed in this diploma thesis.



1.3 Thesis Outline

This diploma thesis focuses on the mathematical formulation, programming, and
implementation of high-accuracy methods for curvature approximation over unstruc-
tured surface meshes, aiming to incorporate curvature as a constraint in shape or
topology optimization. The mathematical framework improves upon existing liter-
ature methods and introduces a novel approach for defining vertex-centered finite
volumes, significantly enhancing curvature estimation accuracy.

The existing and newly proposed methods were implemented in a C++ framework,
supporting structured and unstructured meshes with triangular and quadrilateral
elements. Their accuracy was validated and compared with state-of-the-art software
for CFD simulation or visualization and post-processing of computed flow fields,
using test cases with known analytical curvature values.

The structure of the diploma thesis is as follows:

Chapter 2: Presents a detailed analysis of mean curvature estimation over trian-
gulated surfaces. Existing methods are reviewed and their limitations identified.
A novel method for vertex-centered finite volume definition, named the Smoothed
Geometry-Adaptive Corrected (SGAC) Voronoi method, is introduced. Its accuracy
is evaluated in test cases with known analytical mean curvature, such as the sphere.

Chapter 3: Focuses on Gaussian curvature estimation over triangulated surfaces.
The existing methods are reviewed. The SGAC method is extended to this metric
and validated in benchmark cases with analytical Gauss curvature.

Chapter 4: Extends the proposed curvature estimation framework to quadrilateral
meshes. Different triangulation techniques are examined, and a dual-triangulation
averaging method is introduced. The approach is tested in additional cases, such as
a surface adjacent to a sphere.

Chapter 5: Evaluates the accuracy of the implemented methods on structured and
unstructured meshes over geometries like the torus and saddle surface. The proposed
method is benchmarked against literature methods and state-of-art software for
CFD simulation or visualization and post-processing of computed flow fields. The
final expression of the total surface curvature function is formulated for use as a
constraint in optimization and tested for its effectiveness in an arbitrary surface
roughness example.

Chapter 6: Provides a summary of the diploma thesis, along with conclusions
drawn from this research and recommendations for future work.



Chapter 2

Computation of Mean Curvature

on Surface Meshes

2.1 Introduction

In this section, a quick introduction to the meaning of the mean curvature measure
at points over a surface is provided.

Figure 2.1: Principal directions and curvatures at point P on surface S.

As described in Chapter 1, mean curvature H at point P, Fig. is the average
value of the maximum and minimum normal curvature of a surface point. Its sign
depends on the orientation of N. In this work, the sign of H, which indicates
the direction of H ﬁ , will be taken opposite to the one of normal vector ﬁ , such
that for convex surfaces (e.g., a sphere), the mean curvature vector at each point
points inward. This convention allows the sign of H to convey information about
the local shape of the surface: positive H indicates a locally convex region, negative



H indicates a locally concave region, and H = 0 corresponds to a locally minimal
surface, where the principal curvatures are equal in magnitude but opposite in sign.

As regards its physical meaning, the mean curvature of a smooth surface measures
how much the surface area changes compared to neighbor surfaces. In simpler terms,
it measures how the surface is evolving when it moves in the direction of its normal.
More specifically, the surface is minimal if H = 0, which indicates that it does not
expand or contract during this motion. The surface tends to expand or contract
in the case of negative and positive curvature, respectively. This can be illustrated
by observing that the same local surface geometry can appear as a peak or pit
depending on the sign of H. This is clearly demonstrated in the simple example of
surfaces with Gauss curvature K = 0, but differing signs of H, Fig. [2.2

Valley Surface with H = 0 and K = 0 {Cylindrical) Ridge Surface with H < G and K= 0 Fiat Plane: H=0,K =0

(a) H>0, K =0 (Valley) (b) H <0, K =0 (Ridge) (¢) H=0, K=0 (Flat)

Figure 2.2: Surface shapes based on the sign of H.

2.2 Mean Curvature Approximation on a Surface

This section explores methods for computing H at the nodes of an unstructured
surface mesh. In structured meshes, the parameterization is correlated with the
mesh itself. H is a local invariant quantity on any surface mesh, derived from
the two principal curvatures x; and ko at a point on the surface S. This implies
that the local curvature properties belong to the surface and are not affected by
any change in parameterization. In contrast, for unstructured meshes, where global
parameterization of the entire mesh is not feasible, alternative methods must be
employed. The Laplace - Beltrami surface operator applied to the position vector 7
is equal to (Appendix [A]):

A7 =VF=2HN (2.1)

The Laplace - Beltrami operator A is the generalization of the Laplacian operator
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Surface S

Figure 2.3: Discretized surface with triangular elements.

to functions defined on surfaces.

The task of determining H is now framed as computing the Laplace - Beltram:i
operator of the position vector and N on a smooth surface.

Instead of computing the continuous Laplacian operator in the global coordinates
of R3, an approach is employed that projects it into a finite-dimensional space.
The surface, parameterized by u and v, is discretized using triangular finite volume
elements, Fig.[2.3] Consequently, the continuous differential operator is transformed
into a discrete form by expressing Eq. in its weak formulation, utilizing test
basis functions. This transformation is derived from the Galerkin method, commonly
used in the FEM.

Eq. is written as:
Vif=f inS (2.2)

where S C R? is a bounded, simply connected domain and f — 2HN. Given that 7is
known at the nodes of the elements, Dirichlet boundary conditions can be imposed:

7=gP invS (2.3)

So, since the surface S is approximated by a collection of triangles S, Eq. (2.2)) can
be discretized by integrating over the triangulated surface and, thus, be written as:

/ j V2, 7s, dSy = / : fdsy (2.4)

where g, is linear for every element. If X denotes the finite-dimensional approxi-
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mation space over Sy, and if 7g, interpolates the Dirichlet boundary condition gP)
along the boundary 95}, then the solution 7 can be approximated by 7s, € X}.

The next stage in the Galerkin method, [12], is to multiply each term by an appro-
priate test shape function ¢ so that ¢ C Xj and ¢ satisfies the Dirichlet condition
of Eq. . Since 77, is prescribed on the boundary by the given condition, the
trial shape function ¢ is zero on the boundary 95 (¢ = 0 on ¥5), ensuring that the
boundary value of s, remains unchanged,

/ ¢V, - Vs, 7s, dSy = / ofdS),
Sh Sh

/ / Vs, - (¢Vs,7s, ) dSy — / Vs, s, - Vg, ¢dS, = / o fdSy (2.5)
Sh S, Sh

The Green - Gauss theorem is then applied in Eq. (2.5) to express the first term as
an integral on the boundary of the region:

¢V, -7t dS), — / Vs, s, - Vs, ¢ dSy = / o fdS), (2.6)

9IS, Sh Sy

Given that ¢ = 0 on 95, the boundary integral term vanishes and the final Galerkin
formulation gives:

/ Vs, s, - Vg, ¢dSy, = / o fdS), (2.7)
Sh Sh

where the surface gradient Vg, 7s, = Vs, — (VT%s, - n,)ny, is the tangential gradient
on Sy, V is the 3D gradient and ny, is the normal vector to Sj.

The surface gradient Vg, 7, is also constant since the operation is done in a linear
triangular finite element where n;, and Vrs, are constant. Therefore, ¢p,,....0n,
where N = 3, are considered to be piecewise linear functions on S} that are globally
continuous and ¢p;(zx) = i, so that s, = Zjvzl 75¢n;- Eq. (2.7) is now rewritten
as a linear system of N equations:

Sh

N
ZT;/ vsh¢hj ' vsh¢hk dSh - / (Zshkf?dsh (28)
j=1 Sh

where k = 1,...,N.

The formulation of Eq. (2.8]) is comparable to the analogous one when using the

12



2D Element VCFV

Sub-volume

Figure 2.4: Definition of Node-Centered Finite Volume.

Galerkin method to a pure 2D (planar) problem, as stated in [5]. The sole difference
when the surface is embedded in R? is that each vertex has three coordinates rather
than two.

Thus, it has been shown that the Laplace—Beltrami operator on a surface can be
effectively approximated using the Laplacian operator within triangular elements,
which are by nature 2D. In the proof, certain techniques from FEM were employed.
However, this approximation of the Laplace—Beltrami operator can also be applied
in the context of finite triangular volumes. As a result, this method can be used to
compute the gradient of the position vector at each vertex, with the modification
that the finite volumes must be transformed to a vertex-centered formulation. The
details of these elements will be defined in the following section.

2.3 Definition of the Finite Volume in Triangular

Elements

Given that the mean curvature is a node-based quantity, the finite volumes of the un-
structured mesh, need to be formed into a vertex-centered representation. To achieve
this, various methods for defining the Vertex-Centered Finite Volume (VCFV), Fig.
2.4] are presented in the following subsections. Three different methods for defining
the sub-volume within each triangular element are presented. These approaches
provide alternative ways to construct vertex-centered finite volumes and determine
their area A, and normal vector N M, which are essential for computing H.

13



Figure 2.5: Definition of sub-volume based on the barycenter of NABC, where A =1,
B=2and C =3.

2.3.1 Barycentric Definition of the VCFV

In this method, the sub-volume associated with each node is determined using the
barycenter of the triangle, which is the intersection of its medians and the mid-
points of all triangle edges. The barycentric approach ensures that the triangle’s
area is equally divided, assigning a fair share to each node. In Fig.[2.5] the blue area
Aj represents the sub-volume assigned to node B, with corresponding sub-volumes
allocated to the other nodes in a similar manner.

It is known that the barycenter of a planar triangle with vertices at coordinates
A(uq,v1), B(ug,ve) and C(ug,vs), is given by:

(UC, UC) _ (ul -+ Usg + us V1 + (%) + Ug) (29)

3 ’ 3

where u; and v; are the local parametric coordinates of the surface.

The areas associated with each vertex, written as A;, A, and Az in Fig. 2.5] are
equal:

A
Al - A2 - Ag = § (210)
where A is the area of AABC.
Consequently, the corresponding A, area of each node is determined by:
C’mi
Ay =) A, (2.11)
m=1

14



where m = 1,...C},, are the neighbor triangles of node i and A,,, is the portion
of the area of the neighbor triangle m that corresponds to node i of the triangle.
The contribution of the triangle dimensional normal vector N to each vertex can be
easily deduced as follows:

(2.12)

—

N is dimensional, with its magnitude equal to the surface area, thus possessing the
same units as an area

Similarly with the area, the normal vector Ny that corresponds to each node is
given by:

Cm
Ny = > N, (2.13)
m=1

where m = 1,...N,,, and Z\?m is the portion of the normal vector of the neighbor
triangle m that corresponds to node i of the triangle.

2.3.2 Voronoi Definition of the VCFV

In this method, the portion of the triangle’s area attributed to each node is de-
termined using the circumcenter, which is the point of intersection of the three
perpendicular bisectors of the triangle’s sides. The circumcenter approach ensures
that the division is made in such a way that the center (denoted as O) maintains
the minimum distance from the triangle’s vertices.

The circumradius R of the triangle, Fig. is given by (its proof is provided in
Appendix B):

abce
R:\/(a+b+c)(b+c—a)(c+a—b)(a+b—c) (2.14)

where a = (BC), b = (AC) and ¢ = (AB) the lengths of the edges of the triangle.
The area A; sections of the triangle, where i=1,2,3, are given by:

15
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R
0
(b)

Figure 2.6: Definition of sub-volume based on the circumcenter of (a) an acute and
(b) an obtuse triangle NABC', where A=1, B =2 and C = 3.

A; = Aasro + Aabom

1
A = 5 lz5(yxk —yo) + k(Yo — yB) + xo(ys — YK)|

+g (Yo — ym) + xo(ym — yB) + va(ys — Yo)| (2.15)

The dimensioned normal vector N; of the sections, where i=1,2,3, are given by the
formula:

LA -
Ni=5N (2.16)

where A and N represent the area and the dimensional normal of the triangle
ANABC, respectively. The node’s Ay, and Ny, are similar to those before given

by Eq. (2.11) and Eq. (2.13).

It is important to note that this method is applicable only to acute triangles, as
the circumcenter lies outside the triangle for obtuse triangles, Fig. [2.6] making it
questionable to assign a valid area section to each vertex.

16



Figure 2.7: Definition of sub-volume based on the corrected circumcenter of an obtuse
triangle NABC, where A=1, B=2 and C = 3.

2.3.3 Corrected Voronoi Definition of VCFV

In this section, the portion of the triangle’s area assigned to each node is determined
using the circumcenter, following the same approach as in the previous method.
The key distinction lies in how Eq. is modified for obtuse triangles, where
the circumcenter lies outside the triangle. To ensure that Egs. and yield
valid area portions in such cases, a correction to the circumcenter placement is
required. A practical solution [15] is to treat the obtuse triangle as a right triangle
by positioning the circumcenter at the midpoint of the edge opposite the obtuse
angle, as illustrated in Fig. 2.7 Based on this correction, the sub-area distribution
within triangle AABC, with ZB to be obtuse, is given as follows:

1 1 1
Ap = ZAAABG, Ap = §AAABC, Ao = ZAAABC (2.17)

The comparison of H results obtained using different definitions of VCFV is pre-
sented in a subsequent section.

2.4 Computation of the Position Vector Gradient
at Each Node

Now that the three VCFV definition methods have been prescribed in the previous
sections, the mean curvature normal vector HN at a point M on the surface is
derived through Eq. (2.1 by integrating it in the VCFV area Ay, Fig. 2.4 as

follows:

/ VirdS = QHQ// ds (2.18)
Apnp Am
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Figure 2.8: Triangular element of the surface mesh.

Using the established approximation of the Laplace—Beltrami operator on a trian-
gulated surface, V2 ~ V2 & where v and v denote the parameters of triangular

U,V

elements, Eq. (2.19) can be expressed as follows:

/ / V2 FdS =2HN / / ds (2.19)
Ay Ay

By applying the Green-Gauss theorem in Eq. (2.19)), the final expression for the H N
of each node is obtained:

Voo - AdS = QHE// ds (2.20)
YA Apm

where A, the surface area corresponding to node M, ¥ A, the boundary of the area
Ays and 7 the dimensionless normal vector of the boundary ¥A,,, Fig. 2.4

In the subsequent sections, two approaches for computing H based on Eq. (2.1]) are
presented.

2.4.1 1% Approach: Computation of the Position Vector
Gradient Using Edge Normals

Computing H at each node of an unstructured surface mesh involves the following
steps:

1. Compute the Local Reference Parameters u and v of the Triangular Element
In order to compute H at node 1, the triangulated surface mesh is considered,

Fig. The dimensional normal vector N of the element is calculated as:

18



2 3
Figure 2.9: Normal vectors to the edges of the triangular element.

- 1 .
N = 5(7"12 X 7”13) (221)

where 75 = 75 — 7 and 73 = 73 — 71, with 7; representing the position vector
of node 1.

The magnitude of the normal vector, is equal to twice the area of the triangle.
The dimensionless normal vector of the element is defined as:

—

N
IV

=

(2.22)

The two dimensionless tangent vectors along the edges that intersect at node
1 of the triangle are then computed as follows:

L7 L7 i1 x N
f=-3 g T2 X (2.23)
= sl =\l 6 x N
Thus, the local reference parameters for each node of the triangle are:
(uhvl) = (07 0)
(UQ,UQ) = (F12 ﬁ, T2 E)
(ug,v3) = (T3 ﬁ, 713 é) (2.24)

2. Compute the Normal Vectors to the Edges of the Triangular Element

19



The normal vectors to the edges of the triangular element, Fig. 2.9 are com-
puted with respect to the local reference coordinates as follows:

ny = (Us — VU2,U — Us)
Ty = (U1 — Uz, U3 — U1)

T_ig = (Ug — U1,U1 — UQ> (225)

The corresponding dimensionless normal vectors to the edges are given by

— nj .
n; = Hj”,wherejzl,...,?).
— J

. Compute the Position Vector Gradient of the Triangular Element

The gradient of a vector field ® is constant within a triangular element and is
represented by a gradient tensor. If ® = 7, this tensor is expressed as:

oz oz
ou  Ov
If r;, denotes the coordinates (k = 1,2,3) of each triangular vertex (i = 1,2,3)

of the position vector and (n;,,n;,) represents the coordinates of the normal

vector along the edges, then the components of the gradient tensor are given
by:

87‘k 1

% B _ﬁ< 1,1, + T2, N2, + r3kn3“)
T

or 1

O o vy, + a4 ama,) 2.27)
T

for each k coordinate of 7= (z,y, 2). Ar is the area of the triangular element
and is given by Ap = %(ulvg + UgV3 + U3V — UIV3 — UV — U3V3).

. Compute the Dimensioned Normal Vector ni of YAy

The normal vector of each VCFV at node M is determined by contributions
from the neighboring triangles, Fig. [2.4. Within each triangle, the normal
vector 7 at the corresponding edges of border ¥A,,; is equal to the normal
vector of edge 45, which connects the midpoints of edges 12 and 13 of triangle
A123, Fig. [2.10

Given that A123 and A145 are similar triangles, it follows that Area[A145] =
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Figure 2.10: Normal Vector i of YAy corresponding to each triangle.

s Area[A123]. Additionally, since the position vector gradient remains con-

stant within each triangle, the normal vector relation holds as 7y = %
Generalizing this equation, let i denote a vertex of the triangle and j denote
the edge opposite to vertex i. Then, the following relation holds:

i, =L (2.28)

where i,j =1,2,3.
Substituting Egs. ([2.26)), (2.27) and (2.28) into Eq. (2.20), HN ,, at each node

is obtained as follows:

Cm 1 - Urin + Ty Wity
}:5 Yy + D | = 2HN Ay (2.29)
m=1 ﬁvns + 8—iun§

where m = 1,..,C,, represents the neighboring triangular elements of node
i, Ajs is the area corresponding to node, and V,, is the dimensionless mean
curvature normal vector associated with node i.

. Compute the Nodal Mean Curvature

Finally, H value of the i-th node of the mesh is computed by rewriting Eq.
2.29 as:

C,
1 ~ 1
Hi= > = | %o + Py | - N 2.30
214]\4 m=1 2 guv : N ggu ! =M ( )
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2.4.2 2" Approach: Computation of the Position Vector

Gradient Using Cotangent Formula

v

Figure 2.11: Flux of a node in a triangular element.

Using Egs. (2.27) and (2.16)) for the triangle shown in Fig. [2.11] the flux for node 1

through the ¢’b’ segment is defined as follows:

1 1
fluxl = VSF % = _anlﬁl . ﬁl + Tgﬁg . ﬁl + Tgﬁg . ﬁl)
1 —
flury = ———(ra@-a+ry@-b+rsd-c) (2.31)
4Ar

It should be noted that the edge normal vectors 711, 79, and 773, as well as the tangent
vectors da, l;, and ¢, are defined within the planar triangle. However, in Eq. ,
their definition in either 2D or 3D space is irrelevant, as only their inner product is
of interest.

As shown in Appendix B}

—32.31 = —2A47coty

— —

—32-21 = —2A47cotf3 (2.32)

ST
o S
I
0 53
oYl
I

Substituting Eq. (2.32)) into Eq. (2.31]), one gets the following:
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Figure 2.12: Voronoi area for a surface mesh node.

1 1 1 1 1
flur, = —Eﬁ(ﬁ- a) + 5(772 — 7)coty + 5(?;; — 7)cotB + Eflcot'y + 57"1002%
(2.33)
Then, in Eq. [2.33] some of the terms are further expanded as follows:
= r(d *)+1* t +1* t3
——r(ad-d) + =rico —71co
1A7 1 5 1c0t7y 5 1
1 1 - . 32.31 21-23
= —7[———(23-2
oMo, (B 2+ S + ]
1 = = - —. — — —
mrl(—% 23 +32-31+21-23) (2.34)

Given that 23 = 21 + f3, the last term in Eq. is expanded as —923.21 —23.
13 +32-31 4 21 - 23 = 0. Therefore, the contribution of V7 to node 1 is given by
the remaining terms of and the final expression of flux at node 1 is given by:

1 1
flux, = 5(@ —71)coty + 5(773 — 7)ot (2.35)

Node O of the surface mesh shown in Fig. [2.12]is examined. The Laplacian of the
position vector of node O gets a contribution from all neighbor triangles:

1
(Tpil,, = Tpy) COb L + 3 (Tpiss |m — 7, ) cot kit (2.36)

N | —

Cm
24 _
Vir| = E
o =1
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where (), the number of neighbor triangles of node O.

Eq. can otherwise be expressed as the sum of the contributions of all edges
emanating from node O:

Cg
> (7, — 7y, ) [cot Ei + cot 1] (2.37)

where C,; the number of the aforementioned edges and cot k; and cot!;, the cotan-
gents of the angles opposite to edge i of the two triangles that share this edge.

Overall, this method concludes with the following formula for H for each node of
the surface mesh:

1 ,
—— V| N, (2.38)

Hi -
2AM o

which is similar to the formula given in [15].

In this method, H is computed using the geometric properties of the triangular
elements, specifically the edge lengths and angles. Therefore, ﬁ v and Ay; corre-
sponding to each node must be expressed in terms of the same geometric quantities.
In the VCFV methods defined in the previous subsection, the Barycentric Definition
assumes that the portion is constant and equals 1/3. However, the Voronoi defini-
tion can be expressed differently from Eq. , as shown by the following formula
from [15]:

Cm

m=1

—_

i FpD)Q cotli + (P |m - FPO)Q cot kjyq (2.39)

where nodes p; and p;.1, and angles k; 1 and [; are shown in Fig. [2.12]

The proof of Eq. (2.39) is given in Appendix [B] It can also be expressed as the sum
of the contribution of edges emanating from node O:

Cy

Ang = 5 3 (P = 7, leot & + cot ] (2.40)

=1

From Eq. (2.39), the contribution of each triangle to the node area can be derived
as:

A

Tm

— Fpo)2 cotl; + (7., ‘m - Fpo)Q cot kitq (2.41)

(7.

o |
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Similarly to Eq. (2.15]) in the first approach, the Voronoi area formula in is
valid only for acute triangles. For obtuse triangles, a correction must be applied, as
described in Section 2.3.3]

The normal vector of each node is given from Eq. (2.16) and Eq. (2.13) that were
given in the previous approach.

2.4.3 Comparison of 15t and 2"¢ Approach

In this section, the accuracy of the two approaches for computing H at each node
of the triangulated surface is compared. In addition, the three different definitions
of VCFV are evaluated in terms of their effectiveness in determining A,; and N M
at each node.

To perform the comparisons, the different formulas are applied to two cases in which
H value is analytically known.

A) 1% Case: Computation of H at a single nodal surface mesh

In this application, an example surface is used, which is defined by:

= (u+v)e1 + (u—v)ex+ (uv)es (2.42)

where v and v are the local coordinates of the surface, eq,es,e3 the basis
vectors of the 3D coordinate system and & the position vector of the node.
According to [13], H of this surface at the point located at v = 1 and v = 1
in local coordinates is equal to H = ﬁi'

/

J

\

v | SL

u

Figure 2.13: Triangular nodal mesh consisting of one central node and siz neighbor-
ing nodes on a circle.

The surface is approximated using an unstructured mesh with triangular ele-
ments, where u and v represent the local coordinates of the triangle to which
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the node belongs. Specifically, a simple mesh is generated around the node
by subdividing a circle of radius r and center ¢, within the parametric space,
into N, triangular elements, Fig. [2.13] The coordinates of the neighbor nodes
of the center node (1, 1) are computed as follows:

271

0=—
N’

u=1u,+rcost, v=uv,+rsnb (2.43)

where ¢ is the index of the neighboring node, # is the angle corresponding to
the edge that the i-th node belongs to, measured counterclockwise, and (u., v.)
are the local coordinates of the center node.

=" If.os
Figure 2.14: Nodal Surface in 3D space, colored by the z-coordinate.

Applying Eq. (2.42)) to Eq. (2.43]), the coordinates of the nodes are transformed
from the local coordinate system to the global one, and the nodal surface for
(te,ve) = (1,1), 7 = 0.1 and N, = 6 is generated, Fig. [2.14]

Firstly, the two approaches for computing the position vector gradient and,
consequently, H at each node, are examined. The three different methods
of defining the VCFV are used and compared for their accuracy against the
analytical result. To evaluate their accuracy, an error measure is used as
follows:

Hcomue _Hrue
| Heompuied = Hirue (2.44)

Error =
|H true|

Obviously, only H at the central node, which is shared by all six neighboring
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triangles, is considered.

VCFV Definition | Mean curvature H, | Error
Barycentric 0.088277175363 0.131%
Voronoi 0.088235571286 0.173%
Corrected Voronoi 0.088235571286 0.173%

Table 2.1: Comparison of VCFV definitions for the 15 case using the 15 approach,

with the expected value to be He = #5.

VCFV Definition | Mean curvature H, | Error
Barycentric 0.088272728665 0.131%
Voronoi 0.088235588150 0.173%
Corrected Voronoi 0.088235588150 0.173%

Table 2.2: Comparison of VCFV definitions for the 15t case using the 2" approach,

with the expected value to be H, = #5.

In this case, the Barycentric definition demonstrates higher accuracy, while
the Voronoi and Corrected Voronoi definitions produce identical results due
to the absence of obtuse triangles. Additionally, the two approaches used for
computing the position vector gradient yield nearly identical results. To draw
a more comprehensive conclusion about the accuracy of the different VCFV
definitions, a larger surface case is examined.

B) 2" Case: Computation of H on a spherical surface mesh

e+l
[ 2
R-1.15

=11

Value

05

[ 2de-01

Figure 2.15: H distribution on a spherical surface mesh using 15 approach.
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In this case, a spherical surface mesh composed of 522 nodes and 1040 trian-
gular elements is generated, Fig. 2.15] The sphere is assumed to have a unit
radius (R = 1), which means that the expected H at each node is equal to one.
To compare the different definitions, the accuracy of the computed maximum

and minimum H values across the mesh nodes is examined.

VCFV

Min Value of

Max Value of

Definition Mean Curvature | ETTOT | Mean Curvature | Error
Barycentric 0.758948018446 24.105% 1.69839015932 68.398%
Voronoi 0.765953911577 24.305% 1.000518315891 0.052%
Corrected Voronoi 0.941681791673 5.832% 1.222835972957 22.283%

Table 2.3: Comparison of VCFV definitions for the 2"¢ case using the 15t approach,
with the expected value to be H, = 1.

VCFV Min Value of Max Value of
Definition Mean Curvature | ETTOT | Mean Curvature | ETTOT
Barycentric 0.758949773150 24.105% 1.689380160545 68.938%

Voronoi 0.756967168630 24.303% 1.000725975853 0.073%

Corrected Voronoi 0.941683572258 5.832% 1.222835972957 22.286%

Table 2.4: Comparison of VOFV definitions for the 2" case using the 2" approach,
with the expected value to be H, = 1.

This case, along with the previous observations, demonstrates that both ap-
proaches for computing the position vector gradient yield similar results. This
observation supports the statement that the second approach is essentially
an extension of the first, differing only in the form of the final expression,
where cotangent formula is used for area and gradient of position vector com-
putation. Consequently, the only difference in the performance between the
two approaches lies in the computational time. The second approach avoids
computing the normal vectors 7i; at the edges of each node for H estimation,
resulting in significantly lower computational time, Fig. with respect to
mesh size. Therefore, the second approach, based on the cotangent formula
for mean curvature computation, is selected for its effectiveness and superior
efficiency.

In addition, it is shown that the Voronoi definitions yield better accuracy than
the Barycentric one. However, it is not evident whether the Corrected Voronoi
definition provides a significant improvement over the standard Voronoi ap-
proach. To better evaluate the effectiveness of the correction, a larger test case
is examined: a spherical surface mesh consisting of 65404 nodes and 130804
triangular elements, Fig. [2.17 Table demonstrates that the Corrected
Voronoi definition reduces the maximum error, but it simultaneously increases
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Computation time versus number of mesh nodes
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Figure 2.16: Diagram of computation time in respect of the number of mesh nodes.

Figure 2.17: H distribution on a spherical surface with a denser mesh using

approach.
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VCFV Min Value of E Max Value of E
Definition Mean Curvature rror | NMean Curvature rror
Voronoi 0.667805595388 33.219% 1.000006092205 0.001%
Corrected Voronoi 0.855245023023 14.475% 1.172605969246 17.261%

Table 2.5: Comparison of VCFV definitions for the 2"¢ case with a denser mesh and
using the 150 approach, with the expected value to be H, = 1.

the error in the maximum value of H. Consequently, it can be inferred that
the Corrected Voronoi approach gives a lower average error compared to the
original Voronoi definition. However, the accuracy of the Corrected Voronoi
method remains insufficient and requires further improvement, which will be
investigated in a subsequent section.

2.5 Improving the Computation Method of Mean

Curvature

In Subsection [2.4.3], it was demonstrated that, among the methods suggested in the
literature, the most effective and efficient approach to compute H at each node is
to use the Voronoi area for the VCFV definition and the Cotangent Formula for the
gradient of the position vector. In this section, the weaknesses of this method are
demonstrated and further improvements are suggested.

Firstly, the two cases mentioned in subsection are used to investigate the factors
that reduce the accuracy of the method.

A) 1% Case: Computation of H at a node surrounded by triangular elements

In this case, various combinations of r and N; are tested, and their results are
compared in terms of accuracy in capturing the expected value at the central
node (1,1).

In Table [2.6] it is shown that increasing the number of triangles in the nodal
mesh requires a larger radius of the local coordinate system’s circle to compute
H with higher accuracy. This behavior can be attributed to the fact that, as
more triangles surround a node, the internal angles at the central node become
more acute which means that their cotangent are bigger. According to Eq.
([2.38), H depends on the gradient of the position vector and the nodal area,
both of which are expressed in terms of the cotangent of the triangle angles and
the lengths of their edges, as shown in Egs. (2.36) and (2.41). Consequently,
to maintain a balanced curvature measure as the number of triangles and the
cotangent of their angles increase, the edge lengths must also increase. To
achieve this, the radius of the surrounding cycle needs to be appropriately
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Number of triangles N, | Radius » | Mean curvature H | Error
4 0.01 0.000000000001 100%
4 0.1 0.000000000000 100%
4 1 0.000000000000 100%
5 0.01 0.072800299907 17.627%
5 0.1 0.067947125457 23.127%
5 1 0.042823296080 51.551%
6 0.01 0.048223929680 11.511%
6 0.1 0.088235588150 0.173%
6 1 0.071299164710 19.334%
8 0.01 0.109777805277 24.199%
8 0.1 0.109319938405 23.681%
8 1 0.087570226432 0.926%
10 0.01 0.125554136686 45.023%
10 0.1 0.119588786695 35.299%
10 1 0.094460160490 6.869%
12 0.01 0.121375158747 37.320%
12 0.1 0.124723147891 41.108%
12 1 0.097167953030 9.933%

Table 2.6: H error of 15t case for various values of v and Nj.

enlarged.

Furthermore, Table shows that for each triangle count, there exists a spe-
cific radius that yields the lowest error. This relationship is further explored
by running simulations with varying numbers of triangles and various radii
to identify the combinations that produce the desired H at the central node.
Each triangle count corresponds to a specific radius at which the computed
curvature matches the target value, Fig. 2.18 It is important to note that
for fewer than six triangles, the curvature vs. radius curves do not intersect
the target value. This indicates that with fewer than six peripheral nodes, it
becomes more challenging to accurately capture H at the center. One way
to address this limitation is to rotate the nodal mesh about its center so that
the peripheral nodes align more closely with the surface geometry, thereby
improving the accuracy of the curvature estimation at the central node. This

approach is examined for small numbers of triangles and a relatively small
cycle radius of » = 0.005, Fig.

These observations show that in a mesh, having fewer than six triangles around
a node can reduce the accuracy of H for two reasons: first, it’s physically hard
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Mean Curvature vs. Radius for Different Numbers of Triangles
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Figure 2.18: H wvalues at the central point of a nodal mesh for different numbers of
triangles and radi.
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Figure 2.19: H walues at the central point of a nodal mesh for low numbers of
triangles and radius v = 0.005.

to capture the shape of a surface with so few triangles; second, the method
used to calculate the nodal area can give wrong results in the presence of
obtuse triangles. These problems will be explored further in the next case.

27d Case: Computation of H on a spherical surface mesh

This section examines the spherical surface mesh with radius R = 1, Fig. [2.15]
to investigate the causes of the deviation of H from its expected value of 1. The
nodes with the largest errors are identified and displayed in Fig. These
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Figure 2.20: Different perspectives of view of nodes with deviation in H from the
expected value.

nodes are shown to belong to at least one obtuse triangle and are surrounded
by fewer than six neighboring triangles, supporting the observations made in
the previous case.

Of special interest is the example shown in the upper right of Fig. [2.20b]
where two nodes with four neighboring triangles appear identical in terms of
geometry and structure, yet their computed H differ. Upon closer analysis,
it becomes evident that these two cases are not entirely identical, as they
exhibit small but significant geometric differences, specifically in the angles
of the obtuse neighboring triangles. More precisely, the node with the higher
error has an obtuse angle of 104°, while the node with the lower error has
an obtuse angle of 100°, which indicates that the larger the obtuse angle,
the greater the error in computing H. These observations suggest that the
mean curvature computation model is highly sensitive to small changes in the
angles of obtuse triangles, a point that will be explored further in the following
subsections. Since the challenge of accurately capturing surface curvature
with too few surrounding nodes is not easily addressed, this section explores
potential improvements to the computational model. Specifically, it separately
examines the behavior of the position vector gradient and the Voronoi area
formulations in the presence of obtuse triangles.
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2.5.1 Behavior of the Position Vector Gradient Model in
Obtuse Triangles

For the computation of the position vector gradient, Eq. is employed. This for-
mula evaluates the flux passing through the boundaries of the VCFV, as discussed in
Section The method used to compute the flux associated with each triangular
element is applicable to all triangle types, including obtuse triangles. This indicates
that Eq. (2.36)), along with the integral form of the Laplace-Beltrami operator, re-
mains valid even in the presence of obtuse angles. Therefore, no modifications are
strictly required for the computation of the gradient of the position vector. However,
in triangles with obtuse angles, the cotangent of those angles becomes negative. In
Eq. , one might interpret the cotangent terms as weights assigned to the edges
of the triangle. This becomes questionable for obtuse triangles, as negative weights
lack a clear physical interpretation. Therefore, changes to Eq. are considered
to better handle cases with obtuse angles.

1. Fwvenly distributing the weight of an obtuse angle among the other angles

The first approach handles an obtuse angle in a triangle by setting its cotangent
to zero and redistributing its value equally to the cotangents of the other two
angles. This ensures that all weights remain non-negative while preserving
their total sum. For example, consider a triangle AABC, where « is the
obtuse angle at vertex A, and [ and ~ are the acute angles at vertices B and
C, respectively. In this case, the adjusted cotangent values are given by:

cot 3 = cot 3 + %«
coty = cot y 4 4« (2.45)
cota =10

Eq. (2.45)) is appropriately adapted when either 3 or 7 is the obtuse angle. This
method is applied to the second case of the spherical surface mesh described
in Section [2.4.3] and the results are presented in Table [2.7]

Min Value Max Value
C‘?\jja.niint of Mean Error of Mean Error
eights Curvature Curvature

Original Method | 0.941683572258 | 5.832% | 1.222835972957 | 22.286%
Equal distributi
dquat AStbUBION | 000000983861 | 0.0001% | 1.2900301563957 | 29.030%

to acute angles

Table 2.7: Comparison of the 15* modification of Cotangent Weights with the Original
Method in a spherical surface mesh, with the expected value to be H = 1.
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(a) 1% perspective view of nodes with deviation — (b) 2™ perspective view of nodes with deviation

Figure 2.21: Different perspectives of view of nodes with deviation in H from the
expected value after the 15 cotangent weights modification.

Table shows that the average error in the computed H did not improve
with this modification. Furthermore, the problematic nodes identified in Fig.
[2.20] continue to produce the highest errors. The key difference is that both
the minimum and maximum values of H have increased, Fig.

2. Distributing the weight of an obtuse angle proportionally to the cotangent val-
ues of the other angles

In the previous approach, the cotangent of the obtuse angle was evenly dis-
tributed to the two acute angles, regardless of the triangle’s shape. In this
approach, the distribution is weighted: each acute angle receives a portion of
the obtuse angle’s cotangent proportional to its own cotangent relative to the
sum of the two acute cotangents. This way, the sharper the angle, the larger
the share it receives.

Similarly to Eq. (2.45]), here the adjusted cotangent values are given by:

S = cot f + coty
cot B = cot B+ <8 cot o
CO:

cotvzcotw%—%cota
cota =0

(2.46)

By applying Eq. to the spherical surface mesh, the results presented in
Table are obtained. This modification yields slightly improved accuracy.
To further validate this improvement, the denser spherical surface mesh, Fig.
[2.17] is also examined, and the corresponding results are reported in Table[2.9]
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Min Value Max Value
C‘(;J.:a.niint of Mean Error of Mean Error
eights Curvature Curvature
Original Method 0.941683572258 | 5.832% | 1.222835972957 | 22.286%
Cot-based distribution
to acute angles 1.000000983861 | 0.0001% | 1.221313445349 | 22.131%

Table 2.8: Comparison of the 2" modification of Cotangent Weights with the Orig-
inal Method in a spherical surface mesh, with the expected value to be H = 1.

Min Value Max Value
C‘?‘;a.niint of Mean Error of Mean Error
eights Curvature Curvature
Original Method | 0.855245023012 | 14.475% | 1.1726059692463 | 17.261%
o O [ 11,000000000012 | 10-9% | 10.085489146948 | 908.548%

Table 2.9: Comparison of the 2™ modification of Cotangent Weights with the Orig-
inal Method in a denser spherical surface mesh, with the expected value to be H = 1.

In this case, the error in the maximum H, Table is significantly high. The
nodes with the largest errors are mostly shared by four triangles, , Fig. [2.22]
with the obtuse ones causing the biggest deviations. In addition, these obtuse
triangles strongly influence nearby nodes, which exhibit large errors even when
connected to six triangles. Consequently, this modification of the weights fails
to improve the accuracy of the mean curvature computation.

3. Distributing the weight of an obtuse angle proportionally to the edges opposite
to the other angles

In this approach, the distribution is weighted differently: each acute angle
receives a portion of the obtuse angle’s cotangent proportional to the length
of the edge opposite it, relative to the sum of the lengths of the two opposing
edges.

In a similar way to Eq. (2.46)), the cotangent values are modified as follows:

S = Lap+ Lac
cotﬁ:cotﬁ—i-%cota
Cot'yzcot'y—i—L%cota
cota =10

(2.47)

By applying Eq. (2.47) to the spherical surface mesh, the results presented in
Table [2.10| are obtained. As shown, this modification does not improve the
accuracy of the mean curvature computation. Similar to the first modification,
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(a) 15 perspective view of nodes with deviation in H.

(b) 2™ perspective view of nodes with deviation in H.

Figure 2.22: Different perspectives of view of nodes with deviation in H from expected
value after 2™ the cotangent weights modification.

it increases both the maximum and minimum curvature values, while the error
remains high for nodes that are shared by four triangles.

to acute angles

Min Value Max Value
C‘(;J)a.niint of Mean Error of Mean Error
eights Curvature Curvature
Original Method 0.941683572258 | 5.832% | 1.222835972957 | 22.286%
Edge-based distribution
1.000000983861 | 0.0001% | 1.400338639440 | 40.034%

Table 2.10: Comparison of the 3" modification of Cotangent Weights with the Orig-

inal Method in a spherical surface mesh, with the expected value to be H = 1.

Consequently, none of the proposed modifications to the cotangent weights improved
the accuracy of mean curvature computation. Based on these adjustments, it can
be concluded that setting negative cotangent values to zero and redistributing their
weight, as frequently proposed in the literature, did not reduce the deviation in
computed H for meshes with obtuse triangles. Therefore, further improvement in
the curvature computation depends on the behavior of the VCFV definition in the
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presence of obtuse triangles, which will be investigated in the following subsection.

2.5.2 Behavior of the Voronoi Area Model in Obtuse Trian-

gles

As shown in Section the Corrected Voronoi Model is the most accurate VCFV
definition identified so far. This model is generally based on treating an obtuse
triangle as a right triangle, placing the circumcenter at the midpoint of the edge
opposite the obtuse angle. However, this assumption still results in accuracy issues
when obtuse triangles are present. This indicates the need to explore alternative
methods for element area partitioning and subarea distribution to each node that
belongs to obtuse triangle, which will be examined later in this section. Since
the Corrected Voronoi definition performs well for acute triangles, the proposed
improvements by this diploma thesis will apply only to the obtuse triangles in the
mesh, while the others will remain unchanged.

1. Barycentric area distribution in obtuse triangles

In this approach, the Barycentric definition of VCFV, often favored in liter-
ature due to its simplicity, described in Section is applied only in the
case of the obtuse triangles of the mesh. This definition is often favored in the
literature and widely used in software implementations due to its simplicity.
This modification is applied in the spherical surface mesh of Fig.

eps Min Value Max Value

8 Curvature Curvature
Corrected Voronoi 0.941683572258 | 5.832% | 1.222835972957 | 22.286%
Barycentric 0.854380453757 | 14.562% | 1.577471699278 | 57.747%

Table 2.11: Comparison of the 15t modification of VCFV definition for obtuse tri-
angles with the original one in a spherical surface mesh, with the expected value to be
H=1.

Table shows that this modification worsens the mean curvature compu-
tation at nodes associated with obtuse triangles. This suggests that assigning
a smaller area contribution of % to the vertex with the obtuse angle, instead
of %, increases the error, indicating that equal or larger contributions should
also be investigated.

2. Fized area portioning for Corrected Voronoi in obtuse triangles

This section examines different methods of distributing a triangle’s area among
its vertices. Specifically, it aims to determine the optimal portion assigned
to the vertex with the obtuse angle, assuming the remaining area is equally
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divided between the two acute-angle vertices. To achieve this, the minimum
and maximum values of H on the two spherical surface meshes that were
previously used, are examined for their proximity to the expected value of 1.

Mean Curvature vs. Area Portion at Obtuse Vertex
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Figure 2.23: H wvalues on two spherical surface meshes for different area portions at
obtuse vertices.

There is a specific portion in each mesh that is higher than the portion of
% that was suggested in the Corrected Voronoi model, which minimizes the
discrepancy between the minimum and maximum value of H from the target
one, Fig.[2.23. However, this approach may not be optimal for each mesh, as it
only considers the nodes with the highest errors while neglecting other nodes
that belong to obtuse triangles. For a more precise investigation, all nodes
belonging to obtuse triangles are examined to determine which area portion
associated with the obtuse angle yields the expected H value.

There is a distinct area portion at the obtuse angle of each node that results
in the computed H to be equal to the expected value, Fig. 2.24] It is also
observed that as the obtuse angle of a node increases, the corresponding area
portion of the obtuse triangle required to achieve accurate H also increases.
Additionally, it is worth noting that for nodes 21 and 510, which have nearly
identical obtuse angles, the required area portions are not exactly the same.
This difference arises because the two nodes have different lengths for the edge
opposite the obtuse angle, with the node having the longer edge requiring a
larger portion of the area. That being said, it can be concluded that the
optimal area portions assigned to each vertex are not constant for all obtuse
triangles, but are strongly dependent on their specific shape. To validate this
observation, a spherical surface mesh is examined by assigning to the obtuse-
angle vertex the area portion that minimizes the error across most obtuse
triangles. This optimal portion in the case of the spherical surface mesh is
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Mean Curvature vs. Area Portion for Obtuse Vertices
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Figure 2.24: H at nodes belonging to obtuse triangles in a spherical surface mesh of
522 nodes versus the area portion at obtuse vertex.

approximately 0.57 for the vertex with the obtuse angle, Fig. [2.24] so the area
distribution goes as follows:

Aj = 057Apapc, Ac =0215Aa45c  (2.48)

Ap = 0.215A 450,
where A is assumed to be the obtuse angle in the triangle AABC. Using this

distribution, the error in the maximum value of H is reduced, while the error
in the minimum value increases, Table [2.12]

. Min Value of Max Value of
for obtuse imcias | Mean | Error | Mean | Error
8 Curvature Curvature
Corrected Voronoi 0.941683572258 | 5.832% | 1.222835972957 | 22.286%
o ed Lortlons. 1 937547995040 | 6.245% | 1.117369313942 | 11.737%

Table 2.12: Comparison of the 2™ modification of VCFV definition for obtuse tri-
angles with the original one in spherical surface mesh, with the expected value to be
H=1.

The nodes with the maximum and minimum H are shown in Fig. [2.20(b). As
illustrated, the node with the maximum curvature and the highest error (node
12) is a vertex shared by two triangles with obtuse angles. This indicates that
the selected area portion for obtuse angles effectively reduces the error. This
observation is further supported by Fig. [2.24] where the selected obtuse-angle
portion at node 12 more closely matches the region intersecting the target
value than before. On the other hand, the error at the node with the minimum
curvature increases, suggesting that the selected area portion for acute angles
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in obtuse triangles is suboptimal. To enable a more comprehensive comparison
with the original Corrected Voronoi Method, the Relative Mean Absolute Error
(RMAE) of the H should be introduced. This gives a clearer representation
of the error distribution across all nodes, rather than focusing only on the
extreme cases.

computed true
; — ;™

’ Hztrue ‘

N
15|

MAE = 2.4
R ~ ;le (2.49)

VCFYV Definition for Obtuse Triangles | Relative Error
Corrected Voronoi 0.223%
Fixed Portions for Area Distribution 0.148%

Table 2.13: RMAE of the 2"¢ modification of the VCFV definition for obtuse trian-
gles, compared to the original method on a spherical surface mesh.

The relative mean absolute error improves when using the mean area por-
tion for obtuse angles in order to reach target value, Table To draw
more general conclusions, the case of the denser spherical surface mesh is also
examined.

VCFYV Definition for Obtuse Triangles | Relative Error
Corrected Voronoi 0.059%
Fixed Portions for Area Distribution 0.047%

Table 2.14: RMAE of the 2"¢ modification of the VCFV definition for obtuse trian-
gles, compared to the original method on a denser spherical surface mesh.

In both cases, the RMAE of H is reduced, but this improvement does not hold
for each node individually. Due to the local nature of the H, it is essential
to achieve optimal accuracy at every point of the mesh. The results from
the two cases suggest that, in obtuse triangles, assigning a greater portion
than % of the area to the vertex with the obtuse angle leads to more accurate
curvature estimation. However, as demonstrated in the first case, distributing
the remaining area equally between the acute angles does not yield equally
effective results. Additionally, different triangles have different ideal portions
for the obtuse vertex, indicating that a fixed portion is insufficient. These
findings highlight the need for a new method that adapts the correction of the
Voronoi area according to the specific geometry of each obtuse triangle.

3. Angle-based modification of Corrected Voronoi area distribution in obtuse tri-
angles

In this approach, the area of the triangle is distributed to the obtuse vertex
and the two acute-angle vertices based on the relative sizes of their angles,
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rather than with a constant portion. Assuming that « is the obtuse angle at
vertex A of triangle AABC, and [ and ~ are the acute angles at vertices B
and C, respectively, the area assigned to each vertex is determined as follows:

S=a+f+y
Aa = GAnasc

2.50
Ap = LApapo (2:50)

Ac = FAnasc

Eq. (2.50) is appropriately adapted when either /3 or y is the obtuse angle. The
method is applied in the spherical surface mesh of Fig. [2.15| and the results of
H measures are presented in Table [2.15]

[ 18400

1 o 1
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(a) 1% perspective of view of nodes with devia-  (b) 2" perspective of view of nodes with devi-
tion in H. ation in H.

H
g

Figure 2.25: Different perspectives of view of nodes with deviation in H from expected
value after the 3™ modification of Corrected Voronoi area.

. ys Min Value of Max Value of
VCFV Definition
for obtuse triangles Cul\r/Ix?a%c?lre Error Cul\I{I\SaE}crlllre Error

Corrected Voronoi 0.941683572258 | 5.832% | 1.222835972957 | 22.286%

Angle-based modification
of Corrected Voronoi 0.957099947443 | 4.290% | 1.106193049107 | 10.619%

Table 2.15: Comparison of the 3™ modification of VCFV definition for obtuse tri-

angles with the original one in a spherical surface mesh, with the expected value to be
H=1.

The error in the maximum value of H is reduced, Table 2.15 However, a de-
tailed analysis of the spherical surface mesh in Fig. reveals that although
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the maximum value improves, new nodes - previously unaffected under the
Corrected Voronoi definition - now show significant errors. This raises con-
cerns that the improvement may be coincidental rather than systematic. To
investigate this further, the denser spherical mesh is also examined and its
results are given in Table 2.16] As shown, while H error may improve at
certain nodes with this modification, there is a risk that it may worsen at oth-
ers. This indicates that the correction is not universally effective, and further
investigation into alternative improvement methods is necessary.

. Min Value of Max Value of
VCFV Definition
for obtuse triangles Cul\r/I\saa’lc?lre Frror Cul\r/I\?aa}c?lre Frror
Corrected Voronoi 0.8552450230 | 14.475% | 1.172605969246 | 17.261%
Angle-based modification
of Corrected Voronoi 0.7887844490 | 21.122% | 1.089335782697 | 8.933%

Table 2.16: Comparison of the 3™ modification of VCFV definition for obtuse trian-
gles with the original one in a denser spherical surface mesh, with the expected value

to be H=1.

4. Geometry-adaptive modification of Corrected Voronoi area distribution in ob-

tuse triangles

In this approach, a new correction to the previously described Corrected
Voronoi Method is proposed in this diploma thesis, taking into account the
fact that the circumcenter of an obtuse triangle lies outside the triangle. In
the existing correction discussed in Section [2.3.3] an obtuse triangle is treated
as if it were a right triangle. While this approximation may be effective when
the obtuse angle is close to 90°, the accuracy of the Voronoi area computation
decreases as the angle becomes more obtuse. To address this limitation, a new
modification of the Corrected Voronoi Method is proposed. This enhanced
correction adapts according to the degree of deviation of the obtuse triangle
from a right triangle. Assuming an obtuse triangle AABC, with C' being the
vertex with obtuse node, the area distributed to each vertex is given as:

1

1 1
Ay = ZPAAAABC, Ap = ZPBAAABCH Ac = §pCAAABC (2.51)

where p4, pp and pe are the corrective portions applied to the right triangle
distribution in the case of obtuse triangles.

To determine the appropriate correction, the area portions of the obtuse tri-
angle are compared to those of its corresponding right triangle. Following the
same model used for acute triangles, the sub-area associated with each vertex
is composed of two triangular regions. Each of these regions is defined by a
bisector, a radius R connecting the circumcenter to the vertex, and half of the
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adjacent edge passing through that vertex. This geometric correspondence is
illustrated analytically in Fig. [2.26]

Figure 2.26: Correspondence of sub-areas from acute to obtuse triangle.

The correspondence to the right triangle is the same as for the obtuse one,
with the key difference that point O lies at the midpoint of the hypotenuse
and as a result areas A, and As are not visible.

Now that the desired sub-area distribution has been defined, a correction based
on a corresponding right triangle can be proposed. To do so, each acute vertex
of the obtuse triangle is the approximation of a corresponding right triangle,

Fig. [2.27

Figure 2.27: Corresponding right triangles for the acute vertices A and B of the
obtuse triangle NABC.

For the vertex A of the obtuse AABC and following Section [2.3.3] the area of
ANAOK is assigned. This can be viewed as the approximation of the sub-area
ANAOK' in the corresponding right triangle AABC’. For the vertex B of the
obtuse AABC' as well, the area of ABOL is assigned. This can be viewed as
the approximation of the sub-area ABOL’ in the corresponding right triangle
NABC".
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In the right triangle AABC", the area distribution portion is defined as %.

In order to find to appropriate correction p; for the corresponding vertex of
the obtuse one, the correction of the sub-area of the vertex and the area of
the triangle from the obtuse to the right triangle needs to be provided. The
sub-area of vertex A and the area of the right triangle are given as follows:

1 1
Apaorr = B |K'O[ - |[AK'|,  Apapcr = 3 |C'B| - |AC"| (2.52)
where
|AK’]:gcos(4K’AK), |[K'O| = \/———C082 (/K'AK).
Given that

AK’AK:g—(W—AC)zéO—g,

and denoting the deviation of the obtuse angle from the right as ZAC, we
have:

b 1
|AK'| = ECOS(AAC’), |K'O| = 5\/02 — b2 cos?(LACQ).

Similarly,

|AC"| = beos(ZAC), |C'B| = +/c® — b2 cos2(LAC).

As a result, Eq. ([2.52)) becomes:

Aprsor = %b cos(ZAC) /2 — b2 cos2(LAC)

1
Apaper = §b cos(ZAC)/c2 — b2 cos?(LAC) (2.53)

The corresponding areas in the case of the obtuse triangle AABC' are given
as:

1 1
Apaok = gabcos(éAC), Apape = éab cos(LAC) (2.54)

The corrective portion p4 is derived by applying corrections to both the sub-
area associated with vertex A sub-area and and the overall area of the triangle.
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Therefore, by appropriately dividing the expressions in Egs. (2.54]) and (2.53)),
the correction for the vertex A is given as:

2
Apaox  Anabc a

B Anaok ‘ Apaper 2 — b2 cos?(LAC)

PA (2.55)

By following the exact same procedure for vertex B, its correction is given by:

_ Anpor  Anapc _ b? (2.56)
Apaor Apapor ¢ —a?cos?(LAC) '

PB

Following the same approach as in Eqgs. and , and considering that
the area attributed to vertex C' in the corresponding right triangle consists of
the sum of the sub-areas assigned to the other two vertices, it follows that the
correction portion p¢ is given by:

CQ

(a? + b?) cos?(LAC)

pc = (2.57)

Portions p4, pg, and pc represent the adjustments made to the sub-area distri-
bution when an obtuse triangle is approximated as a right triangle. However,
this approach neglects the fact that, in an obtuse triangle, the circumcenter
lies outside the triangle. This causes areas A, and As to appear behind the
other area regions, Fig. [2.26] As a result, the sub-areas attributed to vertices
A and B are underestimated, since they miss the parts distorted by this ge-
ometric folding, while the sub-area of vertex C' is overestimated. To address
this issue, additional corrections must be introduced to properly account for
the redistribution of areas A, and As. Specifically, the overestimated portions
of A; and A,, which extend in front of A, and As, should be subtracted from
the area attributed to vertex C. Meanwhile, the portions of A3z and Ag that
lie in front of A, and As should be added to the areas assigned to vertices A
and B, respectively.

These additional corrections can be expressed as the ratio of the folded areas
to the corresponding areas in the case of a right triangle. However, since these
areas are not easily identifiable in the right triangle configuration, the correc-
tions can alternatively be formulated as the product of the area attributed to
each vertex in the obtuse triangle with the corresponding relative area when
the triangle is right. More specifically, for vertex A, the correction correspond-
ing to the folded region can be expressed as the ratio of area Ag, attributed
to vertex A, to the total area of the triangle, multiplied by the corresponding
portion in the right triangle case. To formulate this, the area Ag is defined as
follows:
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1 1
Apaom = §|MA| |OM| = §|MA| R?2 — |MA|]? (2.58)

Denoting the edges of the obtuse triangle in Fig. as |BC| = a, |AC| =1,
and |AB| = ¢, and using the expression for R given in Eq. (B.3)), Eq. (2.58))

becomes:

o= 5zt ~(3)

1 \/b2(1 —sin2(/B)) 1, |cos*(/B)
_1 = [

1
AAAOM = ng COt(lB) (259)

Using the cotangent formula of 2B, Appendix [C]| Eq. (2.59) becomes:

1 ,a®>+c—b
Apaom = 3_2627 (2.60)

The area of the obtuse triangle is given by the 2"¢ Eq. of (2.54]). Dividing Eq.
(2.60) with Eq. (2.54)), one gets:

Apson 1,02+ -0 1., a®+c& -0

Apapc 32 A2 T 32 La2pcos?(ZAC)

A 1 a2 42— p2
sraom L a”+c—b (2.61)
Apapc  8a?cos?(LAC)

As previously discussed, for a right triangle, the circumcenter O coincides
with the midpoint of the edge opposite to the right angle. In this scenario, the
sub-areas A4 and As vanish. However, this simplification poses a difficulty for
defining additional corrections for vertex C, since the corresponding portion in
the right triangle would be zero and the number of sub-areas reduce from six
to four. To resolve this, the corresponding portion of Ag in the right triangle
is considered to be half of the sub-area attributed to vertex A. This sub-area
is equal to % of the total area of the right triangle. Taking this into account,
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the corrective portion p4 must be adjusted by an additional correction due to
the contribution of Ag, which lies outside the obtuse triangle. This correction

o 1 Apnasom
1S given by 3 m

Therefore, the final corrected portion for vertex A, using Eqs. (2.55]) and (2.61)),
is expressed as:

a? 1 a?+c -0

PA = T o2 T 6122 cos? (2.62)
2 — b2 cos?(LAC) 64 a?cos?(LAC)

Similarly, for vertex B, the additional correction is expressed as the ratio of
area As, attributed to vertex A, to the total area of the triangle, multiplied
by the corresponding portion in the right triangle case. Following the same
procedure as for the additional correction of vertex A, the following correction
is obtained:

b? N 1 P+-a
2 —a?cos?(LAC) 64 b?cos?(LAC)

PB = (2.63)

Similarly to vertices A and B, vertex C requires an additional correction due
to portions of areas of A; and A, that lie outside the obtuse triangle and a
and are incorrectly attributed to it. Applying the same methodology used
for the other two vertices, it can be shown that the term to be subtracted
from pc has the same form as the corrections for p4 and pg but with the
appropriate substitution of geometric quantities corresponding to vertex C.
The final corrective portion p¢ is thus given as follows:

c? 1 a’+ v —c?
(a? + b?) cos?(LAC) 64 c?cos?(LAC)

po = (2.64)

By applying the proposed geometry-adaptive correction method to the pre-
viously discussed first case involving a spherical mesh, the results shown in
Table were obtained. As illustrated, a significant reduction in error is
achieved when obtuse triangles are treated in accordance with their geometric
characteristics. To enable a more comprehensive evaluation, the RMAE of
the proposed method is compared with that of the original Corrected Voronoi
Method for both the initial and the denser spherical surface meshes, as pre-
sented in Tables and In all cases, the RMAE is reduced by up to an
order of magnitude. Furthermore, all nodes previously identified as outliers,
due to their deviation from expected values, Fig2.15] demonstrate notable
improvement, which leads to a smoother distribution of H across the spherical

mesh, Fig{2.28|

In order to achieve a smoother and more uniform distribution of H across the
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cps Min Value of Max Value of
fVCEX Degipltloln Mean Error Mean Error
or obtuse triangles Curvature Curvature
Corrected Voronoi 0.941683572258 | 5.832% | 1.222835972957 | 22.286%
GAC Voronoi 0.995123547932 | 0.488% | 1.006219135819 | 0.622%

Table 2.17: Comparison of the 4" modification of VCFV definition for obtuse tri-
angles with the original one in spherical surface mesh, with the expected value to be

H=1.

VCFV Definition for Obtuse Triangles

Relative Error

Corrected Voronoi

0.223%

GAC Voronoi

0.025%

Table 2.18: RMAE of the 4" modification of the VCFV definition for obtuse trian-
gles, compared to the original method on a spherical surface mesh.

VCFV Definition for Obtuse Triangles

Relative Error

Corrected Voronoi

0.059%

GAC Voronoi

0.0066%

Table 2.19: RMAE of the 4" modification of the VCFV definition for obtuse trian-
gles, compared to the original method on a denser spherical surface mesh.

z
&

-~

106400

106400

() 15! perspective view of nodes with deviation  (b) 2" perspective view of nodes with deviation

Figure 2.28: Different perspectives of view of nodes with deviation in H from expected

value after 4" modification of Corrected Voronoi.

mesh, a smooth transition between area attribution formulas is introduced.
Specifically, the transition between the Corrected Voronoi formula for acute
triangles and the Geometry-Adaptive Corrected (GAC) Voronoi formula for
obtuse triangles near the right-angle threshold is carefully treated. A smooth
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blending is applied between the standard Corrected Voronoi area attribution
and its geometry-adaptive version that accounts for obtuse triangle configu-
rations. The objective is to avoid abrupt changes in area distribution when a
triangle’s internal angle approaches or slightly exceeds 90°.

To achieve this, a smooth transition function is defined using a sigmoid-type
function centered at 90°. The transition is controlled by two parameters: steep-
ness k, which controls the steepness of the transition function, and threshold,
which is the central angle value (in degrees) at which the transition is bal-
anced. When the angle at a vertex falls within a predefined interval around
90°, specifically [88°,92°], the method computes a weighted average of the area
values obtained from the two methods. The transition weight ¢ is calculated
using a sigmoid-like function, defined as:

1
t= 1+ ¢k (6-90)
where 6 is the vertex angle in degrees. The final area attributed to each vertex
is given as a convex combination:

Ai — (1 _ t) . Al\'/oronoi 4t A?btuse’

ensuring smooth variation and numerical stability when involving obtuse tri-
angles. For a moderately smooth transition, a value of £k = 2 was used. By
applying this transition, the error in minimum value of H is further improved,

Table 2.20

"y Min Value Max Value
VCFV Definition of Mean Error of Mean Error
for obtuse triangles |~ oo o Curvature

Corrected Voronoi 0.9416835723 | 5.832% | 1.2228359730 | 22.286%
SGAC Voronoi 0.9980752485 | 0.192% | 1.0062191358 | 0.622%

Table 2.20: Comparison of the 4" modification with smooth transition of VCFV
definition for obtuse triangles with the original one in spherical surface mesh, with the
expected value to be H = 1.

As demonstrated, the Smoothed Geometry-Adaptive Corrected (SGAC) Voronoi
Method achieves the highest level of accuracy. The SGAC Voronoi method
is also important for the case of adjoint-based design optimization, as it re-
assures differentiability, when combining the Corrected Voronoi Method for
the acute and right triangles with the GAC Voronoi Method for the obtuse
ones. In a subsequent section it will be further illustrated that this method
surpasses all others proposed in the literature. Therefore, it has been chosen
as the foundation for the methodology employed in this study.
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Chapter 3

Computation of Gauss Curvature

on Surface Meshes

3.1 Introduction

In this section, a quick introduction to the meaning of the Gauss curvature measure
os a surface in the R? space is provided. As described in Chapter 1, Gauss curvature
of a point is the product of the two principal curvatures x; and k. To ultimately
compute the principal curvatures x; and ks for determining the total curvature at
each node, it is necessary to define both the mean curvature H and the Gaussian
curvature K. Therefore, similarly to the mean curvature H, computational methods
for estimating the Gauss curvature K must also be thoroughly investigated. In this
work, the magnitude of Gauss curvature will be denoted as K and its sign depends on
the signs of the principal curvatures, which can be defined from the way the normal
vector N changes along tangent directions. For the smooth surface it measures the
infinitesimal bending of the surface compared to the flat tangent plane. Instead of
comparing the surface with the tangent plane, it can equally be considered as the
turn of the normal vector along the surface. That being said, the sign of K conveys
information about the local shape of a surface at a point. Positive K means that
both principal curvatures have the same sign, which means that surface curves in
the same direction along all direction. This indicates that the surface is locally
convex or elliptic. K = 0 means that the surface is flat or cylindrical at that point,
according to if one or both principal curvatures are zero. Finally, negative K means
that he surface curves upward in one direction and downward in the perpendicular
direction and indicates that the surface is saddle-shaped or hyperbolic at that point.

Regarding the physical meaning of the Gauss curvature can be obtained by consid-
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ering how triangles behave on different types of surfaces. More specifically, if K = 0
that means that a triangle embedded in the surface will have sum of angles equal to
7. The cylindrical surface is behaving similarly to the flat one as regards the sum
of triangle’s angles. If K is positive, the surface bends outward like a dome, which
means that an embedded triangle to it will have sum of angles greater than 7. If K
is negative, the surface bends like saddle, which means that an embedded triangle
to it will have sum of angles less than 7. These observations are demonstrated in
the simple example of surface with mean curvature H < 0, but different signs of
Gauss curvature K, Fig. B.1]

Concave Bowl Surface (K >0, H < 0) Saddle Surface (K < 0, H = 0)

sum of angles = n 1550

(a) K >0, H <0 (Bowl surface). (b) K <0, H <0 (Saddle surface).

Dowrward Parabolic Cylinder (K =0, H < 0]

sum of angles =

(c) K =0, H < 0 (Parabolic Cylin-
der).

Figure 3.1: Surface shapes with different signs of Gauss curvature K.

3.2 Approximation of Gauss Curvature on a Sur-

face

This section explores methods for calculating K at the nodes of an unstructured
mesh. Similar to H, K is invariant quantity for a structured mesh, meaning that
it depends solely on surface geometry and remains unaffected to any change in
parameterization. However, since an unstructured mesh cannot be parameterized
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in a straightforward way, alternative computational methods must be considered.
To achieve this, as described in Section 1.4 of [19], the Gauss map function must
be introduced. This function g : S — S? maps each point p on the surface patch S
to the tip of its normal vector n(p), translated onto the unit sphere S* C R3, Fig.
3.2 All the image points constitute a region on the unit sphere, whose area is called
image area and is equal to the total K of the patch. It is easy to see that the flatter
the surface patch, the more its normal vectors at p and ¢ align on the unit sphere,
leading to a smaller image area consequently near- zero K. However, the reverse is
not necessarily true, as even when the image area on the unit sphere is small, the
patch may not be flat. This can happen when the normal vectors vary in direction
and change sign across the patch, causing the Gauss map to fold the surface over
itself and concentrate the image into a small region, despite the curvature being
significant.

n(q) n(p)

é{

Gauss map

Unit Sphere

Figure 3.2: Gauss map of the normal vectors at points on a patch S of a smooth
surface onto the unit sphere S?.

The above definition is extended to the case of a discretized surface by computing
the Gaussian curvature at each mesh node. As described above, K over a domain
) C S is given by the area of the image to the unit sphere, which is expressed as
k() = Area(g(2)). In the case of the discretized surface, K is evaluated at each
point, which means that the domain 2 here corresponds to a small area around a
node, denoted as A,;. The normal vectors that are mapped to the unit sphere are
those of the node’s adjacent faces. As a result, the total K at point p shown in Fig.

3.3 is given by:

AG
K(p)= i M 1
(p) diaml(l}ll)—)o Ay (3.1)

where A% is the area of the region on the unit sphere formed by the image of the
normals of faces around p.
As mentioned, in the discretized surface the curvature measure is defined in its nodes,

while its elements, when triangles, are flat and thus contribute zero curvature. Since
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N

N

/.

Figure 3.3: Gauss map function of normal vectors of the faces adjacent to a point p
on a discretized surface onto the unit sphere S?.

2 —6(p) >0 2t —0(p) =0 2m —6(p) <0

Figure 3.4: Variation of local curvature around node p with respect to the vertex
angle excess 2w — 6(p).

K is an invariant geometric quantity, its total value at each node remains constant
even as the associated area Aj; shrinks, as the topological structure is preserved.
This leads to a fundamental issue in Eq. as the denominator tends to zero,
while the total curvature remains fixed, which makes the limit to diverge whenever
the neighborhood is not locally flat. Therefore, Eq. is not suitable for defining
Gauss curvature on unstructured meshes and another definition of it is required.

To define discrete Gauss curvature, the total vertex angle definition needs to pro-
vided. If p is a point in surface S with N number of adjacent elements, then the
vertex angle of the adjacent face f; at vertex p is denoted as ;. Then, the total
vertex angle is given as:

0(p) = D_0:(p) (3.2)

If the local neighborhood (star) of a vertex is flat, the total vertex angle is equal to
27. Otherwise, the sign of the vertex angle excess 2m — 6(p) provides information
about the local curvature at point p, Fig. [3.4]
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In order to derive the formula of K at each point, the Gauss-Bonnet Theorem is
used. This theorem has multiple expressions, but the one that is more useful in this
scope is the Gauss-Bonnet Formula for an embedded triangle. Assuming a surface
S in R¥ and T to be a a triangle embedded in surface and T to be the boundary
of this triangle, then the Gauss-Bonnet Theorem is expressed as follows:

3
KdA+/ Kqds + o; = 2m, 3.3
Jfass [ iy 63

where &, is the geodesic curvature along the boundary 07, which is a measure that
describes how much a curve on a surface deviates from being perfectly embedded to
it, and «; are the exterior jump angles at the three corners of the triangle.

If Eq. is applied to a triangulated discrete surface, then each triangle T is
considered flat. This implies that K = 0 almost everywhere inside each triangle.
Consequently, the total K is concentrated only at the nodes of the mesh. As de-
scribed in the definition of Eq. , the discrete Gauss curvature at a node is
computed over its corresponding area A,;, which represents the area of its finite
volume cell, Fig. . Therefore, Eq. can be expressed for each node p as:

Ny
/ KdA + / Kgds + Z a; = 2m, (3.4)
A 0A M i=1

where N, is the number of triangles adjacent to the node, and «; denotes the exterior
angle at each vertex of the polygonal boundary dA, Fig. [3.5]

The boundary 0Aj, is comprised by straight lines in the embedding space and
the geodesic curvature along each edge is zero. Therefore, the boundary integral

vanishes:
/ kg ds =0,
AN

Hence, Eq. (3.4)) reduces to:

/ Kd/H—Zal—%r (3.5)
Anm

=1

In order to express the angle o; in terms of quantities from the triangular elements, it
is necessary to specify which definition of the VCFV area is being used. As discussed
in Section [2.4.3] the most accurate formulation is the GAC Voronoi area. This
method defines the area as the standard Voronoi method when the triangles adjacent
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Figure 3.5: FExterior jump angles a; and interior angles 6; of Voronoi area Ans that
corresponds to node p.

to the node are non-obtuse, while for obtuse triangles, it applies corrections to the
sub-area distributions assigned to each vertex. In the context of mean curvature
computation, these corrections primarily aim to improve the accuracy of the node-
associated area, which directly influences the precision of the curvature calculation,
Eq. . This is achieved by adjusting the way in which the area of each triangle
is distributed among its vertices. Consequently, the corrective approach focuses on
redistributing sub-areas without altering the definition of the circumcenter, even in
the case of obtuse triangles.

Therefore, it is acceptable to use the original Voronoi area definition for both obtuse
and non-obtuse triangles in order to derive the K formula. In this definition, the
polygonal A,; of the node is constructed by connecting the midpoints of edges
and the circumcenters of the adjacent triangles, Fig. As a result, when this
construction is applied to the Voronoi region, the external angles along each edge
are zero, since the boundary segments remain perpendicular to the corresponding
triangle edges. Furthermore, the external angle at each circumcenter is equal to the
interior angle ¢; of the corresponding triangle at vertex p, since it is formed by edges
that are perpendicular to the edges forming 6;.

Using these observations, the formula for K at a node p can be expressed as:

Ny

/AM KdA =270 (3.6)

j=1

where ¢; are the interior angles at vertex p across all adjacent triangles. Given that,
as discussed, K at a node p remains constant over its associated area Ay, Eq. (3.6
can be rewritten as:
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Ny
K// dA=2r - 0,
Apr =

K(p) = 5-(n=3_0) (3.7
or in a simpler form:
K(p) = 5 (2n = 6() (39

where 6(p) is the total vertex angle of node p, Eq. (3.2).

Eq. (3.7) can also be written as a sum over the edges incident to node p, where each
angle 0, is assigned to one of the two edges of the element that define it, as follows:

Kip) = 52— _0) (39)

where N, is the number of edges incident to node p.

In Egs. (3.7) and (3.9) the contribution to total vertex angle from each triangle can
be derived as follows:

6; = arccos ((ij = Too) (e Tp°)> (3.10)

- TS S
‘rpj — Tpo ‘rpm — Tp,

3.3 Comparison of the VCFV Definitions

Now that the final formula for Gauss curvature computation has been specified,
the computation methods are going to be analyzed. More specifically, in Eq. ,
K, similarly to H, is heavily influenced by the nodal area A,;, as in both cases it
appears in the denominator, a positioning that significantly affects the accuracy of
the result. To further verify the conclusions drawn in Section regarding the
optimal method for defining the VCFV, the five different approaches of Barycentric,
Voronoi, Corrected Voronoi, GAC Voronoi and SGAC Voronoi area will be compared
in terms of their accuracy in Gauss curvature computation. The five methods will
be compared based on their error in the maximum and minimum K values, as well
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as their Relative Mean Absolute Error (RMAE), when applied to the two spherical
mesh cases presented in Section As it is well known, the K of a unit sphere
with radius R = 1 is expected to be K = 1 at every point, Fig. The reason
for analyzing the errors at the extreme cases separately from the RMAE is that K,
just like H, is a local property of a surface. This means it must be computed as
accurately as possible at each individual node.

Tables and show that, among the different methods, the Geometry-Adaptive
approaches demonstrate the highest accuracy. There is no significant difference in
the error between the Smoothed and the original GAC Voronoi method. This is
attributed to the fact that only 1.9% of the triangles in the mesh are nearly right-
angled, resulting in a negligible impact on the final result. The case of the denser
spherical mesh yields similar results. Indicatively, the comparison of the RMAE
for the Geometry-adaptive methods is presented in Table [3.3] demonstrating that
the Smoothed variant gives practically the same accuracy in the computation of the
Gauss curvature.

VCFV Definition Min Value of Max Value of

. Gauss Error Gauss Error
for obtuse triangles Curvature Curvature

Barycentric 0.764502115632 | 23.520% | 1.696782700131 | 69.678%
Voronoi 0.762505006729 | 23.750% | 1.008347475541 | 0.835%
Corrected Voronoi 0.948572762938 | 5.143% | 1.228222737202 | 22.822%
GAC Voronoi 1.002448622644 | 0.245% | 1.011539116559 | 1.154%
SGAC Voronoi 1.002448622644 | 0.245% | 1.011539116560 | 1.154%

Table 3.1: Comparison of different VCFV definitions for K on a spherical surface
mesh, with the expected value to be K = 1.

VCFYV Definition for obtuse triangles | Relative error
Barycentric 7.237%
Voronoi 0.833%
Corrected Voronoi 0.774%
GAC Voronoi 0.613%
SGAC Voronoi 0.616%

Table 3.2: RMAE comparison of different VCFV definitions for K on a spherical
surface mesh.

Relative error
0.896%
0.870%

VCFYV Definition for obtuse triangles
GAC Voronoi
SGAC Voronoi

Table 3.3: RMAFE comparison of different VCEFV definitions for K on a denser
spherical surface mesh.
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(a) 15" perspective view of nodes with deviation in K .

(b) 274 perspective view of nodes with deviation in K.

Figure 3.6: Different perspectives of view of nodes with deviation in K.
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Chapter 4

Computation of Curvature

Measures on Quadrilateral Meshes

4.1 Introduction

Figure 4.1: 3D quadrilateral element.

This chapter examines several techniques for computing Gauss and mean curvature
on quadrilateral meshes. The main objective is to generalize the curvature estima-
tion methods that were initially created for triangular meshes and introduced in
earlier chapters to other kinds of meshes. Since quadrilateral meshes can be both
structured and unstructured, they provide a useful test case for this generaliza-
tion. While many curvature computation approaches for quadrilateral meshes are
adapted from those used for triangular elements, a key distinction arises: unlike
triangles, which are inherently planar, quadrilateral elements may not lie on a single
plane, Fig. 4.1l This property introduces a new challenge in the computation, as
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the elements themselves may exhibit non-zero curvature. To address this, a method
for properly defining VCFV and computing the required differential operators are
investigated, which are based on triangulating the quadrilateral elements effectively.

4.2 'Triangulation Methods

An easy and effective way to handle quadrilateral meshes is to subdivide each quadri-
lateral into two triangles and then apply methodologies developed for triangular
meshes. However, a key challenge lies in selecting the triangulation method that
yields the highest accuracy for computed geometric quantities. As discussed in [26]
and [14], different triangulations of the same quadrilateral mesh can result in varying
values for both mean and Gauss curvature. This observation is further investigated
here through a simple example where the exact values of these curvatures are known.

Suppose a surface S lying upon a sphere of radius R = 1, Fig. 4.2l The mean and
Gauss curvature at central point p, which is tangent to the sphere, should be H =1
and K = 1. Fig. presents the different triangulation strategies used to compute
curvature at point p. Both globally consistent and alternating triangulations across
the entire mesh that give specific properties to central node are examined. It is
important to note that each quadrilateral can be divided in two ways, which means
that there exist 2" possible triangulation combinations for a mesh of n quadrilaterals,
as for example different combinations with consistent triangulations over a line or a
row in the mesh, and examining all of them is impractical and out of the scope of
this part of study.

Figure 4.2: Unit sphere with surface S tangent to it at point p.

The strategies illustrated in Figs. and aim to produce a uniform triangula-
tion of the mesh, which in this case results mixed type of triangulation for the central
point p. However, the approaches shown in Figs. and focus on alternating
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(a)  Upper-right to  (b) Upper-left  to  (c) Mized, doubling
lower-left. lower-right. neighbors.

(d) Mized, preserving
neighbors.

Figure 4.3: Different triangulation patterns applied to the same surface mesh for
curvature computation at point p.

triangulations for the entire mesh, targeting a particular number of neighbors for
central point p. While it is possible to target specific number of neighbor triangles
to every point in the mesh, this is beyond the scope of the current study, as only the
point p, tangent to the sphere, has known expected curvature values and is therefore
examined to assess the accuracy of the computed results. H and K are computed
according the methodology presented in Chapters 2] and [3, using the SGAC Voronoi
method and their errors are presented in Table

Triangulation | Mean curvature | Gauss curvature
methods H, error K, error
Method of [4.3al 0.140% 0.733%
Method of [4.30] 0.140% 0.733%
Method of [4.3d 0.280% 0.760%
Method of [4.3d] 0.002% 0.706%

Table 4.1: Accuracy of H and K at the central point p for different methods of
triangulation.

There are important conclusions derived from Table[d.I] Firstly, as it is shown in the
first two triangulations, curvature measure in symmetrical geometries is independent
of the directions of the diagonals splitting when uniformly divided. To confirm this
conclusion, the same test is done in a more complex geometry, like a saddle. A saddle
surface, defined by z = 22 — 2, exhibits zero mean curvature along the diagonals
y = x and y = —x, which connect opposite corners of the domain boundary. Fig.
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[4.4] shows one of the two uniform triangulations applied to the saddle surface and
the resulting mean curvature computed across the mesh.

ierhie

Figure 4.4: Mean curvature deviation in a triangulated quadrilateral mesh in saddle
surface.

Triangulation Maximum error of | Mean error of

methods mean curvature mean curvature
Upper-left to lower-right 0.003% 0.001%
Upper-right to lower-left 0.003% 0.001%

Table 4.2: Accuracy of H at the diagonals of saddle for different methods of trian-
gulation.

The mean and maximum error computed in the diagonals of the saddle are compared
for two different directions of uniform triangulation of the saddle in Table As
shown, the two methods give in this case give same results for the two triangulations,
which confirms the previous observation.

Another observation from Table[4.T]is that certain triangulation methods yield better
results for a given geometry. Moreover, the triangulation that provides the best
accuracy for mean curvature also performs best for Gauss curvature. To ensure
that this observation is not coincidental for the specific example, the same test is
conducted for the case examined in Section [2.4.3] where the H and K values are
evaluated on a nodal surface mesh defined by the surface equation given in Eq. .
The expected values of mean and Gauss curvature at node (1,1) are H = ﬁg and

K = %, respectively. For two different mixed triangulations of the surface, similar
to those of Figs. and [4.3d, with the outer and inner radii of the nodal star of

quadrilaterals, show in Fig. set to R = 1.2 and r = 1, respectively, the resulting
values are presented in Table 4.3

Both mean and Gauss curvatures have better performance at the same type of
triangulation, Table Another important observation from the surface examples
presented in Tables [4.1] and is that the most accurate triangulation method
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Triangulation

Mean Curvature | Error | Gauss Curvature | Error
methods

Similar to Fig. [4.3c 0.109720795125 24.135% 0.097661200251 19.334%

Similar to Fig. [4.3d 0.071299164710 56.257% 0.058407593841 6.548%

Table 4.3: Accuracy of H and K at the nodal star of quadrilaterals for different
triangulation methods.

Figure 4.5: Nodal star of quadrilateral elements.

at each node appears to be the one in which the number of triangles associated
with a node matches the number of surrounding quadrilaterals. To ensure this
investigation, another surface equation is also examined for the central node of a
nodal star of quadrilaterals of R = 0.12 and r = 0.1, which is given as follows:

7 = (coshucosf)e; + (coshusinf)es + ues (4.1)

where v and 6 are the surface parameters. For this surface, the expected value of
the H is zero at every point. In Table [1.4] the error in the computed H at node
(1,1) is examined. As shown, in this case as well, the triangulation method that
preserves the number of elements around the node yields the most accurate results.

Triangulation
methods

Similar to Fig. |4.3¢ 0.000386735572 0.039%

Similar to Fig. |4.3d[| 0.000315361906 | 0.032%

Mean Curvature | Error

Table 4.4: Accuracy of mean curvature at nodal star of quadrilaterals for different
triangulation methods, with the expected value to be H = 0.

Based on the examples examined, it can be concluded that the best practice of
triangulation of a quadrilateral mesh is node-specific. In the cases analyzed, the best
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results were obtained when the quadrilaterals around each node were divided in a
way that preserved the number of neighboring elements. However, this observation
cannot be generalized to all quadrilateral meshes. Furthermore, as previously noted,
both mean and Gauss curvatures are intrinsic properties of a surface and should
remain invariant under changes in mesh resolution or triangulation. Therefore, a
general method for computing these curvatures should be used, which could account
for the different triangulation possibilities of each quadrilateral. To this end, the
average of the two possible triangulations is used as the basis for the computational
methods, which will be explored in the following sections.

4.3 VCFYV Definition on Quadrilateral Meshes

As was shown in Chapters [2] and 3] both mean and Gauss curvature computations
are dependent on the way the VCFV is defined. In this section, the way that the
average VCFV is derived for the average of the triangulation methods, Fig. |4.6|
More specifically, the Voronoi area is defined as the mean value of the sub-areas of
each element that occur from two different triangulations. For the central node, the
first triangulation attributes both triangles to it, while the second attributes only
the one that belongs to. As a result, the mean Voronoi area is given as follows:

N,
- N (A + Ay + A
o3 () "

t=1

where N; is the number of triangles that the central node belongs to. Eq. [4.2] the
resulting mean Voronoi area is the same whether it is calculated by first averaging
the sub-areas of each individual element and then summing them, or by computing
the Voronoi area for each triangulation and then taking the average.

Figure 4.6: Voronoi sub-areas resulting from two different triangulation methods
applied to each element.
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4.4 Mean Curvature on Quadrilateral Meshes

The mean curvature at a triangular mesh node is computed based on Eq. [2.1], which
shows that it largely depends on the application of the Laplace—Beltrami operator
to the position vector, along with the normal vector at that node. To proceed with
the computation, the Laplace - Beltrami operator in quadrilateral elements need to
be defined. While it may seem reasonable to extend the previously defined VCFV
framework to this case, such an extension must also be proven.

Firstly, following the foundation that is provided in [26], the mean curvature can be
defined as follows:

Hp) = - dianlli(%—)o % vAfé](o])?) (4:3)

where A(p) is the area attributed to node p on the surface, diam(A(p)) the diameter
of the region of area A(p) and VA(p) is the gradient of A(p) with respect to the
surface parameters.

Using Eq. [£.2] the gradient of the area around the node p, can be expressed as:

Ny
= 1
VAu = D (VA + VA + VA;) (4.4)

t=1

Applying Eq. (2.39) in Eq. (4.4]) the gradient of each sub-area is expressed as follows:

VAJ’ = ((ij - 77190) cot lj + (ij+1 - 77190) cot k”j) (4'5)

o

If w; is denoted as the weight that correspond to the edge 75,, — 7p; from the first
triangulation, while wj is the weight that corresponds to the imaginary edge 7,, — 7}
from the second triangulation of element p,p;,1pip;, Fig. 1.7, then combining Eq.

(4.5) and Eq. (4.4), one gets:

VA = % (i (w5 (7, = 7) + w0 (7 ﬁ,g))) (4.6)

t=1

where w; and wj are weights derived based on the cotangents of the angles adja-
cent to the edges of the element p,p;,1p)p; under consideration. More specifically,
following the way a sub-area is expressed in Eq. , the cotangent of each angle
adjacent to an edge of the element is used in the computation. As a result, for
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Figure 4.7: Average triangulation of each element of point p[17).

each area gradient corresponding to the two possible triangulations, similar to the
expressions in [14], the following expressions are obtained:

1 — — — —

VAJ(Tl) = 5 (COt Oéjg(?“pj/ — ’I“p> + cot Oéj3(7“p].+1 — T’p)) s (47)
1 S S

VA;(Ty) = 5 <cot s (T, — Tp) + cob avja (7, — rp)> , (4.8)
1 — — — —

VA;(T3) = 3 (cot avjy (7, — Tp) + cOb (7, — 7)) (4.9)

Substituting in Eqs. (4.10]) the index p;4; with p; and their corresponding weights,
then the weights of Eq. (4.6) are expressed as follows:

w; = cot a1 + cot ajy + cot aj—1)3 + cot a1, w;. = cot ajo + cotajs  (4.10)

Substituting Eqgs. (4.4), (4.6), (4.2) and (2.41) to Eq. (4.3]) , the H of point p is

given by:

IHE) = (i (w5 (7, = 7) + ) (7 — m))) (4.11)

t=1
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Then, using the Eq. (2.1)), it can be inferred that the Laplace - Beltrami is given as:

Nt

V2r(p) = % (Z (%wj (ij — Fpo) + %w; (Fp;, — Fm))) (4.12)

t=1
which by using Eq. (2.36]) can be expressed as:

V) = (2 (V2 (p) + V27(p)2 + V?ﬁﬁ)s)) (4.13)

2
t=1

This means that the gradient of the position vector at the central node p of a
quadrilateral star can be expressed as the average of the gradients obtained from
the two possible triangulations of the surrounding elements.

From the above, it follows that the H at each node in a quadrilateral mesh can be
calculated either by averaging the nodal area and position vector gradient from the
two possible triangulations, or by using Eq. together with the corresponding
nodal area formula, given as:

N
1 L L \2
Ay = E (Z (U)j (ij - Tpo)2 + w; (Tp;_ — Tpo) )) (4.14)

t=1

This computational model is evaluated on the saddle surface discussed in Section
4.2l More specifically, the maximum and mean errors of the H are computed using
the two-triangulation averaging method applied to each element and their results
are shown in Table [£.5] As it is shown, the two-triangulation averaging method
yields the most accurate results. This observation will be further evaluated in the
context of Gaussian curvature.

Triangulation Maximum error of | Mean error of
methods mean curvature | mean curvature
Similar to Fig. 4.3¢ 0.0028% 0.0014%
Similar to Fig. [4.3d 0.0028% 0.0016%
Two-triangulation
averaging 0.0028% 0.0014%

Table 4.5: Accuracy of mean curvature at the diagonals of saddle using two-
triangulation averaging in contrast to each individual triangulation.
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4.5 Gauss Curvature on Quadrilateral Meshes

The Gauss curvature at a triangulated mesh node is computed using Eq. , which
shows that it depends on the sum of the interior angles of the nodal area Aj;. Using
the observations for the case of the mean curvature to the Gauss curvature compu-
tation in the case of quadrilateral meshes, the methodology of the two-triangulation
averaging is using here as well, as it is mentioned to [14]. For the element popjﬂp;-pj
shown in Fig.[4.7] the interior angles averaging from the two different triangulations,
is expressed as follows:

5= 500 +a;+ ;) (4.15)

where 0; is the interior angle of each element from the first triangulation, while
a; and f3; are the interior angles that occur from the second triangulation of each
element.

/

P

Figure 4.8: Interior angles resulting from different triangulations of each element.

That being said, the Gauss curvature at a node belonging to a quadrilateral star is

computed using Eqs. (4.15) and (4.2]), and is expressed as follows:

K(p) = % (271' = (W—ﬁﬂj)) (4.16)

t=1

Eq. is applied in the case of the surface lying upon a sphere of radius R = 1,
which was described in Section [£.2] and its results are shown in Table [£.6l The same
is done for the case of the nodal quadrilateral star in the surface given by Eq. ,
Table [£.7] In both cases, the error is reduced compared to the triangulation with
the highest error. It is important to note that, in the case of Table |4.7] one of the
triangulations yields a very high error. However, as discussed in Section [2.4.3] this
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result is not fully representative, since the accuracy in this configuration is highly
sensitive to the chosen radius and rotation angle. However, this case is presented in
its current form here to highlight the effectiveness of the two-triangulation averaging
method in absorbing the influence of high-error triangulations and producing results
that are closer to those of the more accurate triangulation, as is demonstrated in

Table as well.

Triangulation | Gauss curvature Error
methods value
Method of [£.3d 1.007598423372 | 0.760%
Method of [4.3d] 1.007060650620 | 0.706%
Two-triangulation
averaging 1.007009389981 | 0.701%

Table 4.6: Accuracy of Gauss curvature at the central point p for different methods
of triangulation, with the expected value to be K = 1.

Triangulation | Gauss curvature Error
methods value
Method of 14.3d 0.097661200252 56.258%
Method of [4.3d] 0.058407593840 6.548%
Two-triangulation
averaging 0.079626581635 27.403%

Table 4.7: Accuracy of Gauss curvature at the nodal star of quadrilaterals for differ-
ent triangulation methods, with the expected value to be K = %.
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Chapter 5

Proposed Curvature Computation
Method: Validation and

Benchmarking

5.1 Introduction

In this chapter, the proposed method for computing mean and Gauss curvature is
evaluated using various types of meshes. To this end, it is applied to a range of
general 3D geometries beyond the simple case of a sphere. The results obtained
on both unstructured and structured meshes, where the latter typically provide
higher accuracy in curvature estimation, are compared to analytical solutions by
evaluating the error at each node. For unstructured meshes, which often exhibit
irregular element shapes, varying sizes, and non-uniform node density, an additional
analysis is conducted to investigate the causes of higher errors in curvature compu-
tation. Furthermore, the accuracy of the proposed curvature computation methods
is benchmarked against those employed by widely used software tools, in order to
assess their performance and reliability.
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5.2 Validation of the Proposed Method on Struc-
tured Meshes

In this section, curvature measures in triangulated structured meshes in saddle and
torus geometries are evaluated, compared to the analytical expressions. Beginning
with a saddle surface given by:

2= ax®— By2 (5.1)

where o and (8 are scaling factors for the x and y dimensions, respectively, with
respect to the third dimension. These parameters control the degree and direction
of curvature of the surface in the R? space. In this case, a = 0.5 and 8 = 0.5 are
selected to intensify the curvature of the surface, resulting in a wider variation in
curvature values across the domain. Eq. can also be rewritten as:

z=a"”—y? (5.2)

where 2’ = v/0.52 and y' = v/0.5y.

The mean and Gauss curvature expressions can easily be derived as described in
Chapter . However, as shown in Egs. and , the two curvature mea-
sures are computed using the first and second fundamental form coefficients over
a parameterized surface. The saddle surface is explicitly described in Eq. in
the form of z = f(x,y), so in order to parameterize it, the coordinates z and y
can be used as parameters u and v, respectively. The first and second fundamental
coefficients can then be expressed as:

E=7, f,=1+a" F=7 f=-wy, G=7 f=1+y"
-1 1
L=y fim e M =7, i=0, N=fy =
VI 22+ 47 V1+a?
(5.3)

Substituting this expressions to Eqs. (1.10) and (1.11]), one gets the following ex-

pressions for the mean and Gauss curvature:
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g QA+ +a?)(1) -yt lta® 2’y
= 2(1+$2+y2>3/z o 2(1 + 22 + y2)3/2 - 2(1+:U2+y2)3/2
(—1)(1) —0? -1
K = = 5.4
(1+x2+y12)2 (1+x2+y2)2 ( )

In order to proceed to the valuation of the computation method of the curvatures,
a single measure to express curvature should be defined. To do so, firstly the two
principal curvatures k; and ko are expressed using Eqs. (1.10) and (1.11]), as follows:

ki=H+VH2—K, ky=H-VH - K (5.5)

As discussed in Chapter [I x; and g represent the maximum and minimum princi-
pal curvature at each point on the surface. In order to condense the two principal
curvatures into a single scalar quantity, a measure of total curvature x is defined.
This total curvature should reflect the combined contribution of both principal cur-
vatures, while also ensuring that x = 0 when the surface is flat. The mean curvature,
given by %, is not suitable in this context, since it can be zero even on non-flat
surfaces. For example, when k1 = —ko, the surface is not flat, but the mean cur-
vature still vanishes. Therefore, to ensure that the total curvature measure only
vanishes in the flat case, the Root Mean Square (RMS) curvature is introduced,

which is defined as:
2 2
RMS — M% (5.6)

For simplicity, and in order to provide a scalar measure that reflects the total curva-
ture while preserving the aforementioned property, the following expression is used:

K= K. + K3 (5.7)

For the case of saddle surface described in Eq. (5.2)), the principal curvatures and
total curvature are given in Fig. [5.1]

Given that in geometries such as the saddle and the torus there are regions where the
expected total curvature is zero, an alternative error metric to the RMAE should be
used. In such cases, the Root Mean Square Error (RMSE) provides a more robust
measure of error, as it remains well-defined even when the reference curvature is
zero. The RMSE is defined as:
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(a) Mazimum curvature k1 variation over sad- (b) Minimum curvature k1 variation over saddle
dle surface. surface.

(¢) Total curvature k variation over saddle sur-
face.

Figure 5.1: Principal curvatures and total curvature measures over a saddle surface.

computed
comp _ Hg'rue |2

N
RMSE = |3 [ -
=1

where N is the number of mesh nodes.

Now that a scalar measure for assessing the total curvature accuracy of a surface
has been established, the proposed curvature computation method can be evaluated.
To this end, the RMSE of the proposed method is compared against that of a well-
known visualization software [I]. According to its documentation, this software
computes Gauss and mean curvature values using the discrete differential geometry
approach described in [15].

The curvature computation method proposed in this diploma thesis achieves higher
accuracy than this popular software in determining the total curvature of a struc-
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Computation Method RMSE
Proposed Method 0.0726
Well-known visualization software | 2.2944

Table 5.1: Comparison of the total curvature RMSE on the saddle surface between
the proposed computation method and a well-known visualization software.

tured triangular mesh on a saddle surface, Table To further validate the robust-
ness of the method, an additional test is performed using a different geometry with
a structured triangular mesh. More specifically, the torus example described in [4] is
considered, with a major radius R = 2, minor radius » = 1, and a structured mesh
of size 36 x 36, Fig. [5.2l The total curvature error is then compared with other
well-known computation methods.

Figure 5.2: Total curvature k over a torus surface mesh 36 x 36.

Given that the torus surface is described by:

(\/W—R)2+z2 = 2 (5.9)

Then, in [2], which follows the same procedure as in the case of the saddle, the mean
and Gauss curvature are derived:

_ —(2r + Rcos?) - cosd
~ 2r(R+rcosh)’ "~ r(R+rcosh)

(5.10)

The proposed curvature computation method achieves the highest accuracy com-
pared to all other known approaches, Table[5.2] It is important to note that, except
for the visualization software, these methods estimate curvature directly by analyz-
ing variations in vertex positions or face normals using techniques such as polynomial
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Computation method RMSE

Proposed
Computation Method 0.02977

Well-known visualization software | 2.2202

Libigl [18] 1.28
Meshlab [24] 2.7072
Trimesh2 [20] 1.0621

[Crane He Chen 2023] [4] 0.0372

Table 5.2: Comparison of the total curvature RMSFE on the torus surface between the
proposed computation method and state-of-the-art software and established methods.

fitting, normal variation, or quadratic patch approximation, without first computing
the H and K.

5.3 Validation of the Proposed Method on Un-

structured Meshes

In this section, the accuracy of the proposed computation method is examined on
unstructured triangular meshes for the geometries analyzed thus far. More specifi-
cally, the H estimation is compared against that of another state-of-the-art software
for CFD simulation, not previously considered. In this software, the H is com-
puted based on the variation of the normal vector across mesh faces. This discrete
approach estimates curvature by measuring the angular deviation of face normals
within the mesh, which provides a scalar curvature value per face:

A
Hy = ||Vl (5.11)

where 77 is the unit normal vector of a face and Vi represents its discrete gradient
computed from neighboring faces.

This software approximates the curvature vector kn on a mesh face f by summing
corrected edge vectors around the face:

kn = Z L. - edgeLengthCorrection (e) (5.12)

ecf

where L, is the edge vector along edge e, edgeLengthCorrection(e) is a correction
factor to improve integration accuracy and the sum is over all edges e bounding the
face f.
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Then, the divergence of the normal vector is approximated as:

ki - Sy
1S¢|?

V, it~ —

(5.13)

where S + is the face area vector, which is the normal vector to the face with mag-
nitude equal to face area.

Since this software does not support Gauss curvature computation by default, only
mean curvature will be considered in the following comparison. Nevertheless, the
accuracy of both curvature measures in the proposed method strongly depends on
the Voronoi area computation. Therefore, analyzing one of them is sufficient for
evaluating the method.

(a) Mean curvature on a saddle. (b) Mean curvature on a torus.
Figure 5.3: Mean curvature on triangular unstructured surface meshes.
In Fig. the H on unstructured meshes of a saddle and a torus is illustrated using

the proposed method. It is evident that the contour plots on both unstructured
meshes appear less smooth compared to those on structured meshes.

Computation method RMSE

Proposed
Computation Method 0.2783

Well-known visualization software | 0.2763
Well-known CFD software 0.5564

Table 5.3: Comparison of the H RMSE on the saddle surface between the proposed
computation method and state-of-the-art software and established methods.

In Table [5.3] it is shown that in the case of the unstructured saddle mesh, the
proposed method has similar results with the visualization software [I], while the
CFD simulation software [17] has lower accuracy. However, unstructured meshes,
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due to their non-uniform cell shapes and sizes, typically exhibit lower accuracy
than structured ones and are more prone to extreme error outliers. To examine how
each method responds to significant variations in mesh quality, unstructured meshes
including problematic element types, such as highly skewed, or stretched triangles
are also considered in the analysis. Hence, it is not only important for a method to
achieve lower error than existing software, but also for that error to be consistent
and reliable for subsequent curvature-based analyses. For this reason, the Maximum
Relative Absolute Error (MRAE) is used in the comparison, as it reflects more easily
the validity of the curvature error at outlier points. In the case of the saddle surface,
where some points have zero analytical curvature and MRE becomes undefined, the
Maximum Absolute Error (MAE) is used instead.

Computation method MRAE

Proposed
Computation Method 30.197%

Well-known visualization software | 66.786%
Well-known CFD software 31.670%

Table 5.4: Comparison of the H MRAFE on the torus surface between the proposed
computation method and state-of-the-art software and established methods.

Computation method MAE

Proposed
Computation Method 67.161%

Well-known visualization software | 68.880%
Well-known CFD software 67.284%

Table 5.5: Comparison of the H MAFE on the saddle surface between the proposed
computation method and state-of-the-art software and established methods.

Tables |5.4] and [5.5| demonstrate that the proposed method for mean curvature com-
putation yields to slightly better accuracy than the widely-used CFD software [17].
However, it is important to be noted that the MRAE and MAE errors of the curva-
ture seem to be extremely high in order the results to be used an objective in the
context of the design optimization. For this reason, a further investigation needs to
be done for the nodes that exhibit the highest errors.

Beginning with the torus surface, the outliers, Fig. , appear to be surrounded by
five or six triangles. This number of elements is generally sufficient to capture the
local curvature at a node, as analyzed in Section 2.4.3] Furthermore, these nodes
do not exhibit any obtuse angles. Since the interpolation of the analytical surface
from the mesh did not introduce any errors, the source of the discrepancy appears
to be related to a subtle geometric property of these elements that is not immedi-
ately visible. Upon closer inspection, it was found that the elements surrounding
the problematic nodes each contained at least one stretched triangle, meaning that
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one of the triangle’s dimensions was significantly larger or smaller than the other
two. This introduced a non-uniformity in edge lengths. To evaluate the effect of this
distortion, a corrective method was introduced for these triangles, aimed at balanc-
ing the dominant direction in which the triangle is stretched. Because the curvature
vector is closely tied to the edge vectors of neighboring faces at a node, this balanc-
ing was applied directly to the corresponding component of the curvature vector. A
simple correction was chosen for this case: the component of the curvature vector in
the stretched direction was scaled by the ratio of the stretched edge component to
the mean of the other two edge components. When this modification was applied to
the outlier that originally exhibited a 30.197% error in Table [5.4] the error at that
node was significantly reduced. Consequently, applying this correction, or a similar
modification, to the dominant edges of the triangles surrounding problematic nodes
can substantially improve the accuracy of the method.

Figure 5.4: Zoomed-in view of the nodes with the highest curvature error in the
unstructured torus mesh.

Regarding the saddle surface, where the error reported in Table 5.5 is notably high,
mesh statistics revealed a more pronounced occurrence of stretched triangles. Addi-
tionally, the node with the highest error, along with several others, was surrounded
by only four neighboring triangles. As discussed earlier, this limitation is difficult
to be addressed to address due to physical constraints inherent in the domain. One
approach suggested by [7] is to use quadric surface fitting to estimate the curvature
at nodes with a low number of neighbors. However, this method has the risk of
falsely estimating the curvature due to the significant deviation of the fitted sur-
face from the actual geometry. Another possible solution is to improve the mesh
quality by refining the elements to eliminate nodes with a low number of neighbors.
Additionally, it is proposed here as a potential to include contributions from second-
order neighbors when the number of first-order neighbors is insufficient. This could
help enhance curvature estimation in sparsely connected regions without relying on
fitting techniques.
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5.4 Validation of the Curvature Aggregated Func-
tion

As was mentioned in [I] the final goal of total curvature computation to each node
was to extract a final measure of curvature for the boundary surface of the struc-
ture’s geometry in order this to be imposed as a constraint to shape or topology
optimization. The reason why one measure to characterize all the surface is used,
is because multi-constrained optimization, with a specific curvature constraint for
each node would make the convergence more difficult. For this reason, a measure
that gathers all the nodes constraints of total curvature and characterizes the total
curvature of the surface should be defined. There are various ways to gather all
the point-wise curvature measures into one. Among these, the p-norm aggregation
function is widely employed due to its ability to approximate the maximum value
of a distributed constraint field in a smooth and differentiable manner. Unlike the
true maximum function, the p-norm provides a continuously differentiable approx-
imation that enables efficient use of adjoint solvers. This smoothness is important
in curvature-constrained problems to ensure stable convergence. The p-norm aggre-
gation function is defined as:

fol@y, @, ) = <Z x?) (5.14)
i=1

where z; represents the i-th local constraint value (here, nodal curvature), and
p € R controls the closeness of the approximation to the maximum.

As p — oo, the function f, converges to max(zy,...,2,), acting like a maximum
function. This property is particularly useful for curvature constraints, where it
is important not only to aggregate nodal curvature values but also to emphasize
regions of high curvature. In practice, moderate values such as p = 3 often often
are used as they balance smoothness and conservativeness effectively.

As a result the total curvature measure is given as:

fa(k) = (Z n?) (5.15)

To validate the effectiveness of the proposed curvature-based objective function, it
was applied to a surface roughness minimization problem. Specifically, an initially
rough surface was considered, Fig. [5.5a]), and then smoothed through shape opti-
mization with the objective of reducing roughness, Fig.[5.5b] As expected, the initial
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surface exhibits significantly higher total surface curvature, which in this application
serves as a quantitative indicator of surface roughness. This correlation is clearly
reflected in the total curvature measure.

It is also observed that the difference in total curvature between the rough and
the smoothed surfaces is not as pronounced as one might expect based on visual
inspection. This is primarily due to a small number of localized regions on the
smoothed surface where curvature was not sufficiently minimized. Despite being
few, these regions have a significantly large impact on the final aggregated curvature
value. This outcome supports the effectiveness of the proposed aggregation function,
which successfully emphasizes regions with high curvature, as intended.
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(a) Total curvature measure of rough surface kior = 862.559.
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(b) Total curvature measure of smoothed surface kit = 763.604.

Figure 5.5: Total curvature measure of an arbitrary surface before and after rough-
ness minimization.
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Chapter 6

Conclusions and

Recommendations for Future work

6.1 Conclusions

The aim of this diploma thesis was to investigate the behavior of curvature metrics,
specifically, mean curvature and Gauss curvature, on both structured and unstruc-
tured surface meshes. The goal was to formulate a unified constraint function to
be used in gradient-based shape or topology optimization problems in CFD. How-
ever, further analysis of the key components used to compute total curvature, based
on methods proposed in the literature, revealed significant accuracy issues, even
for simple geometries, such as the surface of a sphere. These limitations raise a
critical question: How can curvature be reliably imposed as a constraint in CFD
optimization problems when its accurate computation is not guaranteed? In other
words, how can curvature be accurately computed on arbitrary surface meshes and
incorporated as a constraint function in optimization?

Accurately estimating surface curvature has long been a challenge, as existing meth-
ods are often inadequate for the intended applications. This research was driven by
the need to ensure that curvature constraints are properly defined and accurately
computed, so they do not unnecessarily restrict the optimization process. This is
translated into the minimization of the maximum computational error of curvature.
It is crucial to determine curvature accurately at each node on the surface mesh;
therefore, the maximum error, alongside the mean error, in curvature computation
has been considered.

The study investigated computational methods for triangular meshes and then gen-
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eralized these approaches to any structured or unstructured mesh, with a demon-
stration using quadrilateral meshes. The analysis of computation methods for both
mean and Gauss curvature showed that the principal cause of poor estimation in
these metrics is the inaccurate calculation of the area assigned to the nodes, which
corresponds to a poor definition of their VCFV.

The literature offers three different approaches to defining VCFV for triangular
meshes:

e Barycentric: This method distributes the subareas to each vertex of the ele-
ment using the barycenter of the triangle. Despite its simplicity, the accuracy
of the barycentric method is often insufficient for curvature computations,
exhibiting maximum errors of the order of 50% even for simple geometries.

e Voronoi: This method assigns subareas to each vertex based on the circumcen-
ter of the triangle. It involves dividing each triangle along its perpendicular
bisectors to define the Voronoi region associated with each vertex. Since the
subdivision depends on the specific geometry of each triangle, the area dis-
tribution better adapts to the actual shape of each element. This results in
a significant improvement, reducing maximum curvature computation errors
to approximately 30% for the same geometries. However, a notable drawback
arises for obtuse triangles: since the circumcenter lies outside the triangle in
these cases, the assigned subarea does not accurately reflect the true area
associated with the vertex.

e Corrected Voronoi: This method modifies the original Voronoi approach to
account for obtuse triangles. The circumcenter is replaced by the midpoint of
the edge opposite to the obtuse angle, effectively treating the obtuse triangle
as if it were right-angled. This correction reduces the maximum curvature
estimation error to approximately 20%. Nonetheless, the correction assigns
constant portions of subareas to the vertices for all obtuse triangles, regardless
of the magnitude of the obtuse angle, which can still lead to inaccuracies
depending on the case.

The accuracy of curvature estimation methods proposed in the literature was found
to be inadequate, highlighting the need to develop new and improved approaches
for defining VCFV. This work builds upon the most accurate existing approach,
the Corrected Voronoi Method, by introducing several enhancements aimed at ad-
dressing a key shortcoming: the method fails to account for the specific geometry
of obtuse triangles when distributing area to nodes. Through detailed analysis, it
was shown that the vertex opposite the the dominant angle in an obtuse triangle
should receive a significantly larger share of the area than the uniform half typically
assigned in right triangles. Modifications based on angle ratios or edge lengths were
investigated, resulting in error reductions to below 10%.

Following these observations, a new method was introduced in this diploma thesis,
called the Geometry-Adaptive Corrected (GAC) Voronoi Method. This method fo-
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cuses on addressing the primary flaw of the original Corrected Voronoi approach,
which assumes that obtuse triangles can be treated as right triangles. To do so, two
corrective factors were introduced to each subarea attributed to a vertex: one cor-
recting this assumption, and another addressing the fact that parts of the subareas
extend outside the actual obtuse triangle. Applying these corrections significantly
reduced the maximum curvature error to a satisfactory level under 1%, correspond-
ing to an order of magnitude improvement over the original method.

To smoothly integrate these corrections for obtuse triangles with the original method
for acute and right triangles, a sigmoid function was used to create a smooth tran-
sition between triangle types, resulting in the Smoothed Geometry-Adaptive Cor-
rected (SGAC) Voronoi Method, which slightly improves accuracy over the non-
smoothed version and reassures the differentiability. This proposed method was ap-
plied to both mean and Gauss curvature metrics, on different mesh types, structured
and unstructured, and consistently outperformed existing methods. It was further
validated against widely used methodologies from the literature and state-of-the-art
software for CFD simulation or visualization and post-processing of computed flow
fields, demonstrating outstanding performance improvements.

The SGAC Voronoi Method was also applied to more complex geometries, with spe-
cial focus on unstructured meshes, where irregularities are more common than in
structured meshes. Even here, the proposed methodology achieved better accuracy,
though significant errors, up to approximately 60%, were observed at some nodes.
These errors were further investigated to identify their root cause, confirming an
important observation when approximating curvature on discretized geometries: al-
though true curvature is an intrinsic geometric property of a smooth surface, its
computation on discrete surfaces is highly sensitive to mesh quality and irregulari-
ties. This imposes two key considerations for accurate curvature computation:

e The surface mesh must be of high quality, with minimal skewed or stretched
triangles, uniform element density, and a sufficiently large number of neighbors
per node (ideally more than 5) to ensure accurate curvature estimation.

e The mesh must have sufficiently high node and element density to capture all
relevant curvature features at smaller scales, providing good resolution and
reliable interpolation of the actual surface geometry.

These properties can be ensured through appropriate processing of the mesh within
the mesh generation software. For example, the unstructured meshes used in this
diploma thesis were produced using the Gmsh software, which allows control over
various statistical indices that determine mesh quality. One such index is the Signed
Inverse Condition Number (SICN), which reflects the quality of elements based
on the Jacobian determinant. Appropriate mesh refinement can also prevent the
presence of nodes with too few neighboring elements.

As a result, curvature computation accuracy is highly influenced by the geometry of
the mesh elements. In particular, unstructured meshes require special treatment to
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achieve the best possible accuracy. Nonetheless, in both structured and unstructured
meshes of any element type, vertices with obtuse angles are likely to be present;
these can be effectively handled using the proposed method, which is general and
applicable to any mesh type. Following these steps ensures the highest possible
point-wise accuracy in curvature computation. Consequently a more representative
and reliable final measure of curvature of the structure’s mesh is obtained, which
can be safely used as a constraint function for shape or topology optimization.

6.2 Recommendations for Future Work

In this diploma thesis, the method for accurately capturing the curvature of a struc-
ture’s surface was demonstrated, with the ultimate goal of applying it to shape and
topology optimization problems. Several important considerations should be taken
into account when implementing the curvature objective within the optimization
process:

e Curvature is, by definition, a point-wise measure. However, in software for
CFD simulation, flow quantities are typically computed and stored at cell cen-
ters, and boundary conditions are imposed on the boundary face centers. To
maintain consistency in data storage, the curvature at the boundary should
first be computed at each node using the proposed methods, and then inter-
polated to each boundary face.

e When face-centered curvature is used as a constraint in optimization, it is
advisable to normalize the face curvature values, due to their high dependence
on the geometry of triangular elements, as follows::

K¢S
ﬂf_ff

where S is the area of each face and ) Sy is the total area of all faces. This
normalization ensures that larger faces have proportionally greater influence.

e An appropriate aggregation function should be selected to combine all nodal
curvature constraints into a single scalar constraint, facilitating better conver-
gence in the optimization.

Especially for the last point, there exists a wide variety of aggregation functions
used in shape and topology optimization constraints, among these, the p-norm ag-
gregation function is widely used due to its ability to approximate the maximum
value of a distributed constraint field in a smooth and differentiable manner.

Thus, the curvature constraint can be expressed as:
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fa(k) = (Z m?) (6.2)

and constrained within the optimization as:

f3(K) < Kmax (6.3)

The aggregated curvature function was used to facilitate smoother convergence in
CFD-based optimization. However, if curvature in specific regions is of critical
importance for the problem under consideration, it is advisable to impose separate
point-wise curvature constraints, or alternatively, apply aggregation functions over
smaller subregions rather than over the entire boundary surface.

Finally, as previously mentioned, it is critical to ensure appropriate mesh quality in
the beginning in order the curvature constraint to perform well. This can largely be
assured by pre-processing the mesh in the mesh generator software. However, even
if the initial mesh quality is satisfactory, mesh irregularities may develop during the
optimization cycles, where the mesh of the geometry changes. In order the proposed
method to work well, a few extra consideration should be taken when incorporated
in optimization:

e A small number of neighboring nodes should be avoided. When increasing
the number of neighbors is not feasible, a possible solution is to validate the
curvature estimation using second-order neighboring nodes.

e In cases where the surface geometry changes abruptly, extremely high or un-
defined curvature values may arise, potentially causing issues in the compu-
tational model. A practical solution is to apply local quadric surface fitting
to impose curvature bounds, which helps avoid large, non-physical curvature
values. Alternatively, a simple filtering condition can be introduced to auto-
matically exclude outlier points.
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Appendix A

Mean Curvature on Structured

Surface Meshes

Considering a surface in R?® with parameters v and v, the basic differential equation
that determines the structured mesh generation is given below:

=

Vi =2H (A1)
The right hand side of this equation comprises of two invariant quantities in the
right hand side, the mean curvature H and unit normal vector N. This indicates
that it can create the mesh based solely on the geometry of the surface and is not
affected by the surface parameters. In order to prove the Eq. , first some basic
concepts of 2D structured meshes need to be demonstrated.

Firstly, assuming a surface mesh, a curvilinear system of coordinates (CCS) is used
to determine the coordinates of each point. The 2D structured mesh is parameter-
ized using (£,7n). Alongside the concept of the curvilinear coordinate system, there
is always the concept of a transformation or mapping. These two equivalent notions
indicate that there exists a one-to-one correspondence between each mesh node in
the physical space z; (i = 2 for 2D mesh), also referred to as the physical domain, and
a much simpler uniform mesh composed of square cells in the case of 2D structured
meshes with unit side length in the space £, also referred to as the computational or
transformed domain, Fig.[A.T] This transformation allows the governing differential
equations to be expressed in a form independent of the surface parameterization,
using geometric metrics that fully describe the transformation. This makes it possi-
ble to apply numerical schemes like finite differences or finite volumes on a uniform
mesh more effectively.
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Physical Domain

1 Computational Domain

Element
[234 B

Figure A.1: Mapping of element 123/ from physical to computational domain.

Assume that for the computational domain of Fig. a curvilinear coordinate mesh
has been generated. Through the geometrical transformation mentioned above, a
node M of the mesh in the physical domain is mapped onto the node M’ in the
transformed domain. Through the node M two families of mesh curves pass: one
curve along which £ varies and one along which n varies. For these two mesh curves
the tangent vectors at node M are defined, which are given respectively by the
following:

(i=1,2) (A.2)

where 7 is the position vector of point M, & = £ and & = 7. These are linearly
independent vectors (not necessarily of unit length) and form what is called the
covariant vector basis at M.

From the same point M emanate two curves: the curve corresponding to & =
constant and 7 = constant. The normals to these two curves at M (which are
not necessarily unit vectors) are given by:

7 =V& (i=12) (A.3)

where 7 = 1,2 and (£',£?) denote the curvilinear coordinates (£,7) respectively.
These normal vectors form the so-called contravariant vector basis at M. Fig.
symbolically shows these two vector bases at point M in the 2D domain.

J and G are the Jacobian determinants of the transformation, given by:
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1 = const

& = const

Figure A.2: The contravariant and covariant vector bases of mesh node M in the 2D

field.

Te Ty T 5:1: Nz Cx
J=det |ye v, Y and G =det |§ 1y, ¢ (A.4)
Ze Zy ¢ & n: G

The determinant of J has a clear physical meaning since it represents the measure
of the area (in 2D) or volume (in 3D) of a cell in the mesh.

Now some useful relations of tensor metric will be provided. The elementary vector
of displacement dr” at any point is defined as

dr' = g; d&; (A.5)
and the differential of the covariant vector basis is expressed by:
dg; =T, d&; G, (A.6)

where Ffj denotes the Christoffel symbols defined by:

R OGmj | Oim _ 99i;
Iy = 59 o + e oem ) (A.7)

For the Laplace-Beltrami operator to be expressed over a surface mesh it is necessary
to give expressions for the the gradient of a scalar field ® and the divergence of a
vector A as follows:

@ — —
grad(I):VCID:ng—g, dijzv.Azj 5%




and by using the operators definitions of Eq. (A.8)), the Laplacian operator is derived:

AP = div(grad ®) = - — <JgU -~

9
e (A.9)

1
J

Now that key metrics and operators for 2D and 3D structured meshes have been
defined, the formulation can be extended to the case of surface meshes in the R?
space. Firstly, similar to the planar 2D case where each index takes values 1 and
2 and Eq. applies, the following expression holds for the Laplace—Beltram:
operator of the position vector on a surface mesh:

PN (Jgifg—;) (A.10)

where J denotes the Jacobian of the transformation, Eq. (A.4)).

In order to process the previous expression further, two auxiliary relations concerning
the derivatives of the determinant J and the contravariant metric components are
stated without proof:

dg¥ i o
= — g% — g™V A.11
35“ g ak g akK ( )
and
oJ '
oE = JF;.Z- (A.12)

As derived from the Gauss—Weingarten framework, the Gauss equations take the
following form:

Tij = L5 + QN (A.13)

where €;; the second fundamental coefficients, Eq. (1.4), and I'j; the Christoffel
symbols of second kind as they are given by Eq. . As shown in their expression,
they depend only on the first fundamental coefficients E, F and G, as well as their
derivatives. In addition, by their definition, for Christoffel symbols it holds that
e =17%.

Combining the definition of the covariant tensor and the definition of the first fun-
damental coefficient, Eq. (1.2)), it follows that:
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E=g1, F=g2 G=g» (A.14)

Substituting the Eqgs. (A.14]) to the expression of mean curvature as given by Eq.

(1.10]), one gets:

Now that the geometric definitions for surface meshes have been established, the

proof of Eq. (A.1]) can be developed. First, Eq. (A.10) can be expanded to obtain:

10J ,;0F  dg7 or e O*r

AT - —
= o6 56 * oo T aee

(A.16)

Then, substituting Eqgs. (A.11)), (A.12)) and (A.13)) to Eq. (A.16)), it follows:

87’

J)\ _ajiaT azjar
Al

or
o TR @
g 853 g al 85] g [e %) agj g F + g QUN <A17)

AdT'= i oer

Since all indices A, 7, j, @ and k represent coordinate directions in 3D space, they
take values in 1,2,3. As a result, index substitution is acceptable in cases where it
results in more convenient expressions. Taking advantage of this and by substituting

Eq. (A.15)) to Eq. (A.17)), the final form of Eq. (A.1)) is derived:

- i o~ i i or
A =97 — g% — gV, + ¢ T =

3{’ +2,uN

AT = [F:\\igij - gijrz{\,\ - ngg\i + g”‘Fg)\] 8§ + 2MN

A7 = 2uN (A.18)

The above equation plays a key role in structured mesh theory, as it provides an
elliptic formulation for generating structured surface meshes. In particular, the
invariance of both the mean curvature and the unit normal vector under reparame-
terization gives the equations that together with others are governing the structured
surface mesh generation process.

91



Appendix B

Cotangent Formula for Voronoi

Area

In this section the formula of Eq. (2.14]) used for calculating the corresponding area
to each node will be proven. Firstly, in a triangle AABC' the circumradius is given
by:

R = abe = 4Rrs = abc (B.1)

" 4rs

where R the radius of the circumscribed circle, r is the radius of the inscribed circle,
Fig. B.1], a, b and ¢ the length of the triangle edges and s the semi-perimeter of the

triangle which is given by: s = %2+¢,

To prove Eq. (B.1]) the circumscribed circle of the triangle is assumed, Fig. It
is true that ADB = ACB as inscribed angles in the same chord. Also, the triangles

ABAD and ABEC are similar and subsequently for their edges the relation % =

g—g is valid. Using this relation, the equations below are obtained:

Figure B.1: Inscribed circle of a triangle.

92



Figure B.2: Circumscribed circle of a triangle.

M _c
a h —~  2Rh=ac
2Area(ANABC)  2AT
h = =
b b
= 2R - 2A" = abc = 4ATR = abc (B.2)

where AT = rs.

Figure B.3: Triangle AABC.

Law of cotangents in the triangle shown in Fig. is then proved. According to
the law of sines it is true that:

b
2 __° _9R (B.3)
stna sinf siny

The law is then expanded as:

cot cot cot 1
2 — 2 — 2 — 2 (B.4)
s—a Ss—b s—c r
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where r = \/i(s —a)(s —b)(s —c) and cot§ = —(AQK) = =,

In a triangle, it is true that %ﬁﬂ = 7 and since cot() = 0, this gives the cotangent
rule:

a+ B+

t
cot( 5

) =0 (B.5)

which is then expanded:

B ol 8 0
cot% + cots + cotg — cot%cot500t§

8 B 0 9l
1-— wt%cot§ — cotgcoty — coticot%

cotg + coté + cotf—y = cotgcotécotz
2 2 2 2 2 2

s—a+s—b+s—c_(s—a)(s—sb)(s—c):i%s—%:f (B.6)
r r r r r r

Additionally, the cotangent of any angle ¢ which is made by two vectors @ and b can
be expressed by dividing @ - b = abcos¢ with the law of sines in Eq. (B.3) as follows:

a-b ab 2RG - b
- - B.
. SR cotp = cot¢ e (B.7)
which by using the Eq. (B.2) gives:
2Ra - b ab
cot QZS = m = cot QZS = 2_T (B8)

Finally, the cotangent formula of Voronoi area of [BKOM] in AABC' will be proved.
As it is shown in Fig. B.4 BO = AO = CO = R. Also, it is true that:

2
KO=+/R?—(KB)?=1/R>— CZ = \/R2(1 — sin%y) = \/R2cos?*y = Rcosy

(B.9)
2
MO = +/R? - (MB)? =/ R?* — az = /R2(1 — sin?a) = V R%cos?a = Rcosa
(B.10)

Also, law of sine is expressed as:
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Figure B.4: Definition of sub-volume based on the circumcenter of an acute and an

obtuse triangle NABC, where A=1, B=2 and C' = 3.

2R = = c=2Rsiny = & = 4R?sin’y

sin 7y

So, the area [ABKO] is computed using Eq. and Eq. (B.11)):

2
08y = gcotv

1 & c ¢
[ABKO] = §(KB)(KO) = ZRcos'y = ZZsin’yC

Respectively, for ABOM:

2

[ABOM] = %cotoz
Consequently, the area [BKOM] is given:

1
[BKOM| = g(CQCot’y + a*cota)

(B.11)

(B.12)

(B.13)

(B.14)

which is the Voronoi area section from AABC' that corresponds to the node B.

95



Appendix C

Cotangent Formula for Triangle

Angles

This section presents the formulae for the cotangent of each triangle angle in relation
to its geometric quantities.

Figure C.1: Triangle NABC.

More specifically, consider AABC shown in Fig. [C.d] For this triangle, the Law of
Cosines holds, and is given below:

& =a*+ b —2abcosy, a®=0b"+c*—2bccosa, b*=a’+c*—2accosB (C.1)

Then, the cosine of the triangle’s angles are expressed as follows:

2 —a?—b? A+ b —a? A+ a?—b?
- cosa= cosff= ———

2ab ’ 2bc ’ (C2)

COS 7y = Sac
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The area of the triangle is given by the following expressions:

1 1 1
A= 5&() siny = §cb sina = §acsinﬁ (C.3)

Then, the sine of the triangle’s angles are expressed as:

2A 2A 2A
siny=—, sina=—, sinf=— (C.4)
ab cb ac

Dividing cosine of each angle with its sine as given by Eqs. (C.2) and Eq. (C.4)), the
following expressions for the cotangent of each angle are derived:

a® 4+ b? — 2 A+ —a? A +a? -1
—— cota = cotﬁzT

coty =

97



Bibliography

1]

[10]

Ahrens, J., Geveci, B., Law, C.. Visualization Handbook, chap. Par-
aView: An End-User Tool for Large Data Visualization, pp. 717-731. Elsevier
Inc., Burlington, MA, USA (2005), https://www.sciencedirect.com/book/
9780123875822/visualization-handbook

Brakke, K.: The curvature and geodesics of the torus. http://www.rdrop.com/
~half/math/torus/index.xhtml (2004), accessed: 2025-06-28

Cenanovic, M., Hansbo, P., Larson, M.G.: Finite element procedures for com-
puting normals and mean curvature on triangulated surfaces and their use for
mesh refinement. Computer Methods in Applied Mechanics and Engineering

370, 113247 (2020). https://doi.org/10.1016/j.cma.2020.113247

Crane, K., He, Q., Chen, J.: Estimating discrete total curvature with
per triangle normal variation. Symposium on Geometry Processing (2022).
https://doi.org/10.2312/sgp.20221132

Dziuk, G.: Finite elements for the beltrami operator on arbitrary surfaces. S.
Hildebrandt, R. Leis (ed.) Partial differential equations and calculus of varia-
tions. Lect. Notes Math 1357, 142-155 (1998)

Eschenauer, H.A.; Olhoff, N.: Topology optimization of continuum structures:
A review. Applied Mechanics Reviews 54(4), 331-390 (2001)

Garimella, R.V., Swartz, B.K.: Curvature estimation for unstructured triangu-
lations of surfaces. Tech. Rep. LA-UR-03-8240, Los Alamos National Labora-
tory, Los Alamos, NM (October 2003)

Haftka, R.T., Grandhi, R.V.: Structural shape optimization—a survey. Com-
puter Methods in Applied Mechanics and Engineering 57(1), 91-106 (1986)

Hong, Z., Peeters, D., Turteltaub, S.: An enhanced curvature-constrained de-
sign method for manufacturable variable stiffness composite laminates. Com-
posite Structures 287, 115331 (2022)

Hoghgj, L.C., Ngrhave, D.R., Alexandersen, J., Sigmund, O., An-
dreasen, C.S.: Topology optimization of two fluid heat exchangers. Inter-

98


https://www.sciencedirect.com/book/9780123875822/visualization-handbook
https://www.sciencedirect.com/book/9780123875822/visualization-handbook
http://www.rdrop.com/~half/math/torus/index.xhtml
http://www.rdrop.com/~half/math/torus/index.xhtml

national Journal of Heat and Mass Transfer 163, 120543 (December 2020).
https://doi.org/10.1016/j.ijjheatmasstransfer.2020.120543

Jameson, A.: Aerodynamic shape optimization using the adjoint method. Tech.
rep., Von Karman Institute, Brussels (February 6 2003), lecture, Department
of Aeronautics & Astronautics, Stanford University

Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic
Partial Differential Equations. Springer (2012)

Lipschutz, M.M.: Schaum’s Outline of Differential Geometry. McGraw-Hill
(1969)

Liu, D., Xu, G.: Angle deficit approximation of gaussian curvature and its
convergence over quadrilateral meshes. Journal of Computational and Applied
Mathematics 206(2), 1032-1046 (2007)

Meyer, M., Desbrun, M., Schroder, P., Barr, A.H.: Discrete differential-
geometry operators for triangulated 2-manifolds. Visualization and Mathemat-
ics IIT pp. 35-57 (2003)

Okazaki, Y., Sakuma, 1., Mori, K. Shape optimization of
stress  concentration-free lattice for self-expandable nitinol stent-
grafts. Medical Engineering & Physics 34(2), 203-210 (2012).
https://doi.org/10.1016/j.medengphy.2011.06.013

OpenCFD Ltd.: OpenFOAM: The Open Source CFD Toolbox — User Guide
(Dec 2023), https://develop.openfoam. com, licensed under a Creative Com-
mons Attribution-NonCommercial-NoDerivs 3.0 Unported License

Panozzo, D., Puppo, E., Rocca, L.: Efficient multi-scale curvature and crease
estimation. Proceedings of Computer Graphics, Computer Vision and Mathe-
matics pp. 1-6 (2010)

Polthier, K.: Polyhedral Surfaces of Constant Mean Curvature. Ph.D. thesis,
Technische Universitédt Berlin (2002), habilitation thesis

Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle
meshes. Proceedings of the 2nd International Symposium on 3D Data Pro-
cessing, Visualization and Transmission (3DPVT) pp. 486-493 (2004)

Schmitt, O., Steinmann, P.: On curvature approximation in 2d and 3d
parameter—free shape optimization. Computational Mechanics 59(6), 933-946
(2016). https://doi.org/10.1007/s00466-016-1319-z

Stankiewicz, G., Dev, C., Steinmann, P.: Geometrically nonlinear design of
compliant mechanisms: Topology and shape optimization with stress and cur-
vature constraints. Computer Methods in Applied Mechanics and Engineering
397, 115229 (2022). https://doi.org/10.1016/j.cma.2022.115229

99


https://develop.openfoam.com

[23] Tajima, M., Yamada, T.: Topology optimization with geometric constraints for
additive manufacturing based on coupled fictitious physical model. Computer
Methods in Applied Mechanics and Engineering 398, 115270 (2023)

[24] Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral
approximation. Proceedings of the IEEE International Conference on Computer

Vision (ICCV) pp. 902-907 (1995)

[25] Wu, Z.: On the optimization problem of fillets and holes in plates with curva-
ture constraints. Structural and Multidisciplinary Optimization 35(5), 499-506
(2008). https://doi.org/10.1007 /500158-008-0350-0

[26] Xiong, Y., Li, G., Han, G.: Mean laplace-beltrami operator for quadrilateral
meshes. Journal of Computer-Aided Design & Computer Graphics 23(5), 829-
836 (2011)

100



EO9vixd MetodfBio IloAuteyveio

Eyxorh Mryavohoywy Mryavixdy

Touéag Pevotov

Movdda ITapdAAnAne YroloyioTixrc PeuocTtoduvauixng
& Beltiotonoinong

YTroloyiopog Kaunuiotntoag oe Empaveiarnd ITAEyuota
v T BeAtiotonoinon puéow 3uluyoivg Medddou pe
Ileplopiopoieg

Amiwpatin Epyaoto

‘Avva XotldAAn

EmufBiénwy: Kupidxog X. Tavvdxoyiou, Kodnyntric EMII

Adrva, 2025



Ewooaywyn

H Behtiotonolnon oo unyovoroyxd oyYedlacud eivol EURENS EQUOUOCUEVT) GE BLapO-
poug Topelc TN unyavoloyiog, OTWS GTNY AEPOVAUTNYIXT Xol TNV QUTOXVNTOBLOUN-
yavia, ot omoiot cuVATWS ATUTOVY TNV ETIAUCT] UTOAOYIC TIXG OTOUTNTIXOY EELOMOENDY
cevatoduvopxric (CFD). H Behtiotonoinon xataoxeudv éyet e&elydel ta teleutala
Yeovia oe Pehtiotonolnom wopeng xon Tomoloyiag, xadoTl TEOGPECOUY TN BUVITOTNTA
HOPQOTOINCNE TNG YEWUETEIOC TV XUTACHEVMY OTE VAL OVTUTOXEIVOVTAL GTIC UNYo-
vohoywéc amoutfoels. Evog and toug Spdpous teploptopolc Tou emBEAAOVTOL XoTd
1) BEATIOTOTOMON XUTACKEVWY EVOL O TEPLOPLOUOS TNG XUUTUAOTNTAS, O OTolog EYEL
e&éyovoa onuacia xodoTt cUPBAAREL 6NV ECACGPIALOT) TNE AVTOYHAS, TNS XATUOXEVIOL-
HOTNTOG XAl GAAWY LOLOTHTWY GYETIXMY UE TNY XUUTUAOTNTU TOV ETLPAVELWY OTIC PeA-
TIwUEveS xataoxeués. Idiwe 1 e€acpdhion g avioyng XoL TNG XATUOXEVACYLOTNTOC
MECW TNG XOUTUAOTNTAS €YOLV LOWILTERT ONUACIA OE TOAAES UMY UVOAOYIXES EQUOUOYEG,
omwe ot BeATioTonoinon Tepoy ey Tou TapdyovTal UEGW TEOCVETINWY 1) XOTTIXMY X0-
TEPY ULV, XxadoTL piot BehTiwpévn Aoom Tou dev xataoxeLdleTon 1) OeV TATeEL Bacinég
unyavohoyixéc mpobmovécelg etvan eloovog onpacioc. AeBouévng TG avoryxooTnToS
emPolrc meptoplon®y xounuhétntag oe CFD npoPAfuata BeAtiotonolnong popgphc xou
Tomoloyiog, xplvetar amopalTnTn 1 duVATOTNTA UXEYB30UC TEOGOLOPIGUOY TNG XOUTU-
AOTNTAG TV EEMOTEPUMY ETUPAVELDY TV EXACTOTE YEWUETELOY, HOTE VoL UTOROUV Vo
emPAntolv wg Teploplouol, TEdyua To 0nolo TEAYUATEVETOL 1) TOEOUGH DLTAWUATIXT).

H »oumuidtnto anoteAel yla uetpinr| mou 1600 o€ BLoOLAC TATEC XUUTUAEC OGO XAl OE
emupdveleg yapoxtneilel xde onueio EeymELoTA XL AMOXUAITTEL TOV TPOTO UE TOV O-
Tolo 1) YEITOVIXT| TEPLOY T TNG XOUTOANG 1) TNG ETUPAVELNG avamTOCoETAL Xotd T wla 1
TEPLOGOTEQPES EPATTOUEVIXES XATEVIUVOELS. 1TV TERITTWOT TWV EMLPAVELDY, ATOTEREL
avoAAOlWTY) UETEIXY), TOU onuaivel OTL Topauével oTadepr] UETUED TWV BLPORMY UETO-
OYNUATIOUMY TOU TAEYUATOC TNG Empavelag, xodoTt oplleton uéoe GA®Y ovahhoiwTeV
HEYEDOY TOU ETLPAVELAXOD TAEYHATOG. LUYEXPUUIEVA, EVOL ETLPAVELNXSO TAEYUO Y AE0-
xtneileton and 6o avarlolwtee moooTNTES, TNV TEOTN I Xou debtepn 1 Veushicddn
Hop®n, TV omolwv 1 QuoLXY| onuocio CUVDEETOL GUECH UE TOTUXY YEWUETELX Yoo
XTNELO TG TNG ETLPAVELNS, XIS UECK AUTOVY TEOGOIoPI(EToL 1) X&IETN XoUTUAOTNTA
x&e xoUmOANG TOU BLEPYETOL UmO TO GLUYXEXELWEVO onueio Tng emgdvetag. H xddetn
HOUTUAGTNTOL Pioig xopumOANG 0pileTal WS TO UETPO TOU BLVUOUATOS TG XOUTUAGTNTOG
mou ebvar TeoPelAnuevo oo xdeto ddvuoua. Egbdcov otny empdveia utdpyouy téve
a6 plo egantouevee xatevdivoelg yia xdde onueio, n o) xoumTUAGTNTA OE €Vol O
ueio hauBdver uToddn Povo 500 €€ AUTOY TWV XATELVUVOEWY, AUTMY TOU AVTIOTOLYOVY
OTIC XOUTUAES UE TN MEYUAVTEQT) XAk TN UXEOTERY XAUUTUAOTNTO GTO CUYXEXQUIEVO OT)-
uelo, k1 xou kg avtioTorya. O xaumUAOTNTEG AUTEC Elvan Ol XVPLEC XOUTVAOTNTEG Xl
elvou emtiong avodrolwtee. Aedopévou 6Tl 6eV UTIHPYEL JUECOS TUTOC UTOAOYLOUOU TGV
©0PUWV XAUTUAOTHTGVY Yo OTTOLOOATOTE TUTO TAEYHATOS, BUO VEEC UETEIXES TNG XOUTU-
AOTNTOG ELodyovTa, 1) UEoT xaumulotnTo H xou xounuidtnta Gauss K, twv onolwy o
TEOTOC UTOAOYLOUOU €Vl EQUEUOCLIOC TOGO GTA DOUNUEVA OGO X OTO UN-OOUNUEVL
mAéypota. O péon xon Gauss xopumurotnTeg oyetiCovian Ue TI¢ XVPLEG XAUTUAOTNTES
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0¢ e€nc: N
R1 T R2

5
Y1 mapovoa gpyacia, efetdloviar ol uédodol utoloylouol g péong xou Gauss xo-
umuUAOTNTAC ot ormolodrmote TOTo MAéyuatoc. H pédodoc yia tn péon xoumuhoTrTa
uoeteiton and Y avtioTolyn 6TNY AVAAUCT] TWV TEREPAUCUEVWY GTOLYEWY XAl TRO-
capuolETal XATIAANAGL OTNY TEQIMTWOT TNG AVIAUCTC PECK TETEPUCUEVLV GYXMY, )
omolfa etvon 1 xotd (6pwv Yenouomololuevn oty Tepintworn Twv CFD mpofinudtov
BehtioTonolnong pop@rc xan Tonoroyloc. H pédodoc yio tn xoumuiétnta Gauss etvou
yevi| yia xde dapopxry yewuetpio. Ot uédodol e€etdlovtar w¢ mpog TNy axplBela
TOUG VOL AMOTUTWYOLY TNV TEAYHATIX XoUTUAGTN T ETipovelwy. H diepedvnon avédele
TNV EUPAVIOT) ONUAVTIX®Y GQPAUAUGTLY GTOV UTOAOYLIOUO TNG XOUTUAOTNTAS Kot OnLo-
Vpynoe Ty avdryxrn onuovpyiag wiag véag SLopinong Twv uedddwy LTOAOYIGUOU Tou
Yo mpoo@épet peyohltepn axpifeio amd T UTdpyoucec. XNy mopoloo epyasia o-
TOTUTOVETOL 1) ardnuatix] YepeAlwon, o TEOYQOUUATIOUOS XoL 1) EQUPUOYT TN VEOC
uedodou oe Blapdpwy WY empavelaxd tAéyuata. H pédodog ouyxpivetar wg mpog
NV axp{Bela TN UE EVPEMS Y PTOULOTIOLOUUEVY AOYIOUIXY OF TEPLTTMOELS DOUNUEVLY Xl
UN-OOUNUEVGY ETUPAVELOXGY TAEYHATWY. EmTACoV, anoTtundveTal 1 Hop@t| Tng TEMXTHC
oLVAETNONG TN XoUTLAGTNTAS Yo yenowornotniel ¢ TepLloplouds oTn BeATioTonolno
Hop®nc 1 Tomohoylag.

H =

K= KR1K2 (1)

Y TOANOYLOUOS TNG UECTC XAUTUAOTNTAS O ETLPA-
VELAXS TTAEY LALT

H péon xaumurétnta H oc eva onuelo yiog emupdveta dlvetan og:

=1

- 2 = _
Ay =Vir=2H (2)
onou N to adidotato xddeto didvuoua oto cuyxexptuévo onueio. O Laplace - Beltrami
TeheoThc Ay elvon 1 yevixeuon tou Laplacian TEAECTY| Yio GUVAPTHOELS OPIOUEVES TIAVW
O€ ETLPAVELX.

LUVETWE, O TROCBLOPLOUOS TNG UECTS XUUTVAGTNTOG OE xGE ONUELD TNG ETLPAVELAS DLo-
HOPYOVETAUL GTOV UTOAOYIoO Tou teheoTy| Laplace - Beltrami tou diaviouatog Véong
xorddg xan Tou xdeTou dlaviouatog Tou onuetou. Axohovdwvtag yio Ty FVM éx-
(peact Tou TAEYuaTog TNV avtiotolyn yedodoloyia ue auth otny nepintwon tne FEM ,
amodewvueTon OTL 0 Teheathg Laplace - Beltrami plag empavelag umopel va tpooeyyt-
otel PEoW Tou BLIPOEIXOY TEAEG T OTY) AOYIXY| TWYV TETEQUOUEVMY OYXOV.

"ot Tov uToAoYLoUS TGO TOL BLAUPOELXOV TEAEGTH) GGO X0 TOU XEVETOL BLayYOOUATOG OE
x&ie onuelo amauTELTAL TEWTA 1) ETUTEOTY TNE EXPEACTIC TWV TENEQUOUEVWY OYXWY OO
xevipoxupehiny| oe xevipoxoufur. H petotpony| yivetow péow xatdAiniou optouod
TOU TEMEQUOUEVOU GYXOU avdl xoufo houfdvovTag cuvelogopd and cTolyela Tou Tov
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anoptilouy. Tmdpyouv Teelc BlapopeTixol TpéTOL oplouol Twv VOFV | mou Basilovton
O€ TPELS BLUPOPETINOVE TPOTOUS ATOBOCTG TNG CUVEIGPORAC TV YELTOVIX®OY OTOLYEWY
otov e€etalouevo xoufo:

e Bapuxevtpixdc: Baoiletou oo dauotpacud tou eufadol Tou exdoToTe oTolyElou
oe xde xopupt| pe Bdorn o euBadd mou oynuatilouv oL BIduETOL, BlEpyOUEVOL
a6 1O PupUXEVTEO, UE TU UECU TWV TAEURKY TOU TELYMVOU, My AU 1.

o Voronoi Y| nepixevtpwog: Baoileton oo dopolpacud tou eufadol Tou eEXdoToTE
otoyelou ot xde xopuen ue Bdom to eYPudd Tou oynuatilouy ol uecoxddeTor,
OLEQPYOUEVES a0 TO TEPIXEVTPO, UE T UECU TV TAEUPWY TOU TELYWVOU, My AU
20. Xty nepintoon tou oufAuywviou, To Tepixevipo Byalvel extog TLYOVOU, UE
amoTéAEoUA TO dUpotoua TV LToEUBad®Y va efvar peyohltepo and to euSadov
TOU TELYWVOU, My fua 203.

o Awopdwpévoc Voronoi: Tlapduoloc ue 1o Voronoi, yévo mou 6tny meplntwon tou
apfruynviou, ue oxond To ddpoloua TV UTOEUBAdOY Vo Bivel To eufad®y Tou
Tey®dvou, epopudleton uio Sioptworn otny onola To aufhuymvio TpoceyyileTon
©¢ opUoy®vio, ondTe To TEPiXEVTEO ToTOVETETAL 0TO XEVTPO TNG TAELEAS ATEVO-
VTl and Ty oPBhelo ywvio, Xyrua 3.

Bdoel tou oplopol tou eufiadol xdlde VOFV, 1o xddeto didvuoua mou avtioTolyel oe
®&de uoeuadd TEOXUTTEL WG 0 AOYOG TOu UTOEUPBad0) TEOG T CUVOAMXO EUPUdHY,
TOMATAACLICOUEVOC UE TO OAXO XAHETO BLdVUOUA.

B

YxnNua 1: Opiouds tov vnoeuPfadod mov avtiotoiyel oe kdle kopver) e fdon to Pa-
pUkevtpo tou tpryivov NABC, étov A=1, B =2 ka1 C = 3.

Mo Tov uTohoyioud Tou Blagopixol Tou dlavicpatog Yéong dho mpooeyyioeg e€etdlo-
VIO, PEGW TNG YENONS TV XAIETOVY DLVUOUATWY TWY TAEURKY TOU TELYOVOU X0l UECW
™G YPNoNS TNS €XPEUCTC TNG CUVEPATTOMEVNC, TOL BiveTon w¢ e€AC:

1
= - Z (T, — Ty [cOt k; + cot 1] (3)

/ 7 ’ 7. Ve / ’

omou Cy ebvar o apriude TV axp®y Tou diEpyovtol and tov xouBo O xou cot k; xou
cot [; Elvon Ol EQUTTOUEVES TWV YWYV TIOU AVTIGTOLYOUV GTNY 0xUY| ¢ GToL 0V Telywva
mou T potpdlovton, Lyrua 4.



(B)
Yxnua 2: Opiouds tov vroeppadol mov avtiotoyel o€ kdle kopupn pe Bdon to me-

pikevtpo €vés (a) okvydviov kar (B) evds auPruydviov AABC, érov A =1, B =2 ka1
C =3.

Yxnua 3: Opiouds tov vnoepfadod tov avtiotoiyel o€ kdle kopvpn) pe fdon to dop-
Owpévo mepikertpo evés appAvywviov AABC, érov A =1, B =2 ka1 C' = 3.

Yxnpua 4: EuPadov Voronoi ya to kéufo O evis empaveiakol TAéypatos.

Ou 800 mpooeyyioelg divouy TUVOUOLOTUTIO AMOTEAEGHATA, PE T1) Oe0TEPN Vo efvon UTTO-
AOYLOTIXE T amoBOoTIXY, Yior auTO X ETAEYETAL PETOED TV 800 YLol TN CUVEYELL.

MeTagl twv TV dlapopeTix®y optodny twv VOF'V, 1 dlopdwuévn Voronoi elye tnv
ueyohltepn axplBela 6Tov UTOAOYIOUS TNG MECTIC XUUTUAOTNTOC OTIC OLAPORES EPUOUO-
Yéc, 6mwe otn ogalpa. To yéyioto opdiua oe auTHY TN TepinTWoT HToy TNS TéENg Tou
20%, 7o omolo xplONXE un avoToNTXG Yol TN YeNoT TNS UTOAOYIOUEVNG XOUTUAOTY
To¢ w¢ Teploploud Beatiotononong. o 1o Adyo auto, xplinxe amapaltntn 1 elooyw-

5



Y plog véo uedtddou, 1 omolo amoxoeiton E€opavuévn lewpetpind-Ipocopuoouévn
(SGAC) Médodog Voronoi. H yédodoc Pociletar otny undpyovoo Aopgdwuévn Médo-
60 Voronoi, egopudlovtog emmiéoy dlopdwoelc mou Aaufdvouv umddn T yewueTpela
ToU AUBAUYWVIOL Yia TOV BlaUoLEaoUd TV UTOEUPadwy, ot avtiVeon ue 0 Aopdw-
uevn Medodo Voronoi mou anodidel otadepd mococtéd guffadol o xdie xopupt| o
xdde auBruyowio.  Ilapdhinia, 1 Siopdwon avtiotoduilel to Yépn Twv LTOEUBABOY
Tou Byatvouv extdg Tou apfAuywviou otny apyxr uédodo Voronoi. Emnicov, n uédo-
0o¢ eCopohOvel TN PETEPuoT amd ToV xavovixd oploldd Voronoi yor o o&uyovio xou
o opYoymvia e Tov VEo dloplnuévo oploud yia o apufAuyevio. H véa pédodog do-
Xdo e o€ B0 ogouptxd Théyuata, évo apatd (Ilivaxag 1) xon éva muxvéd (Iivaxag
2), e to oyetxd anéluto ogddya (RMAE) va petdvetor xotd plo té€n peyédoug
oe oyéon e tnv undpyouvoa Aopdnuévn Médodo Voronoi. Ilapduota cuunepdopora
avTAROnray and 0 clyxpelon Twv PEHOdwWY 0TO GYPULEO TAEYUN UEGK TOU CHIAINTOC
NG MEYLOTNG o TNG EASYIOTNG THNG TNG MEONS xaumuAoTNToC, [Tivoag 3. Yto Xy rua
5 QUIVETOL 1) XUTAVOUT| TNG UECTIC XOUTUAOTNTIS UE TN YeHon TN véag pedodou, 6mou
TOPATNEELTAL UXEY| amdXhon 6T oTuela Tou TepttpryuptlovTon amd ToLAdyIoToV éva
aBAUYOVLO.

Valus
Valus

() Ipdtn mpoortikn Oéaon kéuPwy e andkhi-  (B") Aelrepn mpoorntiky Béaon kduPwv pe a-
on péons KaumuAdéTnTag. nékAion péong kaumuAdTnTag.

o
L

Yxnua 5: Ilpoortikés Véaons kouPowv pe andkAion péons kKaumuAdtntas amnd Tny
avapevouevn nun ue tn xpnon tms SGAC Medssov Vorono.

VCFV Definition for Obtuse Triangles | Relative Error
Corrected Voronoi 0.223%
GAC Voronoi 0.025%

ITivaxag 1: RMAE wns GAC MeOédov Voronoi o€ o0ykpion e tny vrdpyovoa Aiop-
Owuévn Méfooo Voronoi o€ ogaipiké empaveiaxs mAéyua.



VCFV Definition for Obtuse Triangles | Relative Error
Corrected Voronoi 0.059%
GAC Voronoi 0.0066%

ITivaxag 2: RMAFE wns GAC MeOédov Voronoi o€ o0ykpion e tny vrdpyovoa Aiop-

Owpévn Mébooo Voronoi o€ mukyvd o@aipiké empaveiaxs mAéyua.

rs Min Value of Max Value of
VCFEYV Definition Mean Error Mean Error
for obtuse triangles Curvature Curvature

Corrected Voronoi 0.941683572258 | 5.832% | 1.222835972957 | 22.286%
SGAC Voronoi 0.995123547932 | 0.488% | 1.006219135819 | 0.622%

IMTivaxag 3: YUykpion tng SGAC MeOéoouv Voronoi ue tny vrdpyovoa AwopOwpévn
Mébodo Voronoi tov VOFV oe opaipiké empaveiaxd tAéyua.

Troloyiopog tng Gauss xoaUmUAOTNTAS OE ETTLPAL-
VELAXS TTAEY AT

O unohoyioudg g Gauss xoumuAdTNTAS OF TErywvixd TAéypata Baciletan oto Gauss-
Bonnet dedpnua. ‘Otav exgpdletou o xdde x6pfo p, n xoumurotnta Gauss K diveton
W

K(p) = 4 (% = @-) (4)

j=1

omou Ay 1o euPadov tou VCFV onwe 869nxe xou ot péorn xaunuidtnta, 0; 1 ywvia
%&de TELYMVOL TOU EQATTETOL GTOV XOUBO P %ot EYEL KOG XOPLPT TKV (Blo x6uPo xon Ny
0 0EIIUOC TWV YELTOVIX®DY TELYOVWY TOU D.

H axp{Beia tne Gauss xaunuiotnroag, éuola Ue 1 péor, e€aptdton o Ueydho Barduod
am6 tov optopd VCOEFV. H véa SGAC Métodog Voronoi e@apudotnxe xou o€ Ut TNV
TeplmTwon X amodelyUnxe we 1) To oxelBic and 6oeg doxaudoTnxay, Ilivaxag 4.

VCFYV Definition for obtuse triangles | Relative error
Barycentric 7.237%
Voronoi 0.833%
Corrected Voronoi 0.774%
GAC Voronoi 0.613%
SGAC Voronoi 0.616%

ITivaxag 4: YUykpion RMAE ya suagpopetikols opopovs VOFV tng kapmuAdtntag
Gaussoe empaveaxs mAéyua opaipag.



T TOANOYLOUOG TWV UETEIXWDYV XUUTUAOTNTUS O TE-
TEATAELELXA TAEYUXLTA

O unohoyloudg Twv YeTEXGY NS Péomng xou Gauss XoUTUAGTNTAS 0T TETEATAEUELXS
TAéypota Bociletar oTNY TELYMVOTOMOT) AUTOY XAl THY EQUEUOYY| TV UEVOBKY Tou o-
VooUoy yiar o Terywvixd TAéypoata. 201600, SlapopeTxol TEOTOL TELYWVOToNoTNg
00N YOUV OE BLIPORETIXS AmOTEAEOHUTA XouTLAGTNTaC.  TIpoxeyevou va oploTel €vag
YEVIXOG TEOTIOC UTOAOYLOUOU TWY XUUTUAOTATGLY ToU Var AopBdver utodr, yio xde xou-
o, Toug 800 BLaPOEETNONE TEOTIOUS TELYWVOTIOMONG TWV GToLYElWY oTa ool aviXEL,
0 U€o0og 6pog auTeV AauBdvetor unddn yio Tov optopd Tou VCFV and to tetpanicupind
otoyela. XpnotwomololvTow oL {Blol TOTOL Ue To TRLY wVixd o Totyela, amhd 6T Vo Tov
Baowdv 6pmv YeNoYoTololvToL oL UEGoL 6poL amd ToUS 600 TEOTOUC TELYWVOTOIMOTNS
x&de otoryetou. I'a T u€om xounuadtnTa xdde xouBou, 1 uEoT TYY| TWV UTOEUPAdKY
amo TIC 0U0 TELYWVOTOLACELS xde YetTovxo) cTolyelou yenotuomoteltal yio To eUBadov
Tou VCFV, Yyfua 6, xadog xon 1 Expeacn tng ouvepantopévng ue Bden and tig 0o
TELYWVOTIOLACELS YPTOWOTOLETOL Yo TO BLopoptxd Tou dlaviopotog Véong, Lyfua 8.
[t xoumuroTnTa Gauss xdie x6ufou, yenotloToleltal 1 MECT) TYH TWV YWVIOY TOU
TEOXUTTOLY ATt T BUO TELYWVOTOLACELS O xdE yerTovixd oTovyelo, My fua 7.

Yxnpua 6: Yroeupadd Voronoi Yxnua 7: Eowtepikés ywrieg
ToU mpokUnTOUY amé 0U0 O1apopeTi- Tou mMpoKUTTOUY amé OU0 O1apopeTI-
k€S Tprywromomoels kdle otoyyeiou. k€S Tprywromomoels kdle otoiyeiov.

Auth n pédodog eCaopaiilel xahiTepn oxplBEiol UTOMOYIOUOU TWV XOUTUAOTATOY OF
xdie TETPATAEUPIXO TAEYUQ, UE TO GQPIAUN avd x6ufo vo Telvel o xovid Tpog To
eNdytoTo EX TV 600 amd TIC BUO BLUPORETINES TELYWVOTOLACELS Xdde YEITOVIXO) GTOL-
yetou Tou xouou.

ITootewduevn Médosog Troloyiopol Koaunuidtn-
Tag: Emuxdpowon xoaw Luyxpitixry ASohdynon

Metd tov umohoyioud tng péong xou Gauss xounuidtntog oe xdde onueto, ol xOpleg
XOUTUAOTNTES Umopoly Vo TpocdloploTtoly. H ol xaumuldtnTo meénet var hauBdvet

UTOYN TN LEYIOTN X0 TNV EAGYLOTN XUUTUAGTNTA, EVE BLUTNEEL TNV LOLOTNTA UNOEVIONOD
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Yxnua 8: Méon tprywvonoinon kdle otoyeiov tov onueiov p [14).

OV X0l HOVO av ol 0L 5V0 xVPLEC XOUTUAOTNTES UndevilovTon, Snhadt av €youue eninedo.
Qc ex toUToU, N OAA xopmuUAGTN T oplleTor WG K = KT + K3.

H oxpiBeta anddoong g ue Bdon tnyv mpotewduevn yedodo cuyxplinxe ue authy omod
guptwg yenotponoovueva Aoytouxd CED [I7], xadide xou pe Eeywpelotd Aoylopxd
Yl TV omewdvion xou T uetenedepyaoio v utoloytoBéviwy nediny pofic [I] xou
avadelyInxe we 1 xohiteen, [ivaxog 5.

Computation method RMSE

Proposed
Computation Method 0.02977

Well-known visualization software | 2.2202

Libigl [18] 1.28
Meshlab [24] 2.7072
Trimesh2 [20] 1.0621

[Crane He Chen 2023] [4] 0.0372

ITivaxag 5: XUykpion tov RMSE tng olikns kaumuAdtntag otny emedvela topol
peta&v tng mpotewduerng pelodov vToAoyiopol kal TponyHévwy AoVIoIKGY kalds Kkai
kaepwpévowy puefodowy.

H clyxpion €yve oe Sounuéva xaL O UN-00UNUEVOL ETLPUVELOXS TAEYUOTO, UE TOL TE-
Aevtafor Vo TaousLECouY EUPUVKS UXEOTERT axpifela e oyéomn UE To TEMTA AOYW
NS UTOEENG OXAVOVIO TGV DOUMY TWV TELYWVIXWOY CTOLYEIWY, OVOUOLOYEVELNS OTNY TU-
XVOTNTA TV OTOLYElWY, xOUPwV Ue EAAYIoTO aptiud YEITOVXOY GTolyElwY 1) GAALDY
LOWUTEPOTATWY OV OeV elvol EUPAVELS oTNY TERIMTMON TWV SOUNUEVLY.  LNUovTiXd
HEYIOTU GPIApTa amodoUnxay ot TOTXEG AvVLPOAEC TOU TAEYUUTOS, Yid TG OTOlEC
UTdpYEL TEOTIOC TEOANNG P€ow XaTIAANANG Tpo-enedepyaciog Tou TAEyUaTog Ye Bdom
Toug Oelxteg mootTNTag Tou mMAEYpatog. IlopdAAnha, BOvVUTOL AVTIUETWTLOY XATOLWY
AVOUUALDY AT TN Bdpxetar uTohoYIopoD Tng xoumuhoTntag. [o mopddetyuo, Eviova
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OQPANIOTO AOY W ETUUAXLVOTE TWV TELYOVWY GE Uit LOVO xatedtuvor BUVATOL VoL oV TUE-
TWTOTOOY UE TN YPHOT OLOPUMTIXMY TAURAYOVTWY TOU EAXTTMVOLY TNV EVTOVI Blapopd
O OYE0T UE TIC GAAEC B0 aTeUDUVOELC.

Y16y0¢ TNE dradxactag UTOAOYIGUOU TNG GUVORXNAC XAUTUAOTNTOS ove xOUB0 etva 1) e-
Eay Y1 VO GUVOAMXOU UETEOU XOUTUAOTNTAS Yo TNV OPLOXT ETLQAVEL TNG YEWPETELOG
NG doung, WOTE Vo untopel va yenowonowniel we meploplonds xatd T dtadacta Bei-
TioTonoinomng popgrc 1 Totoroyiag. H ypron Eeyweiotol nepopiopol yia xdde xoufo
Yo xahotoloe To TEOBANUL TOA)-TEptoptoUévo xon Yo emnpéale apvnTXd Tn oUYXAL-
orn tn¢ Pertiotonoinong. Io autdy Tov Adyo, vodetelton 1 GUVEETNOT CUCGOEEUCTC
P-norm, 1 onolo EMTEETEL TNV OUUAT] X0t OLAQOEICLUT TEOCEYYLON NG UEYIOTNS Ti-
WA €VOC TEDIOU XATUAVEUNUEVWY TEQLOPIOUMY. LUYXEXQUIEVY, YL P = 3 1] GUVOALXA
XOUTUAGTNTOL BlveTan amd 11 oyéon:

wl—

f3(k) = Zﬁf (5)

H nopandve pédodog egapudotnxe oe mpdAnua ehayloTtonolnong teuyUTntug emi-
pavetoc. Mo opyind Teayid emipdveta, Lyra 9, e€opariveta Yéow BetioTonolnong
oy fuaTog, odNywvTag oe o Agla yewuetpio, My Aua IB. H apywr empdveio epgpdvile
UPMAETEEN GUVORXH XOUTUAOTNTA (Ko = 862.559) o€ oyéon pe tn BehtioTononuévn
(Kror = 763.604), yeyovic nou anotelel o QUTHY TNV EQPUOYT| EVag OEiXTNG YLt TNV
ToayutnTa. Hapatneelton 6TL, TaEoho ToU N BLUPOEd OTIG TYWES TNG CUVOAXNAG XOUTU-
AOTNTOG OEV Ebval TG0 €vTovr OG0 UTOBEIXVUEL 1) OTITIXY Blaopd, auTd ogeileTon o€
UEEC TepLoy€g Ue LYMAY| ToTxY| xouTLAGT T TTou OV edopohivinxay enopxns. H
OUVEETNOY P-NOrm EVIOYUEL TNV ENLORUCT] AUTOY TWV TEPLOY WYV, ATOOEXVIOVTOS TNV -
TOTEAEGUATIXOTNTY TNG OTNY AVAOELLT) TOV TO TEOBANUATIXGY CTUEILY TNG ETLPAVELIC.

l-.m 2

$ 0
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agei0n 0400

(") Mérpo ovvohiknig kaunvAdtntas apxikng e- (B") Métpo ouvvolikris kaumuAdtntas efopalu-
mMPAreas: K = 862.559. UEVNS €MQAvens: Keor = 763.604.
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Yxnua 9: Xuvoikn) kaumuAdtnta empdreas mpw kail petd and tny efopdAvvon tpa-
xuvtnas.
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Yvunepdopata xon llpotdoeig MeAhovtixrc ee-
Yoolag

H avdivon 1wy pedodwy utohoyiopol xounuidtntag tou tpoteivovtoar ot Bihoypo-
plor avédele onuovtind {ntruata oxpifelog, axdun xal yio anAéC YEWUETPIES, UE TN
Boaower, outior vor ebvon 0 AaviaopEvog UTOMOYIOHOS TV ETLPAVELDY Tou ovatidevTo
otoug xouPBouc. Mio véa pédodoc ewohytnxe yia to oxond autd, 1 SGAC Médodog
Voronoi, mtou hopfdver utddn T YewueTelo TV AUBAELOY TEYGVKY xaL BEATIOVEL O
HOVTLIXG TNV 0x@IBEL TOU UTOAOYLOHOU XAUTUAOTNTOG, UELOVOVTUS TO UEYIGTO OQAAUL
%8t and 1%. H yédodog eivon epopudoun 1600 oe Bounuéva 660 Xt GE Un-dounueéva
mAéypoata. ‘Ocov a@opd TNV QUpUOYT TNG OMXAC XOUTUAGTNTAS WS TEQLOPLOUS O
BehtioTtonolnom, Yo mpémel vo An@doly unddn o TaEaXdTe:

o H xoumuromnra, ex @loeng, etvar uéyedog opllOUEVO GTUELOXE, EVE OE AOYIOULXS
yioo CFD mpocouounoelg, i AOYOUg GUVETELNS GTNY ATOUAXEUGT) DEBOUEVLY UE
o medlor poric mou opllovton GTIC PAToES, TMpoTelveTon Vo uTohoyileTal apyLxd
0TOUC XOPUPBOUC LUE TIC TPOTEWOUEVES UEVOBOUC XAl T GUVEYELDL VoL TUREUBIAAETON
OTIC CUVOPLAXES ETILPAVELEC.

o Aoyw g e€dpTNONG TNG XOUTUAGTNTOG A6 TN YEWUETEI TV TELYWVIXWY G TOL-
YELWY, CUVIGTATAL 1) XAVOVIXOTIOMNOT) TWV TGV XOUTUAGTNTAS XAUE eMLPUVELHXOD)
otoyelov wg e&hc:

K¢S
/if—ff

"N Sy

omou Sy elvon 1 emipdvero xdde atolyeiou xan Y Sy To ddpotoua OAWY TV EmL-
povelwy. Auth 1 xavovixorolnon eCac@ahiCel 6TL Tor ueyahiTepa oToLyelo £youy
AVAAOY O UEYUADTERT) ETLOEOT GT) GUVOAXT| UETENOT).

(6)

e Ebvau anopaltnTn 1 emAoyh xatdAANANG CUVEETNONG CUCGCWEEVUCTS YId T1) UE-
TUTEOTY] TWV CNUELIXMY TEQLOPLOUMY XUUTUAGTNTAS OF Evay eviafo apriduntind
TEPLOPLOUG, TeoXeWEVOL Vo emiteuy Vel xahlTtepn olyxhon xatd T PehTioTono-
inon. Ilpotetvetan 1 cuvdptnon cucowpeeuone TOTOU p-norm, xadde ETMTEETEL
TNV oA %ot OLapoRlon TEOGEYYLON TNG UEYICTNG THNG EVOC TEDOU TEPLOPL-
OUOV.

Toviotnxe enlong n onuaocia g ToldTNTAC TOU TAEYUOTOS Yiar TNV axpifelo oTov uTto-
AOYIOUO TNG XOUUTUAOTNTOG, WIS OE UN-OOUNUEVH TAEYHATA OTIOU OL TOTUXES AVOUUAES
elvon o ouyvéC. Ye MEQITTOOELC 6Tou 1) Bedtiwon Tng motdTnTaC Tou TAEYUATOS OEV
elvor equxty), mpotelvovtar uétpa yiar T datiienon e adlomiotiag g Yevddou, Omwg
n emmhéov emahfieuon TG xoUTUAGTNTAS 0 xOUPBoUg PE Uixpd dpuiud YELTOVWY, o-
VTAWVTOG TANPogopieg and yeltoveg deutépou Baduol, xadng xa 1 yerion Tomuxhg Teo-
OEYYLONG UE BELTEPOBATULES ETLPAVELES VIO TNV ATOPUY T UTELPLOUOY TN XAUTUAOTNTOG,
T.Y. O TMEPLOYEC OTOL 1) ETLPAVELN TAPOUCLALEL ambOTOES ahhayEg 1) TooxiouaTa.

11



	Contents
	Introduction
	Curvature - Mathematical Background
	The Curvature as a CFD-based Optimization Constraint
	Thesis Outline

	Computation of Mean Curvature on Surface Meshes
	Introduction
	Mean Curvature Approximation on a Surface
	Definition of the Finite Volume in Triangular Elements
	Barycentric Definition of the VCFV
	Voronoi Definition of the VCFV
	Corrected Voronoi Definition of VCFV

	Computation of the Position Vector Gradient at Each Node
	1st Approach: Computation of the Position Vector Gradient Using Edge Normals
	2nd Approach: Computation of the Position Vector Gradient Using Cotangent Formula
	Comparison of 1st and 2nd Approach

	Improving the Computation Method of Mean Curvature
	Behavior of the Position Vector Gradient Model in Obtuse Triangles
	Behavior of the Voronoi Area Model in Obtuse Triangles


	Computation of Gauss Curvature on Surface Meshes
	Introduction
	Approximation of Gauss Curvature on a Surface
	Comparison of the VCFV Definitions

	Computation of Curvature Measures on Quadrilateral Meshes
	Introduction
	Triangulation Methods
	VCFV Definition on Quadrilateral Meshes
	Mean Curvature on Quadrilateral Meshes
	Gauss Curvature on Quadrilateral Meshes

	Proposed Curvature Computation Method: Validation and Benchmarking
	Introduction
	Validation of the Proposed Method on Structured Meshes
	Validation of the Proposed Method on Unstructured Meshes
	Validation of the Curvature Aggregated Function

	Conclusions and Recommendations for Future work
	Conclusions
	Recommendations for Future Work

	Mean Curvature on Structured Surface Meshes
	Cotangent Formula for Voronoi Area
	Cotangent Formula for Triangle Angles
	Bibliography

