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H Sumhwpoating auth epyaocia mpoteiver pla pédodo Iocotixonoinong ABefordtntog
(Uncertainty Quantification — UQ) mwpoc ypfion otnv acpoduvauixy; aviiuon o
Behtiotonoinon umd afeBardtnteg, 1 omoio Poucileton ot Yewpla Tou Avamtiyuatog
Holuwvuuxol Xdoug (Polynomial Chaos Expansion — PCE), cuyxexpwéva otny e-
nepPotxd| (intrusive) exdoyf te. To Enepfotind Avdmtuypa HHolvwvupixol Xdoug
(Intrusive Polynomial Chaos) Yewpeitar pio utoroytotixd anodotixr uédodog UQ, mou
OUOS amouTel UETATPOTES GTO AOYIOUIXO ETIAUOTC TV EELOWOENY £VOG TPOBAUATOC.
H evahhonctinr exdoyy| tng pedddou etvan 1 un-eneuBatixy (non-intrusive PCE), nou
elvon amAo0oTERO Vo EapUoc Tel aol BEV GUVOBEVETAL amtd aAAXYEC 6TO Aoylouwxo. H
exd0y 1) AL TH elvar OGS TOAD YeovoBopa Yo TROBAY|UTA TOAGDY oBEBoeY UETUBANTOV.

H npotewvoyevn pédodoc anotehel pla tpoondiela cuVBUAGUOD TV TAEOVEXTNUATOV
Tou Enepfotinod xou tou un-Eneyfotinod Avantiyuoatog [ohvwvuuixot Xdoug. Ilo-
couotdleton plar YEVIXT TEOCEYYLoN Tou anaitel TOAD Alyec oAAayéC OTO AOYLOUXO.
Av xou mapouctdletar yio tic e€lowoelc Navier-Stokes  ylo cuumeoté pevoto, ye-
vixeleTon e0xoha o€ dhha mpoPAfuata. H mpotewvduevn pédodog etvar umoloyiotixnd
amodotxt| xat ollomoTn. Emimiéoy, avantiooeton 1 ocuveyhic ouluyhc Blatimwor| Tne
Y10 TOV UTIOAOYIOUO TWV TOROY YWY OAVTIXEWEVIXOY CUVIPTACEENDY WE TEOS TIC UETA-
BAnteg oyedaouol ot Bedtiotonoinon ue afefoudtnreg. Kow oe authy Ny mepintwon,
otdyo¢ ebvan 1) TEooEyyiom va efvan yevixr| xau ebxola egapuooydn. Télog, mapoucidlo-
VTOL EQUPUOYES OE TEOPBAAATA AEROBUVOIXTS avdAUOTE o BeATio ToTolnong oTo omtola
yiveTton oUyxELIom TNC TEOTEWOUEYNG UEVOBOU UE UTOAOYLOHOUS TOU YENOULOTO0Y TO
un-Eneyfotixé PCE.
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Abstract

This diploma thesis proposes a method of Uncertainty Quantification (UQ) for use
in aerodynamic analysis and optimization under uncertainties, based on the Polyno-
mial Chaos Expansion (PCE) theory, namely its intrusive variant. Intrusive PCE is
considered to be a computationally efficient UQ method; however, it asks for changes
in the software used to solve the governing equations. Thus, it is a problem—specific
approach. The alternative PCE variant, the non—intrusive one, is easier to imple-
ment, as it does not require any software changes but is computationally expensive
for problems with many uncertain variables.

The method proposed in this diploma thesis is an effort to combine the merits of
the intrusive and non-intrusive PCE variants; a general approach is presented that
requires very few software changes and is not specific to the equations governing
a problem. At the same time, the proposed method is computationally efficient
and robust. Though herein developed for the Navier—Stokes equations for compress-
ible fluids, the proposed method can be extended to other disciplines governed by
different systems of equations, in a straightforward manner. Over and above, the
continuous adjoint formulation of the proposed method is developed, in order to
compute the gradients of objective functions in aerodynamic shape optimization
problems. Again, emphasis is laid on establishing a general approach that is easy to
implement. Applications in aerodynamic analysis and optimization problems, that
compare the method to its non-intrusive variant are presented.
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Chapter 1

Introduction

1.1 Uncertainty Quantification in Engineering

In applications where the stochastic nature of real-world fluid mechanics problems is
neglected, Computational Fluid Dynamics (CFD) methods have an excellent record
of predicting capabilities. CFD codes can predict flows subject to deterministic input
parameters and accurately compute quantities of interest (Qol) to the engineer. For
example, the drag coefficient of an airfoil can be computed for a given infinite flow
angle and infinite Mach number.

However, there are many cases where uncertainties have a quantifiable and non—
negligible effect on the behavior of systems; for instance, a slight change in a
compressor’s inlet flow angle may vastly affect its performance. In this case, the
boundary condition of the compressor’s inlet flow angle would follow a particular
probability distribution and the engineer would be interested in finding the prob-
ability distribution followed by the Qol. In other words, the goal is to correctly
propagate input uncertainties to some output, which is achieved through the pro-
cess of Uncertainty Quantification (UQ). Several UQ methods are mentioned
below.

Stochastic Sampling

The most precise and exact UQ method is the Monte—Carlo technique. This simply
involves sampling, i.e. solving the deterministic problem enough times, each time
randomily choosing the stochastic inputs, so that these choices obey the inputs’
probability distributions. Then, the distribution of the Qol can be determined.
Although accurate, the standard Monte—Carlo method is simply too expensive in
real-world applications, since a single CFD evaluation may take hours to complete

and the convergence rate of the method is proportional to 1/v/N, for N samples [I].

To this end, more efficient stochastic sampling techniques have been developed.
The quasi—-Monte Carlo method uses quasi-random sequences of uncertain in-
puts, that share some properties of sequences of random inputs used in the standard



Monte-Carlo; this yields a convergence rate proportional to (log N)8/N, for N sam-
ples [2]. Another sampling technique was developed by McKay in [3] and is known
as the Latin Hypercube sampling. In this case, the samples taken have to sat-
isfy particular constraints, which make the sampling independant of the number of
uncertain variables. Even with these improvements, stochastic sampling techniques
are still not affordable for CFD applications and are mainly limited to other areas,
such as computational finance.

Method of Moments

The Method of Moments, or Perturbation method, approximates the Qol with
its Taylor Expansion in terms of the input uncertain variables, about their mean
[4]. The expansion is usually truncated up to second—order and the moments of the
Qol are directly approximated from the moments of the truncated expansion. The
second—order truncation makes the method valid for small input and output varia-
tions; however, in [5] a higher order truncation scheme is applied and the statistical
moments of outputs are expressed as functions of its derivatives with respect to the
uncertain variables.

Stochastic Collocation

Stochastic Collocation methods are based on interpolation schemes, in order to
compute stochastic quantities. Several types of interpolation schemes for the Qol
have been adopted, such as piecewise linear of Lagrange interpolation [6],[7],[8]. The
interpolation is constructed by sampling the Qol at a set of nodes in the stochastic
space of the uncertain variables. In this case, the key issue is the selection of nodes,
so that the obtained approximation is good enough, while the number of samples
remains affordable.

Spectral Methods

In spectral methods, the Qol is expressed in terms of a series of basis functions which
represent the spectrum of the uncertain inputs. The Karhunen—Loéve Expansion
[9] is a spectral method in which the stochastic Qol is expressed in terms of a series
of orthogonal functions that are determined after solving an integral equation [10].

The Polynomial Chaos Expansion (PCE) is a another spectral method. The
PCE relies upon the use of orthogonal polynomial bases to express the dependance
of the evaluation model’s outputs to the uncertain variables [I1], 12), 13| 14]. This
idea was originally proposed by Wiener in [15], for Gaussian processes, and was later
on generalized by Xiu and Karniadakis for any probability distribution, in [16]. In
numerical applications, PCE methods follow either an intrusive or a non—intrusive
approach, depending on whether software programming is involved or not.

Non-intrusive PCE (niPCE) has the advantage of not altering the CFD code.
Instead, the truncated spectral representation of the QQol is used and the coefficients
of the basis functions of the PCE are found by using existing software as a ‘black box’.
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This is done by taking advantage of the orthogonal polynomial basis, which allows
for the expression of every PCE coefficient in terms of integrals involving the Qol.
Those integrals are computed by computing the values of the Qol at the so—called
Gaussian nodes. This method’s efficiency, in comparison with other UQ methods
[1T7, 18] and its theoretical background [19] have been thoroughly studied, established
and applied [20], the main issue being the so—called ‘Curse of Dimensionality’, which
means that the number of samples increases exponentially, as the uncertain variables
increase.

The niPCE method is, thus, very similar to the Stochastic Collocation, their dif-
ference being the chosen basis; in the Stochastic Collocation this choice depends
on the interpolation scheme (which is often the Lagrange polynomials), while in the
niPCE it depends on the PDF's of the stochastic inputs, since the chosen polynomial
basis is orthogonal with respect to those PDFs. An interesting comparison between
the two can be found in [2I]. Regarding the main drawback of the niPCE (and the
Stochastic Collocation method), the Curse of Dimensionality, several attempts have
been made to reduce its computational cost. The involved integrals, which require
the sampling of the Qol can be computed through Gauss Quadrature, using a sparse
set of Smolyak nodes [22]. Alternatively, a least squares approach can be taken, in
order to further reduce the number of samples required [23].

On the other hand, in intrusive PCE (iPCE) the uncertain variables are intro-
duced into the governing equations and a new set of equations is derived through
Galerkin projections, that are solved in order to compute the PCE of the flow vari-
ables [24],]25]. The iPCE method requires the derivation of the governing equations
and the corresponding boundary conditions, their discretization, the formulation of
the appropriate numerical solution scheme and extensive software development. The
numerical solution of the new system of coupled PDEs provides the PCE coefficient
fields of the flow variables. A detailed comparison between the iPCE and the niPCE
is provided in [26].

1.2 Robust Design Optimization

Inherent uncertainties in the operating/environmental conditions of a system result
in performance uncertainty which gives rise to the need of Robust Design, i.e. the
art of designing systems the performance of which is not signlificantly affected by ex-
pected changes in the environment. Mathematically speaking, while a conventional
design /optimization process aims to minimize an objective function F' (in this case,
the terms objective function and Qol can be used indifferently), the robust design
optimization aims to minimize

pr +kop , ke R" (1.1)

where pp stands for the mean value and op for the variance of the Qol, while k is
a user—defined weight.

In fig[T.1]an objective function of a single design variable b (which is though stochas-
tic) is plotted in terms of b, along with the conventional optimization solution and
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the robust design solution. Due to the presence of uncertainties, this system is ex-
pected to operate around the ‘expected’ (otherwise constant) value of the design
variable. For this reason, it becomes clear that the robust solution is preferable to
the conventional solution, although the latter may sometimes have lower values.

F(b)

F(b)
Optimum Point e
Robust Design Point e

b

Figure 1.1: Conventional optimization solutions and robust design solutions.

UQ methods, such as the PCE, allow for the evaluation of functions like the one
given in eq. [I.1] as they propagate the uncertainty from inputs to outputs.

A UQ method alone would suffice for a Robust Design optimization which is done
through stochastic methods, such as evolutionary algorithms. This has been done
in [27], where the niPCE was used as a UQ tool for the shape optimization of an
airfoil. A main advantage of such an approach is that it requires absolutely no
software development; the only requirement is the solver of the problem without
uncertainties which is used for the samples of the niPCE. The niPCE is, then,
used as a means to evaluate a function like the one in eq. [I.1] for the needs of the
evolutionary algorithm. Similar approaches have been presented in [28],]29],[30],[31].

However, non-intrusive approaches combined with stochastic optimization methods
may have an increased computational cost, when compared to optimization without
uncertainties, since a single evaluation of the Qol/objective function in the first case
is much more expensive; moreover, the cost of the stochastic optimization methods
is usually much higher than that of their alternative, gradient—based methods. For
this reason, adjoint—based techniques, that allow for the calculation of gradients
need for optimization and/or UQ purposes are developed.

Regarding UQ methods, in [32], a discrete adjoint techinque is developed that allows
for the calculation of gradients necessary for the implementation of the Method of
Moments, in Nuclear Thermal-Fluids; the results are compared to those of the
Monte—-Carlo method. A similar approach is presented in [33], for nuclear energy
problems. In this case though, the continuous adjoint of the problem is derived, in
order to compute the necessary gradients.

For optimization purposes and Robust Design, adjoint methods are also imple-
mented. In [34], a continuous adjoint method is developed, which is combined
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with direct differentiation; this yields the sensitivities required by the Method of
Moments and the ones needed for gradient—based optimization. A similar approach
for compressible or incompressible industrial applications is presented in [35].

1.3 Structure of this Diploma Thesis

This diploma thesis proposes and alternative UQ approach that is based on the iPCE
method. Emphasis is laid on making the proposed approach painless, so that the
involved programming is as little as possible. Moreover, contrary to other problem—
specific intrusive methods, the proposed one is more general and applicable to any
problem that is governed by its own set of PDEs. Over and above, a continuous
adjoint—based method that allows for the computation of the gradients required by
robust design optimization is proposed. In summary, this diploma thesis contains
the following chapters:

e Chapter 2: A brief introduction to the mathematical background of the
PCE theory is outlined. Orthogonal polynomials are discussed here, akong
with some of their properties.

e Chapter 3: The proposed iPCE method is described. Some propositions are
given, along with the way the method was numerically set up and programmed.

e Chapter 4: Numerical applications of the method in 2D and 3D aerodynamic
problems are presented, along with comparisons in terms of accuracy and
computational time with the Monte—Carlo and the niPCE method.

e Chapter 5: The continuous adjoint method of the iPCE equations is pre-
sented.

e Chapter 6: A demonstration of the proposed continuous adjoint is shown,
for the 2D Euler equations.

e Chapter 7: The continuous adjoint method is applied to the shape optimiza-
tion under uncertainties, to a 2D airfoil.

e Chapter 8: An alternative the continuous adjoint of the iPCE equations is
proposed, that aims to further reduce the computational cost.

e Chapter 9: Conclusions and future research ideas are summarized here.






Chapter 2

Orthogonal Polynomials and PCE

In this chapter, orthogonal polynomials are introduced, first in one and then in
multiple dimensions. All theorems, properties and propositions presented in the
chapter are thourougly analyzed and proven in [36]. Orthogonal polynomials are a
key aspect of the PCE theory, as they are the basis used for the spectral expansion
involved. Then, the PCE is discussed.

2.1 Univariate Orthogonal Polynomials

Let w(&) denote a continuous and positive function, defined on the interval (a,b),

such that the moments f; §"w(&)d¢ exist ¥Yn € N.
Then, the integral

b
(f. gb, = / F(€)g(E)w(€)de (2.1)

is an inner product of the polynomials f and g, in (a,b). The function w is called
the weight function for that inner product. The subscript w in the inner product
will be sometimes ommited, when it can easily be implied.

Definition 2.1.1 (Orthogonal Polynomials). A sequence of polynomials {p,(£)}5°,
with degree[p,] = n is called orthogonal with respect to the weight function w(§) on
the interval (a, b) if

b
/ D)D) W(EVE = Gunn (ps ) (2.2)

where 0,,, is the Kronecker delta. If < p,,p, >= 1 Vn € N, the sequence is called
orthonormal. Also, (a,b) is the interval of orthogonality.

In order to obtain a sequence of orthogonal polynomials the following process can be
followed, known as the Gram—Schmidt orthogonalization. First, p, is arbitrarily
chosen. Then, each polynomial of the sequence can be obtained recursively, using
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the formula

—e oy ), (23

= (pjspj)

It is easy to see that eq. defines a polynomial p; that is orthogonal to all
pj, 7=20,...,k—1, since

k
<pk:apl> = <§kapl Z <€ 7p] 7,j =0
= (p,pj)

Also, note that degree[p,] = n implies that the polynomials generated this way are
linearly independent and, hence, form a basis of R.

2.1.1 Common Univariate Orthogonal Polynomial Sequences

In what follows, two commonly used orthogonal polynomial sequences are discussed,
the Hermite and the Legendre polynomials, which are orthogonal with respect to the
normal and the uniform probability distributions, respectively. These distributions
will be used later on, in the applications presented in this diploma thesis.

Hermite Polynomials

This section discusses the probabilists’ Hermite polynomials, not to be confused
with the physicists’ Hermite polynomials.
The Hermite polynomials {He,} are orthogonal in (—oo, +00) with respect to the

normal distribution w(§) = e~¢*/2. They satisfy the following recurrence formula

Var
Hepin(€) = EHen(€) — nHey 1 (8) (2.4)
and their inner product is
/RHen@)Hem@wlz—ﬁe‘“dé = 1l (2.5)

Moreover, the Hermite polynomials are explicitly given by the following formula

[n/2] _
Hen(€) =n! n;) m!(n —2m)! 2m (2:6)




where || denotes the floor function: |x| = maxz{m € Z|m < z}. Their triple
product, is [37]

He, He, H  HeE) Hom () Heo(£) ot
< €1, 1€, €n> = . el(f) em(g) en(g)ﬁdg
I'm!n!

= [ Ty (27)

if [ +m + n is even and the sum of any two of [,m.,n is not less than the third, and
is zero otherwise. The first six Hermite polynomials are

Hep(§) =1 Hes(§) = & — 3¢
Hei(€) =& Hey(§) = &' — 68243 (2.8)
Hey(€) =& —1 Hes(€) =€ — 108 + 15

Legendre Polynomials

The Legendre polynomials { P, } are orthogonal in (—1, 1) with respect to the uniform
distribution w(§) = % They satisfy the following recurrence formula

(n+ 1) Puir(§) = (2n + 1)EPL(E) — nbra(§) (2.9)

and their inner product is

! 1 1

They can also be expilicitly found by the formula

- REOCI)E) e

k=0

while their triple product is

(P, Py, P,) = /_1 B(g)Pm(g)Pn(g)%df
(e, | (25 = 2m)1(25 — 20)!(25 — 2m)! sl (2.12)
= (—1) (2s +1)! (s —n)!(s —1)!(s —m)!



when 2s = n + [ + m is even, while it is zero otherwise. The first six Legendre
polynomials are

Py(€) = 5(56° — 3¢)

Py(¢) = %(3554 —30£% + 3) (2.13)

I
| — v =

Po(§)
P(€)
b 5 = 352 -1

=360 b oo (636 — 70€" +156)

2.1.2 Some Properties of Orthogonal Polynomials

In this section, two propositions concerning univariate orthogonal polynomial se-
quences are given, [36].
Proposition 2.1.1. Every sequence of orthogonal polynomials {p,(§)}22, satisfies
the recurrence relation

pn+1(€) = (Anf + Bn)pn(é) + Cnpnfl@—)

_ knJrl _ —A, <pn7pn> : . n ;
where A,, = =, C, = y e re— and k,, is the coefficient of £ in p,.

Proposition 2.1.2. Each polynomial p, of a sequence of orthogonal polynomials
{pn(&)}2, has exactly n real simple roots in its interval of orthogonality. Also, the
roots of p,(§) and of p,.1(§) alternate, i.e. between any two roots of p,; there is
a root of p,.

2.2 Multivariate Orthogonal Polynomials

Assume m sequences of univariate orthogonal polynomials p* = {pF (&)}, k =
1,...,m. Each sequence is orthogonal with respect to a weight function wy (&) with
domain &;. Between any two of those sequences a tensor product can be defined as
follows.

Definition 2.2.1. The tensor product of two sequences of functions A = {a,(&)}22,
and B = {b,(&2)}5°, is defined as

A X B = {CLnl (fl)an (52)}201,712:0 = {aobo, albo, (lobl, albl, azbo, aobg, Ce } (214)

So, the following sequence of m—variate polynomials can be defined

Y = {V, 12, =@ p" = {ph, (€005, (&) - D (En)}oS gm0 (2.15)

-----

That is, the polynomials of this new sequence are formed as all possible combinations
of products of m univariate polynomials. Therefore, in order to obtain all m—variate
polynomials of a given degree p it is necessary to find all sets of integers n; >0, i =
1,...,m so that ny + --- + n,, = p. This can be achieved through an algorithm by
Thomas Gerstner, [38], which can also be found in [39].
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These polynomials are orthogonal with respect to the inner product given by

< f,g>w= /fngfl codéy, o, W= ij(é’j) (2.16)
£ e
which can be proven by writing

/YkY}del coodxy, =
&

/"p;<xopauanmdmy.l/ P (@) ()l —
&1 Em

671111 < pnlupnl >w1 L 6nmlm < pnmapnm >wm: 514:[ < Y/C7 Yk >W

The following combinatorics propositions may be useful.

Proposition 2.2.1. The total number of m-—variate polynomials of degree d is
d+m—1\ __ (d+m-1)!

( d )  (m=1)la! -

Proposition 2.2.2. The total number of m—variate polynomials of degree d or less
- (d+m\ __ (d+m)!

is (“)") =

2.3 PCE of a Function

Let & = (&1,...,&n) be a set of m uncorrelated uncertain variables, each associated
with its own probability density function (PDF) w;(§;) with domain &. Also, let
¢ = ¢(&) be a function of &.

Definition 2.3.1. The PCE of ¢(£) is defined as the infinite series

¢@=Zwma (2.17)

m

where the polynomials Y; are orthogonal with respect to W(§) := [];_, w;(§;) and
the spectral coefficients of the series are given by

¢ = (6(6),Y)) (2.18)

which are the so—called Galerkin projections of ¢ to the polynomial Y.

This idea was originally proposed by Wiener in [15], for normally distributed vari-
ables and was later on generalized by Xiu and Karniadakis in [I6]. An interesting
property of the PCE of a function is stated in what follows.

Proposition 2.3.1. The spectral coefficients of the PCE of a function ¢ satisfy the
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relations
El¢] = py = ¢°

Varlp] = 03 = ) (<Y}, Y; > ¢)° (2.19)

j=1
This can be easily proven, as

no= [ owie = [ ovawag = o

05 = /g (6 — 1) W€ = /g <§¢jm<5>—¢0> Wdg =

Zzqu’f/gn(é OWdE =35 W6ty < ¥, Y, 5= S (< VY, 5 )
; j=1

7=1 k=1

For a sequence of orthonormal polynomials, < Y}, Y, >= 1, eqs. [2.20] simplify to
El¢] = py = ¢°

Var[¢] = a; = (¢')? (2.20)

Therefore, the knowledge of the spectral coefficients is sufficient to fully determine
the statistical behavior of a function of the uncertain variables &. Higher statistical
moments of a quantity can also be found by applying their definition to the PCE of
that quantity. For example, the skewness is given by

(M)?’]_%/((b P —}iii VY% (221)

Yo =E 3
O¢ ¢ =1 j=1 k=1

In what follows, two ways to implement the PCE of a function in U@ problems are
discussed, the non-intrusive PCE (niPCE) and the intrusive PCE (iPCE). But first
it is necessary to define what a UQ problem is.

2.4 Uncertainty Quantification & Propagation

Assume a set of n partial differential equations (PDEs), written as
R(U)=0 , UeR" (2.22)

to be solved for the field variables U ; in fluid—mechanics applications, eq.
might be the Navier—Stokes equations. They are solved subject to some boundary
conditions and many other input parameters, such as the heat capacity of a gas or
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other fluid properties, which have fixed values. The solution of eq. aims to
compute the flow field and, then, the value of a Quantity of Interest (Qol), such as
the drag or the lift coefficient of an aircraft, and is done numerically through some
software. This can be thought of as a deterministic problem.

The UQ or stochastic problem is the case where the boundary conditions and/or the
other input parameters needed to solve the equations are not known to have a fixed
value, but to follow probability distributions. In this case, the goal is to find the
probability distribution of the Qol, i.e. to propagate the uncertainty of the input
parameters to some output.

More specifically, let us assume that the input parameters of the problem are func-
tions of m uncorrelated uncertain variables & € R, each with its own probability
density function (PDF) wy (&) and domain & , k= 1,...,m. If that is the case,
the field variables should also depend on & ; U = U(&) which means that the Qol
is also a function of the uncertain variables

F=FU)=FU®) (2.23)

Thus, finding the function of £ in eq. is the solution of the stochastic problem.

2.5 Non-Intrusive PCE (niPCE)

In the non—intrusive PCE (niPCE), where the PCE is applied directly to the Qol,
eq. becomes

F=Y P (2.24)

The polynomial basis is chosen to be orthogonal to W := []7", w;(§;). This choice,
because of eq. [2.20, guarantees that

E[F) = F°
Var[F| = f:(< Y;,Y; > F7)? (2.25)

J=1

Therefore, in this case, the goal is to determine the spectral coefficients of the Qol,
in eq. 2.24]

In order to do this numerically, eq. must be truncated to a finite number of
terms, denoted by ¢ + 1. Several truncation schemes can be found in the literature
[40], the most common being that of the so—called chaos order. In this case, a
maximum degree of polynomials is chosen, which is called the chaos order C, and
all the polynomials up to that degree are kept in the expansion. ¢ is given by (recall
proposition

(C +m)!

ot (2.26)

q+1=
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After a truncation scheme is applied, the result is
q .
F =Y FY&) (2.27)
=0
and the spectral coefficients to be found are given by
FjE<F,Yj>E/FYde£ j=0,....q (2.28)
£

As a result, the solution of the stochastic problem in the niPCE case comes down
to evaluating the integrals in eq. [2.2§]

Integral Evaluation through Gauss Quadrature

The computation of integrals appearing in eq. is normally performed through
Gauss Quadrature (GQ)

d
[ Frwie =Y wrevie) (2:29)
k=1

where wy, and &, are the quadrature weights and nodes.

The choice of d and its corresponding weights and nodes depends on the desired
accuracy. For a tensorized grid of nodes, it is given by

d=(C+1)" (2.30)
Further discussion on the selection of nodes and weights is carried out in section 4.

It is concluded that the niPCE requires d evaluations of the function F, i.e. d
numerical solutions of eq. through some existing software, such as a Navier—
Stokes equations solver. For each of these solutions, the input parameters that
depend on & change, as & is equal to the value that corresponds to the GQ node
each time.

2.6 Intrusive PCE (iPCE)

In the intrusive approach, the PCE is applied to the field variables (i.e. pressure,
velocity components etc.) and not directly to the Qol

U = Xq: U’Y (¢) (2.31)

and the fields U7 |, j = 0,...,q are the unknowns of the problem. Note that a
particular truncation scheme (chaos order) is still necessary.
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The field variables are then introduced in eq.

R (i UjY(£)> =0 (2.32)

The necessary number of Galerkin projections are applied to eq. afterwards,
and the following new equations are derived

/R (i UJ‘Y(g)) YWd¢ =0 ,k=0,...,q (2.33)

j=0

which are numerically solved by altering or rewritting the original deterministic
code. Finally, the Qol is computed at a post—processing level, as a function of the
field variables.

2.7 A First Comparison of the niPCE and iPCE

The main advantage of the niPCE is that it can be applied in a straightforward man-
ner, without any changes in the original code. However, as the number of uncertain
variables grows, the niPCE can become computationally prohibitive. From eq. [2.30]
it is deduced that the required evaluations (software runs) grow exponentially with
the number of uncertain variables. This is known as the curse of dimensionality
and can only be partially alleviated through the use of sparse quadrature grids (for
instance, Smolyak grids [22]).

On the other hand, the iPCE is known to be computationally more efficient. Ba-
sically, it asks for a single solution of a larger set of equations. Unfortunatelly,
the intrusive approach is specific to each problem; the equations usually have to
be derived by hand seperately in each case. Also, the changes in the original code
are often significant, while a change in the number of uncertain variables or chosen
chaos order may result in a need for reprogramming.
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Chapter 3

The Proposed iPCE Approach

In this chapter, an intrusive PCE approach is proposed which, contrary to conven-
tional iPCE approaches, is more general and not specific to the set of governing
PDEs. Several mathematical definitions are initially given, followed by some propo-
sitions and some ideas concerning the numerical application of the method. All
definitions and propositions of this chapter were developed for the needs of the pro-
posed method. Without loss of generality, all polynomial sequences used from now
on will be considered orthonormal, i.e. (Y,,Y,)=1.

3.1 Some Definitions

In this section, we first define the Galerkin projection of a scalar and then extend
the definition to define Galerkin projections of vectors and matrices. A property
of these definitions is then shown. In all definitions, a set of m uncorrelated un-
certain variables & € R™ are assumed, with PDFs wy (&) and domains &. Also,
a set of polynomials Y = {Y,,}>° is assumed, that are orthogonal with respect to
W = H;nzl U)j n g == H;nzl gj-

Definition 3.1.1 (Galerkin projection of scalar). For any scalar ¢(&), its Galerkin
projection to the polynomial Y; is defined as

AL (3.)
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Definition 3.1.2 (Galerkin projection of vector). For any vector U (&) = [U;(£), ..., U,(€)]F €
R", its Galerkin projection of order ¢ is defined as

GiU) = [U° U, ..., U9" (3.2)
with U* = [UF, U}, ..., UF]T e R, k=0,...,q.
Note that the application of the G4[] operator to a scalar is a special case of the

previous definition, for n = 1; if ¢ = ¢(£) € R, then G4[¢] = [¢°, ..., ¢7]T.

Definition 3.1.3 (Galerkin projection of matrix). For any matrix A € R™*" with
components A;;=A;;(€), its Galerkin projection of order ¢ is defined as the block
matrix

AP0 AL ADe
A0 AL Al
GilA] = : : : : (3.3)
AD AT Aw
where the (i, j) element of AM € R™ " is given by
p=0

with < Y, Y3, Y, >:i= [, Y,Y,Y,Wd¢ .

In numerical applications of the proposed method, all quantities that depend on &
will have their own PCE and the same truncation scheme will be applied to all of them
(in applications presented later in this diploma thesis, the chaos order truncation
scheme is applied, in order to retain ¢ + 1 terms in each expansion). In this case,
the following propositions hold.

Proposition 3.1.1. If the expansions of the A and U components are truncated to
q + 1 terms, namely

q q
A=Y ALYi(€) and Uj=Y UFY;(€) with i,j=1,....n
k=0 k=0

then it can be shown that

GI[AU| = GY[A] G [U] (3.5)
Proof. Let f=AU or f;=A;;U;. Then, for any 0 <p <gq
7= (AU = /AijUjY;,Wdﬁ =U7 /AinpY;,Wdﬁ =UJAY
£ £

which is nothing else but the pth element of G4[A] G4 [U]. O

Proposition 3.1.2. For two vectors g = (¢1(£€),...) and h = (hy(€),...) and a
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constant \(§), the following property holds
G [g"] GY[AR] = (G [g"h])" G )] (3.6)

if their PCE are truncated to ¢ + 1 terms, i.e.
gi=) qYi€) . hi=) hY;€) . A=) NY(€)
j=0 Jj=0 Jj=0

Proof. ‘ A ’ A
G [g"] GU[AR] = ()T (AR) = ()" \'h' < V4, Y}, Y >=
(¢°)"h' < Vi, V3, Y; > M = (G [g"h])" GY )]
O

The aforementioned propositions are essential for the derivation of the numerical
solution scheme of the iPCE equations, presented in the next subsection. Moreover,
they facilitate the necessary mathematical work for the derivation of the continuous
adjoint iPCE equations, as shown in chapter 5.

3.2 Proposed Numerical Solution of iPCE Equa-
tions

Let us consider a problem governed by a system of n PDEs (such as the Navier—
Stokes equations, for instance), which can be written in discrete form as

RU)=0 (3.7)

with unknown variables U € R" at each grid node. In the above system, uncer-
tainty is introduced through the vector of uncertain variables & € R™, affecting the
boundary conditions and/or other input parameters.

For non-linear problems, the system in eq. [3.7 can be solved by applying the iterative
scheme

OR) AU =—(R),, . AU =Usww—Un (3.8)
aU old

which is a linear system that separates numerics (the LHS Jacobian) from physics
(the RHS). This system is solved for AU, followed by an updating step

Unew = Uold + AU (39)

of the values of the field variables at each grid node. Then, the LHS and RHS are
recalculated and the system is solved again, until convergence (sufficiently small R)
is reached.

19



The procedure described above will be applied to solve the iPCE equations, eq. [2.33]
Merely by changing notation, eq. can be written as

Gi[R] =0 (3.10)

which is to be solved for the ¢ + 1 unknown fields G4 [U]. To this end, the G%[]
operator is applied to eq leading to (indices ‘old” and ‘new’ are ommited from
now on)

Ga lgi;AU} — G9[-R]

which, when combined with proposition (3.5} gives

ek {gﬂ G9[AU] = — G9[R] (3.11)

In eq. 3.11] G [AU] are corrections to the unknowns G4 [U] of the iPCE equations
and Gq are the corresponding residuals. The latter can be computed by Gauss
quadrature without explicitly deriving the iPCE equations. Instead, the involved in-
tegrals are found by evaluating R at specific values of £ at the quadrature nodes. On
the contrary, the conventional iPCE approach would require the explicit derivation
of the equations, in order to calculate their residuals. A more detailed discussion on
the evaluation of integrals using Gauss quadrature is made in section |3.5]

Regarding the LHS of eq. , it suffices to prove that G4 [%} is the exact Jaco-
bian of the iPCE equations, i.e. the Jacobian we would get if we differentiated the
discrete iPCE problem, eq. [3.10}

Proposition 3.2.1 (Exact Jacobian of discrete iPCE problem). Differentiation of
the discrete iPCE problem given by eq with respect to G4 [U] is equivalent to

the application of the G4[] operator to S, i.e.

OGUR) _ [g_[ﬂ (3.12)

Proof. Recall the PCE of U as U = !  U'Y; which yields ggi
identity matrix. Therefore
do Y, 99

our "t oUu

for any scalar ¢. Because of eq. [3.13] the (i, j) element of the (A, 1) block of matrix
Gq[ ] is

OR aR; \
<av> JAa ( )W / ng (W)

= Y;I, with I the

(3.13)
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OR"

which is equal to the corresponding element of %

, namely
Proposition[3.2.1implies that the linearization of the discrete iPCE problem, eq[3.11],
does not need to be explicitly derived. Instead of differentiating the iPCE equations,
existing routines that compute the LHS and RHS of the deterministic problem are
sufficient, in order to form and solve eq. These codes evaluate the LHS and
RHS at specific GQ nodes, for specific values of £, which allows for the computation
of the integrals involved in the Galerkin projections of the G%[] operator.

The procedure described above allows for the solution of the iPCE equations with-
out the need to derive anything by hand, which is definitely a cumbersome task. In
contrast to the standard approach which requires reprogramming for different chaos
orders, the proposed method is flexible and the same software could handle any
chaos order, number of uncertain variables or type of governing PDEs. Therefore,
from this point of view, it enjoys the simplicity of the niPCE approach, with reduced
computational cost though.

3.3 A First Comparison with the niPCE

The numerical stability and convergence rate of the proposed iPCE method is
strongly related to the properties of the deterministic problem. The non-intrusive
solution of eq. would involve solving eq. several times, one for each value of
the uncertain variables at the current quadrature node. Each time, this would take
n; solutions (iterations) of eq, 7 =1,...,d, where d denotes the number of GQ
nodes.

Proposition 3.3.1. The number of solutions of eq[3.11] needed to achieve conver-
gence is equal to max(nq, ...,np). Also, if all the non—intrusive runs and the intrusive
one are each stopped after p iterations, they will produce the same G4 [U].

Proof. The proof can be found in Appendix A. m

This essentially means that both methods will converge to the same result in the
same number of iterations. Thus, a comparison between them can be made if the
computational cost per iteration is compared.

Each iteration of the iPCE solver includes:

1. Computation of the LHS and RHS terms of eq. |3.11} through Gauss quadra-
ture —based Galerkin projections of residuals and Jacobians.

2. Solution of the resulting system eq.

On the other hand, the niPCE method requires d distinct numerical solutions of the
standard PDEs. Per iteration this calls for:

1. d computations of the LHS and RHS terms of eq[3.8
2. d solutions of the resulting systems, eq[3.8|
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The cost to compute the LHS and RHS terms within each iteration is thus considered
to be almost the same between the two variants; this is a key feature of the proposed
iPCE method, in which the equations’ residuals, for instance, are computed by the
corresponding routine, used as a 'black box’, at each & of the quadrature nodes.
Essentially, we could say that the system given by eql3.§| is formed via a non-
intrusive approach.

The main difference can be found in the solution step. While the niPCE solves d
systems of dimension say n, the iPCE solves a single system of dimension (g + 1)n.
If the assumption that the solution cost is proportional to n? is made, the iPCE is
faster when

(C +m)!

(¢q+1)*n? < d*n® = &

<(C+1)™ (3.14)

which is true when m = 6 or 7, depending on the choice of chaos order. For the sake
of convenience, we the repeat that C' is the chosen chaos order, m is the number of
uncertain variables, ¢ + 1 denotes the number of retained terms each PCE and d is
the number of GQ nodes.

3.4 Reducing Memory Requirements and
Computational Cost of the iPCE

As was previously demonstrated, the proposed iPCE method does not seem to sig-
nificantly outperform the niPCE, in terms of computational cost. Moreover, the
involved matrices are now of much larger dimensions ((q + 1)? larger), which re-
sults in important memory requirements. Efforts to reduce the computational and
memory burden of the iPCE method have been made in [41], which was, however,
a problem—specific approach applicable only to load—flows in power systems. This
section will provide a more general way to remedy the aforementioned issues, that
is applicable to any governing equations of a problem.

In order to handle the solution of eq. [3.11], this is rewritten, in matrix form, as

jOO jOl L qu AUO RO
jl() jll o jlq AUI Rl

e . (3.19
g0 ga - gal |lavd |

where J = g%. System m can be decoupled allowing the numerical solution of
linear systems of smaller size. To this end, the U° field which denotes mean flow
variables’ fields is approximated by the U field resulting from a single solution of the
problem without uncertainties, eqs. [3.7 This solution is done for a given & = &,
whose components are set equal to the zeros of all orthonormal polynomials of first
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degree used in the PCE. The error in this approximation is then given by

Ug)-U" =3 UYil&)+ Y, UYil&)= > UYi=¢&)  (316)

1=q1+1 i=q1+1

where ¢, is given by setting C' =1 in eq.

Moreover, for C'=1,

q1
TN =T <Y, YA Y, >= 63,7 (3.17)
p=0
since
< YP7Y)\7YN >= (Sopd)\# , 1< )\, w<aq, 0< P q (318)
Thus, eq. takes the form
Z({]O jOl j02 L qul AUO Ro
J° TP o0 ... 0 AU? R!
J® 0 Jgr ... o0 AU | = _ | R? (3.19)
g o o gu|labe] e

Assuming that U is well approximated, it is deduced that AU®~0, which justifies
the decision to keep only the diagonal blocks of the coefficient matrix in eq. [3.19
The simplified system can be solved efficiently as it consists of ¢;+1 linear systems
with the same LHS and different RHS terms. Moreover, there is no need to compute
jigo, as this can be approximated by J as computed during the last iteration of the

solution of the PDEs without uncertainties, i.e. those yielding U°.

The aforementioned steps compute the coefficients of the PCE of the field variables
up to C'=1. If C'>1, the solution algorithm is similar. With ¢=¢(C') as in eq. ,
let us assume that the PCE coefficients corresponding to the first ¢(C'—1) terms of
the expansions are available (computed as described above). To compute the next
q(C)—q(C—1) terms, eq. is used. In such a case, the off-diagonal blocks are not
zero and the diagonal blocks have some more terms, in addition to jzgo. However,
the previously computed U*,i < q(C — 1) result in AU~ 0, meaning that most of
the off-diagonal blocks can be neglected. Moreover (no summation for k),

T = T8 <Y, Vi,V >~ TP (3.20)

Given eq. [3.18] the first non-zero terms are those corresponding to the PCE coef-
ficients of second (or greater) chaos order and are, thus, expected to be negligible
compared to ji(}o. Therefore, the LHS of the system is again similar to that of eq.
yielding g+ 1 decoupled systems with the same LHS. To sum up, the proposed
way to solve the iPCE equations consists of the following steps:

1. Solve the PDEs without uncertainties, eq. , to approximate U°.
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2. Store the LHS of eq. 3.8 if possible, or re-compute it once in the beginning of
the solutions of the iPCE equations.

3. Solve the iPCE equations for C'=1, to find the corresponding terms of the
expansions of the field variables.

4. (If the user—defined C' is greater than 1) Solve the iPCE equations, for C' = 2
using the PCE coefficient fields for C' = 1 as initialization, while keeping the
same LHS approximation as in the previous step and so on and so forth. The
RHS terms are always recomputed.

Note that, in the procedure described above, there is no need to build the LHS term
of the linearized system in each and every iteration, since this remains constant.
This also allows for an important reduction in memory requirements, as the space
required to store the LHS of the iPCE equations, eq. [3.7], is no greater than that
of a problem without uncertainties, eq. Moreover, given the decoupling of
the equations, the cost of the solution step is proportional to g+1 and can even be
reduced to the cost of g¢+1 matrix—vector multiplications, if a method that computes
the inverse of J% was used. It is expected that the proposed initialization for the
mean flow field U° will facilitate the convergence of the iPCE equations by reducing
the number of required iterations. Finally, in some cases where C' > 1, it might be
possible to skip step 3 and solve the iPCE equations directly for the chosen C' by
keeping only the approximation of the diagonal blocks of the LHS of eq.

3.5 Workflow of the Proposed Method

This section describes the programming needed to apply the proposed iPCE ap-
proach, as well as an algorithm to implement it.

Firstly, the method requires a way to choose quadrature nodes and weights that
correspond to the chosen chaos order, number of uncertain variables and probability
distributions. The choice must be such that it guarantees the exact evaluation of
integrals of polynomials with degree up to 2C'. In this way, Galerkin projections are
exact. Note that, this way of choosing nodes and weights is exactly the same in
the niPCE approach, which also requires the same accuracy in the computation of
integrals involving polynomials.

For a single variable, an integral computed with Gauss quadrature is exact for a
polynomial of degree 2d — 1 if the nodes used correspond to the zeros of Y;. Then,
the weights are given by

ke <Yg_1,Yq51> |
d; = Ci=1,....d 391
Fas Y€V (€) (3.21)

where k, is the coefficient of €4 in Yy(€). So, in this case

2d—-1>20=d=C+1
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is the number of required nodes that correspond to values of the uncertain variable
&, for which the function to be integrated has to be evaluated.

For known distributions and their orthogonal polynomials, the nodes and weights
can be found in the literature and they can be hardcoded. In the Appendix C, the
nodes and weights that correspond to the Hermite and the Legendre polynomials
are given. For an arbitrary probability distribution, its orthogonal polynomials can
be found through the Gram—Schmidt orthogonalization (see chapter 2), so it is again
possible to find their roots and then their weights, via eq[3.21] Note that proposition
guarantees the existence of the zeros in the interval of orthogonality.

For more than one variables, either a tensorized (full) or a sparse grid can be used.
In the first case d = (C' 4+ 1)™, as the required multivariate nodes and weights are a
result of a tensor product of m sets of C'+ 1 nodes and weights each. In other words,
C + 1 nodes and weights per dimension are used. The sparse grid case will not be
examined here, although it was used in some of the applications later demonstrated
in this thesis (Smolyak sparse grid [22]). Table shows the number of nodes
required, if a tensorized or a sparse Smolyak quadrature grid is used.

| Tensorized Grid / Sparse Smolyak Grid |

1 2 3 4 5 6
2/3 | 4/5 8/7 16/9 32/11 64/13
3/5 | 9/13 | 27/25 81/41 243/61 729/85

4/9 | 16/29 | 64/69 256/137 | 1024/241 | 4096/389
5/17 | 25/65 | 125/177 | 625/401 3125/801 | 15625/1457
6/33 | 36/145 | 216/441 | 1296/1105 | 7776/2433 | 46656/4865

Q
OTHkC»J[\DHE

Table 3.1: Number of GQ nodes for a full and a Smolyak quadrature grid. C' is the
chosen chaos order and m is the number of uncertain variables.

The result of this first step should be an array containing all the quadrature weights,
as well as an array of all the orthogonal polynomials up to degree C', evaluated at
each quadrature node.

Before describing the second step, an algorithm will be presented that allows for
the computation of a Galerkin projected vector or matrix. More specifically, d
quadrature nodes are assumed, along with arrays w and Ksi with the corresponding
quadrature weights and values of £ at the quadrature nodes. Also, an array Y (i, j)
with the value of the j — th orthonormal polynomial at the ¢ — th quadrature node
is assumed.

For a vector V' = V(£) and a process named ‘vectorcalc’ that, for a given value of
&, returns the value of V', G4[V] is found by the following algorithm
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Algorithm 1 Galerkin projected vector calculation

L GgV(l:nxq)«0 / initialize G4[V] to zero
2: fori = 1 : d / loop of d quadrature nodes
3:  call vectorcale(Ksi(i),V) / get V()

4 fory =0 : ¢
5 GqV(gxj+1:q*j+n) + GqV(gxj+1:qg*xj+n)+w(@)«V(1:n)xY(j,9)
6: endfor
7: endfor

Also, for a matrix A = A(€) and a process ‘matrixcalc’ that, for a given value of &,
returns the value of A,G%[A] is found by the following algorithm

Algorithm 2 Galerkin projected matrix calculation
1 GgA(1:nx*xq, 1:nxq) <« 0 linitialize GY[A] to zero
2: fori = 1 : d! loop of d quadrature nodes
3:  call matrixcalc(Ksi(i),A) ! get A(€)

4:  for j1 = 0 : ¢! loop of block rows Al 2

5: for j2 = 0 : ¢! loop of block columns

6: k1l < jlxq

7 k2 < j2xq

8: A1 +1:kl+n, k2+1:k2+n) < Akl+1:kl4n, k241 :k24+n)+
9: w(@)«A(l:n, 1:n)*xY(jl,7)*Y(52,1)
10: endfor

11: endfor

12: endfor

Moving on to the second step, the field variables G4 U] must be initialized. The
mean values U° are initialized with the solution of the problem without uncertain-
ties. The other coefficients can be set equal to zero, or be initialized by applying
Galerkin projections to the routine used in the deterministic code that is responsible
for the initialization of U. In this case, algorithm [1|is used, so as to find G4 [U] by
using the routine that gives U its initial values, in place of ‘vectorcalc’.

Afterwards, the code is ready to start iterating i.e. forming the system of equations
and solving it.

To form the system of equations, eq. [3.11 the LHS and RHS have to be found.
The term G9[R] can again be found by applying algorithm [l through the use a
routine that returns the residuals R of the deterministic equations, when given the
value of & at a GQ node as input. The LHS can be either found in a similar way,
by applying algorithm [2] or, in order to save memory and speed up convergence,
it can be replaced by a stored LHS matrix, found previously when a deterministic
problem was solved to initialize the equations (see previous section).

Finally, the formed system has to be solved. In order to solve the whole system,
without using a constant LHS to save memory, the user is free to choose a solution
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method. However, if eq is used instead (by keeping only the diagonal blocks and
approximating them by the stored LHS), it is recommended to consider inverting
the LHS matrix once, at the beginning of the code, so as to reduce the solution step
to some matrix and vector multiplications. If this is not possible, the exact same
solution algorithm used in the deterministic case can also be applied here.

3.6 Comparison with the niPCE and Conventional
iPCE

It is evident that the proposed iPCE method involves minimum changes in the orig-
inal deterministic code. Most subroutines do not have to be rewritten at all, while
other require small changes, usually to write some of their inputs as functions of
&. This is a huge advantage over the conventional iPCE, which involves problem—
specific approaches and major changes in existing software, while offering a limited
choice of number of uncertain variables and chaos order, usually asking for repro-
gramming when they need to change. Thus, in terms of complexity and flexibility,
this method seems undoubtedly superior to the conventional iPCE. The niPCE is,
however, still more straightforward to apply and is definitely the way to go, when
the number of uncertain variables is relatively small.

In terms of computational cost, it will be later on shown how this method can vastly
outperform the non—intrusive approach, especially in complex problems, such as
turbulent flows with many uncertain variables. Compared to the conventional iPCE
approach, it should be expected that this method could be somewhat slower. The
conventional iPCE approach involves problem—specific ‘tricks’, that could possibly
result in slightly faster algorithms. Especially in the computation of the residual
terms, GY[R), the proposed method is essentially non—intrusive and is thus expected
to be slower. But this is only a part of the proposed algorithm and seems like a
small price to pay, if the involved level of complexity is to drop significantly.

To sum up, the proposed iPCE enjoys the benefits of the niPCE, with the com-
putational cost if the iPCE. It is essentially a combination of the merits of both
methods, without their most notorious disadvantages, the curse of dimensionality
and the complexity involved, respectively.
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Chapter 4

iPCE Applications in
Aerodynamics

In this chapter aerodynamic problems studied using the proposed/programmed
method are presented in which the accuracy and speed of the method are tested
and compared to that of the niPCE. The flow model used for these cases is first
given. Note that in all applications the computations were carried out on a single
core of a Xeon CPU (E5-2630 at 2.20GHz) with 25MB cache and 128GB RAM.

4.1 Flow Equations

The 3D Reynolds—Averaged Navier—Stokes (RANS) equations for compressible fluid
flows, in vector form,
ou  afin ofys
— — —— =0 4.1

are solved, with U = (p, p u, E;)T the flow variable vector, p the density, u =

[uq, ug, us] the velocity vector, £, = % — %p u? the total energy per unit volume
and p the pressure. The inviscid and viscous fluxes are given by
| pui , 0
fz‘lnv = pPU;U + p(sl ) fims = T (42)
ui(Ey + p) UjTij + i

where §; is the Kronecker symbol, ¢; the thermal flux components and 7; = [7;1, Tiz, Tis]”
are viscous and turbulent stresses. The inviscid fluxes can be expressed in terms of

. . , o finv
the Jacobian matrices as f/™ = A,U , A, = gb )

Closure is effected by the state equation of perfect gases and the Spalart—Allmaras
(SA) one—equation turbulence model,[42]. The compressible Spalart—Allmaras tur-
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bulence model solves the following equation

2oy i) L () e (G | et s
(Curfr — % fir) %)2 + p* fr, Au? (4.3)
where
Sl t f o= 1= T
fu=49 <;1—?1i>1/6, g=r+cCu(r®—r), r= Spriy?

and w =V X wu, u is the fluid’s dynamic viscosity, while y is the distance of a grid
node from the closest solid wall. Eq. is solved for i and the eddy viscosity is
then found from

X3

- i
pe = ffo, foo=—"F"T""3 X=" (4.4)
T X+ p
Regarding the transition coefficient (the last term of eq. {4.3))
w? _ Au
ft, = ¢, 9¢ exp <—Ct2 A;Q [v? + gfyf]) . g = min(0.1, EAQ?) (4.5)

where 1, denotes the distance of a point in the flow field from the transition point,
which is located somewhere along the solid wall,w, is the vorticity at that point, Au
denotes the difference between the velocity of any point in the flow field and the
transition point and Az is the grid spacing along the wall at this point. The imposed
inlet boundary conditions are of Dirichlet type, as i has a fixed free—stream value
there. At the solid walls, i = 0 is imposed. Finally, the constants of the model have
the following values
o= %, k=041, Pry=20.9, ¢, =71, ¢, =0.1355, ¢, =0.622,

Cuy = %jtlt%, Cwy, =03, Ccwy =2, ¢, =1, ¢, =2, ¢, =11, ¢, =2
The equations are solved on unstructured grids (in 2D, this comprises triangles
and layers of quadrilaterals close to solid walls, whereas in 3D this comprises of
pyramids, prisms and six—sided solids) using the finite-volume method and vertex-
centered storage, with the application of the flux—vector splitting (FVS) upwind
scheme, [43], while the linear systems that arise from the discretization are solved
by point—implicit (involving internal sub—iterations) Jacobi solver.
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4.2 Flow Around an Aircraft Model

The first application is considered with the inviscid flow around an aircraft model.
Due to symmetric flow conditions the study is carried around half of the aircraft.
The Qol is the lift coefficient, the mean value and standard deviation of which will
be computed using the proposed iPCE approach, the niPCE and the Monte—Carlo
sampling. In this application, the computational cost is not discussed, since all
‘other” methods just serve to validate the accuracy of the proposed approach, and
whether these are more/very expensive is not an issue at this point.

Uncertainties were introduced in the free-stream flow angle a., and/or the free—
stream Mach number M,,. Four cases were studied and results are presented in
table where N (pu,0) denotes the normal distribution with mean value p and
standard deviation o. Also, U(a,b) denotes the uniform distribution in the interval

[a, b].

Flow Conditions Clllzl)a(j)lg ordeili'C:E 1 Cl}I—l)fg)E ordeI?Pé’C:E 2 MC
My =0.7 e, | 01192 0.1191 0.1192  0.1191 0.1188
oo ~ N(5%,0.5°) oc, | 0.00958 0.00966 | 0.00958 0.00964 | 0.00953
My ~ N(0.7,0.02) | pe, | 0.1195  0.1193 | 0.1195  0.1193 —
Goo = D° oc, | 0.00179 0.00189 | 0.00192 0.00194 —
My ~ N(0.7,0.02) | pe, | 0.1193  0.1192 | 0.1194  0.1193 | 0.1191
oo ~ N(5%,0.5°) oc, | 0.00932 0.00985 | 0.00959 0.00985 | 0.00971
My ~ N(0.7,0.02) | pe, | 0.1193 — 0.1194 — 0.1191
(oo ~ U(4.5°,5.5°) | ¢, | 0.0107 — 0.0110 — 0.0112

Table 4.1: UQ for the flow around an aircraft model. Statistical moments of the
lift coefficient values computed using iPCE, niPCE (with C =1 and C'=2) and the
Monte—Carlo method with 2000 replicates in each case.

After the solution of the corresponding iPCE equations, the fields of the PCE coef-
ficients of the flow variables are available. This allows for the computation of any
quantity, such as the Mach number field around the aircraft. Figure 4.1 compares
the Mach number’s mean and standard deviation fields respectively, in the case un-
certainty is only due to the Mach number (a., = 5° second case in Table . It
can be seen that the iPCE and niPCE results perfectly match each other all over
the aircraft surface. One can also notice the increased variance after the supersonic
area of the wing surface which, in the case of niPCE;, is extended over a greater area
along the wing. The pressure spectral coefficient fields are shown in fig. [4.2]
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Figure 4.1: UQ for the flow around an aircraft model (Ms~N(0.7,0.02), a0 =5°).
Mean Mach number distribution (top) and standard deviation (bottom) on the aircraft
surface, computed using the iPCE (left) and niPCE (right), with C=2.

1121416 18 2 22 -0096 009 -0084 -0.078 -0.072 002 0012 -0004 0004 0012

Figure 4.2: UQ for the flow around an aircraft model (Mo ~ N(0.7,0.02), a0 ~
U(4.5°,5.5%). Computed pressure spectral coefficients (iPCE, C=1). Mean pressure
value (left), spectral coefficient corresponding to free—stream Mach number (middle)
and spectral coefficient corresponding to free—stream flow angle (right).

4.3 Isolated Airfoil Case

The second case deals with the turbulent flow around a 2D isolated airfoil. The two
Qols are the lift and drag coefficients and uncertainty was introduced in the flow
conditions, namely a..,, M., and Re, yielding three uncertain variables in total. The
chosen PDFs of the flow conditions are

oo ~U(1.5°,2.5°) M., ~N(0.3,0.01) Re~N(10° 2.5 - 10%)
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where it can be seen that different probability distributions can be used, not just
the normal distribution.

The proposed iPCE is compared with the niPCE method and results are summarized
in table 4.2 where the CPU time unit is defined as the computational cost of the
iPCE method for C' = 1. It is evident that the two methods are in good agreement,
but the iPCE is significantly faster, which is explained below.

The iPCE method required about 1000 iterations to converge, which is small com-
pared to the 4800 iterations that the CFD runs of the niPCE asked on average. This
should be attributed to the simultaneously solved turbulence model PDE, which may
introduce convergence difficulties when the uncertain flow conditions vary and the
software should run for several, quite off-design values of them (in the niPCE).
In contrast, in the iPCE method, the initialization is fairly close to the expected
solution, which facilitates convergence. Note that, for a fair comparison, the non—
intrusive CFD runs for C' = 2 and C' = 3, were initialized with the same mean field
values as in the intrusive case, without though yielding any significant difference.

The mean Mach number field and its standard deviation that resulted from the
iPCE are depicted in fig[f.3] for C' = 1. It is interesting to notice that the standard
deviation is higher in areas where the mean Mach number is high as well. Also, the
pressure spectral coefficient fields are shown in fig. [4.4]

iPCE niPCE iPCE niPCE iPCE niPCE
Cc=1 C=2 C=3

e, 0.095598  0.095567 | 0.095591 0.095600 | 0.095611 0.095598
oc, 0.013534 0.013546 | 0.013535 0.013438 | 0.013535 0.013512
ey 0.029460 0.029540 | 0.029426 0.029538 | 0.029319 0.029539
ocp 0.000787 0.000764 | 0.000789 0.000768 | 0.000790 0.000768

. CPU. 1 3.678 2.953 9.598 20.196 36.714

time units

Table 4.2: Turbulent flow around an isolated airfoil, with three uncertain flow con-

ditions.

C=1,2,3 and computational cost.

— -

Statistical moments of Cr, and Cp computed using iPCE and niPCE, for

T 1 1

‘ 0.001 0.004 0007 001 0013

B

Figure 4.3: Turbulent flow around an isolated airfoil, with uncertain flow conditions.
Computed mean (left) and standard deviation (right) fields of the Mach number (iPCE,

o=1).
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Figure 4.4: Turbulent flow around an isolated airfoil, with uncertain flow conditions.
Computed pressure spectral coefficients (iPCE, C=1). Mean pressure value (top left),
spectral coefficient corresponding to free—stream Mach number (top right), spectral
coefficient corresponding to free—stream flow angle (bottom left) and spectral coefficient
corresponding to chord-based Reynolds number (bottom right)

4.4 Flow around the DLR—-F6 Aircraft

The last case is concerned with the inviscid transonic flow around an aircraft con-
figuration (practically the wing—fuselage configuration of DLR-F6 of [44] though
this is herein studied at inviscid flow conditions). The computational grid consists
of about 1.5M nodes; a grid around the whole aircraft was used since one of the
uncertain variables was the yaw angle.

Uncertainties are introduced in the flow conditions, as follows
Ao ~ U(—0.5°40.5°) | Boo ~ U(—0.5°,40.5°) and M., ~ N(0.75,0.02)
and the Qol is the lift coefficient.



Results are summarized in table where it is again shown that the iPCE and the
niPCE produce practically identical results. The iPCE method is, however, more
efficient and the difference in cost increases with the chaos order. This should be
attributed to the fact that the proposed method saves computational time in the
solution step, recall the discussion in section 3.4. In this case, the solution step is
the most costly one, since the computational grid is much larger than in the two
previously presented cases. Therefore, the gain in computational time is greater.

Note that, for a fair comparison, the niPCE runs were initialized with the same flow
field used to initialize U in the iPCE (which resulted from solving the equations
without uncertainties once), which seemed to facilitate convergence, in either case.
The convergence of the iPCE solver is, however, smoother and faster, see fig. [£.7]
which shows the convergence of the PCE coefficients of the Qol as a function of
computational time. In these plots, the wall clock time in thousands of seconds is
used as a time unit.

Finally, figl4.5] illustrates the mean value and the standard deviation of the Mach
number over the aircraft surface, while fig. shows the spectral coefficients of the
pressure field.

iPCE niPCE iPCE niPCE iPCE niPCE
c=1 =2 =3
ey 0.10115 0.10115 0.10115 0.10115 | 0.10115 0.10115
oc, 0.007603 0.007618 | 0.007653 007653 | 0.007650 0.007650
. CPU. 1 1.248 3.121 6.695 6.050 15.608
time units

Table 4.3: Inviscid flow around the DLR—F6 aircraft, with three uncertain flow con-
ditions. Statistical moments of the lift coefficient computed using the iPCE and the
niPCE (for C=1,2,3) and computational cost.

0.1 03 05 0.7 09 1.1

0.01 0.03 0.05 0.07 0.09 0.11

Figure 4.5: Inviscid flow around the DLR-F6 aircraft, with three uncertain flow
conditions. Mean field (left) and standard deviation field (right) of the Mach number
(iPCE, C=1) over the aircraft surface.
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Figure 4.6: Inviscid flow around the DLR-F6 aircraft, with three uncertain flow
conditions. Computed pressure spectral coefficients (iPCE, C=1). Mean pressure
value (top left), spectral coefficient corresponding to free—stream Mach number (top
right), spectral coefficient corresponding to free—stream flow angle (bottom left) and
spectral coefficient corresponding to free—stream yaw angle (bottom right)
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Figure 4.7: Inviscid flow around the DLR-F6 aircraft, with three uncertain flow
conditions. Comparison of the convergence of the PCE coefficients of Cr, (iPCE and
niPCE, C=1). Mean value of the lift coefficient C9 (top — left), PCE coefficient C}
corresponding to the free—stream Mach number (top — right) and PCE coefficient C%
corresponding to the free—stream pitch angle (bottom). All runs were initialized with
the converged mean flow field, i.e. the solution of the PDFEs without uncertainties.
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Chapter 5

Continuous Adjoint of the iPCE

This chapter proposes a way to derive the continuous adjoint equations to the primal
iPCE problem. Emphasis is laid on establishing a general method that is easy to
program, with just a reasonable amount of interventions in an existing adjoint code
for the problem without uncertainties. Before the continuous adjoint of the iPCE
equations is developed, a brief reference to the deterministic continuous adjoint of
a general set of PDEs is made, following the development found in [45]. Note that
the approach presented in this chapter is the derivation of the adjoint equations to
the primal iPCE equations. The opposite would be to apply the iPCE theory to the
deterministic adjoint equations, which is not discussed in this diploma thesis.

5.1 Deterministic Continuous Adjoint

Let us consider a Qol given by
F = / g udQ + / r'CUdS (5.1)
Q s

U stands for the field variables, that are subject to the following equations

LU — f=0,in
BU—-e=0,inS (5.2)

where S = 02 is the boundary of €2, L,B and C are linear differential operators
while f,e,g and h may depend on the spatial coordinates x; but not on the field
variables U. Also, let b denote the array of design variables, § = §/db stands for
the total derivative with respect to b and 0 = 9/0b is the partial derivative due
to changes in the design variables while neglecting space deformations. Note that
the volume integral of eqJ5.2] does not include differential operators; if this were the
case, such terms would become surface integrals, through Gauss’ theorem.

In order to minimize (or maximize) F under the constraints posed by eql5.2] the
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following augmented function is defined
Fogi=F — / V(LU — £)dQ — /(C*\II)T(BU — e)dS (5.3)
Q S

where W are the adjoint variables and the differential operator C* will be defined
later.
In general, we can write that

S(LU) = L(U) + (L)U (5.4)

For instance, if L = 6%1-’ then 0(LU) = %ﬂg) + g—g a(g_;k), ie. 0L = 8((;5—2“) %.

Thus, because of eq., the total derivative of [y, is

§Fpug = OF + 6Fgp, — /Q UTL(6U)dQY — /S (C*®)'B(6U)dS (5.5)
where

SFY - /Q IS f — (SL)UTAQ + /S (O[5 e— (GB)UAS  (5.6)
Also, 0 F is given by

6F:5F5D+/

hTC(sU)dS + / g’ ouda (5.7)
S

Q

where

6Fgp = / 69" UdQ) + / g Us(dQ)
@ @ (5.8)

+ / § h'ouds + / rT(sCYUdS + / hT'CUG(dS)
S S S

In eqs. and ‘SD’ stands for ‘sensitivity derivatives’. The calculation of the
variations present in eq. depends on the parameterization of the problem and
on the choice of design variables.

Then we apply integration by parts, as follows

/ LU = / (AWsU 0 + / (D' E(6U)dS (5.9)
Q Q S

In eq. .9 the differential operators A, D and E are known; they are essentially
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defined so that eq. holds. By inserting eq. into eq. we get

6F = 6Fsp + 6Fyp + / (g — A®)T§UIN + / (h — B*®)TC(sU)dS
Q S

o B . [t (5.10)
+ /S (B*®)TC(5U)dS /S (D®)T E(5U)dS /S (C*®)TB(5U)dS

J/

-~

Notice that to derive eq. the term [((B*®)"C(6U)dS was added and sub-
stracted from eq. [5.9] Whﬂe is a newly introduced differential operator that will
be defined later.

If W is chosen so that it satisfies the adjoint equation

AP —g=0, in Q
B'¥—h=0,inS (5.11)

and the operators B* and C* are such that M is zero, as shown in [45], then the
variation of F' will be given by

§F = 0Fsp + 6Fyp (5.12)

which is computed after the adjoint equations, eq. [5.11] are solved.

5.2 Continuous Adjoint iPCE Problem

In the presence of uncertainties, the Qol to be minimized /maximized is defined as
q .
Ji=> GIF (5.13)
i=0

where (; are user—defined coefficients, ¢ corresponds to a chosen chaos order and F*
are the PCE coefficients of F', which is given by eq. 5.1l The PCE coefficients of
the field variables G4 [U]| are subject to the iPCE equations, namely

GYLU — f]=0, in Q
GYBU — e]=0, in S (5.14)

In this case, the augmented function is
Joug = J — /Gq T GaLU — £]dQ — /Gq (C*®]" G [BU — €] dS (5.15)
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Since operators ¢ and G4[| permute, the total derivative of J,,, is

0 gug = 0. — / G )" GI[L(5U)] dS) — / G [Cc* )" GI[B(6U)] dS

(5.16)
+ / G GI[sf — (SL)U] dQ + / Ga[Cc*®]" G e — (6B)U]dS
Q S
where, if by defining
(:= Z Gisign(FYY;(€) = GY[(] = [Cosign(FP), ..., (sign(F7)] (5.17)

the derivative of J is given by

q
00 = Gsign(F)SF" = GY[¢]" GU[5F)

=0

=aq" (Gq [0Fsp] + / Ga[hTC(6U)] dS + / G4 [g"oU] dQ) (5.18)
S Q
— G G [6Fsp) + [ GO hIT GICET s + [ Glcgl” G U dg

because of eq. and proposition

In this diploma thesis, uncertainties in the domain 2 are not examined (i.e. shape
uncertainties of an airfoil, for instance). This allows for the permutation of integrals
in Q or S with the operator G4[]. Therefore, because of eq. and proposition [3.6]
the last two terms of eq. can be written as

/ G GY[sf — (SL)U]dQ + / GI[C*®]" G e — (6B)U]dS =

Ga [/ q:T[éf—(5L)U]dQ+/(C*\I,)T[5e_((SB)U]dS Gy 619
G [oFg] Ga1]

where G4[1] = [1,0,...,0]T.

By applying integration by parts in the second term of eq. [5.16] because of eq.
and proposition 3.5} we get

/ G [®]" G [L(6U) dQ =

(5.20)
/ G [A®R]" QY [6U] dQ + / G [D®]" GY[E(6U)] dS
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Eq. because of eqs. and eq. is now written as
0y = G[¢]" GY[6Fsp] + G4 [5F§I’D]T GI1] + / Gilcg — A®]" GI[U] d
Q
+ / GI[¢ h— B*®])" GY[C(6U)] dS + / G9[B*®]" G [C(6U)] dS
s s

— / Ga[Cc*®]" G [B(6U)] dS — / G9[D®]" GY[E(6U)] dS

(5.21)
This means that the adjoint iPCE equation and boundary conditions are
Gi[AT —(Cg]=0, inQ
GYB*W —-( h]|=0,inS (5.22)

Also, it can be shown that the last three terms of eq. m are equal to G4 [M]" G4 [1]
(the proof is similar to eq. and is omitted in the interest of space). This means
that setting G4[M] = 0, or M = 0, defines operators B* and C* so that they are
equal to their counterparts in the case without uncertainties. Finally, the derivatives
of J are found from

5 = G[¢)" G [6Fsp) + G [6FE,]" Ga[1] (5.23)
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5.2.1 How the Continuous Adjoint iPCE was Programmed

The continuous adjoint equations, boundary conditions, objective functions and sen-
sitivity derivatives for both the deterministic case and the iPCE case are summarized

e Continuous Adjoint Equation

AW — g =0 (deterministic) , GI[A¥ —( g] =0 (iPCE)

e Adjoint Boundary Conditions
B*W — h =0 (deterministic) , GY[B*¥ —( h] =0 (iPCE)

where ( = Z?:o stz’gn(Fj)Y}(E)

e Objective Function

q
F (deterministic) , J = Z§]|FJ| (iPCE)
=0

e Sensitivity Derivatives
§F = 0Fsp + 6Fgp (deterministic)
5. = G[¢)" G [6Fsp) + G [6FY,]" Ga[1] (iPCE)
where G4[1] = [1,0,...,0]

The numerical solution of the adjoint iPCE equation is similar to that of the primal
problem. An iterative scheme is chosen again, namely

aRadj
q
| %

] GI[AW] = — G [R"] (5.24)

where R*Y = AW — ( g which is again solved by keeping only the diagonal blocks of
the LHS, to save memory. Again, a routine that works as a ‘black box’ that evaluates
RV is required. This routine can be the same one used in the problem without
uncertainties, with only a slight change; in the problem without uncertainties { = 1,
while in the presence of uncertainties ¢ = ((&) = Y"1, Gisign(F")Y;(£).

Also, the initialization of ¥ is somewhat different to solving the deterministic adjoint
problem. This time, the deterministic adjoint problem needs to be solved by setting

¢ = Cosign(F")

which corresponds to solving the adjoint iPCE equation for C' = 0, or to finding
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The solution of the iPCE adjoint equations is followed by the computation of the
sensitivity derivatives given by eq. Existing routines that evaluate Fsp and
Wsp can be used again.

Finally, in the choice of coefficients (;, there are two things to consider. First, since

EI =1, Var[l]=) (I)

Jj=1

the mangitude of |(y|, compared to |(;|,7 = 1,..., ¢ determines whether emphasis
is laid on minimizing the mean value or variance. Second, the signs of the coeffi-
cients are important. Without loss of generality, J is to be minimized. Therefore
¢; > 0,7 =1,...,¢q since we are always interested in a minimum variance. If I is
minimized in the deterministic problem, ¢, will also be positive and if I is maximized
Co will be negative.

A Different Objective Function

An equivalent approach could be presented, if the chosen objective function is defined
as

J =2 GE? (5.25)

In this case, everything presented in this chapter will be the same, except for (,
which will now be given by

¢ =) 2GFY;(¢) (5.26)
j=0

As will be shown in chapter 8, the initial definition of the Qol is preferable to that
of eq. for the needs of the idea introduced there. However, the two definitions
are equivalent, as minimizing either of them yields the desired results. Of course,
the weights (; should not be the same and their selection depends on each particular
case.
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Chapter 6

Demonstration of the Adjoint
iPCE Method

In this chapter the previously proposed continuous adjoint method is applied to
the 2D Euler equations for steady external flows. This set of equations is chosen
because of its simplicity, although the method was programmed for the compressible
Navier—Stokes equations.

6.1 Continuous Adjoint of the Deterministic Eu-
ler Equations

The Euler equations, written in conservative form, are

ofs , oUu .
axi_AZa_];i_O’an

u;n; =0 ,in S

U="U., ,in S,

(6.1)

where S is the airfoil’s boundary and m = [ny,n|” is its normal unit vector. Also, S
denotes the airfoil surface while S, stands for the free—stream, which is far enough
from the airfoil; U, are the free—stream flow conditions.
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The Jacobian matrices A; := 25 are given by

0 1 0 0
A |5l =3t + (v = 1ud] (B =7)w (1=7uy y—1
1= —U1U2 U9 U1 0

(D 7B =T B (1w

0 0 1 0
—U1Ug U2 Uy
A=l =3+ (y-Dud]  (1—7wm (3= 7)uz y—1| (62)

S (e 9% =203 )
The Qol will be the lift of the airfoil

F=L= /p(n2 COS Uoe — M SIN Ao )dS (6.3)
s

where a, is the free-stream flow angle. Following the discussion in the previous
chapter, the augmented function is defined as

of;
o T 9Ji
Fpg=F /Q\Il 5019 (6.4)

Note that the constraint of the Euler equations’ boundary conditions was not sub-
stracted from F', as was done in eq. However, this constraint will be taken into
account later on, making this approach equivalent to defining F,,, as in eq.

The variation of Fj,, is

0 Foug = 0F — /\IJT 5f1 dQ /\I:T 0fi o )dQ (6.5)

Oxr,  Ox;

where

OF = /p(5n2 COS (oo — 0N SIN g )dS + /p(n2 COS (o — M1 SN U )(dS)

—5Fsp (6.6)
+ / dp(ng €os s — My SiN A, )dS
s

Application of integration by parts yields

5f A
T ? . . T N .
/\Il 8901 . 0, AzéUdQ—i—/S\If (5fz)nld8 (6.7)

Note that 6 f; = A;0U, which was used to derive eq. [6.7 Also, in eq. [6.7] surface
integrals involving the variation of f; in the far field were omitted, since f; have
constant values there, determined by the infinite flow conditions. Moreover, because
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u;n; = 0 along S, or equivalently fin; = [0, pny, png, 0]7, it is

S S S

Eq. [6.5], because of egs. and [6.8] is written as

0F,ug = 0Fsp + /(‘I’Tfi — Wi 1p)d(ndS)

N S 7
5,
, owT
+ | dp(ngcosas — nysinas + Win;)dS + 5 A;0Ud) (6.9)
S o 0T

which results in the adjoint equation and its boundary conditions

v
AT o _, , in Q
8:151-
Ny COS oy — My SiN A + Yipn; =0, in S (6.10)

the solution of which allows the computation of §F = §Fsp + dFgp.

6.2 Adjoint to the iPCE Euler Equations

By applying the G%[] operator to eq the iPCE Euler equations are derived

G [gf’} Yl {Ai ZU] =0,in
€X; €X;

G4 [umz] =0 s inS
GiU] = G9[UL] , in Sa

(6.11)

Note that uncertainty may be introduced in the far—field boundary conditions, for
example. It may not, however, affect the domain €2 or its boundary S, since then
the procedure shown below is not valid. The Qol now is defined as

T =Y ¢l (6.12)
j=0

The solution of eq. through the process described in chapter [3| willl yield the
spectral coefficients F7 = L7. The augmented function now is

Jaug = J — /Q Ga[w])" ga {gﬂ s (6.13)
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Therefore, because operators § and G9[] permute

0 Jqug = 6.J — /Q Ga[w]" Gga {8(” i)] Q)

ox;
: (6.14)
ot o [000F) O(Sa)
—/QG W G [ ol O }dQ

with

00 = ¢sign(F))0F) = G [¢]" GY[6F]
=0 (6.15)
e [ [ ovlia s, =y sin aoo>ds] G (] GO [oFs)
S

where ¢ = 371 (jsign(F7)Y;(€), as in eq. [5.17, and Fsp is given from eq. .
Then, integration by parts is applied. Because G%[| permutes with 9/0x; (since
there is no uncertainty in the domain 2) we write, as in eq.

/QGq @) G {%} dQ =

— [ G aq’Ai TGq [6UTdQ + | GI[®]" G5 f)] nydS (6.16)
Q 0 S

€

Also, as in eq.
/ G W] G5 f;] nidS =
S

/S GO W] n; GO [6p] dS + /S (G [ W3] GO [p] — G [0]7 GO [£])d(n,dS) (6.17)

N J/
-~

=ca[sr¥,)" qaf]

where the last term is equal to G [dWgp]” G4[1], because of proposition and
the fact that the involved integrals permute with G4[].6Fd, is given from eql6.9]

Therefore, eq. through eqs. [6.15] [6.16] and [6.18] is written as

0Juug = G [¢]" G4 [Fop] + G [§Wsp]" G4 [1] + / ¢! {%\IJTAJ G1[5U] dQ

X

2 (6.18)
Ga ¢t ga {/ dp(ng €oS Ao — Ny sin aoo)dS} — / G W, 4]" G [6p] nedS
5 5
From which it is deduced that the iPCE Euler adjoint equation is
Ga {AiT 8‘1'] =0 (6.19)
(91:1-
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while its boundary conditions are found by setting

Ga ¢t G {/ —0p(ng oS Ay — My Sin aoo)dS} — / G [T;4]" G [6p] ngdS = 0 =
s s

G1 [(]T/ — G9[p] (ng cos oo — My SIN A )dS — / G9 [T, 44]" G [6p] ngdS = 0 =
S s

GY[((ng cosas — Ny sinas) + Vin;] =0 (6.20)

Finally, the sensitivies of J are
5 = GI[¢]" G [§Fsp] + GO [6FE,) T Gl (6.21)

Regarding the choice of coefficients (j, since we are interested in a maximum mean
value and a minimum variance of the lift, we could choose a negative (, and positive
¢j » J >0, so that the minimization of J will yield the desired result.
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Chapter 7

Numerical Implementation of the
Adjoint iPCE Method

The aforementioned continuous adjoint method is applied to the laminar flow around
a 2D isolated airfoil. The airfoil geometry is parameterized using two Bezier curves
and the coordinates of their control points are the design variables. More specifically,
nine control points are used for the suction side and nine for the pressure side, as
shown in fig. [7.I] Note that the vertical displacement of each control point is
bounded and that the first and last two control points are kept fixed. This is also
shown in fig. Two cases are tested.

0.2 r
Control Points o
Airfoil
0.15
0.1

0.4 0.6 0.8 1
% Chord

=]
e
]

Figure 7.1: Shape optimization of a 2D airfoil. Initial airfoil geometry and control
points used to create the two Bezier curves.
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First case

In this first case, the objective function to be minimized in the absence of uncer-
tainties is the airfoil’s drag coefficient, i.e. F' = Cp. This is in fact the Qol that
will be used in the optimization under uncertainties that follows. Initially, a shape
optimization without uncertainties is carried out, for which the flow conditions are

Mo =05, aw=2", Re=6000 (7.1)

where Re is the chord-based Reynolds number. The resulted optimized geometry
yields a drag coefficient value of about 20% smaller than that of the initial symmetric
airfoil, fig. [7.2] on the left.

1 1
0.98 ‘\ 0.98
0.96 0.96 -\
0.94 0.94
. 0.92 'S £ 09 =
Y 0.9 A )
L o088 \ 508
0.86 .~ 0.88
0.84 . 0.86
0.82 " 0.84 \
0.8 0.82
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Optimization Cycles Optimization Cycles

Figure 7.2: Shape optimization of a 2D airfoil, drag minimization. History of the
objective function value in the optimization without uncertainties (left) and in the
optimization under uncertainties (right); laminar flow.

The shape-optimization under uncertainties follows. Uncertainties are introduced
in the flow conditions which have the following probability distributions

My ~ N(0.5,0.05) , ao ~U(1.5°,2.5°) , Re ~ N(6000,250)

In this case, the objective function is formulated as
q .
J=2 GIF
=0

with ¢ = 19 (for m = 3 uncertain variables and chaos order C' = 3), (, = 1 and
¢; =3V j> 0. A reduction of the Qol of about 18% is achieved, see fig. on
the right. The optimized airfoil geometries resulted from the two runs (without and
under uncertainties) compared to the initial one are shown in fig. . Moreover, fig.
[7.3|shows the coordinates of the control points for the optmized geometry. The fields
of the adjoint velocity magnitude on the optimized geometries is illustrated in fig.
[7.5] Table compares the statistical moments of C'p from both optimization runs.
The values on the left column are computed by an uncertainty quantification on the
optimized geometry resulted from the run without uncertainties. As expected, the
UQ that was applied on the geometry that resulted from the optimization without
uncertainties results in lower mean value but has higher standard deviation of the
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drag coefficient compared to the mean value and standard deviation that resulted
from the optimization under uncertainties.

0.2 T
Control Points o
Airfoil (optimized geometry)
0.15
0.1
L]
[+]
0.05 /- > \
of Bt
k L] 2
-0.05 F ®
]
,01 L
-0.15 . . .
0 0.2 0.4 0.6 0.8 1
% Chord

Figure 7.3: Shape optimization of a 2D airfoil. Optimizedl airfoil geometry and
control points used to create the two Bezier curves.

Initial Geometry ——
Optimization without Uncertainties --------
Optimization under Uncertainties

Figure 7.4: Shape optimization of a 2D airfoil. Comparison of the optimized geome-
tries with and without uncertainties with the initial one; laminar flow.

Without Under
Uncertainties | Uncertainties
ey 6.81-1072 6.97 - 1072
oo, 1.11-1073 1.05-1073

Table 7.1: Shape optimization of a 2D airfoil. Comparison of the statistical moments
of the drag coefficient of the optimized geometries resulted from the two optimization

runs.
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Figure 7.5: Shape optimization of a 2D airfoil. Field of the non—dimensional ad-
joint velocity magnitude computed by the design without uncertainties (top) and mean
(middle) and standard deviation (bottom) of the adjoint velocity from the design under
uncertainties; laminar flow.

Second case

In the second case, the boundary conditions have the following probability distribu-
tions

Mo ~ N(0.5,0.07) , as ~U(1.5°,2.5°) , Re ~ N (5000,300) (7.2)
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while Qol for the case without uncertainties is defined as
I=p(Cr~Cp,,)* +Cp (7.3)

with C7, and Cp being the lift and drag coefficients of the airfoil, while C7,, = 0.18
and 8 = 0.1. The Qol of the iPCE problem is then given by

J=¢|P|, G=1,¢ =10, j>0 (7.4)

and the optimization is carried out for two different chaos orders, one for C' =1 and
one for C' = 2. Fig. depicts the value of J as the optimization cycles increase.
The two curves are similar, but the one corresponding to C' = 2 has somewhat larger
values. This should be attributed to the fact that more spectral coefficients I’ are
kept for C' = 2. It also depicts the initial and the optimal airfoil geometries. In
fig. [7.7] the mean value and standard deviation of the drag coefficient are shown, as
functions of the optimization cycles. In fig. the initial mean value and standard
deviation of the Mach number’s field around the airfoil are shown, whereas fig. [7.9
shows the optimized airfoil geometry, along with the same fields, for C' = 1.

0.12 —
0115 | N\ =
01 ) N =
0.105 | N T
: —a. . . %1 initial
009 N optimal (C=2)
0.085 —_———— -0.15 - - - -
12 3 4567 8 910 0 0.2 04 06 08 1
Optimization Cycles % chord

Figure 7.6: Qol Minimization as a Function of the Optimization Cycles, for C = 1,2
(left) and Initial (red) and Optimized (Blue) Airfoil Geometries for C =1 (right).
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Figure 7.7: Drag coefficient mean Value (left) and standard deviation (right) mini-
mization as a function of the optimization cycles, for C = 1,2
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0.02 0.08 014 02 026 0005 0.02 0035 005 0085 0.08

Figure 7.8: Mean value (left) and standard deviation (right) of Mach number around
the initial airfoil geometry.

—

002 008 014 02 026 0005 002 0035 005 0065 0.08

Figure 7.9: Mean value (left) and standard deviation (right) of Mach number around
the optimized airfoil geometry, for C = 1.

In table the results of the optimization that concern the drag coefficient are
summarized. In the absence of uncertainties, another optimization was carried out
for the following values of the free—stream boundary conditions

My =05, asx =2, Re=5000 (7.5)

that resulted in Cp = 7.38-107!, which is practically equal to the predicted optimal
mean value, in the presence of uncertainties. Then, the optimal values of the design
variables that were found for the case without uncertainties were used as inputs for
the iPCE solver, for C' = 1 and C' = 2. The resulting mean value and standard
deviation of the drag coefficient are shown in table [7.3] Comparison of these values
with the results of table[7.2| shows that the optimal airfoil in the case without uncer-
tainties has a less robust performance than the one that resulted when uncertainties
were taken into account.
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[ =1 [ 0= ]
fic, | 7.33-1072 ] 7.14- 102
oc, | 1.08-1073 | 1.34-10°3

Table 7.2: Optimization under uncertainties of a 2D airfoil in laminar flow condi-
tions. Mean value and standard deviation of drag coefficent for optimal airfoil geome-
tries in optimization under uncertainties for C' =1, 2.

| | C=1 | C=2 |
lc, | 7.44-102]7.32-102
oc, | 1.34-1073 | 1.50- 1073

Table 7.3: Optimization under uncertainties of a 2D airfoil in laminar flow con-
ditions. Mean Value and standard deviation of drag coefficent predicted by the iPCE
solver with optimal design variables from optimization without uncertainties as inputs,
forC=1,2
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Chapter 8

An Alternative to the Adjoint
iPCE

In this chapter, a more efficient alternative to the adjoint iPCE method is pro-
posed, programmed and assessed. This approach will be referred to as ‘Determin-
istic Derivatives — Stochastic Primal’, or as DDSP. The main idea is to replace the
adjoint iPCE with a solution of the adjoint equations without uncertainties (at a
specific value—set of the uncertain variables, determined through a process explained
below), while computing the derivatives of the objective function accurately.

8.1 The DDSP method
Recall the definition of the objective function for the problem with uncertainties
q . q . .
J=Y GIF|=> (signF'F! (8.1)
i=0 i=0

where (; are user—defined coefficients and F* stand for the spectral coefficients of the
PCE of the Qol that may become known only after solving the (primal) iPCE equa-
tions. The gradient with respect to the design variables (let 6 denote the gradient
in this section) that the adjoint iPCE method should compute is

00 = Gsign(F')SF" (8.2)
=0

The adjoint run always follows the primal iPCE run, which means that the spectral
coefficients F* of the Qol at the current solution (current value-sets of the design
variables) have been computed and are known. This means that sign(F") are known
quantities. On the other hand, the gradient computed by the numerical solution,
for a given & = £, (this value—set will be defined later on), of the adjoint equations
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without uncertainties is

F(&) =D 0FYi(,) (8.3)

Recall that giving the uncertain variables a fixed value-set & = £, means that the
uncertain flow conditions of the stochastic problem (or any other input to it, should
this be the case), take on values that can directly be derived from & = £ and the
deterministic problem (i.e. the flow solver in the absence of uncertainties) should
be solved for those values.

Since this new idea aims at replacing the solution of the iPCE adjoint equations
with a single solution of the adjoint problem without uncertainties (being much less
expensive, of course), without damaging the accuracy of computing 6.J, we require
that

OF =06J =Y 6F'Yi(&) =) (Gsign(F*)0F" (8.4)
1=0 =0

Note that the RHS of eq. is not a truncated infinite sum, but the weighted
sum of ¢ + 1 terms, exclusively depending upon the selected chaos order C' and
number of uncertain variables m. The LHS, however, is an infinite sum which must
be truncated; thus, the first ¢+ 1 terms must be retained and terms of higher—order
are neglected. The next step is to express the following equalities

Yi(&s) = Gsign(F"),i=0,1,...,q (8.5)

Eqgs. essentially imply that, by selecting &, so as to satisfy eq. [8.5] the derivatives
computed by a solution of the problem without uncertainties can be used, instead of
solving the iPCE adjoint equations (if, of course, such a &, can be found). Therefore,
if the problem without uncertainties is solved for that &, (along with its adjoint
equations), the sensitivities computed this way can be used, instead of those resulting
from solving the adjoint to the iPCE equations. However, it is very important to
note that the sole source of error of the DDSP method spings from the truncation
in eq. It is expected that, if low—order truncation is performed (i.e. for a low
value of ¢) the error in computing the gradient through the DDSP method should
be higher; this is investigated, to a certain extent, in this section.

8.2 Solving egs. 8.5

As it was previously mentioned, the DDSP method aims to determine a value—set
&, of the uncertain variables that satisfies eq. [8.5] Therefore, the unknowns in those
equations are the components of &, of course. However, for j = 0, the first out of
the ¢ + 1 equations to be satisfied is

Co = Ypsign(F) = sign(F?) (8.6)

since Yy = 1 for any set of orthonormal polynomials. Eq. does not involve any
component of &, but must be satisfied, if the gradient of the objective function
is to be accurately computed. For this reason, eq. is considered to be an
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additional constraint, which imposes a specific value to the otherwise user—defined
(o. However, this is not an issue. Without loss of generality, it would be possible
to assume |(y| = 1 anyway, and then proceed to define the magnitude of the other
weights (;, since only the relative size (; /(o ,j > 0 is needed for the optimization to
yield the desired results.

After defining (, through eq. (and, of course, having already chosen the other
weights (; based on the user—defined ratios of ¢;’s), the number of remaining equa-
tions is reduced to ¢ '
Yi(&) = (sign(F*),i=1,...,q

which are handled differently, depending on the choice of chaos order. Note that
defining (, through the constraint of eq. will not result in {y, changing signs
between optimization cycles, as F° usually has a fixed sign (it may be the mean
value of the drag/lift coefficient of an aircraft, for instance, which has a fixed sign)

Solving egs. for C =1

The solution of eqs. [8.5]is straightforward, if the chosen chaos order is C' = 1. In
such a case, the number of unknowns is equal to the number of uncertain variables
m, as ¢ = m for C' = 1, recall eq. 2.26l Thus, they can be easily solved and &; is
determined this way.

Solving egs. for C' > 1

For C' > 1, the reader may notice that there are ¢ = (C' + m)!/C'm! — 1 equations
and only m unknowns ({, is again given by eq. . For this reason, & will be
chosen so that the following expression be minimized

1 q

._ : i\12
M= ;[m) — Gisign(F) (87)
Therefore, the system of equations to solve becomes
oM < Y,
R, = — = Y (&) — (sign(F” =0 ,j=1,....,m 8.8
T ;[ (€) ( )]agj (8.8)
Eq. is solved iteratively through Newton’s method
OR
infinhd AéE =—-R, 8.9
( 0 )dd &7 &
where R = (Ry,..., Rp), &new = &oia + AE and
OR < ( 0%V 0Y; Y,
—_— = Y; — (sign(F" + ) 8.10
( 0€ >jk 2\ ) og0g, T o o8 (810
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After the non-linear least—squares problem, eq. [8.8] is solved, a value-set &, will
be determined that does not, however, completely satisfy eq. [8.5 In order to
completely satisfy eq. , the user would have to redefine the weights ¢; ,j > 0,
so that they would be equal to the RHS of eq. for the &, that was just found.
Equivalently, the solution of the least—squares problem will yield a value—set & (for
which the gradient of the objective function J will be computed) that corresponds
to the coefficients '

c; =sign(F")Y;(&), j=1,....,q (8.11)
and, as a result, the gradient of 7_ ¢;|F| instead of that of Y °%_, (;[F7| will be
computed. This essentially means that the whole optimization will correspond to a
somewhat different objective J, than the one initially chosen. This will be shown to

be a minor issue and a small price to pay though, if a major gain in computational
cost is to be achieved.

8.3 How to Apply the Idea - Discussion

Summing up, it has been proven that the solution of the adjoint equations without
uncertainties can be sufficient, when the goal is to compute the gradient §.J. To
achieve this, the solution must be made for a fixed &, which is determined by
solving the least squares problem discussed in the two previous sections.

However, one first thing to notice is the approximation of the infinite sum in eq. [8.4]
Should the chosen chaos order be not high enough, the DDSP method is expected
to have a non—negligible error in estimating /. More specifically, low chaos orders
may not be sufficient to approximate the infinite sum of eq[8.4} in this case, the
derivative d.J would be set equal to a sum containing not only dJ but also some
other, non—negligible, terms, eventually leading to inaccuracies.

For example, assuming one uncertain variable m = 1 and a chaos order C' = 1,
eq. m yields ¢ = 1. Then J = (o|F°| + G|FY|. Tt is possible, though, that the
term FZ, which corresponds to C' = 2, is non-—negligible compared to F' (terms
that correspond to C' > 2 are assumed negligible). Therefore, it would have been
preferable to set C' = 2. Having chosen C' = 1, eq. would be written as

8. = OF = (osign(F°)0F +(isign(F)IF! = §F Y(&)+0F'Y1(€)+ 0F?Y5(&,)
f
After this issue is dealt with and a high enough C'is chosen, the following steps have
to be followed in every robust design optimization cycle
e Solve the primal iPCE equations
e Solve the least squares problem, to find &g
e Solve a primal and an adjoint problem without uncertainties, for £ = &, and

compute 0.J
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Instead of solving the primal problem without uncertainties in order to obtain U (&),
the iPCE primal equations can be used as a surrogate model. The spectral repre-
santation of U, which becomes available after the iPCE equations are solved, is an
explicit expression of U, as a function of &. Setting & = &, yields U (&).

The approach used in this diploma thesis is slightly different though. The only
information required from the relatively costly step of solving the iPCE equations is
to find sign(F"), i =0, ...,q. For this reason, the first step described above can be
shortened to a great extent; one only needs to solve the iPCE equations up to the
point where the signs of the spectral coefficients F are safely determined. To this
end, a loose ‘convergence’ criterion is applied, making this step much more faster
than completely solving the iPCE equations.

8.4 Applications/Comparison with adjoint iPCE

In this section, the DDSP method is applied to the isolated airfoil case presented in
chapter 9, for laminar flow conditions. Recall that the airfoil was created from two
Bezier curves and the coordinates of their control points are the design variables. In
all cases, the Qol of the problem without uncertainties is

F=80C,—-C, ) +Cp, Cp,. =018, =0.2 (8.12)

8.4.1 Accuracy Tests

First, we discuss the accuracy of the DDSP method in correctly evaluating deriva-
tives. All tests are carried out for a single uncertain variable, the free-stream Mach
number, and the derivatives are found by applying the finite difference method to
the iPCE solver (yielding the ‘exact’ derivative). After that, eq. is solved to find
a fixed &, for which finite differences are applied to the solver of the deterministic
equations, yielding the derivating computed by the DDSP method.

First Test

The first test is carried out for C' = 1 and a probability distribution of the free—
stream Mach number given by

My ~ N(0.5,0.01) & My, =0.5+0.01¢ , £ ~N(0,1) (8.13)
while the objective function is defined as
J=|F° +10|F"| (8.14)

which implies that (; = 1 and (; = 10. Note that the requirement that (, =
Yysign(F°) = 1 is satisfied in this case.
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The solution of eq. is straightforward
Yi(&) = Gusign(F') = & = 10 (8.15)
since F'* was positive. Therefore,
My =0.5+0.01& = 0.6 (8.16)

is the boundary condition for which the deterministic problem has to be solved, in
order to compute the derivatives with the DDSP method. Hence, the DDSP deriva-
tives were found after the application of finite differences to the primal problem,
after setting M., = 0.6. The comparison was made with the derivatives found by
applying finite differences to the primal iPCE solver.

The results are shown in fig. and in table It is evident that there is very

good agreement between the two.

Pressure Side Suction Side

Control Point # | FD (iPCE) | DDSP | FD (iPCE) | DDSP
-0.55071 | -0.55756 0.78802 0.79789
-0.58644 | -0.59409 0.58944 0.60527
-0.37392 | -0.38137 0.27344 0.28936
-0.19606 | -0.20255 0.08028 0.09312
-0.08533 | -0.09038 | -0.00864 0.00050
-0.02707 | -0.03060 | -0.03625 | -0.03049
-0.00433 | -0.00652 | -0.03277 | -0.02953
-0.00585 | -0.00712 | -0.01478 | -0.01332
-0.03228 | -0.03357 0.01065 0.01144

© 00 1O UL W N

Table 8.1: First accuracy test. Comparison of finite difference derivatives computed
by the iPCE solver and the deterministic solver for input boundary conditions deter-
mined by eq (DDSP method), for one uncertain variable and C = 1.
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Figure 8.1: First accuracy test. Comparison of finite difference derivatives com-
puted by the iPCE solver and the deterministic solver for input boundary conditions
determined by eq (DDSP method), for one uncertain variable and C = 1.

Second Test

The second test is similar to the first, with a higher standard deviation of the free—
stream Mach number though, namely

My, ~ N(0.5,0.07) & M =05+ 0.07¢ , £ ~N(0,1) (8.17)
and the objective function is defined as
J=|F°|+5|F"| (8.18)

which implies that (; = 1 and ¢; = 5. Again, the requirement that {; = Yysign(F°) =
1 is satisfied. The solution of eqf8.5] yields £ = 5 and now the imposed boundary

condition is
My, =0.5+0.07¢ = 0.85 (8.19)

which is aerodynamically much higher than 0.5. The results are summarized in fig.
B2 It is evident that the DDSP method is somewhat inaccurate this time. This
should be attributed to the relatively high variance of the boundary conditions,
combined with the low chaos order chosen. This test highlights the main drawback
of this chapter’s idea, which is its dependence on the chosen chaos order, if we are
to have accurate results.
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Figure 8.2: Second accuracy test. Comparison of finite difference derivatives com-
puted by the iPCE solver and the deterministic solver for input boundary conditions
determined by eq (DDSP method), for one uncertain variable and C = 1.

Third Test

In this final test, the free-stream Mach number is again given by eq. [8.17 This
time, however, the method is tested for C' = 2 and C' = 3. Recall that, for C' > 1,
a least squares problem has to be solved, eq. 8.8 to determine the value of & for
some desired ¢;. However, the resulting & will not of course satisfy eq. For this
reason, the derivatives computed by the DDSP method will correspond to different
coefficients ¢; than those given by the user, that are found from

¢; = sign(F)Y;(&.)

In table the solution &, of the least squares problem is given, for C' = 2 and
C' = 3, along with the user—defined (; and the resulting c; that are found from
eqB.11} Therefore, finite differences were applied to the deterministic equations
for the values of the infinite Mach number found in table which resulted in
the computation of the derivatives that correspond to the coefficients ¢;. For the
comparison to be fair, finite differences were now applied to the iPCE solver, not
for (; = 5, but for (; = ¢;. Results are shown in fig{8.3| It is now clear that the
proposed method is accurate and the accuracy increases with the chaos order.
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C=2|C=3

5 | 2.9598 | 2.7918
5 | 5.4874 | 4.7646
- 5.3810
& | 2.9598 | 2.7818
My | 0.7072 | 0.6947

Table 8.2: Summary of least squares solution for C = 2,3, along with the resulting
value of the boundary condition.
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Figure 8.3: Third accuracy test. Comparison of finite difference derivatives for C = 2
(top) and C = 3 (bottom), calculated by the iPCE solver and the DDSP method.

The main conclusion of these accuracy tests is that the DDSP method correctly
finds derivatives if the chaos order is relatively high (C' > 1) or if the uncertainties
are rather small, so that they can be correctly quantified for C' = 1.
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8.4.2 Optimization — Comparison of Computational Cost

The DDSP method is now applied to the optimization of an isolated airfoil at laminar
flow conditions; the objective function is the drag coefficient in the case without
uncertainties. Uncertainty is introduced through the free—stream Mach number,
free—stream flow angle and chord-based Reynolds number, that have the following
probability distributions

Mo ~ N(0.5,0.05) , as ~U(—1.5°25°) | Res ~ N (5000,300)  (8.20)

The objective function to be minimized is defined in this case as

q
J=YGICh . G=1,¢=5,j>0 (8.21)

1=0

Comparisons in terms of computational cost and drag minimization are made be-
tween the DDSP and the adjoint iPCE approach.

Optimization for C' =1

The results of the optimization for C' = 1 are summarized in fig[8.4] where the mean
drag coefficient, its standard deviation and the objective function are shown, as a
function of the optimization cycles. Note that these values were available every
two optimization cycles, when the DDSP method was applied; this is because the
application of this method does not require the full convergence of the iPCE solver
in every optimization cycle. So, to save time, the iPCE was allowed to fully converge
once every second cycle.

It is evident that both the adjoint iPCE and the DDSP methods failed to prop-
erly lower the standard deviation of the Qol. Although small values were achieved
(especially in the 12th optimization cycle), the convergence was not smooth but
had many oscillations. In both methods, this should be attributed to the choice
of chaos order, which seems not high enough to correctly estimate the true value
of the standard deviation. It is also clear that the results of the two methods are
close. The reason any differences are seen is unclear though; since the derivatives
were calculated using the fast, but rather inaccurate, SI (Surface Integral) adjoint
method, it is not certain whether they should be attributed to the DDSP method
or to the accuracy of the adjoint SI calculation.

Finally, in terms of computational cost, the DDSP method is noticeably faster; it
required 869 seconds, whereas the adjoint iPCE method took 1673 seconds to be
completed. This difference could grow even more, if the iPCE solver used in the
DDSP method was allowed to converge more rarely than once every two optimization
cycles.

70



0.088 g—

0.1

0.098
0.096
0.094
0.092

0.09
0.088

0.086 ~ L

- \‘“"\/ = f//"‘*\
0.084 .
0.082 | :
0.08 L L L L

" C=1 adjoint iPCE

C=1DDSP —=— |

T
s

8 10 12 14 16

Optimization Cycles

0.086 |\,
0.084 |
0.082 |
0.08 |-
0.078 |
0.076 |
0.074 |

Mean Drag Coefficient Cp®

0.072 -

0.07

e

" C=1 adjoint iPCE

C=1DDSP —— 1

0.00132

0.0013 |-
0.00128 - 4~
0.00126 [ |

0.00124 |
000122 |/
0.0012 |-

0.00118

Standard Deviation of Drag Coefficient

8 10 12 14 16 18

Optimization Cycles

0.00116

"C=1 adjoint iPCE |

C=1DDSP

20 2 4 6

8 10 12 14 16

Optimization Cycles

Figure 8.4: Optimization results for C = 1. Value of the Qol (top), mean drag
coefficient (bottom left) and standard deviation of drag coefficient (bottom right).

Optimization for C' =2

Similar results to those previously presented for C' = 1 are now shown in fig[3.5]
for C' = 2. This time, the convergence of the standard deviation value is somewhat
smoother, although in the adjoint iPCE case it still has some oscillations. In terms
of computational cost, the adjoint iPCE needed 5710 seconds, while the DDSP only
took 1908 seconds to be completed, offering thus a major gain in computational
burden.

In addition to that, it seems that the DDSP method yields lower values for the
Qol. Although this might be coincidental, it can be argued that the DDSP method
can sometimes compute derivatives more accurately than the adjoint iPCE method.
More specifically, both the adjoint iPCE and the deterministic adjoint solver used
in the DDSP take the values of the field variables U as input. In the adjoint iPCE,
the PCE of U is truncated, based on the chosen chaos order; in the DDSP method,
however, this is not the case. The value of U (& = £;) that is used as an input has
no truncation, which may be a reason why the DDSP derivatives can sometimes be
more accurate.
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coefficient (bottom left) and standard deviation of drag coefficient (bottom right).

8.4.3 Overall Conclusions Regarding the DDSP Method

Value of the Qol (top), mean drag

Overall, it is clear that the DDSP method is preferable probably to the adjoint iPCE
method, mainly due to the huge gain in terms of computational cost it involves
and its simplicity (no adjoint iPCE programming needed). The limitations of the
method have to be taken into account of course, as it generally fails for low chaos
orders; that being said, it may sometimes be preferable to apply the DDSP for a
higher chaos order, than the adjoint iPCE method for a lower one. Finally, the
DDSP method limits the choices regarding the selection of the coefficients (; of the
objective function, as a least squares problem has to be solved and the resulting
coefficients are those given from eq. [8.11} probably a small price to pay.
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Chapter 9

Overview and Conclusions —
Future Research Ideas

9.1 Overview

This work proposed an intrusive PCE method that also benefits from the simplicity
of non—intrusive approaches. The changes in the software it requires are minimal
and its applicability is wide, as it does not depend on the governing equations of a
problem.

In chapter 3, several new definitions were given and some propositions were proven.
This way, the theory behind the proposed iPCE method was established. It was
shown that there is no need to derive the iPCE equations by hand, as is usually
the case in ‘conventional” intrusive approaches. Instead, non—intrusive operations
were introduced, so that the residuals of the iPCE equations can be computed.
Moreover, a numerical solution scheme was derived, which still does not ask for the
explicit derivation of the iPCE equations, but is based on the solution scheme of their
deterministic counterpart. Ways to drastically reduce the memory requirements and
computational cost of the method were also presented. The proposed approach was
not specific to any set of equations and was rather general; this is a huge advantage
over other intrusive methods, that greatly depend on the set of governing equations.

In chapter 4, the proposed method was applied to aerodynamic problems. It was
programmed for 2D and 3D flow problems, in laminar or turbulent flow conditions,
using the Spalart—Allmaras turbulence model. Comparisons in terms of accuracy
and/or computational cost were made with the Monte—Carlo and the niPCE method.
It was found that the iPCE approach outperformed the other methods, as it was
significantly faster and just as accurate.

In chapter 5, the continuous adjoint equations of the proposed iPCE method was
derived. Again, the approach was general and not specific to the governing equations
of a problem. Non-intrusive operations were again added to the method, so as to
make it painless and easy to program, with as little interventions in the original
deterministic code as possible.
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In chapter 7, the previously mentioned continuous adjoint method was programmed
and applied to an isolated airfoil in laminar flow conditons. Shape optimizations
under uncertainty that aimed to minimize the drag coefficient were carried out. The
optimized airfoil geometries were shown to have a robust performance in the presence
of uncertainties, when compared to geometries that resulted from optimizations that
did non acount for uncertainties.

In chapter 8, an alternative approach to compute the sensitivity derivatives of an
objective function was proposed. The DDSP method replaced the adjoint iPCE
equations with a deterministic adjoint problem. After several accuracy tests, the
accuracy of the method was well-established. In addition to that, the DDSP method
also allowed for looser convergence criteria of the iPCE equations. Thus, overall,
the DDSP method offers a huge gain in computational cost, when compared to the
adjoint iPCE equations. This was shown, as the method was applied to a 2D airfoil
and compared to the adjoint iPCE solutions.

Overall, the conclusions of this diploma thesis are summarized as follows

e The proposed iPCE method combines the merits od both intrusive and non—
intrusive approaches.

e The implementation of the method is painless, as the programming required
is the least possible.

e No mathematical groundwork is required to derive and discretize the iPCE
equations.

e The proposed approach is general, robust and applicable to any set of PDEs.
e The same is true for the proposed adjoint appoach and the DDSP method.

e The adjoint and the DDSP methods offer a computationaly affordable way to
take uncertainties into account in optimization and robust design.

9.2 Proposals for Future Work

Regarding future research ideas, the following are proposed

e Application of the proposed iPCE approach using a method of estimating the
Galerkin projections involved other than the Gauss Quadrature, such as least—
squares. This could help speed up the ‘non—intrusive’ part of the method.

e Formulation of the method’s continuous adjoint when there is uncertainty in
the domain of the problem, i.e. shape uncertainties.

e Application of the adjoint iPCE approach (or the DDSP method) to real-world
3D problems.

e Use of the proposed iPCE approach as a surrogate model. For instance, the
dependance of a Qol to the changes in the flows’ boundary conditions can be
found through its computed PCE coefficients.
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e Use of arbitrary probability distributions, which result from curve-fitting of
data points. The corresponding orthogonal polynomials can be created through
the Gram—Schmidt process (see chapter 2).

e In all applications presented in this diploma thesis, the probability distribu-
tions of inputs/boundary conditions were arbitrarily chosen. Methods such as
Bayesian UQ approaches can be used, so as to better define such distributions.
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Appendix A

Proof of Proposition 3.3.1

Let D :={dy,...,dq} and Q := {&1,...,&4} denote the sets of quadrature weights
and nodes, corresponding to d value—sets of the uncertain variables & € R™, where
d=(C+1)"; C is the chosen chaos order.

Then, we assume that the chosen chaos order is such that U (£) is exactly equal to
the truncated expansion of the flow variables U with ¢ terms, namely,

U= Z U'Y;(§) (A1)

In what follows, let G4 [UP] = [(U®)®), ... (U7)®]" denote the PCE coefficient

fields at the p-th iteration, as found by the iPCE and G4 [U'P)] = [(U)®, ..., (U")P)]T
denote the PCE coefficient fields at the p—th iteration, as found by the niPCE.

Upon completion of the p —th iteration of each non—intrusive run, U and R fields at
each Gaussian node of Q are available; these are denoted by U'®)(&;) and R/®)(§;)
respectively. Then

(U')? ZdY &)U (&)

=1

(R9)" = ZdY &RV () (A.2)

To prove proposition [3.3.1], it suffices to show that
(U2)? = U)¥ mplies (U?)" = (U)"Y, g=0,....q  (A3)
The solution of eq. for each £ € Q leads to
U'rt(g) =U"(g) - T R™(&) (A4)
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where J = aR(p) . Assuming U Ug'(p ), which also results to

(ROD = (R, g=0.....q (A5)

the application of eq. [A.4] for all £ € Q, by considering eq. [A.2] leads to

(U')®+y Zd Yy(&)T (&) RP (&) (A.6)
Moreover
Qa [U(p+1)] el [U(p)} el [\7—1} Qa [R(p)} (A.?)

From eqs. and it can be seen that in order to prove that (U9)PTD) =
(U)Pt) | g =0,...,q, it suffices to show that

d
N Y, (€)T &RV (&) = G [T G [RW]
Thus

G j—l zq: gk: Rk’ (p) —
=0
q d
Zdj (&)Y, (&) D Yi(&) Z P(&)Yi(&)) =
k=0 j=1
Zdj (&)Y,

MQ

- Z 0T (€)Y, (€)RP(&)

k:

Note that eq. holds only approximately due to truncation and so does eq. [A5]
Therefore, it is expected that the results of the proposed iPCE formulation will
tend to those of the corresponding niPCE, as chaos order increases. Also, since the
correct solution G4 [U] is obtained after all non—intrusive runs are completed, the
iPCE will also converge after the last run is completed, that is, after max(nq, ..., ng)
iterations.

Proposition (3.3.1]is an important property as it implies that the only prerequisite for
the convergence of the iPCE equations is that the corresponding problem without
uncertainties converges for all £ € Q. In other words, ensuring that the solver in eq.
converges for input uncertainties, taking the fixed values given by Q is sufficient
for the iPCE equations to converge as well.
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Appendix B

Discrete Adjoint of the iPCE Problem

The Discrete Adjoint of the iPCE equations is presented in this Appendix. Again,
emphasis is laid on establishing a general, flexible method that is easy to program,
given some existing software that solves the deterministic equations’ adjoint prob-
lems.

B.1 Deterministic Discrete Adjoint Problem

The discrete primal residual equations are written as
R(U,b)=0 (B.1)

where U is their discrete solution, i.e. the field variables at every mesh node, and b
is the array of design variables. Let I(U,b) be a chosen discrete approzimation of
the selected objective function. For instance, if the objective function is an integral,
then I(U,b) is essentially a sum of terms involving U and b. Then, the total

derivative of I with respect to b, § = % is
ar\" oI
A e
Also oR OR

since R = 0 regardless of the choice of b. Solving eq[B.3| for 06U and substituting
into eq. leads to

51— (OL\" (9B OR oI
N oU ouU ob  Ob

81



which, through the discrete adjoint equation

OR\" ol
(25 4, 2 B
is finally written as
OR 01
gyl 7=~ el
0ol =W % + % (B.5)
B.2 Discrete Adjoint iPCE Problem
The discrete iPCE primal residual equations are written as
GYR]| =0 (B.6)

and G9[U] is their discrete solution. The objective function chosen in this case
involves the spectral coefficients of the PCE of the deterministic objective function
and its discrete approximation is

J =361 = ol e (B.7)

where (; are some user-defined weights, ¢ := Y ~1_, (;sign(I’)Y (§) and IV = (I,Y;)
are the spectral coefficients of the discrete deterministic objective function. To
formulate the discrete adjoint equation, we first differentiate eq[B.6] with respect to
the design variables (note that operators §() and G4 [] permute and recall proposition

3-9)

OR OR
q — (g —_a| 2 qa q| Y _
(GY[R]) =G [éR] =G {aU] GioU] + G {(%1 0 (B.8)
We then differentiate J and use propositions [3.5 and [3.6}
(a1 \" oI
_ a1AT a el el
5] =aidta <0U) U + 8b]
[ (o1\" (OR\ ' OR  aI
o[ () (%) %8
I ou ou ob  0b (B.9)
or 1" OR\ OR - oI
—_ a2 a|_ 2% q| g7t q a| 22
S R € B b R

_Tqa_R qqu
_\IJG[ab]JrG[Q]G[ab}
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where

Gq

OR\" or1"

— v N =—| = B.1
(aU)] A (B.10)
is the discrete adjoint equation, the solution of which allows for the calculation of
the sensitivity derivatives, given from eq[B.9}
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Appendix C

Gauss Quadrature Nodes and Weights

Below are summarized the values of the nodes and weights for GQ-based integration
involving probability distributions, in the corresponding intervals of orthogonality.
Recall that for a single variable and a chosen chaos order C', the order of the quadra-
ture is given by

d=C+1

which guarantees the exact evaluation of integrals involving two polynomials, each
with degree up to C.
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Hermite Legendre
Normal Distribution Uniform Distribution
w(f) = S=e ¢/ w(é) =3
€ = (—00, +00) E=(-11)
£ | w £ | w

1.00000000000000
—1.00000000000000

0.50000000000000
0.50000000000000

0.57735026918963
—0.57735026918963

0.50000000000000
0.50000000000000

0.00000000000000
1.73205080756888
—1.73205080756888

0.66666666666667
0.16666666666667
0.16666666666667

0.00000000000000
0.77459666924148
—0.77459666924148

0.44444444444444
0.27777TTITTITT78
0.27777TTITTITT78

0.74196378430273
—0.74196378430273
2.33441421833898
—2.33441421833898

0.45412414523192
0.45412414523192
0.04587585476807
0.04587585476807

0.33998104358486
—0.33998104358486
0.86113631159405
—0.86113631159405

0.32607257743127
0.32607257743127
0.17392742256873
0.17392742256873

0.00000000000000
1.35562617997427
—1.35562617997427

0.53333333333331
0.22207592200559
0.22207592200559

0.00000000000000
0.53846931010568
—0.53846931010568

0.28444444444444
0.23931433524968
0.23931433524968

S OO OO OO O O O U s s s s W Wi N &

2.85697001387281 | 0.01125741132772 0.90617984593866 | 0.11846344252809
—2.85697001387281 | 0.01125741132772 | —0.90617984593866 | 0.11846344252809
0.61670659019260 | 0.40882846955603 0.66120938646626 | 0.18038078652407
—0.61670659019260 | 0.40882846955603 | —0.66120938646626 | 0.18038078652407

1.88917587775371
—1.88917587775371
3.32425743355212
—3.32425743355212

0.08861574604194
0.08861574604194
0.00255578440206
0.00255578440206

0.93246951420315
—0.93246951420315
0.23861918608320
—0.23861918608320

0.08566224618959
0.08566224618959
0.23395696728635
0.23395696728635

Table C.1:

Hermite and Legendre GQ weights and nodes
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Kepdhawo 1

Eicoaywyn

1.1 TIloocotwxornoinon tng ABeLodtnTog

2TIC TEQITTAOELS TTOL 1) G TOYAUOC TUXOTNTA 0T TROBATIUUTA PEUC TOUN Y UVIXTG AUEAELTAL, OL
xHOwee Trohoyotnhc Peuotounyovixic (YPA) mpokéyouv poéc mold anoteheopo-
Txd. ‘Oueng, oe mAlog Teplntoewy oL aEfateg TapdueTeoL £Youy onuavTixy enidpacn
oTNV anddoor evoc cuoThuaToc. [o mapdderyua, 1 anddoor evoc cUUTEG TH) AAAILEL
dpaoTixd av petaBAndel n ywvila g poric otny elcodd tou. T tov Adyo autd, o-
vantvocovton pédodol Ilocotixonoinone ABeBadtnroc (Uncertainty Quantification,
UQ), dote va uroget vo yivel tocotixr extiunon tng enidpaone oaf3éBouwy napopétowy
oty Hoodtnro Eviugépovtoc (Quantity of Interest, Qol)

Oplopévec pédodor UQ elvon oL e€ric:

e Médodol toyaotnic Aerypatorndioc (Stochastic Sampling)
Efvar ot o axpiBelc ahhd xon umoroylotind oxpl3éc pédodot, agol nepthou3dvouy
™ AN TOMGY BetypdTtey, dnhadr Aboewy Tou TeolAfuatog ywelc oafeBoudtn-
TeC, WOTE Vo Unopéoet v extundel 1 xatavour mavotntog g €€660L TOU
evotapépel o unyavixod. Tétoeg pédodor etvon oo Monte Carlo, quasi— Monte
Carlo o n Latin Hypercube , [1, 2, 3].

o Médodor Lratiotindv Ponwv (Method of Moments)
Ye authv ™ pédodo yenowonoteiton 1o Taylor avdmtuypo tng Xol, yéow tou
omofou exgpedlovian ol oTaTIoTIXES poméc TN Qol cuVaETACEL TWY ToEUY WYKLV
e w¢ Tpog Tic af3éBates yetofPAntée, [4, 5.

o Ytoyoaouxy Hopddeon (Stochastic Collocation)
Ye authv ) pédodo 1 Qol exgpdleton we avdntuypa Ye Bdon To ToAuGVLUA
Legendre . Me Adn Tyodv tne yia S1dpopec TWES TV aEfotwy TopopuéTeny
yiveTtow xotdhAnin mopeuBorn xar mpooeyyileTan 1) CTATIOTIXNY CUUTEQLPOEE TNG
6, 7, 8].

o daocpotixéc Mébodol (Spectral Methods)
Y1ig aouatixég puedodoug, i Qol  exqpdletan péow cuvapthoewy Bdong mou
oynuatiCouv Tov Xd)po/cpd«jpoz TWY OTOYUOTIXWY El000wY. Evo mopdderyua go-
opotixfc peddédou eivar to avdmtuypa Karhunen-Loeve , [9, 10]. To Avdntuy-
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ot HHodvwvuuixot Xdoue (Polynomial Chaos Expansion, PCE) eivou pio 40
uévodoc, [11, 12]. Awxpiveton oe eneyfatixd xou un-eneyfatixd, ovdhoyo Ue
T0 av amauteiton 1) Oyl Teomomoinomn Tou Aoyilouxol enilucong TwvV eElOOOENY
(13, 14, 15, 16, 17, 18, 19, 20]. Extevic olyxpion twv 0o yedddwy mopouot-
&leton oo [21].

1.2 BeAtiotonoinon XtiBapol Xyediacuov

O ofeBardtnrec oto mepBdiiov H/xan oTic oLVIRXES hertoupyiag EVOS GUOTAUNTOC
OTNULoLEYOUV ™y vy X YL E‘uﬁapo Yyedwopd (Robust Desgin) OnAad” TOV CYE-
OLOUO CUCTNUATWY TWV OTO{WY 1 omoSoon dev arhdlel Onpavnxoc oty pemﬁa)\)\erw
T0 TEPYBdAAoV Toug. Madnuatd, avti tng ehaytotonoinong ulag cuvdptnone F, o
L1Bopoc Yyedlaoudg ehayto TOTOLEL Uiol TOGHTNTO TNES UOPPHC

/LF+I€UF, k€R+ (].].)

Omov pup ebvan 1) YEOT) TWN X O 1) TUTIXT amOXALloY TN £, evey To k elvan €vag ou-
vieAeo Trc Popitntag mou divel o yernotne. Mia uédodog UQ emitpenel Tov unoloyloud
TV THOY TV CUVIRTACENY K¢ auth TN e&. 1.1. Me ) yeron otoyac Ty uedodwmy
BehtioTonolnorng, 6mwe ol eCehxtixol ahyopriuol, auto ebvar apxeTod yior va yivel 1 Bek-
Tiotonoinon [22, 23, 24, 25, 26]. H @e)\ucmnoincn uTopEl PUOLXS VoL YiveL xou UE Y EToT
e xhlong tne ouvocpmcng otéyou (6nwe avth e e€. 1.1) we TIPOC TiC pswﬁkmeg
oyedlaouol, 1 onoia U‘J‘EO)\O‘YLCETO([ Vholel®) ouCuycov Tsxvmwv 27, 28], 61 Yweroa xou
0T BITAWUOTIXT OUTH spyamoc 6mou mpotelveTo ptoc ouvexng Gulmmg TEOCEYYIOT Yo
TOV UTIOAOYIOUO Topary YWy evoncinolog cuvapThoewy onwe auth tng €&, 1.1,



Kegdhawo 2

Opdoywvia IToAvwvupa xaw PCE

Ye qUTO TO XEPIAALO ELGEYOVTOL Tol 0pUOYMVIOL TOAUGMVUNA, TOU amoTeAOUV Baoxd
otowyelo tng Yewplag Tou PCE, 1o onolo avaAdetan o1 ouveyeLo.

2.1 OpYoyovia IToAuvdvuua

Miag petofAnTtrg

Opiopos 2.1.1. Ma oeipd rolvwviuwy {p,(§)}o, pe degree [p,] = n ovoudletar
optoydra ws mpos tn owdptnon w(§) oo didotnua (a,b) av

b
(Pos P} = / PP (E)w(E)AE = S (prs ) (2.1)

OTOU Oy, €lvar To 0éAta tov Kpdvekep. Av < p,,p, >=1Vn € N, tdéte ta noAvoruua
Aéyovtar oporavovikd.

IToAN &V peTaBAnToy

Trodétoupe m oelpéc opdoymviny Tohuwvipey pioc uetoBintic p* = {pk (&)1, k =

1,...,m. Kdde oepd eivan optoyidvio g mpog pla suvdpetnon Bdpous wy (&) ye tedio
optopol ;. Metall onolovormote TéToiwy oelp®y opileTon Ve TaVUGTIXG YIVOUEVO,
o¢ eZhc

Opropos 2.1.2. To tavvonikd ywiuevo 6vo oepdv ovvaptrioewy A = {a,(&1) 152,
kar B = {b,(£2)}52, opiletar wg

A®B = {@m(fl)bng (52)}2?@2:0 = {aoboa a1bo, agby, aiby, azby, agbs, . . . } (2-2)
Yuvenoe, umopel v oploTel 1 oxdhovdn ceLpd TOALOVOUWY M UETABANTOY
Y = {Ya}olo = @ip’ = {pn, (€0)p1, (&) - D (6m) 308 a0 (2.3)

,,,,,
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Autd ta mohumvupa elvar 0pdoyOVIO WEC TIEOC TO ECWTERIXO YIVOUEVO
< f,g>w= / fgWde, .. . W= ij &) (2.4)

T0 0Tol0 ATOBEXVUETOL 0 EENC

/Yledel coodxy, =
£

/ prlu(fﬂl)plll(xl)wld%' / pZZ (l'm)])zl(xm)wmdﬂfm =
&1 Em

5n1l1 < Dni;Pny Zwy - - 5nmlm < Prms Prn, = wm = 5kl < Yka Yk >w

2.2 PCE pag ouvdetnong

‘Eotw ¢ = ¢(&§) pio cuvdptnon tou &.
Opiopos 2.2.1. To avdtuyua molvwvupikod ydouvs PCE tov ¢(€) opiletar ws n
drepn oepd
=) V(6 (2:5)
=0

émou ta moAvdvupa Y efvar opfoyivia ws rpos ) avvdptnon W(E) = [[7L; w;(&;)
Ka1 01 CWVTEAEOTES TS O€lpdS divovTar and T oxéon

¢’ = (6(€),Y7) (2.6)

M Boourr| wotnTa ebvan 1 €€h¢
IpéTaon 2.2.1. O1 gacuatikoi ovvteeotés tov PCE wov ¢(€) ikavomooly g
oxéoes

E[¢] = py = ¢°

Var[¢] = o} = Z(< Y;, Y > @) (2.7)

J=1

T0 0Tofo UTOBEXVIETOL EUXONAL, APOY

no= [ owie = [ ovawag = o



7 = /g (0= ey wie = | (ZM(&)—&) Wag —

5o [riomamie = £ S <t o e o1

j=1 k=1 =1 k=1

2.3 Mn-EnreuBatixé PCE (niPCE)

Y10 niPCE, 1 Qol ypdpeton v

F =% FY;(€ (2.8)
j=0
Emouévec
E[F] = F"
Var(F] =) (< Y;,Y; > F/)? (2.9)
j=1

To Topamdve aVATTUYHO ITOXOTTETOL, XPUTHVTIS TENEPACUEVO aptdud (¢4 1) bpwy, o
omoiog xadopileton and TNy emhoyn 18NS ydoug C xou amd to TAfdoc m twv a3éBaiey
HETOBANTGY xan divetan amd

_(C+m)!
Tote .
F=3" Py (2.11)
7=0

oL oTUofVEL OTL OL PaoUATXO! GUVTEAEGTEC TIOU TRETEL VAL UTOAOYLOTOUV Efvon oL
sz<F,Yj>z/FY;Wd§ i=0,...,q (2.12)
£

Auto yivetan e apriuntind ohoxAfipwor, tou anaitel T A oplopévewy Tuey Tne F e
empépouc Teed{pota Tou hoytopxol allohdynone, onhadr Tou xwdwo TToAoYIoTIXAC
Pevotoduvauixnc otny nepintwon tng epyaciog authc (1 oTdrmote dhho, ot yevixn
TepinTwoN).



2.4 ErepBatixéd PCE (iPCE)

Y10 iPCE ypdgouue

q
U=> UY(¢) (2.13)
5=0
omou o medla U7, j =0,..., ¢ ebvou ot dyvwotol tou tpofiiuatoc. H éxppaor tou

U cwoéyetan t61e oty elowon R(U) = 0 tou npofriuotos ywelc ofefordtnteg
q
R (Z UjY(g)) =0 (2.14)
=0

xou xotomy eqapuolovtou meoforéc Galerkin, ondte mpoximTouy ot e€lowoElg

/R(iUﬂ'Y@)) Y, Wdé =0 ,k=0,....q (2.15)
&

J=0

Tou emAvovToL aELIUNTXXE 0ol Yivouv adlayéc 6To Aoyiowxd enthuong Twv e€lowoe-
oV Ywelg oafeBaotnTee.



Kegpdiowo 3

H Ilpotewouevn iPCE
ITcoceyyion

Ye auT6 T0 xEPIAto TapatiievTar Sudpopol oplouol xou TEOTACELC oL avamTUY dHay
yioo Tig avdyxeg e mpotewouevne iPCE petdddou. ‘Ohec ot oeipéc mohuwviuwy Yo
VYewpolvton optoxavovixéc amd €8k xau oto e€hc, (Y, Y,) = 1, ywpelc PAIBn yewi-
©OTNTAS.

3.1 Mepwol Ogiouol

Y€ 6AoUC TOUC TOEAXATL 0PIOUOUE UTOVETOUUE €val 0UVOAD T aveldpTrnTwy of3éBouwmy
uetoBAntodv € € R™, ue ouvoptroeic xatavounc miovotnros wy(&x) xat tedio oplouo
& Enlong, Unqﬂéroupe Eval ot’)n\;o)\o no)\ucov()p(ova = {Y,}>2, mou eivor opdoydvia
w¢ mpog t ouvdptnon W =[]i_, w; oto € =[]/, &

Opropos 3.1.1 (ITpoBor Galerkin Baduwtol yeyédouc). H mpoBorri Galerkin evis
Pabuwtov peyédous (&) oto moAvwvuuo Y; opiletar ws

¢ = /ggzﬁY}Wdﬁ (3.1)

Optopdés 3.1.2 (IlpoBorn Galerkin oioaviopatog). Ia kdle oudvvoua U(E) =
[UL(€), ..., U (6)]" € R, n mpoPorry Galerkin tov, wiéng q, opiletar wg

GiU] = [U°, U, ..., U (3.2)
ue U* = [UF, UF, .., UNT eR" | k=0,...,q

Enpsmvewt oTL ecpozppoyn ToU TE)\EZO'TY] G4} oe éva Baduwtod psysﬁog elvon €10y
TEPITTOOT Tou Topamdve optopol, yio n = 1. Av ¢ = ¢(§) € R, t6te Gi[p] =
[6°,... 01"



Optopds 3.1.3 (ITpoBorry Galerkin nivoxar). Iha kdOe nivaka A € R™™ ue otoyeia
A;i=A;;(&),n mpoporny Galerkin tov, wdéng q, opiletar ws to block untpdo

A A0L AL
A A Al
GiAl = | . : : : (3-3)
A0 Ad A
dérov o (i, §) oroiyeto tou AM € R™" bivetar and ) oyéon
AN = /gAinAY,,de =Y AL <Y, V)Y, > (3.4)
p=0

omov < Y, Y),Y, >:= fg Y, Y\Y, Wd§ .

YIS EQUPUOYES TNG TEOTEWOUEVTG UEVOB0L, OE OAES TIg TOCGOTNTES EQupUOlETOL TO (BLlO
oyfua anoxorhc (dniadn oe xdle avdmtuypa dtatneeitar o (Blog apriudc g + 1 dpwv).
Ye auTh TNV TERIMTWOT, AmodeEXVIOVTUL Ol axdAouTEC TPOTACELC.

IIpé6Taon 3.1.1. Av wa avartiyuata twv ouviotwowy twv A kar U arokomoly
otoug q + 1 dpoug, dnAadn

q q
Az-j:ZAijk(E) avod UJ:Z UfYk(E) wren 4,5 =1,...,n
k=0 k=0

arodeikvietal 0Tl

GI[AU| = GY[A] GU U] (3.5)
Anéoaén. 'Eotww f=AU 1 fi=A;;U;. Tote, yio xdde 0 < p < ¢

Tou ebvor T0 p-00T6 atoryeio Tou G [A] G {U|. O

IIpéTaon 3.1.2. I'a 6o dwuvdouata g = (91(€),...) avd h = (hy(§),...) ka1 pia
otaOepd \(&), wyve

G9[g"] GI[Ah] = (G [g"R])" G [N (3.6)

av ta PCE toug arokomolv uetd and g + 1 dpovg, onAaon
9= 9Yi€) . k=) mYi(€) . A=) NV
=0 =0 j

Arnéodeén.

G[g"] GY[Ah] = (¢7)" (A\R) = (¢7)"\*h' <V, V;, Y >=



(¢9)"h' < Y., Y., Y; > N = (GY[g"h])" G[)]
0

Ou mponyolueveg mpotdoelc elvar Pocinég yia Ty napcxycoyn TOU aptﬂmnxou OYNHATOS
eniluone twv iIPCE elio®oewy. Atleuxohdvouy eriong tnyv mapaywyr v ouluyoy
iPCE ello®oewy, oto xe@dhouo 5.

3.2 Apwuntxr, Eniivon twv iPCE Elicdoswy

‘Eotw mpdfinua and n MAE, mou ypedgetar ot dlaxplth LopdT| »¢
R(U)=0 (3.7)
[o un-ypoupxd mpoAfuata, To cLoTNUN 3.7 mMAVETUL UECW TOU ENMAVOANTTIXOD

oyfuatog (Yvwotol xat we Aéhta Awrtinwon)

OR
(%) AU = — (R)old y AU = Unew - Uold (38>

mou Aovetar w¢ teog AU xau axohovdeiton and TNy oxdoAoudr avavéwon
Unew = Upiqg + AU (39)

TV Twov Tou U oe xdie xoufo tou mAgyuoatog. Metd and autd To BAua, To choTnua
xotaoxeLdleTan Eavd xou emAVETOL, Uyl TN oUYXAoN (apxerc& utxpéc tpéc tou R).

H rnopandve dwdwacta epopudletar otic iPCE eliotoeig, €€, 2.15, mou ye amhn
aAhoryt) cuPBollouol yYedpoval wg

GI[R] =0 (3.10)

Abyw tne €€, 3.8 xou tne mpdTaong 3.5

G [25] G9[AU] = — G9[R] (3.11)

To 6e&i pyéhoc tne €. 3.11 unoroyileton Ye apriuntixnr oAoxA pwoT TV LTOAOITOY
R Tou pn-otoyactixol mpofifuatog. To Blo cuuPBaiver xa pe To aplotepd YELOS, Tou

, ; f)
BeloxeTon pe oAoxApwor Tou %.

3.3 Efowovounon Mvrung xow YT rToloyLotixov
Kéotouc oto iPCE

e qUTAY TNV EVOTNTA AVUAVETAL EVaC TEOTOC emiTdyuvong tng enthuong twv iPCE
eZloWoEwWY, 0 omolog 0dMYel ot €E0IXOVOVNOY UVAUNG X UTOAOYIoTIX0) yedvou. H

9



€. 3.11 Cavarypdpeton o UNTEmIXY YEoPY| 1S

jOO jOl o qu AUO RO
jl(] jll . jlq AUl Rl

(3.12)

go gn - gn| lavd] g

6rouv J = %. To cbotnua 3.12 unopel va dlaomactel o€ uixpdTepa cuoThuata. Me
autd tov oxomd, N péon th U° 1wy poixev petafBintody npooeyyileta and o U
medio mou mpoxOnTeL amd dio enthuot Tou TpolAruatoc yweic aeBardtnteg €€, 3.7. H
eniAvon auth yiveton Vétovtag € = &, 6ToU oL GUVICTWOoES Tou &, eivan o pileg GAwY
TV 0p0oXAVOVIXGY TOAUWVIUWY Te®Tou Baduol. Tote, T0 6@dAua TNE TEOGEYYIoNG
elvou

a1 e ] e}
UE)-U'=> UYi(&)+ Y UYig)= > UYi(€=¢) (3.13)
i=1 i=q1+1 1=q1+1
omou To q; PBeloxetar Vétovtag C' =1 otny €. 2.10.

Emmiéoy, vy C'=1,

q1
T =D TG <YYo, Yu >= 60T (3.14)
p=0
Aol
<YVp7Y>\7}/u >= 50p5>\,u ) 1 SAa MSQI ) OSPSQI (315)
‘Apa, 1 €&, 3.12 hofdver Tn Loy
\71'00 jOl j02 . j0q1 AUO Ro
Jlooge o . o ||a R!
J* 0 g ... 0 AU? | = _ | R? (3.16)
quo 0 0 L \72(])0 AUN R%

Trodétovtac 6t 10 UP éyel tpoceyyiotel xohd, npoxintel To oupnépaopa 6tt AU~
0, 7o omolo duxaoroyel Ty amdpaoT va xpatnioly uévo to darywvia blocks tou mivoa
¢ €. 3.16. To amlomofuevo clotnua arotereiton and g;+1 cuothuata, dldoTaong
{Blag pe ot Tou TEOBAUNTOC Ywelc aefondTnTeg, Ue (Blo apLOTERPO XAl BLPOPETIXG
oe&l péhoc.

Eniong, dev ypewdleton var unoroyloTel To jfj’-o, ool unopel vo tpoceyioTel and to J
Tou LTOAOYIGTNXE OTNY TeheuTala ETaVAAN(T TNE emthuong Tou TEOBARUATOC YwelS o-
PeBoudtnreg mou édwoe Ty tpocéyyton Tou UL, Ta npornyolueve BAuata utohoyilouy
Toug ouvtereotéc PCE twv poixwv peyedoyv yio C = 1. Av C' > 1, n dwduacta etvor
nopopote.  O¢tovtag ¢ = ¢(C) xa unodétovtog 6L ol mpwtor ¢(C — 1) bpot eivou
yvwotof, ot utdhowmor ¢(C) — ¢(C — 1) bpot Peloxoviar ypnowonowdvtog Ty (B
TEOGEYYLON), ONAADT XEUTWVTAG POV To dlarywvia blocks tou.

10



Kegdiowo 4

Ecoapupoyn tnc Medooou iPCE os
ITooPBAApotat AELOBULVUULXTNS

Ye auTd TO XEQPIAAO TUPOUCIALETOL 1) EQUOUOYY| TNG TPOTEWOUEVNG UEVOBOU Xou €-
AéyyeTton 1 ToyOTnTar xon 1) oxetfBed tne. H pédodoc mpoypouupatiotnxe yia Tic €€
owoelg RANS ouuniestol peuctol, poali pe to yovtého topBng wlag edlowong, twv
Spalart-Allmaras, [29]. O mpoypoupatiouss éytve oe owxelo hoylopxd Pactoyévo oe
TEMEQUOUEVOUG OYXOUS XAl TNV XEVTRPOXOUPIXT OLoTOTWOT TOUG.

Meupovouevy Acpotoun

EmiVeton 1 TupBoong por) yiew and pla aepoTtour|, Ue yenon Tou yovtélou uiog eéiow-
onc Twv Spalart-Allmaras ;;. Ot Qol elvon oL cuvteheoTég dvwong xa omoVérxoucag
NG aepoToUNS, eV 1 af3efardTnTo ElodyeETon OTIC EELOWOELS PECW TWV 0PLAXWY GUVIT-
xwV NS Yoviag xo Tou apriuol Mach tng ehediepng porg xan tou apriuod Reynolds
mou Pooileton ot }0pdY TS AEPOTOUNS Ao, Moo xat Re, avtictotya. Ot xatavouéc
miovoTnTog mou emAEyUnxay etvar ot

oo ~U(1.5%,2.5°) My, ~N(0.3,0.01) Re~N(10°2.5 - 10%)

6mov N (1, o) cupPONTeL TNV Xovovixh xatavoun Ue UECT) TR [ xot TUTXY omdXALoN
o eved U(a,b) ouyBoriler tny opotouop®n xotovour| oto didotnuo [a, bl.

Ytov mivaxa 4.1 cuvodillovtan ta anoteléoyata TG TEOTEWOUEVNC pedddou (ot U0
otatoTég ponéc v Qol mou emAéyUnxay) o yiveton olyxplon Toug Ye auTd Tou
niPCE. O ypdévol éyouv adlactatononiel ye to utohoylotind xdctog Tou iPCE yia
C' = 1. Eivou mpogavég 6Tt oL 800 uédodol divouv (Bla TpaxTixd amoTeAéoUaTa, OIS
10 iPCE elvar apxetd ypnyopotepo. H pgon T tou medlou tou apriuod Mach xou 7
avtioToymn Tumxr| andxhion gaivoviar oto oy. 4.1, yio C' = 1.

11



iPCE niPCE iPCE niPCE iPCE niPCE
C=1 C=2 =3

e, 0.095598  0.095567 | 0.095591 0.095600 | 0.095611 0.095598
oc, 0.013534 0.013546 | 0.013535 0.013438 | 0.013535 0.013512
wep 0.029460 0.029540 | 0.029426 0.029538 | 0.029319 0.029539
ocp 0.000787 0.000764 | 0.000789 0.000768 | 0.000790 0.000768

. CPU. 1 3.678 2.933 9.598 20.196 36.714

time units

ITivaxoc 4.1:

pnetooovs 1PCE ka1 niPCE, ya C' = 1,2, 3, ka1 vtoAoy10tiké k60Tous.

YyAupo 4.1: TypBdong por) yUpw ané UeHOVLUEVN) aepotoun), e TpelS aféfaies ouvo-

TypPons pon yUpw amé HeHOVWUEVT) aepoToun), ME Tpes aféfaieg
opaxés ovvnres. Xrationikés porés tov Cr, ka1 tov Cp mou umodoyioTnkay ue TS

0.001 0.004 0.007 0.01 0.013

puxés ouvdnkes. Ymoloyiouévo péoo medio (aprotepd) kar tumkn andkhion (de&id) tou
ap1duov Mach (iPCE, C =1).

12



Kegdhawo 5

Yuveyne Xuluyne Medoodog Tou
iPCE

Y10 xe@dhono autd Topouctdletar 1 ouveyric culuyrc uédodog yia tic iPCE ediohoeie,
oe avuimoapaBohy ye Tig ouluyelg e€lonoelg Tou Tpofifuatoc ywel afeBadtnteg. Me
™ ouveyt) ovluyh pédodo utohoyilovton oL TapdYWYOL TS CUVAETNONG-0TOYOU (EX-
PEACUEVY LE TOUC (aopatixols cuvteheatéc Tou PCE tne Qol) we npog tic yetoffintéc
OYEDLAOUOU.

e Yuveyelc Yuluyeic Edlodoeig

AV — g =0 (yoplc offefudmrec) , GI[A¥ —( g] =0 (iPCE)

o Yuluyelc Optoxéc Luviixeg
B*W — h =0 (ywpic ofefoudtrec) , G [B*W —( h] =0 (iPCE)
6mou ¢ = 37 ¢sign(F7)Y;(€)

e YuVdpTNoT-XTOY 0S¢
q .
J = Z G| F’| (iPCE) % n Qol (F) av dev undpyouv afefordtnreg
=0
o Ilapdywyolr Evacinotac

6F = 6Fsp + 0Fyp (ywelc afefoudTnrec)

5. = G[¢)" G [6Fsp) + G [FS,]" GI[1] (iPCE)
6mov G4[1] = [1,0,...,0]

13
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Kegpdhouo 6

Eoappoyn tng Xuluyoig
Mevdooou tou 1IPCE

H npotewvouevn cuveyric ouluytc dlatinwon tapovotdleton Yo Ti e€lotwoelg Euler oe
oVo dwotdoelg. O e€lonoeic Euler ypdgovtoaw o cuvtnentixs yeopt| »we

0fi = A; a—UIO,G‘COQ
umn; =0,0t0 S (6.1)
U=U,, ot Sy
omou S elvon TO TEPlYPOUUA TNG UEQOTOURAC XL T2 = [nl,nQ]T 10 xd¥eTo povadiolo

otdvuoud tou. Emiong, to Se clvan To an’ dmepo bplo Tou ywpelou xa Uy eivon 1
ouvixeg ehetepne pofc. H Qol elvon 1 d0Ovaun tne dvwong

F=L= /p(n2 COS (o, — M1 SIN U )dS (6.2)
S

Me eqappoyr tou teheoti G| otig €€. 6.1 mpoximTel

Gq{afi} Yl {Ai gU] =0, 0

Glumn) =0,wv SGIU| =G4 [Us] , W Sw
xou 1) oLUVBETNOT-0TOY 0 opllETal WS
q
T =Y GlF] (6.4)
j=0
eVO 1) EMENUEVT GLUVEETNOTN-0ToYOC Elvan 1)
Joug = J — / Ga[w]" ga {afi] S (6.5)
Q oz,
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0 g = 0J — / Gaw]" Ga [
Q

_ / qa fw| g {8(51%) 8(5;(;5)1 o (6.6)

ue

00 = (sign(F7)0F = G4 [¢]" GY[SF]
7= (6.7)
e { [ vtz cosas — mysin am>ds} G G )
S

6mou ¢ = 1 (sign(F7)Y;(€). Yn ouvéyela, pe mapayoviind ohoxhipwan

/Q o [w]” G [a(;xf ")] d0 =

_ /Q Ga B‘I’Aireq U dO + /5 G [0]T G4 [5,] nidS (6.8)

)

Eniong
/ G| G5 ;] nidS =
S

/S G W, s GO [5p] dS + / (G [W,,] GO [p] — G (@) GO [£])8(midS)  (6.9)

J/

-~

=G [6F§’D]T Ga[1]

Emoyevwe, mpoxintel 6Tl

0 Jpug = G[¢]" G4 [Fgp] + G4 [F;PD]T Ga1] + /

T
Ga [ oY A-] G [5U] d92
Q

Oz (6.10)

Ga¢)t ga {/s dp(ng cOS Ao — Ny sin aoo)dS} - /SGq (W;1]" GY[6p] nidS

xat ot ouluyelc iPCE Euler e€iodoeig elvon

ow
a AT =
G {Az 093,-] 0 (6.11)

e oploxég ouvifxeg Tou Tpoodlopilovtal ke e€Ng

Ga ¢ G [/S —0p(ng €OS Ao — My SIN aoo)dS} - /SGq [W,1]" GY[6p] n:dS = 0 =

16



G4 [C]T/ — G9[p] (na cos oo — My SIN A )dS — / G [T 4]" G [6p] ngdS = 0 =
S s

GY[((ngcosas —nysinas) + Viy1n;] =0 (6.12)

Télog, ol mapdywyor evonodnciog etvon

07 = Ga[¢)" G4 [Fsp) + G [Fdp]" Ge[1] (6.13)
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Kegpdhowo 7

Apriuntxn Eoappoyn tne
>.uCuyolcg iPCE MegUvooou

H uédodog mou napousctdotnxe egupudleton 0Tny oTewT po1) YUpw amd Lol depoTOu,
1 omnola mapaueTponoteitar amd 600 xoumdieg Bezier, o onuela eAEyyou Twv omolwv
elvon ov peTafAnteg oyedlaopol, oy. 7.1.

0.2

Control Fl’oi nts o
Airfoil

0-157F

0.1F

(1]
o .
0.05 /
L
o\
@

-0.05

-0.1

-0.15 - : ; .
0.4 0.6 0.8 1

% Chord

o
=
[N

YyAue 7.1: BeAuiotoroinon popens aepotouns. Apxikn yewpetpia kar onuela eAéy-
XOU Kaumuddy Bezier (uia avd mAevpd).

O ouvteheothg omodElroucag ebvar 1 cLVAETNON-OTOYOG, GTNY TERITTWOT YWE(S o-
BeBardtnTeg, dnhadh F' = Cp, eve oL oplaxég cuvifxeg etvan

My =05, aw=2", Re=6000 (7.1)
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Yy nepintwon e afeBardtneg, 1 cuVAETNON-0TOY0C oplleTon WS

g
J=> Gl
=0
ue ¢=19 (yia m=3 petafintéc xou &N ydoug C=3), (o=1xu ;=3 VY j > 0. ev®d
oL of3€Baneg ouvoplaxég cuvinxeg elvou
My ~ N(0.5,0.05) , ax ~U(1.5°,2.5°) , Re ~ N(6000,250)

To amoteréopata 1wV 600 BeATioTomOMoEWY, UE Xan Ywelc ofeBadtnTee, qatvovton
oTo oY. 7.2

0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

0.8

F/Finit

i 2 3 4 5 6 7 8 9 10

0.98
0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

JWinit

i 2 3 4 5 6 7 8 9 10
Optimization Cycles

ExAuna 7.2:  BeAuotonoinon oxnuatos aepotouns, otpwtr) pon.  Meiwon tng
ourdpTnons—otdyou xwpls afePuidtntes (tdrw) kai ue afePaidtntes (kdtw).

Y10 oy. 7.3 gabveton n BértioTn yewuetplo Yo T BeATioTonolnon umd ofeBardtn-
tec. Téhog, otov mivoxa 7.1 cuvoldilovtan Ta amoteréopota Tne BeATioToolnong e
ofeBatdTNTES MU CUYXEIVOVTOL UE TIC TWES YO TNV TUTLXY) OmOXALCT) ot T HECT) TN
TOU GLVTEAECTY| OTUOVEAXOLGAS TOU TPoXUTTOUY Ue EgapuoyT) Tou iPCE ot féhtiot
YewueTplo Tou TpoxUTTEL amd T PehticTonolnor ywelc aefoudTnTeg.
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0.2 .
Control Points o

Airfoil (optimized geometry)

0.1

0.05

-0.05

-0.1 ¢

-0.15 . . :
0 0.2 0.4 0.6 0.8 1

% Chord

ExAuna 7.3: Belniotoroinon oxnuatos aepotoun)s pe afefaistntes, otpwtr) pon. Bé-
TIOTN YEWETPIA.

Xoplc Me
ABefardtntee | APefondtnteg
ey 6.81- 1072 6.97 - 1072
ocp | 1.11-1073 1.05-1073

ITivaxag 7.1: BeAtnotomoinon oxnuatos aepotouns, otpwtn pon. XUykpion ota-
TIOTIKWY POTWY TOU OUVTEAeoTn) omioUélikovoas yia Ti§ PEATIOTES YewueTpleS Twy 6U0
BeAtioTonomoewr.
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Kegpdhato 8

Mia Evoalhoxtinn tng 2uluyolg
iPCE Awxtinwong

Y autd To xepdioto mpotelvetan uio evahhoxtxt| uédodog tng ouluyolg BLaTiTWoTG
Tou iPCE, 7 onola etvor utohoylotixd owovouxotepr. H pedodog auth Yo avapepeton
oc DDSP (‘Deterministic Derivatives — Stochastic Primal’).

8.1 H pé€vosdoc DDSP

H Baowr 6éa tng yedodou eivar 0 UTOAOYIOHOS TNG TORUYWYOU TNG CUVERTNONG—
otoyoL Tou TEOPAAUNTOS UTO offefoundtnTeg 0J Vo yivel U€ow Tou UTOAOYIOUOU TNG
TopaYdYoL O F, OTwe auTh TEoxUTTEL amd To oLlUYES TEOBANUA Ywelc afeBoudTnTec.
[o 0 oxomd auto, yivetaw 1 unddeon 6TL umdpyet Eva chvoho TwoY § = & TE€Tolo
wote IF (&) = 6.J, Snhodn

(o) q
D OFYi(&) =Y Gisign(F')SF" (8.1)
i=0 i=0
H e 8.1, uetd and v anoxony| 6pwv and 10 Anelpo ddpolouo GTo JpLoTERO TNG
uéhog, odnyel otn oyéon

Y;(&s) = Gsign(FY),i=0,1,...,q (8.2)

Ixavomoinom tne €€. 8.2, Yot xatdAANho &5 AVOUEVETOL VO OONYACEL GTOV UTOAOYIGUO
evoc 0F(&;) to onolo Va woolton Ye v mopdywyo §J tng ouvdptnonc-otdyou Tou
TeoPAfuTog LT ofefoundTnTES. ACPUAOS, TEW TNV xavoToinot| Tne amouteiton 1 Abon
v iIPCE eglohoewy, dote va npoadloptotolv ta sign(F7).
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8.2 EmilAvon tng €&. 8.2

Iow emivdel n €&, 8.2 we mpog & mpénel vo avoroinlel 1 oyéorn mou TeoxUTTEL
vetovtog j = 0 oe auty|, Onhadn

Go = sign(F)Yy = sign(F°) (8.3)

‘Apa, o 6poc (y dev umopel va emieylel ehediepa amd Tov YeroTn, O aUTHV TNV
nepintwon. Qotéoo, Ya unopoloe oUtwe 1 dAkwe va elye tedel |(o| = 1 and v apy,
Ywelg BABN yevixdTnTog xou pe To Blo amotéheoua otn Pehtiotonoinon. Kotémy,
emAbovTal oL utohoites g e€lotoelc Tng €. 8.2

Ernilvon tng €€. 8.2 yia O =1

No C =11 el 8.2 anotehel éva ypauuixd cOotnuo Ue (00 aptiud ayvootwy m
xou €€loMoEWY, 00Tl ¢ = m otav C' = 1. Yuvende, oc auty Vv nepintwor, 1o &,
TeocdloptleTon €0XOAAL.

Enilvon tng €&. 8.2 yia C > 1

o C > 1, o apriude twv ediowoeny yiveta ¢ = (C'+m)!/Clm! — 1, evédd to mARdoc
TV AYVOOTWY efvan m. BUVETKOS, EMAEYETOL Vo EAayloToTotnVel 1 Exppaon
1y ~ i\12
M= 5 ) [¥i(€) = Gsign(FY)] (8.4)

=1

xou oL e€IoMOoELg TPog eniAuoT elvar oL

OM < Y,
R, = — = Y;(&) — Gsign(F* =0 ,j=1,....m 8.5
Al ;[ (&) — Gisign(F")] 7%, J (8.5)
H €&. 8.5 Moveton emavahnmTind UG TOU Oy AUATOG
OR
i A€ = —R, 8.6
( aﬁ )old € . ( )

omouv R = (Ry,...,Rp), Enew = Eota + A& xon

OR : o 0%Y, 0 oY
(a_£>]k - ; ([YZ ~ Gustgn(F )]8fkafj - I 3§k) ®.7)




8.2.1 BeAtiotonoinon xauw Xuyxploeig Y roloyiotixoL Kdotoug

Ye auth) TV evotnTa e@apuoletar 1 pédodoc DDSP oe plo pegovewpévn agpotous|, oe
otewt por). H afefodtnra eiodyeton oTic oploxés cuvirineg wg e&rg

Moo ~ N(0.5,0.05) , ac ~U(—1.5°25°) ., Res ~N(5000,300)  (8.8)

EVE 1) CLVEETNON-0TOY0G, O6TaY LUTdEYoLY ofefondTnTeg oplleTon WS

q
T=YGICIHl, Go=1,¢=5,7>0 (8.9)
=0

onou Cp ebvar 0 cuvTEAEGTHC OTIGVEAXOUGAC.

BeAtiotonoinon ywo C' =2

Y10 oy. 8.1 amewoviletan 1 mopeta g BeAtiotonoinong ue ™ pédodo DDSP xou ou-
yxplvetar ye ) ouluyn iPCE pédodo. Amé dnoln unohoyiotixol xdéctoug, n culuync
iPCE pédodoc yeetdotnre 5710 deutepdhienta eved 1 ueodoc DDSP uéhic 1908. Emi-
mAéov, 1 Aon tne pedodou DDSP etvon xahbtepn and v Abon tne ouluyolc iPCE
uedodou. To cuunepaoua eivon ot 1 u€dodog DDSP unopel va elvon amodotixdtepn
X0 TILO OLXOVOULXT).
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0.088
0.086
0.084
0.082

0.08
0.078
0.076
0.074

Mean Drag Coefficient Cp®

0.072
0.07
0.068

0.102 T

0.1
0.098
0.096
0.094
0.092
0.09 +
0.088 +
0.086
0.084 +
0.082
0.08 ;

T
o

C=2 adjoint iPCE
C=2 DDSP —+— |

8 10 12 14 16 18 20
Optimization Cycles

0.00145

" C=2 adjoint iPCE

o

T

C=2 DDSP —=—

A

Er

"C=2 adjoint iPCE |

0.0014

0.00135

0.0013

0.00125

0.0012

Standard Deviation of Drag Coefficient

C=2 DDSP —=—

g

8 10 12 14 16

Optimization Cycles

18

0.00115

Optimization Cycles

20 2 4 6 8 10 12 14 16

Yy 8.1: AnoteAéouata BeAtiotonoinons yia C = 2. Tiur) tns ouvdptnons—otdyou
(ndvw), péon tun (kdtw apotepd) kar tumkr) anékhion (kdtw 6e&id) Tov ourtedeotn

omioUéAkovoag.
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Kegdhouo 9

YIVUTEQACUATA

H mpotewvéuevn uévodoc iPCE mpoypaupotiotnxe o owxelo hoylouxd yio tic 3A -
owoelg RANS ouuniestol peuctol, ye to povtéio tiplng wag eéicwong twv Spalart—
Allmaras. H ouluy¥g Swtdnwor| tne mpoypoupatiotnixe eniong, Yy Tig e€lOMOELS
Navier-Stokes yio 61pw T porj cuumiesTol peucTol, og dUo daoTtdoeg. Kot ot 800
uédodol Veyehwinxay yadnuatind, €Tl MoTe N eQupUoYY| Toug var efvar eUxoAn xou
dxomr), ywelc Oume vo otepolvToL axplBelac ota aroteréouaTa.

To xiplo cuumépaoua auTAC TN SITALUATIXC Epyaciog etval 6TL 1) TROTEWOUEYT UéVo-
do¢ iPCE gaivetar vor cuvbudlel Tor TAEOVEXTAUATY TO00 TV EMEPPUATIXOV OGO Yol
TV un-eneyPatixay exdoywy. Ilpdto am ‘Oha, elvon edxoho vo mpoypoppatioTel /
£QUEUOOTEL. ATouTel EAGYIOTEC AhAAYEC AOYIOUXOU Xt AmOADTLS Xoior hardnuotixn
enelepyaoia yioo TNV e€aywyr xou dwoxprtonoinor twv iPCE eiowoewy. Enlong, e-
o yevixr) xou oy Vet yioo omolodhmote cOoTNUA EELOMOEWY, MRS Xl UTOAOYLO TIXA
oLUPEPOLTL.

To {610 1oy lel xou Yoo TV TeoTeoUevn ouluyr uédodo yia mpoBiiuata BeATioTonoin-
ong ue afefondtnrec. H Satinmon mou mpotelveton etvon yeEVIxY eve 0 TROYRUUUITIONOS
e yivetow dxoma, ye tnv mpolndleon tng Umapdng Tou avtioTolyou Aoylouxo) Yio
10 oLlLYEC TEOBANUY ywelc afefudtntec. Téhog, n mpocéyyion DDSP, 1 onola meo-
dinpe, wg evolhoxtx) Tne culuyolc uedodou, TNV xahoTd axdU TLO OLXOVOULXT) OE
%60TOG UTOAOYLOUOU, U€ow TNng emthuong Tou ouluyols TEoBAfuaTog o “XaTdhhnha
UETUTOTIOUEVO OMUELD TOL YWEOU TV UPBERUMY UETUBANTOV.
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