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Περίληψη

Η διπλωματική αυτή εργασία προτείνει μία μέθοδο Ποσοτικοποίησης Αβεβαιότητας

(Uncertainty Quantification – UQ) προς χρήση στην αεροδυναμική ανάλυση και

βελτιστοποίηση υπό αβεβαιότητες, η οποία βασίζεται στη θεωρία του Αναπτύγματος

Πολυωνυμικού Χάους (Polynomial Chaos Expansion – PCE), συγκεκριμένα στην ε-

πεμβατική (intrusive) εκδοχή της. Το Επεμβατικό Ανάπτυγμα Πολυωνυμικού Χάους

(Intrusive Polynomial Chaos) θεωρείται μία υπολογιστικά αποδοτική μέθοδος UQ, που

όμως απαιτεί μετατροπές στο λογισμικό επίλυσης των εξισώσεων ενός προβλήματος.

Η εναλλακτική εκδοχή της μεθόδου είναι η μη–επεμβατική (non–intrusive PCE), που
είναι απλούστερο να εφαρμοστεί αφού δεν συνοδεύεται από αλλαγές στο λογισμικό. Η

εκδοχή αυτή είναι όμως πολύ χρονοβόρα για προβλήματα πολλών αβέβαιων μεταβλητών.

Η προτεινόμενη μέθοδος αποτελεί μία προσπάθεια συνδυασμού των πλεονεκτημάτων

του Επεμβατικού και του μη–Επεμβατικού Αναπτύγματος Πολυωνυμικού Χάους. Πα-

ρουσιάζεται μία γενική προσέγγιση που απαιτεί πολύ λίγες αλλαγές στο λογισμικό.

Αν και παρουσιάζεται για τις εξισώσεις Navier–Stokes για συμπιεστό ρευστό, γε-

νικεύεται εύκολα σε άλλα προβλήματα. Η προτεινόμενη μέθοδος είναι υπολογιστικά

αποδοτική και αξιόπιστη. Επιπλέον, αναπτύσσεται η συνεχής συζυγής διατύπωσή της

για τον υπολογισμό των παραγώγων αντικειμενικών συναρτήσεεων ως προς τις μετα-

βλητές σχεδιασμού στη βελτιστοποίηση με αβεβαιότητες. Και σε αυτήν την περίπτωση,

στόχος είναι η προσέγγιση να είναι γενική και εύκολα εφαρμόσιμη. Τέλος, παρουσιάζο-

νται εφαρμογές σε προβλήματα αεροδυναμικής ανάλυσης και βελτιστοποίησης στα οποία

γίνεται σύγκριση της προτεινόμενης μεθόδου με υπολογισμούς που χρησιμοποιούν το

μη–Επεμβατικό PCE.
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Abstract

This diploma thesis proposes a method of Uncertainty Quantification (UQ) for use
in aerodynamic analysis and optimization under uncertainties, based on the Polyno-
mial Chaos Expansion (PCE) theory, namely its intrusive variant. Intrusive PCE is
considered to be a computationally efficient UQ method; however, it asks for changes
in the software used to solve the governing equations. Thus, it is a problem–specific
approach. The alternative PCE variant, the non–intrusive one, is easier to imple-
ment, as it does not require any software changes but is computationally expensive
for problems with many uncertain variables.

The method proposed in this diploma thesis is an effort to combine the merits of
the intrusive and non–intrusive PCE variants; a general approach is presented that
requires very few software changes and is not specific to the equations governing
a problem. At the same time, the proposed method is computationally efficient
and robust. Though herein developed for the Navier–Stokes equations for compress-
ible fluids, the proposed method can be extended to other disciplines governed by
different systems of equations, in a straightforward manner. Over and above, the
continuous adjoint formulation of the proposed method is developed, in order to
compute the gradients of objective functions in aerodynamic shape optimization
problems. Again, emphasis is laid on establishing a general approach that is easy to
implement. Applications in aerodynamic analysis and optimization problems, that
compare the method to its non–intrusive variant are presented.
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Chapter 1

Introduction

1.1 Uncertainty Quantification in Engineering

In applications where the stochastic nature of real–world fluid mechanics problems is
neglected, Computational Fluid Dynamics (CFD) methods have an excellent record
of predicting capabilities. CFD codes can predict flows subject to deterministic input
parameters and accurately compute quantities of interest (QoI) to the engineer. For
example, the drag coefficient of an airfoil can be computed for a given infinite flow
angle and infinite Mach number.

However, there are many cases where uncertainties have a quantifiable and non–
negligible effect on the behavior of systems; for instance, a slight change in a
compressor’s inlet flow angle may vastly affect its performance. In this case, the
boundary condition of the compressor’s inlet flow angle would follow a particular
probability distribution and the engineer would be interested in finding the prob-
ability distribution followed by the QoI. In other words, the goal is to correctly
propagate input uncertainties to some output, which is achieved through the pro-
cess of Uncertainty Quantification (UQ). Several UQ methods are mentioned
below.

Stochastic Sampling

The most precise and exact UQ method is the Monte–Carlo technique. This simply
involves sampling, i.e. solving the deterministic problem enough times, each time
randomily choosing the stochastic inputs, so that these choices obey the inputs’
probability distributions. Then, the distribution of the QoI can be determined.
Although accurate, the standard Monte–Carlo method is simply too expensive in
real–world applications, since a single CFD evaluation may take hours to complete
and the convergence rate of the method is proportional to 1/

√
N , for N samples [1].

To this end, more efficient stochastic sampling techniques have been developed.
The quasi–Monte Carlo method uses quasi–random sequences of uncertain in-
puts, that share some properties of sequences of random inputs used in the standard
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Monte–Carlo; this yields a convergence rate proportional to (logN)8/N , for N sam-
ples [2]. Another sampling technique was developed by McKay in [3] and is known
as the Latin Hypercube sampling. In this case, the samples taken have to sat-
isfy particular constraints, which make the sampling independant of the number of
uncertain variables. Even with these improvements, stochastic sampling techniques
are still not affordable for CFD applications and are mainly limited to other areas,
such as computational finance.

Method of Moments

The Method of Moments, or Perturbation method, approximates the QoI with
its Taylor Expansion in terms of the input uncertain variables, about their mean
[4]. The expansion is usually truncated up to second–order and the moments of the
QoI are directly approximated from the moments of the truncated expansion. The
second–order truncation makes the method valid for small input and output varia-
tions; however, in [5] a higher order truncation scheme is applied and the statistical
moments of outputs are expressed as functions of its derivatives with respect to the
uncertain variables.

Stochastic Collocation

Stochastic Collocation methods are based on interpolation schemes, in order to
compute stochastic quantities. Several types of interpolation schemes for the QoI
have been adopted, such as piecewise linear of Lagrange interpolation [6],[7],[8]. The
interpolation is constructed by sampling the QoI at a set of nodes in the stochastic
space of the uncertain variables. In this case, the key issue is the selection of nodes,
so that the obtained approximation is good enough, while the number of samples
remains affordable.

Spectral Methods

In spectral methods, the QoI is expressed in terms of a series of basis functions which
represent the spectrum of the uncertain inputs. The Karhunen–Loève Expansion
[9] is a spectral method in which the stochastic QoI is expressed in terms of a series
of orthogonal functions that are determined after solving an integral equation [10].

The Polynomial Chaos Expansion (PCE) is a another spectral method. The
PCE relies upon the use of orthogonal polynomial bases to express the dependance
of the evaluation model’s outputs to the uncertain variables [11, 12, 13, 14]. This
idea was originally proposed by Wiener in [15], for Gaussian processes, and was later
on generalized by Xiu and Karniadakis for any probability distribution, in [16]. In
numerical applications, PCE methods follow either an intrusive or a non–intrusive
approach, depending on whether software programming is involved or not.

Non–intrusive PCE (niPCE) has the advantage of not altering the CFD code.
Instead, the truncated spectral representation of the QoI is used and the coefficients
of the basis functions of the PCE are found by using existing software as a ‘black box’.
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This is done by taking advantage of the orthogonal polynomial basis, which allows
for the expression of every PCE coefficient in terms of integrals involving the QoI.
Those integrals are computed by computing the values of the QoI at the so–called
Gaussian nodes. This method’s efficiency, in comparison with other UQ methods
[17, 18] and its theoretical background [19] have been thoroughly studied, established
and applied [20], the main issue being the so–called ‘Curse of Dimensionality’, which
means that the number of samples increases exponentially, as the uncertain variables
increase.

The niPCE method is, thus, very similar to the Stochastic Collocation, their dif-
ference being the chosen basis; in the Stochastic Collocation this choice depends
on the interpolation scheme (which is often the Lagrange polynomials), while in the
niPCE it depends on the PDFs of the stochastic inputs, since the chosen polynomial
basis is orthogonal with respect to those PDFs. An interesting comparison between
the two can be found in [21]. Regarding the main drawback of the niPCE (and the
Stochastic Collocation method), the Curse of Dimensionality, several attempts have
been made to reduce its computational cost. The involved integrals, which require
the sampling of the QoI can be computed through Gauss Quadrature, using a sparse
set of Smolyak nodes [22]. Alternatively, a least squares approach can be taken, in
order to further reduce the number of samples required [23].

On the other hand, in intrusive PCE (iPCE) the uncertain variables are intro-
duced into the governing equations and a new set of equations is derived through
Galerkin projections, that are solved in order to compute the PCE of the flow vari-
ables [24],[25]. The iPCE method requires the derivation of the governing equations
and the corresponding boundary conditions, their discretization, the formulation of
the appropriate numerical solution scheme and extensive software development. The
numerical solution of the new system of coupled PDEs provides the PCE coefficient
fields of the flow variables. A detailed comparison between the iPCE and the niPCE
is provided in [26].

1.2 Robust Design Optimization

Inherent uncertainties in the operating/environmental conditions of a system result
in performance uncertainty which gives rise to the need of Robust Design, i.e. the
art of designing systems the performance of which is not signlificantly affected by ex-
pected changes in the environment. Mathematically speaking, while a conventional
design/optimization process aims to minimize an objective function F (in this case,
the terms objective function and QoI can be used indifferently), the robust design
optimization aims to minimize

µF + kσF , k ∈ R+ (1.1)

where µF stands for the mean value and σF for the variance of the QoI, while k is
a user–defined weight.

In fig.1.1 an objective function of a single design variable b (which is though stochas-
tic) is plotted in terms of b, along with the conventional optimization solution and
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the robust design solution. Due to the presence of uncertainties, this system is ex-
pected to operate around the ‘expected’ (otherwise constant) value of the design
variable. For this reason, it becomes clear that the robust solution is preferable to
the conventional solution, although the latter may sometimes have lower values.

Figure 1.1: Conventional optimization solutions and robust design solutions.

UQ methods, such as the PCE, allow for the evaluation of functions like the one
given in eq. 1.1, as they propagate the uncertainty from inputs to outputs.

A UQ method alone would suffice for a Robust Design optimization which is done
through stochastic methods, such as evolutionary algorithms. This has been done
in [27], where the niPCE was used as a UQ tool for the shape optimization of an
airfoil. A main advantage of such an approach is that it requires absolutely no
software development; the only requirement is the solver of the problem without
uncertainties which is used for the samples of the niPCE. The niPCE is, then,
used as a means to evaluate a function like the one in eq. 1.1, for the needs of the
evolutionary algorithm. Similar approaches have been presented in [28],[29],[30],[31].

However, non–intrusive approaches combined with stochastic optimization methods
may have an increased computational cost, when compared to optimization without
uncertainties, since a single evaluation of the QoI/objective function in the first case
is much more expensive; moreover, the cost of the stochastic optimization methods
is usually much higher than that of their alternative, gradient–based methods. For
this reason, adjoint–based techniques, that allow for the calculation of gradients
need for optimization and/or UQ purposes are developed.

Regarding UQ methods, in [32], a discrete adjoint techinque is developed that allows
for the calculation of gradients necessary for the implementation of the Method of
Moments, in Nuclear Thermal–Fluids; the results are compared to those of the
Monte–Carlo method. A similar approach is presented in [33], for nuclear energy
problems. In this case though, the continuous adjoint of the problem is derived, in
order to compute the necessary gradients.

For optimization purposes and Robust Design, adjoint methods are also imple-
mented. In [34], a continuous adjoint method is developed, which is combined
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with direct differentiation; this yields the sensitivities required by the Method of
Moments and the ones needed for gradient–based optimization. A similar approach
for compressible or incompressible industrial applications is presented in [35].

1.3 Structure of this Diploma Thesis

This diploma thesis proposes and alternative UQ approach that is based on the iPCE
method. Emphasis is laid on making the proposed approach painless, so that the
involved programming is as little as possible. Moreover, contrary to other problem–
specific intrusive methods, the proposed one is more general and applicable to any
problem that is governed by its own set of PDEs. Over and above, a continuous
adjoint–based method that allows for the computation of the gradients required by
robust design optimization is proposed. In summary, this diploma thesis contains
the following chapters:

� Chapter 2: A brief introduction to the mathematical background of the
PCE theory is outlined. Orthogonal polynomials are discussed here, akong
with some of their properties.

� Chapter 3: The proposed iPCE method is described. Some propositions are
given, along with the way the method was numerically set up and programmed.

� Chapter 4: Numerical applications of the method in 2D and 3D aerodynamic
problems are presented, along with comparisons in terms of accuracy and
computational time with the Monte–Carlo and the niPCE method.

� Chapter 5: The continuous adjoint method of the iPCE equations is pre-
sented.

� Chapter 6: A demonstration of the proposed continuous adjoint is shown,
for the 2D Euler equations.

� Chapter 7: The continuous adjoint method is applied to the shape optimiza-
tion under uncertainties, to a 2D airfoil.

� Chapter 8: An alternative the continuous adjoint of the iPCE equations is
proposed, that aims to further reduce the computational cost.

� Chapter 9: Conclusions and future research ideas are summarized here.
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Chapter 2

Orthogonal Polynomials and PCE

In this chapter, orthogonal polynomials are introduced, first in one and then in
multiple dimensions. All theorems, properties and propositions presented in the
chapter are thourougly analyzed and proven in [36]. Orthogonal polynomials are a
key aspect of the PCE theory, as they are the basis used for the spectral expansion
involved. Then, the PCE is discussed.

2.1 Univariate Orthogonal Polynomials

Let w(ξ) denote a continuous and positive function, defined on the interval (a, b),

such that the moments
∫ b
a
ξnw(ξ)dξ exist ∀n ∈ N.

Then, the integral

〈f, g〉w :=

∫ b

a

f(ξ)g(ξ)w(ξ)dξ (2.1)

is an inner product of the polynomials f and g, in (a, b). The function w is called
the weight function for that inner product. The subscript w in the inner product
will be sometimes ommited, when it can easily be implied.
Definition 2.1.1 (Orthogonal Polynomials). A sequence of polynomials {pn(ξ)}∞n=0

with degree[pn] = n is called orthogonal with respect to the weight function w(ξ) on
the interval (a, b) if ∫ b

a

pn(ξ)pm(ξ)w(ξ)dξ = δmn 〈pn, pn〉 (2.2)

where δmn is the Kronecker delta. If < pn, pn >= 1 ∀n ∈ N, the sequence is called
orthonormal. Also, (a, b) is the interval of orthogonality.

In order to obtain a sequence of orthogonal polynomials the following process can be
followed, known as the Gram–Schmidt orthogonalization. First, p0 is arbitrarily
chosen. Then, each polynomial of the sequence can be obtained recursively, using
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the formula

pk(ξ) = ξk −
k−1∑
j=1

〈
ξk, pj

〉
〈pj, pj〉

pj(ξ) (2.3)

It is easy to see that eq. 2.3 defines a polynomial pk that is orthogonal to all
pj, j = 0, . . . , k − 1, since

〈pk, pi〉 =
〈
ξk, pi

〉
−

k−1∑
j=1

〈
ξk, pj

〉
〈pj, pj〉

δij = 0

Also, note that degree[pn] = n implies that the polynomials generated this way are
linearly independent and, hence, form a basis of R.

2.1.1 Common Univariate Orthogonal Polynomial Sequences

In what follows, two commonly used orthogonal polynomial sequences are discussed,
the Hermite and the Legendre polynomials, which are orthogonal with respect to the
normal and the uniform probability distributions, respectively. These distributions
will be used later on, in the applications presented in this diploma thesis.

Hermite Polynomials

This section discusses the probabilists’ Hermite polynomials, not to be confused
with the physicists’ Hermite polynomials.
The Hermite polynomials {Hen} are orthogonal in (−∞,+∞) with respect to the

normal distribution w(ξ) = 1√
2π
e−ξ

2/2. They satisfy the following recurrence formula

Hen+1(ξ) = ξHen(ξ)− nHen−1(ξ) (2.4)

and their inner product is∫
R
Hen(ξ)Hem(ξ)

1√
2π
e−ξ

2/2dξ = n!δmn (2.5)

Moreover, the Hermite polynomials are explicitly given by the following formula

Hen(ξ) = n!

bn/2c∑
m=0

(−1)m

m!(n− 2m)!

ξn−2m

2m
(2.6)
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where bc denotes the floor function: bxc = max{m ∈ Z|m ≤ x}. Their triple
product, is [37]

〈Hel, Hem, Hen〉 :=

∫ +∞

−∞
Hel(ξ)Hem(ξ)Hen(ξ)

e−ξ
2/2

√
2π

dξ

=
l!m!n!

( l+m−n
2

)!(m+n−l
2

)!(n+l−m
2

)!
(2.7)

if l +m+ n is even and the sum of any two of l,m,n is not less than the third, and
is zero otherwise. The first six Hermite polynomials are

He0(ξ) = 1

He1(ξ) = ξ

He2(ξ) = ξ2 − 1

He3(ξ) = ξ3 − 3ξ

He4(ξ) = ξ4 − 6ξ2 + 3

He5(ξ) = ξ5 − 10ξ3 + 15

(2.8)

Legendre Polynomials

The Legendre polynomials {Pn} are orthogonal in (−1, 1) with respect to the uniform
distribution w(ξ) = 1

2
. They satisfy the following recurrence formula

(n+ 1)Pn+1(ξ) = (2n+ 1)ξPn(ξ)− nPn−1(ξ) (2.9)

and their inner product is∫ 1

−1

Pn(ξ)Pm(ξ)
1

2
dξ =

1

2n+ 1
δmn (2.10)

They can also be expilicitly found by the formula

Pn(ξ) =
1

2n

n∑
k=0

(
n

k

)(
n+ k

k

)(
ξ − 1

2

)k
(2.11)

while their triple product is

〈Pl, Pm, Pn〉 :=

∫ 1

−1

Pl(ξ)Pm(ξ)Pn(ξ)
1

2
dξ

= (−1)s

√
(2s− 2n)!(2s− 2l)!(2s− 2m)!

(2s+ 1)!

s!

(s− n)!(s− l)!(s−m)!

(2.12)
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when 2s = n + l + m is even, while it is zero otherwise. The first six Legendre
polynomials are

P0(ξ) = 1

P1(ξ) = ξ

P2(ξ) =
1

2
(3ξ2 − 1)

P3(ξ) =
1

2
(5ξ3 − 3ξ)

P4(ξ) =
1

8
(35ξ4 − 30ξ2 + 3)

P5(ξ) =
1

8
(63ξ5 − 70ξ3 + 15ξ)

(2.13)

2.1.2 Some Properties of Orthogonal Polynomials

In this section, two propositions concerning univariate orthogonal polynomial se-
quences are given, [36].
Proposition 2.1.1. Every sequence of orthogonal polynomials {pn(ξ)}∞n=0 satisfies
the recurrence relation

pn+1(ξ) = (Anξ +Bn)pn(ξ) + Cnpn−1(ξ)

where An = kn+1

kn
, Cn = −An

An−1

〈pn,pn〉
〈pn−1,pn−1〉 and kn is the coefficient of ξn in pn.

Proposition 2.1.2. Each polynomial pn of a sequence of orthogonal polynomials
{pn(ξ)}∞n=0 has exactly n real simple roots in its interval of orthogonality. Also, the
roots of pn(ξ) and of pn+1(ξ) alternate, i.e. between any two roots of pn+1 there is
a root of pn.

2.2 Multivariate Orthogonal Polynomials

Assume m sequences of univariate orthogonal polynomials pk ≡ {pkn(ξk)}∞n=0, k =
1, . . . ,m. Each sequence is orthogonal with respect to a weight function wk(ξk) with
domain Ek. Between any two of those sequences a tensor product can be defined as
follows.
Definition 2.2.1. The tensor product of two sequences of functionsA = {an(ξ1)}∞n=0

and B = {bn(ξ2)}∞n=0 is defined as

A⊗B := {an1(ξ1)bn2(ξ2)}∞n1,n2=0 = {a0b0, a1b0, a0b1, a1b1, a2b0, a0b2, . . . } (2.14)

So, the following sequence of m–variate polynomials can be defined

Y ≡ {Yn}∞n=0 := ⊗mk=1p
k = {p1

n1
(ξ1)p2

n2
(ξ2) . . . pmnm(ξm)}∞n1,n2,...,nm=0 (2.15)

That is, the polynomials of this new sequence are formed as all possible combinations
of products of m univariate polynomials. Therefore, in order to obtain all m−variate
polynomials of a given degree p it is necessary to find all sets of integers ni ≥ 0 , i =
1, . . . ,m so that n1 + · · · + nm = p. This can be achieved through an algorithm by
Thomas Gerstner,[38], which can also be found in [39].
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These polynomials are orthogonal with respect to the inner product given by

< f, g >W=

∫
E
fgWdξ1 . . . dξm , W :=

m∏
j=1

wj(ξj) (2.16)

which can be proven by writing

∫
E
YkYlWdx1 . . . dxm =∫

E1
p1
n1

(x1)p1
l1

(x1)w1dx1· · ·
∫
Em
pmn1

(xm)pml1 (xm)wmdxm =

δn1l1 < pn1 , pn1 >w1 . . . δnmlm < pnm , pnm >wm= δkl < Yk, Yk >W

The following combinatorics propositions may be useful.
Proposition 2.2.1. The total number of m–variate polynomials of degree d is(
d+m−1

d

)
= (d+m−1)!

(m−1)!d!
.

Proposition 2.2.2. The total number of m–variate polynomials of degree d or less

is
(
d+m
d

)
= (d+m)!

m!d!
.

2.3 PCE of a Function

Let ξ = (ξ1, . . . , ξm) be a set of m uncorrelated uncertain variables, each associated
with its own probability density function (PDF) wi(ξi) with domain Ei. Also, let
φ = φ(ξ) be a function of ξ.
Definition 2.3.1. The PCE of φ(ξ) is defined as the infinite series

φ(ξ) =
∞∑
j=0

φjYj(ξ) (2.17)

where the polynomials Yj are orthogonal with respect to W (ξ) :=
∏m

j=1wj(ξj) and
the spectral coefficients of the series are given by

φj := 〈φ(ξ), Yj〉 (2.18)

which are the so–called Galerkin projections of φ to the polynomial Yj.

This idea was originally proposed by Wiener in [15], for normally distributed vari-
ables and was later on generalized by Xiu and Karniadakis in [16]. An interesting
property of the PCE of a function is stated in what follows.
Proposition 2.3.1. The spectral coefficients of the PCE of a function φ satisfy the
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relations

E[φ] ≡ µφ = φ0

V ar[φ] ≡ σ2
φ =

∞∑
j=1

(< Yj, Yj > φj)2 (2.19)

This can be easily proven, as

µφ ≡
∫
E
φWdξ =

∫
E
φY0Wdξ = φ0

σ2
φ ≡

∫
E
(φ− µφ)2Wdξ =

∫
E

(
∞∑
j=0

φjYj(ξ)− φ0

)2

Wdξ =

∞∑
j=1

∞∑
k=1

φjφk
∫
E
Yj(ξ)Yk(ξ)Wdξ =

∞∑
j=1

∞∑
k=1

φjφkδjk < Yj, Yk >=
∞∑
j=1

(< Yj, Yj > φj)2

For a sequence of orthonormal polynomials, < Yk, Yk >= 1, eqs. 2.20 simplify to

E[φ] ≡ µφ = φ0

V ar[φ] ≡ σ2
φ =

∞∑
j=1

(φj)2 (2.20)

Therefore, the knowledge of the spectral coefficients is sufficient to fully determine
the statistical behavior of a function of the uncertain variables ξ. Higher statistical
moments of a quantity can also be found by applying their definition to the PCE of
that quantity. For example, the skewness is given by

γφ ≡ E

[(
φ− µφ
σφ

)3
]

=
1

σ3
φ

∫
E
(φ− φ0)3Wdξ =

1

σ3
φ

∞∑
i=1

∞∑
j=1

∞∑
k=1

〈Yi, Yj, Yk〉 (2.21)

In what follows, two ways to implement the PCE of a function in UQ problems are
discussed, the non–intrusive PCE (niPCE) and the intrusive PCE (iPCE). But first
it is necessary to define what a UQ problem is.

2.4 Uncertainty Quantification & Propagation

Assume a set of n partial differential equations (PDEs), written as

R(U) = 0 , U ∈ Rn (2.22)

to be solved for the field variables U ; in fluid–mechanics applications, eq. 2.22
might be the Navier–Stokes equations. They are solved subject to some boundary
conditions and many other input parameters, such as the heat capacity of a gas or
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other fluid properties, which have fixed values. The solution of eq. 2.22 aims to
compute the flow field and, then, the value of a Quantity of Interest (QoI), such as
the drag or the lift coefficient of an aircraft, and is done numerically through some
software. This can be thought of as a deterministic problem.

The UQ or stochastic problem is the case where the boundary conditions and/or the
other input parameters needed to solve the equations are not known to have a fixed
value, but to follow probability distributions. In this case, the goal is to find the
probability distribution of the QoI, i.e. to propagate the uncertainty of the input
parameters to some output.

More specifically, let us assume that the input parameters of the problem are func-
tions of m uncorrelated uncertain variables ξ ∈ Rm, each with its own probability
density function (PDF) wk(ξk) and domain Ek , k = 1, . . . ,m. If that is the case,
the field variables should also depend on ξ ; U = U(ξ) which means that the QoI
is also a function of the uncertain variables

F = F (U) = F (U(ξ)) (2.23)

Thus, finding the function of ξ in eq. 2.23 is the solution of the stochastic problem.

2.5 Non–Intrusive PCE (niPCE)

In the non–intrusive PCE (niPCE), where the PCE is applied directly to the QoI,
eq. 2.23 becomes

F =
∞∑
j=0

F jYj(ξ) (2.24)

The polynomial basis is chosen to be orthogonal to W :=
∏m

j=1wj(ξj). This choice,
because of eq. 2.20, guarantees that

E[F ] = F 0

V ar[F ] =
∞∑
j=1

(< Yj, Yj > F j)2 (2.25)

Therefore, in this case, the goal is to determine the spectral coefficients of the QoI,
in eq. 2.24.

In order to do this numerically, eq. 2.24 must be truncated to a finite number of
terms, denoted by q + 1. Several truncation schemes can be found in the literature
[40], the most common being that of the so–called chaos order. In this case, a
maximum degree of polynomials is chosen, which is called the chaos order C, and
all the polynomials up to that degree are kept in the expansion. q is given by (recall
proposition 2.2.1)

q + 1 =
(C +m)!

C!m!
(2.26)
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After a truncation scheme is applied, the result is

F =

q∑
j=0

F jYj(ξ) (2.27)

and the spectral coefficients to be found are given by

F j ≡ 〈F, Yj〉 ≡
∫
E
FYjWdξ , j = 0, . . . , q (2.28)

As a result, the solution of the stochastic problem in the niPCE case comes down
to evaluating the integrals in eq. 2.28.

Integral Evaluation through Gauss Quadrature

The computation of integrals appearing in eq. 2.28 is normally performed through
Gauss Quadrature (GQ) ∫

E
FYjWdξ =

d∑
k=1

ωkF(ξk)Yj(ξk) (2.29)

where ωk and ξk are the quadrature weights and nodes.

The choice of d and its corresponding weights and nodes depends on the desired
accuracy. For a tensorized grid of nodes, it is given by

d = (C + 1)m (2.30)

Further discussion on the selection of nodes and weights is carried out in section 4.

It is concluded that the niPCE requires d evaluations of the function F , i.e. d
numerical solutions of eq. 2.22 through some existing software, such as a Navier–
Stokes equations solver. For each of these solutions, the input parameters that
depend on ξ change, as ξ is equal to the value that corresponds to the GQ node
each time.

2.6 Intrusive PCE (iPCE)

In the intrusive approach, the PCE is applied to the field variables (i.e. pressure,
velocity components etc.) and not directly to the QoI

U =

q∑
j=0

U jY (ξ) (2.31)

and the fields U j , j = 0, . . . , q are the unknowns of the problem. Note that a
particular truncation scheme (chaos order) is still necessary.
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The field variables are then introduced in eq. 2.22

R

(
q∑
j=0

U jY (ξ)

)
= 0 (2.32)

The necessary number of Galerkin projections are applied to eq. 2.32 afterwards,
and the following new equations are derived∫

E
R

(
q∑
j=0

U jY (ξ)

)
YkWdξ = 0 , k = 0, . . . , q (2.33)

which are numerically solved by altering or rewritting the original deterministic
code. Finally, the QoI is computed at a post–processing level, as a function of the
field variables.

2.7 A First Comparison of the niPCE and iPCE

The main advantage of the niPCE is that it can be applied in a straightforward man-
ner, without any changes in the original code. However, as the number of uncertain
variables grows, the niPCE can become computationally prohibitive. From eq. 2.30,
it is deduced that the required evaluations (software runs) grow exponentially with
the number of uncertain variables. This is known as the curse of dimensionality
and can only be partially alleviated through the use of sparse quadrature grids (for
instance, Smolyak grids [22]).

On the other hand, the iPCE is known to be computationally more efficient. Ba-
sically, it asks for a single solution of a larger set of equations. Unfortunatelly,
the intrusive approach is specific to each problem; the equations usually have to
be derived by hand seperately in each case. Also, the changes in the original code
are often significant, while a change in the number of uncertain variables or chosen
chaos order may result in a need for reprogramming.
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Chapter 3

The Proposed iPCE Approach

In this chapter, an intrusive PCE approach is proposed which, contrary to conven-
tional iPCE approaches, is more general and not specific to the set of governing
PDEs. Several mathematical definitions are initially given, followed by some propo-
sitions and some ideas concerning the numerical application of the method. All
definitions and propositions of this chapter were developed for the needs of the pro-
posed method. Without loss of generality, all polynomial sequences used from now
on will be considered orthonormal, i.e. 〈Yn, Yn〉 = 1.

3.1 Some Definitions

In this section, we first define the Galerkin projection of a scalar and then extend
the definition to define Galerkin projections of vectors and matrices. A property
of these definitions is then shown. In all definitions, a set of m uncorrelated un-
certain variables ξ ∈ Rm are assumed, with PDFs wk(ξk) and domains Ek. Also,
a set of polynomials Y = {Yn}∞n=0 is assumed, that are orthogonal with respect to
W =

∏m
j=1 wj in E =

∏m
j=1 Ej.

Definition 3.1.1 (Galerkin projection of scalar). For any scalar φ(ξ), its Galerkin
projection to the polynomial Yj is defined as

φj :=

∫
E
φYjWdξ (3.1)
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Definition 3.1.2 (Galerkin projection of vector). For any vectorU(ξ) = [U1(ξ), ..., Un(ξ)]T ∈
Rn, its Galerkin projection of order q is defined as

Gq [U ] := [U 0,U 1, ...,U q]T (3.2)

with U k = [Uk
1 , U

k
2 , ..., U

k
n ]T ∈ Rn, k = 0, . . . , q.

Note that the application of the Gq [] operator to a scalar is a special case of the
previous definition, for n = 1; if φ = φ(ξ) ∈ R, then Gq [φ] = [φ0, . . . , φq]T .

Definition 3.1.3 (Galerkin projection of matrix). For any matrix A ∈ Rn×n with
components Aij=Aij(ξ), its Galerkin projection of order q is defined as the block
matrix

Gq [A] =


A00 A01 . . . A0q

A10 A11 . . . A1q

...
...

...
...

Aq0 Aq1 . . . Aqq

 (3.3)

where the (i, j) element of Aλµ ∈ Rn×n is given by

Aλµij :=

∫
E
AijYλYµWdξ =

∞∑
ρ=0

Aρij < Yρ, Yλ, Yµ > (3.4)

with < Yρ, Yλ, Yµ >:=
∫
E YρYλYµWdξ .

In numerical applications of the proposed method, all quantities that depend on ξ
will have their own PCE and the same truncation scheme will be applied to all of them
(in applications presented later in this diploma thesis, the chaos order truncation
scheme is applied, in order to retain q + 1 terms in each expansion). In this case,
the following propositions hold.
Proposition 3.1.1. If the expansions of the A and U components are truncated to
q + 1 terms, namely

Aij=

q∑
k=0

AkijYk(ξ) and Uj=

q∑
k=0

Uk
j Yk(ξ) with i, j = 1, . . . , n

then it can be shown that

Gq [AU ] = Gq [A] Gq [U ] (3.5)

Proof. Let f=AU or fi=AijUj. Then, for any 0 ≤ p ≤ q

fpi = (AijUj)
p ≡

∫
E
AijUjYpWdξ = Uρ

j

∫
E
AijYρYpWdξ = Uρ

j A
ρp
ij

which is nothing else but the pth element of Gq [A] Gq [U ].

Proposition 3.1.2. For two vectors g = (g1(ξ), . . . ) and h = (h1(ξ), . . . ) and a
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constant λ(ξ), the following property holds

Gq
[
gT
]

Gq [λh] = (Gq
[
gTh

]
)T Gq [λ] (3.6)

if their PCE are truncated to q + 1 terms, i.e.

gi =

q∑
j=0

gjiYj(ξ) , hi =

q∑
j=0

hjiYj(ξ) , λ =

q∑
j=0

λjYj(ξ)

Proof.
Gq
[
gT
]

Gq [λh] = (gj)T (λh)j = (gj)Tλkhi < Yk, Yi, Yj >=

(gj)Thi < Yk, Yi, Yj > λk = (Gq
[
gTh

]
)T Gq [λ]

The aforementioned propositions are essential for the derivation of the numerical
solution scheme of the iPCE equations, presented in the next subsection. Moreover,
they facilitate the necessary mathematical work for the derivation of the continuous
adjoint iPCE equations, as shown in chapter 5.

3.2 Proposed Numerical Solution of iPCE Equa-
tions

Let us consider a problem governed by a system of n PDEs (such as the Navier–
Stokes equations, for instance), which can be written in discrete form as

R(U) = 0 (3.7)

with unknown variables U ∈ Rn at each grid node. In the above system, uncer-
tainty is introduced through the vector of uncertain variables ξ ∈ Rm, affecting the
boundary conditions and/or other input parameters.

For non–linear problems, the system in eq. 3.7 can be solved by applying the iterative
scheme (

∂R

∂U

)
old

∆U = − (R)old , ∆U = Unew −Uold (3.8)

which is a linear system that separates numerics (the LHS Jacobian) from physics
(the RHS). This system is solved for ∆U , followed by an updating step

Unew = Uold + ∆U (3.9)

of the values of the field variables at each grid node. Then, the LHS and RHS are
recalculated and the system is solved again, until convergence (sufficiently small R)
is reached.
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The procedure described above will be applied to solve the iPCE equations, eq. 2.33.
Merely by changing notation, eq. 2.33 can be written as

Gq [R] = 0 (3.10)

which is to be solved for the q + 1 unknown fields Gq [U ]. To this end, the Gq []
operator is applied to eq.3.8, leading to (indices ‘old’ and ‘new’ are ommited from
now on)

Gq

[
∂R

∂U
∆U

]
= Gq [−R]

which, when combined with proposition 3.5, gives

Gq

[
∂R

∂U

]
Gq [∆U ] = −Gq [R] (3.11)

In eq. 3.11 Gq [∆U ] are corrections to the unknowns Gq [U ] of the iPCE equations
and Gq [R] are the corresponding residuals. The latter can be computed by Gauss
quadrature without explicitly deriving the iPCE equations. Instead, the involved in-
tegrals are found by evaluatingR at specific values of ξ at the quadrature nodes. On
the contrary, the conventional iPCE approach would require the explicit derivation
of the equations, in order to calculate their residuals. A more detailed discussion on
the evaluation of integrals using Gauss quadrature is made in section 3.5.

Regarding the LHS of eq. 3.11, it suffices to prove that Gq
[
∂R
∂U

]
is the exact Jaco-

bian of the iPCE equations, i.e. the Jacobian we would get if we differentiated the
discrete iPCE problem, eq. 3.10.

Proposition 3.2.1 (Exact Jacobian of discrete iPCE problem). Differentiation of
the discrete iPCE problem given by eq.3.10 with respect to Gq [U ] is equivalent to
the application of the Gq [] operator to ∂R

∂U
, i.e.

∂(Gq [R])

∂(Gq [U ])
= Gq

[
∂R

∂U

]
(3.12)

Proof. Recall the PCE of U as U =
∑q

i=0U
iYi which yields ∂U

∂U i = YiI, with I the
identity matrix. Therefore

∂φ

∂Uλ
= Yλ

∂φ

∂U
(3.13)

for any scalar φ. Because of eq. 3.13, the (i, j) element of the (λ, µ) block of matrix
Gq
[
∂R
∂U

]
is(

∂R

∂U

)λµ
ij

≡
∫
E
YλYµ

(
∂R

∂U

)
ij

Wdξ =

∫
E
Yµ
∂Ri

∂Uλ
j

Wdξ =

(
∂Ri

∂Uλ
j

)µ
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which is equal to the corresponding element of ∂(Gq[R])
∂(Gq[U ])

, namely
∂Rµi
∂Uλj

.

Proposition 3.2.1 implies that the linearization of the discrete iPCE problem, eq.3.11,
does not need to be explicitly derived. Instead of differentiating the iPCE equations,
existing routines that compute the LHS and RHS of the deterministic problem are
sufficient, in order to form and solve eq. 3.11. These codes evaluate the LHS and
RHS at specific GQ nodes, for specific values of ξ, which allows for the computation
of the integrals involved in the Galerkin projections of the Gq [] operator.

The procedure described above allows for the solution of the iPCE equations with-
out the need to derive anything by hand, which is definitely a cumbersome task. In
contrast to the standard approach which requires reprogramming for different chaos
orders, the proposed method is flexible and the same software could handle any
chaos order, number of uncertain variables or type of governing PDEs. Therefore,
from this point of view, it enjoys the simplicity of the niPCE approach, with reduced
computational cost though.

3.3 A First Comparison with the niPCE

The numerical stability and convergence rate of the proposed iPCE method is
strongly related to the properties of the deterministic problem. The non–intrusive
solution of eq. 3.10 would involve solving eq. 3.7 several times, one for each value of
the uncertain variables at the current quadrature node. Each time, this would take
nj solutions (iterations) of eq.3.8, j = 1, . . . , d, where d denotes the number of GQ
nodes.
Proposition 3.3.1. The number of solutions of eq.3.11 needed to achieve conver-
gence is equal to max(n1, . . . , nb). Also, if all the non–intrusive runs and the intrusive
one are each stopped after p iterations, they will produce the same Gq [U ].

Proof. The proof can be found in Appendix A.

This essentially means that both methods will converge to the same result in the
same number of iterations. Thus, a comparison between them can be made if the
computational cost per iteration is compared.

Each iteration of the iPCE solver includes:

1. Computation of the LHS and RHS terms of eq. 3.11, through Gauss quadra-
ture –based Galerkin projections of residuals and Jacobians.

2. Solution of the resulting system eq. 3.11.

On the other hand, the niPCE method requires d distinct numerical solutions of the
standard PDEs. Per iteration this calls for:

1. d computations of the LHS and RHS terms of eq.3.8.

2. d solutions of the resulting systems, eq.3.8.
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The cost to compute the LHS and RHS terms within each iteration is thus considered
to be almost the same between the two variants; this is a key feature of the proposed
iPCE method, in which the equations’ residuals, for instance, are computed by the
corresponding routine, used as a ’black box’, at each ξ of the quadrature nodes.
Essentially, we could say that the system given by eq.3.8 is formed via a non–
intrusive approach.

The main difference can be found in the solution step. While the niPCE solves d
systems of dimension say n, the iPCE solves a single system of dimension (q + 1)n.
If the assumption that the solution cost is proportional to n2 is made, the iPCE is
faster when

(q + 1)2n2 < d2n2 ⇒ (C +m)!

C!m!
< (C + 1)m (3.14)

which is true when m = 6 or 7, depending on the choice of chaos order. For the sake
of convenience, we the repeat that C is the chosen chaos order, m is the number of
uncertain variables, q + 1 denotes the number of retained terms each PCE and d is
the number of GQ nodes.

3.4 Reducing Memory Requirements and
Computational Cost of the iPCE

As was previously demonstrated, the proposed iPCE method does not seem to sig-
nificantly outperform the niPCE, in terms of computational cost. Moreover, the
involved matrices are now of much larger dimensions ((q + 1)2 larger), which re-
sults in important memory requirements. Efforts to reduce the computational and
memory burden of the iPCE method have been made in [41], which was, however,
a problem–specific approach applicable only to load–flows in power systems. This
section will provide a more general way to remedy the aforementioned issues, that
is applicable to any governing equations of a problem.

In order to handle the solution of eq. 3.11, this is rewritten, in matrix form, as
J 00 J 01 . . . J 0q

J 10 J 11 . . . J 1q

...
...

...
...

J q0 J q1 . . . J qq




∆U 0

∆U 1

...
∆U q

 = −


R0

R1

...
Rq

 (3.15)

where J = ∂R
∂U

. System 3.15 can be decoupled allowing the numerical solution of
linear systems of smaller size. To this end, the U 0 field which denotes mean flow
variables’ fields is approximated by the U field resulting from a single solution of the
problem without uncertainties, eqs. 3.7. This solution is done for a given ξ = ξz,
whose components are set equal to the zeros of all orthonormal polynomials of first
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degree used in the PCE. The error in this approximation is then given by

U(ξz)−U 0 =

q1∑
i=1

U iYi(ξz) +
∞∑

i=q1+1

U iYi(ξz) =
∞∑

i=q1+1

U iYi(ξ = ξz) (3.16)

where q1 is given by setting C = 1 in eq. 2.26.

Moreover, for C=1,

J λµ
ij =

q1∑
ρ=0

J ρ
ij < Yρ, Yλ, Yµ >= δλµJ 00

ij (3.17)

since
< Yρ, Yλ, Yµ >= δ0ρδλµ , 1 ≤ λ, µ ≤ q1 , 0 ≤ ρ ≤ q1 (3.18)

Thus, eq. 3.15 takes the form
J 00
ij J 01 J 02 . . . J 0q1

J 10 J 00
ij 0 . . . 0

J 20 0 J 00
ij . . . 0

...
...

...
...

...
J q10 0 0 . . . J 00

ij




∆U 0

∆U 1

∆U 2

...
∆U q1

 = −


R0

R1

R2

...
Rq1

 (3.19)

Assuming that U 0 is well approximated, it is deduced that ∆U 0≈0, which justifies
the decision to keep only the diagonal blocks of the coefficient matrix in eq. 3.19.
The simplified system can be solved efficiently as it consists of q1+1 linear systems
with the same LHS and different RHS terms. Moreover, there is no need to compute
J 00
ij , as this can be approximated by J as computed during the last iteration of the

solution of the PDEs without uncertainties, i.e. those yielding U 0.

The aforementioned steps compute the coefficients of the PCE of the field variables
up to C=1. If C>1, the solution algorithm is similar. With q=q(C) as in eq. 2.26,
let us assume that the PCE coefficients corresponding to the first q(C−1) terms of
the expansions are available (computed as described above). To compute the next
q(C)−q(C−1) terms, eq. 3.15 is used. In such a case, the off–diagonal blocks are not
zero and the diagonal blocks have some more terms, in addition to J 00

ij . However,

the previously computed U i, i≤ q(C − 1) result in ∆U i≈0, meaning that most of
the off–diagonal blocks can be neglected. Moreover (no summation for k),

J kk
ij = J ρ

ij < Yρ, Yk, Yk >≈ J 00
ij (3.20)

Given eq. 3.18, the first non–zero terms are those corresponding to the PCE coef-
ficients of second (or greater) chaos order and are, thus, expected to be negligible
compared to J 00

ij . Therefore, the LHS of the system is again similar to that of eq.
3.19, yielding q+1 decoupled systems with the same LHS. To sum up, the proposed
way to solve the iPCE equations consists of the following steps:

1. Solve the PDEs without uncertainties, eq. 3.7, to approximate U 0.
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2. Store the LHS of eq. 3.8, if possible, or re-compute it once in the beginning of
the solutions of the iPCE equations.

3. Solve the iPCE equations for C = 1, to find the corresponding terms of the
expansions of the field variables.

4. (If the user–defined C is greater than 1) Solve the iPCE equations, for C = 2
using the PCE coefficient fields for C = 1 as initialization, while keeping the
same LHS approximation as in the previous step and so on and so forth. The
RHS terms are always recomputed.

Note that, in the procedure described above, there is no need to build the LHS term
of the linearized system in each and every iteration, since this remains constant.
This also allows for an important reduction in memory requirements, as the space
required to store the LHS of the iPCE equations, eq. 3.7, is no greater than that
of a problem without uncertainties, eq. 3.7. Moreover, given the decoupling of
the equations, the cost of the solution step is proportional to q+1 and can even be
reduced to the cost of q+1 matrix–vector multiplications, if a method that computes
the inverse of J 00 was used. It is expected that the proposed initialization for the
mean flow field U 0 will facilitate the convergence of the iPCE equations by reducing
the number of required iterations. Finally, in some cases where C > 1, it might be
possible to skip step 3 and solve the iPCE equations directly for the chosen C by
keeping only the approximation of the diagonal blocks of the LHS of eq. 3.11.

3.5 Workflow of the Proposed Method

This section describes the programming needed to apply the proposed iPCE ap-
proach, as well as an algorithm to implement it.

Firstly, the method requires a way to choose quadrature nodes and weights that
correspond to the chosen chaos order, number of uncertain variables and probability
distributions. The choice must be such that it guarantees the exact evaluation of
integrals of polynomials with degree up to 2C. In this way, Galerkin projections are
exact. Note that, this way of choosing nodes and weights is exactly the same in
the niPCE approach, which also requires the same accuracy in the computation of
integrals involving polynomials.

For a single variable, an integral computed with Gauss quadrature is exact for a
polynomial of degree 2d− 1 if the nodes used correspond to the zeros of Yd. Then,
the weights are given by

di =
kd
kd−1

< Yd−1, Yd−1 >

Y ′d(ξi)Yd−1(ξi)
, i = 1, . . . , d (3.21)

where kd is the coefficient of ξd in Yd(ξ). So, in this case

2d− 1 ≥ 2C ⇒ d = C + 1
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is the number of required nodes that correspond to values of the uncertain variable
ξ, for which the function to be integrated has to be evaluated.

For known distributions and their orthogonal polynomials, the nodes and weights
can be found in the literature and they can be hardcoded. In the Appendix C, the
nodes and weights that correspond to the Hermite and the Legendre polynomials
are given. For an arbitrary probability distribution, its orthogonal polynomials can
be found through the Gram–Schmidt orthogonalization (see chapter 2), so it is again
possible to find their roots and then their weights, via eq.3.21. Note that proposition
2.1.2 guarantees the existence of the zeros in the interval of orthogonality.

For more than one variables, either a tensorized (full) or a sparse grid can be used.
In the first case d = (C + 1)m, as the required multivariate nodes and weights are a
result of a tensor product of m sets of C+1 nodes and weights each. In other words,
C + 1 nodes and weights per dimension are used. The sparse grid case will not be
examined here, although it was used in some of the applications later demonstrated
in this thesis (Smolyak sparse grid [22]). Table 3.1 shows the number of nodes
required, if a tensorized or a sparse Smolyak quadrature grid is used.

Tensorized Grid / Sparse Smolyak Grid

C/m 1 2 3 4 5 6
1 2/3 4/5 8/7 16/9 32/11 64/13
2 3/5 9/13 27/25 81/41 243/61 729/85
3 4/9 16/29 64/69 256/137 1024/241 4096/389
4 5/17 25/65 125/177 625/401 3125/801 15625/1457
5 6/33 36/145 216/441 1296/1105 7776/2433 46656/4865

Table 3.1: Number of GQ nodes for a full and a Smolyak quadrature grid. C is the
chosen chaos order and m is the number of uncertain variables.

The result of this first step should be an array containing all the quadrature weights,
as well as an array of all the orthogonal polynomials up to degree C, evaluated at
each quadrature node.

Before describing the second step, an algorithm will be presented that allows for
the computation of a Galerkin projected vector or matrix. More specifically, d
quadrature nodes are assumed, along with arrays w and Ksi with the corresponding
quadrature weights and values of ξ at the quadrature nodes. Also, an array Y (i, j)
with the value of the j − th orthonormal polynomial at the i− th quadrature node
is assumed.

For a vector V = V (ξ) and a process named ‘vectorcalc’ that, for a given value of
ξ, returns the value of V , Gq [V ] is found by the following algorithm
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Algorithm 1 Galerkin projected vector calculation

1: GqV (1 : n ∗ q)← 0 / initialize Gq [V ] to zero
2: for i = 1 : d / loop of d quadrature nodes
3: call vectorcalc(Ksi(i),V) / get V (ξ)
4: for j = 0 : q
5: GqV (q∗j+1 : q∗j+n)← GqV (q∗j+1 : q∗j+n)+w(i)∗V (1 : n)∗Y (j, i)
6: endfor
7: endfor

Also, for a matrix A = A(ξ) and a process ‘matrixcalc’ that, for a given value of ξ,
returns the value of A,Gq [A] is found by the following algorithm

Algorithm 2 Galerkin projected matrix calculation

1: GqA(1 : n ∗ q , 1 : n ∗ q)← 0 !initialize Gq [A] to zero
2: for i = 1 : d ! loop of d quadrature nodes
3: call matrixcalc(Ksi(i),A) ! get A(ξ)
4: for j1 = 0 : q ! loop of block rows Aj1 j2

5: for j2 = 0 : q ! loop of block columns
6: k1← j1 ∗ q
7: k2← j2 ∗ q
8: A(k1 + 1 : k1 +n , k2 + 1 : k2 +n)← A(k1 + 1 : k1 +n , k2 + 1 : k2 +n)+
9: w(i)∗A(1 : n , 1 : n)∗Y (j1, i)∗Y (j2, i)
10: endfor
11: endfor
12: endfor

Moving on to the second step, the field variables Gq [U ] must be initialized. The
mean values U 0 are initialized with the solution of the problem without uncertain-
ties. The other coefficients can be set equal to zero, or be initialized by applying
Galerkin projections to the routine used in the deterministic code that is responsible
for the initialization of U . In this case, algorithm 1 is used, so as to find Gq [U ] by
using the routine that gives U its initial values, in place of ‘vectorcalc’.

Afterwards, the code is ready to start iterating i.e. forming the system of equations
and solving it.

To form the system of equations, eq. 3.11, the LHS and RHS have to be found.
The term Gq [R] can again be found by applying algorithm 1, through the use a
routine that returns the residuals R of the deterministic equations, when given the
value of ξ at a GQ node as input. The LHS can be either found in a similar way,
by applying algorithm 2, or, in order to save memory and speed up convergence,
it can be replaced by a stored LHS matrix, found previously when a deterministic
problem was solved to initialize the equations (see previous section).

Finally, the formed system has to be solved. In order to solve the whole system,
without using a constant LHS to save memory, the user is free to choose a solution
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method. However, if eq.3.19 is used instead (by keeping only the diagonal blocks and
approximating them by the stored LHS), it is recommended to consider inverting
the LHS matrix once, at the beginning of the code, so as to reduce the solution step
to some matrix and vector multiplications. If this is not possible, the exact same
solution algorithm used in the deterministic case can also be applied here.

3.6 Comparison with the niPCE and Conventional
iPCE

It is evident that the proposed iPCE method involves minimum changes in the orig-
inal deterministic code. Most subroutines do not have to be rewritten at all, while
other require small changes, usually to write some of their inputs as functions of
ξ. This is a huge advantage over the conventional iPCE, which involves problem–
specific approaches and major changes in existing software, while offering a limited
choice of number of uncertain variables and chaos order, usually asking for repro-
gramming when they need to change. Thus, in terms of complexity and flexibility,
this method seems undoubtedly superior to the conventional iPCE. The niPCE is,
however, still more straightforward to apply and is definitely the way to go, when
the number of uncertain variables is relatively small.

In terms of computational cost, it will be later on shown how this method can vastly
outperform the non–intrusive approach, especially in complex problems, such as
turbulent flows with many uncertain variables. Compared to the conventional iPCE
approach, it should be expected that this method could be somewhat slower. The
conventional iPCE approach involves problem–specific ‘tricks’, that could possibly
result in slightly faster algorithms. Especially in the computation of the residual
terms, Gq [R], the proposed method is essentially non–intrusive and is thus expected
to be slower. But this is only a part of the proposed algorithm and seems like a
small price to pay, if the involved level of complexity is to drop significantly.

To sum up, the proposed iPCE enjoys the benefits of the niPCE, with the com-
putational cost if the iPCE. It is essentially a combination of the merits of both
methods, without their most notorious disadvantages, the curse of dimensionality
and the complexity involved, respectively.
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Chapter 4

iPCE Applications in
Aerodynamics

In this chapter aerodynamic problems studied using the proposed/programmed
method are presented in which the accuracy and speed of the method are tested
and compared to that of the niPCE. The flow model used for these cases is first
given. Note that in all applications the computations were carried out on a single
core of a Xeon CPU (E5-2630 at 2.20GHz) with 25MB cache and 128GB RAM.

4.1 Flow Equations

The 3D Reynolds–Averaged Navier–Stokes (RANS) equations for compressible fluid
flows, in vector form,

∂U

∂t
+
∂f invi

∂xi
− ∂f visi

∂xi
= 0 (4.1)

are solved, with U = (ρ, ρ u, Et)
T the flow variable vector, ρ the density, u =

[u1, u2, u3] the velocity vector, Et = p
γ−1
− 1

2
ρ u2 the total energy per unit volume

and p the pressure. The inviscid and viscous fluxes are given by

f invi =

(
ρui

ρuiu+ pδi
ui(Et + p)

)
, f visi =

(
0
τi

ujτij + qi

)
(4.2)

where δi is the Kronecker symbol, qi the thermal flux components and τi = [τi1, τi2, τi3]T

are viscous and turbulent stresses. The inviscid fluxes can be expressed in terms of

the Jacobian matrices as f invi = AiU , Ai =
∂f invi

∂U
.

Closure is effected by the state equation of perfect gases and the Spalart–Allmaras
(SA) one–equation turbulence model,[42]. The compressible Spalart–Allmaras tur-
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bulence model solves the following equation

∂(ρµ̃)

∂t
+
∂(ρuiµ̃)

∂xi
=

1

σ

[
∂

∂xi

(
(µ+ µ̃)

∂µ̃

∂xi

)
+ cb2

(
∂µ̃

∂xi

)2
]

+ cb1(1− ft2)S̃ρµ̃

− (cw1fw −
cb1
κ2
ft2)

(
µ̃

d

)2

+ ρ2ft1∆u2 (4.3)

where

S̃ = | ω|+ µ̃

y2κ2
fv2 , fv2 = 1− χ

1 + χfv1

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

, g = r + cw2(r6 − r) , r =
µ̃

S̃ρκ2y2

and ω = ∇× u, µ is the fluid’s dynamic viscosity, while y is the distance of a grid
node from the closest solid wall. Eq. 4.3 is solved for µ̃ and the eddy viscosity is
then found from

µt = µ̃fv1 , fv1 =
χ3

χ3 + c3
v1

, χ =
µ̃

µ
(4.4)

Regarding the transition coefficient (the last term of eq. 4.3)

ft1 = ct1gt exp

(
−ct2

ω2
t

∆u2
[y2 + g2

t y
2
t ]

)
, gt = min(0.1,

∆u

ωt
∆x) (4.5)

where yt denotes the distance of a point in the flow field from the transition point,
which is located somewhere along the solid wall,ωt is the vorticity at that point, ∆u
denotes the difference between the velocity of any point in the flow field and the
transition point and ∆x is the grid spacing along the wall at this point. The imposed
inlet boundary conditions are of Dirichlet type, as µ̃ has a fixed free–stream value
there. At the solid walls, µ̃ = 0 is imposed. Finally, the constants of the model have
the following values

σ = 2
3
, κ = 0.41, P rt = 0.9, cv1 = 7.1, cb1 = 0.1355, cb2 = 0.622,

cw1 =
cb1
κ2 +

1+cb2
σ
, cw2 = 0.3 , cw3 = 2, ct1 = 1, ct2 = 2, ct3 = 1.1, ct4 = 2

The equations are solved on unstructured grids (in 2D, this comprises triangles
and layers of quadrilaterals close to solid walls, whereas in 3D this comprises of
pyramids, prisms and six–sided solids) using the finite-volume method and vertex-
centered storage, with the application of the flux–vector splitting (FVS) upwind
scheme, [43], while the linear systems that arise from the discretization are solved
by point–implicit (involving internal sub–iterations) Jacobi solver.
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4.2 Flow Around an Aircraft Model

The first application is considered with the inviscid flow around an aircraft model.
Due to symmetric flow conditions the study is carried around half of the aircraft.
The QoI is the lift coefficient, the mean value and standard deviation of which will
be computed using the proposed iPCE approach, the niPCE and the Monte–Carlo
sampling. In this application, the computational cost is not discussed, since all
‘other’ methods just serve to validate the accuracy of the proposed approach, and
whether these are more/very expensive is not an issue at this point.

Uncertainties were introduced in the free–stream flow angle a∞ and/or the free–
stream Mach number M∞. Four cases were studied and results are presented in
table 4.1, where N(µ, σ) denotes the normal distribution with mean value µ and
standard deviation σ. Also, U(a, b) denotes the uniform distribution in the interval
[a, b].

Flow Conditions
iPCE niPCE iPCE niPCE

MC
Chaos order C=1 Chaos order C=2

M∞ = 0.7 µCL 0.1192 0.1191 0.1192 0.1191 0.1188
a∞ ∼ N(5o, 0.5o) σCL 0.00958 0.00966 0.00958 0.00964 0.00953

M∞ ∼ N(0.7, 0.02) µCL 0.1195 0.1193 0.1195 0.1193 −
a∞ = 5o σCL 0.00179 0.00189 0.00192 0.00194 −
M∞ ∼ N(0.7, 0.02) µCL 0.1193 0.1192 0.1194 0.1193 0.1191
a∞ ∼ N(5o, 0.5o) σCL 0.00932 0.00985 0.00959 0.00985 0.00971

M∞ ∼ N(0.7, 0.02) µCL 0.1193 − 0.1194 − 0.1191
a∞ ∼ U(4.5o, 5.5o) σCL 0.0107 − 0.0110 − 0.0112

Table 4.1: UQ for the flow around an aircraft model. Statistical moments of the
lift coefficient values computed using iPCE, niPCE (with C = 1 and C = 2) and the
Monte–Carlo method with 2000 replicates in each case.

After the solution of the corresponding iPCE equations, the fields of the PCE coef-
ficients of the flow variables are available. This allows for the computation of any
quantity, such as the Mach number field around the aircraft. Figure 4.1 compares
the Mach number’s mean and standard deviation fields respectively, in the case un-
certainty is only due to the Mach number (a∞ = 5o; second case in Table 4.1). It
can be seen that the iPCE and niPCE results perfectly match each other all over
the aircraft surface. One can also notice the increased variance after the supersonic
area of the wing surface which, in the case of niPCE, is extended over a greater area
along the wing. The pressure spectral coefficient fields are shown in fig. 4.2.
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Figure 4.1: UQ for the flow around an aircraft model (M∞∼N(0.7, 0.02), a∞=5o).
Mean Mach number distribution (top) and standard deviation (bottom) on the aircraft
surface, computed using the iPCE (left) and niPCE (right), with C=2.

Figure 4.2: UQ for the flow around an aircraft model (M∞ ∼ N (0.7, 0.02), a∞ ∼
U(4.5o, 5.5o). Computed pressure spectral coefficients (iPCE, C=1). Mean pressure
value (left), spectral coefficient corresponding to free–stream Mach number (middle)
and spectral coefficient corresponding to free–stream flow angle (right).

4.3 Isolated Airfoil Case

The second case deals with the turbulent flow around a 2D isolated airfoil. The two
QoIs are the lift and drag coefficients and uncertainty was introduced in the flow
conditions, namely a∞, M∞ and Re, yielding three uncertain variables in total. The
chosen PDFs of the flow conditions are

a∞∼U(1.5o, 2.5o) M∞∼N(0.3, 0.01) Re∼N(106, 2.5 · 104)

32



where it can be seen that different probability distributions can be used, not just
the normal distribution.

The proposed iPCE is compared with the niPCE method and results are summarized
in table 4.2, where the CPU time unit is defined as the computational cost of the
iPCE method for C = 1. It is evident that the two methods are in good agreement,
but the iPCE is significantly faster, which is explained below.

The iPCE method required about 1000 iterations to converge, which is small com-
pared to the 4800 iterations that the CFD runs of the niPCE asked on average. This
should be attributed to the simultaneously solved turbulence model PDE, which may
introduce convergence difficulties when the uncertain flow conditions vary and the
software should run for several, quite off–design values of them (in the niPCE).
In contrast, in the iPCE method, the initialization is fairly close to the expected
solution, which facilitates convergence. Note that, for a fair comparison, the non–
intrusive CFD runs for C = 2 and C = 3, were initialized with the same mean field
values as in the intrusive case, without though yielding any significant difference.

The mean Mach number field and its standard deviation that resulted from the
iPCE are depicted in fig.4.3, for C = 1. It is interesting to notice that the standard
deviation is higher in areas where the mean Mach number is high as well. Also, the
pressure spectral coefficient fields are shown in fig. 4.4.

iPCE niPCE iPCE niPCE iPCE niPCE
C=1 C=2 C=3

µCL 0.095598 0.095567 0.095591 0.095600 0.095611 0.095598
σCL 0.013534 0.013546 0.013535 0.013438 0.013535 0.013512
µCD 0.029460 0.029540 0.029426 0.029538 0.029319 0.029539
σCD 0.000787 0.000764 0.000789 0.000768 0.000790 0.000768

CPU 1 3.678 2.933 9.598 20.196 36.714
time units

Table 4.2: Turbulent flow around an isolated airfoil, with three uncertain flow con-
ditions. Statistical moments of CL and CD computed using iPCE and niPCE, for
C=1, 2, 3 and computational cost.

Figure 4.3: Turbulent flow around an isolated airfoil, with uncertain flow conditions.
Computed mean (left) and standard deviation (right) fields of the Mach number (iPCE,
C=1).
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Figure 4.4: Turbulent flow around an isolated airfoil, with uncertain flow conditions.
Computed pressure spectral coefficients (iPCE, C=1). Mean pressure value (top left),
spectral coefficient corresponding to free–stream Mach number (top right), spectral
coefficient corresponding to free–stream flow angle (bottom left) and spectral coefficient
corresponding to chord–based Reynolds number (bottom right)

4.4 Flow around the DLR–F6 Aircraft

The last case is concerned with the inviscid transonic flow around an aircraft con-
figuration (practically the wing–fuselage configuration of DLR–F6 of [44] though
this is herein studied at inviscid flow conditions). The computational grid consists
of about 1.5M nodes; a grid around the whole aircraft was used since one of the
uncertain variables was the yaw angle.

Uncertainties are introduced in the flow conditions, as follows

a∞ ∼ U(−0.5o,+0.5o) , β∞ ∼ U(−0.5o,+0.5o) and M∞ ∼ N(0.75, 0.02)

and the QoI is the lift coefficient.
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Results are summarized in table 4.3, where it is again shown that the iPCE and the
niPCE produce practically identical results. The iPCE method is, however, more
efficient and the difference in cost increases with the chaos order. This should be
attributed to the fact that the proposed method saves computational time in the
solution step, recall the discussion in section 3.4. In this case, the solution step is
the most costly one, since the computational grid is much larger than in the two
previously presented cases. Therefore, the gain in computational time is greater.

Note that, for a fair comparison, the niPCE runs were initialized with the same flow
field used to initialize U 0 in the iPCE (which resulted from solving the equations
without uncertainties once), which seemed to facilitate convergence, in either case.
The convergence of the iPCE solver is, however, smoother and faster, see fig. 4.7
which shows the convergence of the PCE coefficients of the QoI as a function of
computational time. In these plots, the wall clock time in thousands of seconds is
used as a time unit.

Finally, fig.4.5 illustrates the mean value and the standard deviation of the Mach
number over the aircraft surface, while fig. 4.6 shows the spectral coefficients of the
pressure field.

iPCE niPCE iPCE niPCE iPCE niPCE
C=1 C=2 C=3

µCL 0.10115 0.10115 0.10115 0.10115 0.10115 0.10115
σCL 0.007603 0.007618 0.007653 007653 0.007650 0.007650

CPU 1 1.248 3.121 6.695 6.050 15.603
time units

Table 4.3: Inviscid flow around the DLR–F6 aircraft, with three uncertain flow con-
ditions. Statistical moments of the lift coefficient computed using the iPCE and the
niPCE (for C=1, 2, 3) and computational cost.

Figure 4.5: Inviscid flow around the DLR–F6 aircraft, with three uncertain flow
conditions. Mean field (left) and standard deviation field (right) of the Mach number
(iPCE, C=1) over the aircraft surface.
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Figure 4.6: Inviscid flow around the DLR–F6 aircraft, with three uncertain flow
conditions. Computed pressure spectral coefficients (iPCE, C=1). Mean pressure
value (top left), spectral coefficient corresponding to free–stream Mach number (top
right), spectral coefficient corresponding to free–stream flow angle (bottom left) and
spectral coefficient corresponding to free–stream yaw angle (bottom right)
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Figure 4.7: Inviscid flow around the DLR–F6 aircraft, with three uncertain flow
conditions. Comparison of the convergence of the PCE coefficients of CL (iPCE and
niPCE, C=1). Mean value of the lift coefficient C0

L (top – left), PCE coefficient C1
L

corresponding to the free–stream Mach number (top – right) and PCE coefficient C2
L

corresponding to the free–stream pitch angle (bottom). All runs were initialized with
the converged mean flow field, i.e. the solution of the PDEs without uncertainties.
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Chapter 5

Continuous Adjoint of the iPCE

This chapter proposes a way to derive the continuous adjoint equations to the primal
iPCE problem. Emphasis is laid on establishing a general method that is easy to
program, with just a reasonable amount of interventions in an existing adjoint code
for the problem without uncertainties. Before the continuous adjoint of the iPCE
equations is developed, a brief reference to the deterministic continuous adjoint of
a general set of PDEs is made, following the development found in [45]. Note that
the approach presented in this chapter is the derivation of the adjoint equations to
the primal iPCE equations. The opposite would be to apply the iPCE theory to the
deterministic adjoint equations, which is not discussed in this diploma thesis.

5.1 Deterministic Continuous Adjoint

Let us consider a QoI given by

F =

∫
Ω

gTUdΩ +

∫
S

hTCUdS (5.1)

U stands for the field variables, that are subject to the following equations

LU − f = 0 , in Ω

BU − e = 0 , in S (5.2)

where S ≡ ∂Ω is the boundary of Ω, L,B and C are linear differential operators
while f , e, g and h may depend on the spatial coordinates xi but not on the field
variables U . Also, let b denote the array of design variables, δ ≡ δ/δb stands for
the total derivative with respect to b and ∂ ≡ ∂/∂b is the partial derivative due
to changes in the design variables while neglecting space deformations. Note that
the volume integral of eq.5.2 does not include differential operators; if this were the
case, such terms would become surface integrals, through Gauss’ theorem.
In order to minimize (or maximize) F under the constraints posed by eq.5.2, the
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following augmented function is defined

Faug := F −
∫

Ω

ΨT (LU − f)dΩ−
∫
S

(C∗Ψ)T (BU − e)dS (5.3)

where Ψ are the adjoint variables and the differential operator C∗ will be defined
later.
In general, we can write that

δ(LU) = L(δU ) + (δL)U (5.4)

For instance, if L ≡ ∂
∂xi

, then δ(LU) = ∂(δU)
∂xi

+ ∂U
∂xk

∂(δxk)
∂xi

, i.e. δL = ∂(δxk)
∂xi

∂
∂xk

.

Thus, because of eq.5.4, the total derivative of Faug is

δFaug = δF + δFΨ
SD −

∫
Ω

ΨTL(δU)dΩ−
∫
S

(C∗Ψ)TB(δU )dS (5.5)

where

δFΨ
SD :=

∫
Ω

ΨT [δf − (δL)U ]dΩ +

∫
S

(C∗Ψ)T [δ e− (δB)U ]dS (5.6)

Also, δF is given by

δF = δFSD +

∫
S

hTC(δU)dS +

∫
Ω

gT δUdΩ (5.7)

where

δFSD :=

∫
Ω

δgTUdΩ +

∫
Ω

gTUδ(dΩ)

+

∫
S

δ hTCUdS +

∫
S

hT (δC)UdS +

∫
S

hTCUδ(dS)

(5.8)

In eqs. 5.6 and 5.8 ‘SD’ stands for ‘sensitivity derivatives’. The calculation of the
variations present in eq. 5.8 depends on the parameterization of the problem and
on the choice of design variables.

Then we apply integration by parts, as follows∫
Ω

ΨTL(δU)dΩ ≡
∫

Ω

(AΨ)T δUdΩ +

∫
S

(DΨ)TE(δU)dS (5.9)

In eq. 5.9, the differential operators A,D and E are known; they are essentially

40



defined so that eq. 5.9 holds. By inserting eq. 5.9 into eq. 5.5, we get

δF = δFSD + δFΨ
SD +

∫
Ω

(g − AΨ)T δUdΩ +

∫
S

(h−B∗Ψ)TC(δU )dS

+

∫
S

(B∗Ψ)TC(δU )dS −
∫
S

(DΨ)TE(δU)dS −
∫
S

(C∗Ψ)TB(δU)dS︸ ︷︷ ︸
=:M

(5.10)

Notice that to derive eq. 5.10 the term
∫
S
(B∗Ψ)TC(δU)dS was added and sub-

stracted from eq. 5.9, while B∗ is a newly introduced differential operator that will
be defined later.

If Ψ is chosen so that it satisfies the adjoint equation

AΨ− g = 0 , in Ω

B∗Ψ− h = 0 , in S (5.11)

and the operators B∗ and C∗ are such that M is zero, as shown in [45], then the
variation of F will be given by

δF = δFSD + δFΨ
SD (5.12)

which is computed after the adjoint equations, eq. 5.11, are solved.

5.2 Continuous Adjoint iPCE Problem

In the presence of uncertainties, the QoI to be minimized/maximized is defined as

J :=

q∑
i=0

ζi|F i| (5.13)

where ζi are user–defined coefficients, q corresponds to a chosen chaos order and F i

are the PCE coefficients of F , which is given by eq. 5.1. The PCE coefficients of
the field variables Gq [U ] are subject to the iPCE equations, namely

Gq [LU − f ] = 0 , in Ω

Gq [BU − e] = 0 , in S (5.14)

In this case, the augmented function is

Jaug := J −
∫

Ω

Gq [Ψ]T Gq [LU − f ] dΩ−
∫
S

Gq [C∗Ψ]T Gq [BU − e] dS (5.15)

41



Since operators δ and Gq [] permute, the total derivative of Jaug is

δJaug = δJ −
∫

Ω

Gq [Ψ]T Gq [L(δU)] dΩ−
∫
S

Gq [C∗Ψ]T Gq [B(δU)] dS

+

∫
Ω

Gq [Ψ]T Gq [δf − (δL)U ] dΩ +

∫
S

Gq [C∗Ψ]T Gq [δ e− (δB)U ] dS

(5.16)

where, if by defining

ζ :=

q∑
i=0

ζisign(F i)Yi(ξ)⇒ Gq [ζ] = [ζ0sign(F 0), . . . , ζqsign(F q)] (5.17)

the derivative of J is given by

δJ =

q∑
i=0

ζisign(F i)δF i = Gq [ζ]T Gq [δF ]

= Gq [ζ]T
(

Gq [δFSD] +

∫
S

Gq
[
hTC(δU)

]
dS +

∫
Ω

Gq
[
gT δU

]
dΩ

)
= Gq [ζ]T Gq [δFSD] +

∫
S

Gq [ζ h]T Gq [C(δU)] dS +

∫
Ω

Gq [ζg]T Gq [δU ] dΩ

(5.18)

because of eq. 5.7 and proposition 3.6.
In this diploma thesis, uncertainties in the domain Ω are not examined (i.e. shape
uncertainties of an airfoil, for instance). This allows for the permutation of integrals
in Ω or S with the operator Gq []. Therefore, because of eq. 5.6 and proposition 3.6,
the last two terms of eq. 5.16 can be written as∫

Ω

Gq [Ψ]T Gq [δf − (δL)U ] dΩ +

∫
S

Gq [C∗Ψ]T Gq [δ e− (δB)U ] dS =

Gq

[∫
Ω

ΨT [δf − (δL)U ]dΩ +

∫
S

(C∗Ψ)T [δ e− (δB)U ]dS

]T
Gq [1] =

Gq
[
δFΨ

SD

]T
Gq [1]

(5.19)

where Gq [1] = [1, 0, . . . , 0]T .

By applying integration by parts in the second term of eq. 5.16, because of eq. 5.9
and proposition 3.5, we get∫

Ω

Gq [Ψ]T Gq [L(δU)] dΩ ≡∫
Ω

Gq [AΨ]T Gq [δU ] dΩ +

∫
S

Gq [DΨ]T Gq [E(δU)] dS

(5.20)
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Eq. 5.16, because of eqs. 5.19 and eq. 5.20, is now written as

δJaug = Gq [ζ]T Gq [δFSD] + Gq
[
δFΨ

SD

]T
Gq [1] +

∫
Ω

Gq [ζg − AΨ]T Gq [δU ] dΩ

+

∫
S

Gq [ζ h−B∗Ψ]T Gq [C(δU)] dS +

∫
S

Gq [B∗Ψ]T Gq [C(δU)] dS

−
∫
S

Gq [C∗Ψ]T Gq [B(δU)] dS −
∫
S

Gq [DΨ]T Gq [E(δU )] dS

(5.21)
This means that the adjoint iPCE equation and boundary conditions are

Gq [AΨ− ζ g] = 0 , in Ω

Gq [B∗Ψ− ζ h] = 0 , in S (5.22)

Also, it can be shown that the last three terms of eq. 5.21 are equal to Gq [M ]T Gq [1]
(the proof is similar to eq. 5.19 and is omitted in the interest of space). This means
that setting Gq [M ] = 0, or M = 0, defines operators B∗ and C∗ so that they are
equal to their counterparts in the case without uncertainties. Finally, the derivatives
of J are found from

δJ = Gq [ζ]T Gq [δFSD] + Gq
[
δFΨ

SD

]T
Gq [1] (5.23)
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5.2.1 How the Continuous Adjoint iPCE was Programmed

The continuous adjoint equations, boundary conditions, objective functions and sen-
sitivity derivatives for both the deterministic case and the iPCE case are summarized

� Continuous Adjoint Equation

AΨ− g = 0 (deterministic) , Gq [AΨ− ζ g] = 0 (iPCE)

� Adjoint Boundary Conditions

B∗Ψ− h = 0 (deterministic) , Gq [B∗Ψ− ζ h] = 0 (iPCE)

where ζ =
∑q

j=0 ζjsign(F j)Yj(ξ)

� Objective Function

F (deterministic) , J =

q∑
j=0

ζj|F j| (iPCE)

� Sensitivity Derivatives

δF = δFSD + δFΨ
SD (deterministic)

δJ = Gq [ζ]T Gq [δFSD] + Gq
[
δFΨ

SD

]T
Gq [1] (iPCE)

where Gq [1] = [1, 0, . . . , 0]

The numerical solution of the adjoint iPCE equation is similar to that of the primal
problem. An iterative scheme is chosen again, namely

Gq

[
∂Radj

∂Ψ

]
Gq [∆Ψ] = −Gq

[
Radj

]
(5.24)

where Radj = AΨ−ζ g which is again solved by keeping only the diagonal blocks of
the LHS, to save memory. Again, a routine that works as a ‘black box’ that evaluates
Radj is required. This routine can be the same one used in the problem without
uncertainties, with only a slight change; in the problem without uncertainties ζ = 1,
while in the presence of uncertainties ζ = ζ(ξ) =

∑q
i=0 ζisign(F i)Yi(ξ).

Also, the initialization of Ψ is somewhat different to solving the deterministic adjoint
problem. This time, the deterministic adjoint problem needs to be solved by setting

ζ = ζ0sign(F 0)

which corresponds to solving the adjoint iPCE equation for C = 0, or to finding
Ψ(ξ = ξz).
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The solution of the iPCE adjoint equations is followed by the computation of the
sensitivity derivatives given by eq. 5.20. Existing routines that evaluate FSD and
ΨSD can be used again.

Finally, in the choice of coefficients ζj, there are two things to consider. First, since

E[I] = I0 , V ar[I] =

q∑
j=1

(Ij)2

the mangitude of |ζ0|, compared to |ζj|, j = 1, . . . , q determines whether emphasis
is laid on minimizing the mean value or variance. Second, the signs of the coeffi-
cients are important. Without loss of generality, J is to be minimized. Therefore
ζj > 0, j = 1, . . . , q since we are always interested in a minimum variance. If F is
minimized in the deterministic problem, ζ0 will also be positive and if I is maximized
ζ0 will be negative.

A Different Objective Function

An equivalent approach could be presented, if the chosen objective function is defined
as

J =

q∑
j=0

ζj(F
j)2 (5.25)

In this case, everything presented in this chapter will be the same, except for ζ,
which will now be given by

ζ =

q∑
j=0

2ζjF
jYj(ξ) (5.26)

As will be shown in chapter 8, the initial definition of the QoI is preferable to that
of eq. 5.25 for the needs of the idea introduced there. However, the two definitions
are equivalent, as minimizing either of them yields the desired results. Of course,
the weights ζj should not be the same and their selection depends on each particular
case.
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Chapter 6

Demonstration of the Adjoint
iPCE Method

In this chapter the previously proposed continuous adjoint method is applied to
the 2D Euler equations for steady external flows. This set of equations is chosen
because of its simplicity, although the method was programmed for the compressible
Navier–Stokes equations.

6.1 Continuous Adjoint of the Deterministic Eu-
ler Equations

The Euler equations, written in conservative form, are

∂fi
∂xi

= Ai
∂U

∂xi
= 0 , in Ω

uini = 0 , in S

U = U∞ , in S∞

(6.1)

where S is the airfoil’s boundary and n = [n1, n2]T is its normal unit vector. Also, S
denotes the airfoil surface while S∞ stands for the free–stream, which is far enough
from the airfoil; U∞ are the free–stream flow conditions.
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The Jacobian matrices Ai := ∂fi
∂U

are given by

A1 =


0 1 0 0

1
2
[(γ − 3)u2

1 + (γ − 1)u2
2] (3− γ)u1 (1− γ)u2 γ − 1

−u1u2 u2 u1 0
−γu1

Et
ρ

+ (γ − 1)u1 u
2 γEt

ρ
− γ−1

2
(u2

2 + 3u2
1) (1− γ)u1u2 γu1



A2 =


0 0 1 0

−u1u2 u2 u1 0
1
2
[(γ − 3)u2

2 + (γ − 1)u2
1] (1− γ)u1 (3− γ)u2 γ − 1

−γu2
Et
ρ

+ (γ − 1)u2 u
2 (1− γ)u1u2 γEt

ρ
− γ−1

2
(u2

1 + 3u2
2) γu2

 (6.2)

The QoI will be the lift of the airfoil

F = L ≡
∫
S

p(n2 cos a∞ − n1 sin a∞)dS (6.3)

where a∞ is the free–stream flow angle. Following the discussion in the previous
chapter, the augmented function is defined as

Faug = F −
∫

Ω

ΨT ∂fi
∂xi

dΩ (6.4)

Note that the constraint of the Euler equations’ boundary conditions was not sub-
stracted from F , as was done in eq. 5.3. However, this constraint will be taken into
account later on, making this approach equivalent to defining Faug as in eq. 5.3.

The variation of Faug is

δFaug = δF −
∫

Ω

ΨT ∂(δfi)

∂xi
dΩ−

∫
Ω

ΨT ∂fi
∂xk

∂(δxk)

∂xi
dΩ (6.5)

where

δF =

∫
S

p(δn2 cos a∞ − δn1 sin a∞)dS +

∫
S

p(n2 cos a∞ − n1 sin a∞)δ(dS)︸ ︷︷ ︸
=δFSD

+

∫
S

δp(n2 cos a∞ − n1 sin a∞)dS

(6.6)

Application of integration by parts yields∫
Ω

ΨT ∂(δfi)

∂xi
dΩ = −

∫
Ω

∂ΨT

∂xi
AiδUdΩ +

∫
S

ΨT (δfi)nidS (6.7)

Note that δfi = AiδU , which was used to derive eq. 6.7. Also, in eq. 6.7, surface
integrals involving the variation of fi in the far field were omitted, since fi have
constant values there, determined by the infinite flow conditions. Moreover, because
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uini = 0 along S, or equivalently fini = [0, pn1, pn2, 0]T , it is∫
S

ΨT (δfi)nidS =

∫
S

Ψi+1niδpdS +

∫
S

(Ψi+1p−ΨTfi)δ(nidS) (6.8)

Eq. 6.5, because of eqs. 6.6,6.7 and 6.8 is written as

δFaug = δFSD +

∫
S

(ΨTfi −Ψi+1p)δ(nidS)︸ ︷︷ ︸
δFΨ
SD

+

∫
S

δp(n2 cos a∞ − n1 sin a∞ + Ψi+1ni)dS +

∫
Ω

∂ΨT

∂xi
AiδUdΩ (6.9)

which results in the adjoint equation and its boundary conditions

ATi
∂Ψ

∂xi
= 0 , in Ω

n2 cos a∞ − n1 sin a∞ + Ψi+1ni = 0 , in S (6.10)

the solution of which allows the computation of δF = δFSD + δFΨ
SD.

6.2 Adjoint to the iPCE Euler Equations

By applying the Gq [] operator to eq.6.1, the iPCE Euler equations are derived

Gq

[
∂fi
∂xi

]
= Gq

[
Ai

∂U

∂xi

]
= 0 , in Ω

Gq [uini] = 0 , in S

Gq [U ] = Gq [U∞] , in S∞

(6.11)

Note that uncertainty may be introduced in the far–field boundary conditions, for
example. It may not, however, affect the domain Ω or its boundary S, since then
the procedure shown below is not valid. The QoI now is defined as

J =

q∑
j=0

ζj|F j| (6.12)

The solution of eq. 6.11 through the process described in chapter 3 willl yield the
spectral coefficients F j ≡ Lj. The augmented function now is

Jaug = J −
∫

Ω

Gq [Ψ]T Gq

[
∂fi
∂xi

]
dΩ (6.13)
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Therefore, because operators δ and Gq [] permute

δJaug = δJ −
∫

Ω

Gq [Ψ]T Gq

[
∂(δfi)

∂xi

]
dΩ

−
∫

Ω

Gq [Ψ]T Gq

[
∂(δfi)

∂xk

∂(δxk)

∂xi

]
dΩ

(6.14)

with

δJ =

q∑
j=0

ζjsign(F j)δF j = Gq [ζ]T Gq [δF ]

= Gq [ζ]T Gq

[∫
S

δp(n2 cos a∞ − n1 sin a∞)dS

]
+ Gq [ζ]T Gq [δFSD]

(6.15)

where ζ =
∑q

j=0 ζjsign(F j)Yj(ξ), as in eq. 5.17, and FSD is given from eq. 6.6.

Then, integration by parts is applied. Because Gq [] permutes with ∂/∂xi (since
there is no uncertainty in the domain Ω) we write, as in eq. 6.7∫

Ω

Gq [Ψ]T Gq

[
∂(δfi)

∂xi

]
dΩ =

−
∫

Ω

Gq

[
∂Ψ

∂xi
Ai

]T
Gq [δU ] dΩ +

∫
S

Gq [Ψ]T Gq [δfi]nidS (6.16)

Also, as in eq. 6.19 ∫
S

Gq [Ψ]T Gq [δfi]nidS =∫
S

Gq [Ψi+1]ni G
q [δp] dS +

∫
S

(Gq [Ψi+1] Gq [p]−Gq [Ψ]T Gq [fi])δ(nidS)︸ ︷︷ ︸
=Gq[δFΨ

SD]
T

Gq[1]

(6.17)

where the last term is equal to Gq [δΨSD]T Gq [1], because of proposition 3.6 and
the fact that the involved integrals permute with Gq [].δFΨ

SD is given from eq.6.9.
Therefore, eq. 6.14, through eqs. 6.15, 6.16 and 6.18, is written as

δJaug = Gq [ζ]T Gq [FSD] + Gq [δΨSD]T Gq [1] +

∫
Ω

Gq

[
∂ΨT

∂xi
Ai

]
Gq [δU ] dΩ

Gq [ζ]T Gq

[∫
S

δp(n2 cos a∞ − n1 sin a∞)dS

]
−
∫
S

Gq [Ψi+1]T Gq [δp]nidS

(6.18)

From which it is deduced that the iPCE Euler adjoint equation is

Gq

[
ATi

∂Ψ

∂xi

]
= 0 (6.19)
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while its boundary conditions are found by setting

Gq [ζ]T Gq

[∫
S

−δp(n2 cos a∞ − n1 sin a∞)dS

]
−
∫
S

Gq [Ψi+1]T Gq [δp]nidS = 0⇒

Gq [ζ]T
∫
S

−Gq [δp] (n2 cos a∞ − n1 sin a∞)dS −
∫
S

Gq [Ψi+1]T Gq [δp]nidS = 0⇒

Gq [ζ(n2 cos a∞ − n1 sin a∞) + Ψi+1ni] = 0 (6.20)

Finally, the sensitivies of J are

δJ = Gq [ζ]T Gq [δFSD] + Gq
[
δFΨ

SD

]T
Gq [1] (6.21)

Regarding the choice of coefficients ζj, since we are interested in a maximum mean
value and a minimum variance of the lift, we could choose a negative ζ0 and positive
ζj , j > 0, so that the minimization of J will yield the desired result.
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Chapter 7

Numerical Implementation of the
Adjoint iPCE Method

The aforementioned continuous adjoint method is applied to the laminar flow around
a 2D isolated airfoil. The airfoil geometry is parameterized using two Bezier curves
and the coordinates of their control points are the design variables. More specifically,
nine control points are used for the suction side and nine for the pressure side, as
shown in fig. 7.1. Note that the vertical displacement of each control point is
bounded and that the first and last two control points are kept fixed. This is also
shown in fig. 7.1. Two cases are tested.

Figure 7.1: Shape optimization of a 2D airfoil. Initial airfoil geometry and control
points used to create the two Bezier curves.
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First case

In this first case, the objective function to be minimized in the absence of uncer-
tainties is the airfoil’s drag coefficient, i.e. F = CD. This is in fact the QoI that
will be used in the optimization under uncertainties that follows. Initially, a shape
optimization without uncertainties is carried out, for which the flow conditions are

M∞ = 0.5 , a∞ = 2o , Re = 6000 (7.1)

where Re is the chord–based Reynolds number. The resulted optimized geometry
yields a drag coefficient value of about 20% smaller than that of the initial symmetric
airfoil, fig. 7.2, on the left.
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Figure 7.2: Shape optimization of a 2D airfoil, drag minimization. History of the
objective function value in the optimization without uncertainties (left) and in the
optimization under uncertainties (right); laminar flow.

The shape–optimization under uncertainties follows. Uncertainties are introduced
in the flow conditions which have the following probability distributions

M∞ ∼ N (0.5, 0.05) , a∞ ∼ U(1.5o, 2.5o) , Re ∼ N (6000, 250)

In this case, the objective function is formulated as

J =

q∑
j=0

ζj|F j|

with q = 19 (for m = 3 uncertain variables and chaos order C = 3), ζ0 = 1 and
ζj = 3 ∀ j > 0. A reduction of the QoI of about 18% is achieved, see fig. 7.2 on
the right. The optimized airfoil geometries resulted from the two runs (without and
under uncertainties) compared to the initial one are shown in fig. 7.4. Moreover, fig.
7.3 shows the coordinates of the control points for the optmized geometry. The fields
of the adjoint velocity magnitude on the optimized geometries is illustrated in fig.
7.5. Table 7.2 compares the statistical moments of CD from both optimization runs.
The values on the left column are computed by an uncertainty quantification on the
optimized geometry resulted from the run without uncertainties. As expected, the
UQ that was applied on the geometry that resulted from the optimization without
uncertainties results in lower mean value but has higher standard deviation of the
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drag coefficient compared to the mean value and standard deviation that resulted
from the optimization under uncertainties.

Figure 7.3: Shape optimization of a 2D airfoil. Optimizedl airfoil geometry and
control points used to create the two Bezier curves.

Initial Geometry
Optimization without Uncertainties
Optimization  under  Uncertainties

Figure 7.4: Shape optimization of a 2D airfoil. Comparison of the optimized geome-
tries with and without uncertainties with the initial one; laminar flow.

Without Under
Uncertainties Uncertainties

µCD 6.81 · 10−2 6.97 · 10−2

σCD 1.11 · 10−3 1.05 · 10−3

Table 7.1: Shape optimization of a 2D airfoil. Comparison of the statistical moments
of the drag coefficient of the optimized geometries resulted from the two optimization
runs.
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Figure 7.5: Shape optimization of a 2D airfoil. Field of the non–dimensional ad-
joint velocity magnitude computed by the design without uncertainties (top) and mean
(middle) and standard deviation (bottom) of the adjoint velocity from the design under
uncertainties; laminar flow.

Second case

In the second case, the boundary conditions have the following probability distribu-
tions

M∞ ∼ N (0.5, 0.07) , a∞ ∼ U(1.5o, 2.5o) , Re ∼ N (5000, 300) (7.2)
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while QoI for the case without uncertainties is defined as

I = β(CL − CLtar)2 + CD (7.3)

with CL and CD being the lift and drag coefficients of the airfoil, while CLtar = 0.18
and β = 0.1. The QoI of the iPCE problem is then given by

J = ζj|Ij| , ζ0 = 1 , ζj = 10 , j > 0 (7.4)

and the optimization is carried out for two different chaos orders, one for C = 1 and
one for C = 2. Fig. 7.6 depicts the value of J as the optimization cycles increase.
The two curves are similar, but the one corresponding to C = 2 has somewhat larger
values. This should be attributed to the fact that more spectral coefficients Ij are
kept for C = 2. It also depicts the initial and the optimal airfoil geometries. In
fig. 7.7 the mean value and standard deviation of the drag coefficient are shown, as
functions of the optimization cycles. In fig. 7.8 the initial mean value and standard
deviation of the Mach number’s field around the airfoil are shown, whereas fig. 7.9
shows the optimized airfoil geometry, along with the same fields, for C = 1.

Figure 7.6: QoI Minimization as a Function of the Optimization Cycles, for C = 1, 2
(left) and Initial (red) and Optimized (Blue) Airfoil Geometries for C = 1 (right).

Figure 7.7: Drag coefficient mean Value (left) and standard deviation (right) mini-
mization as a function of the optimization cycles, for C = 1, 2
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Figure 7.8: Mean value (left) and standard deviation (right) of Mach number around
the initial airfoil geometry.

Figure 7.9: Mean value (left) and standard deviation (right) of Mach number around
the optimized airfoil geometry, for C = 1.

In table 7.2 the results of the optimization that concern the drag coefficient are
summarized. In the absence of uncertainties, another optimization was carried out
for the following values of the free–stream boundary conditions

M∞ = 0.5 , a∞ = 2o , Re = 5000 (7.5)

that resulted in CD = 7.38 ·10−1, which is practically equal to the predicted optimal
mean value, in the presence of uncertainties. Then, the optimal values of the design
variables that were found for the case without uncertainties were used as inputs for
the iPCE solver, for C = 1 and C = 2. The resulting mean value and standard
deviation of the drag coefficient are shown in table 7.3. Comparison of these values
with the results of table 7.2 shows that the optimal airfoil in the case without uncer-
tainties has a less robust performance than the one that resulted when uncertainties
were taken into account.
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C = 1 C = 2

µCD 7.33 · 10−2 7.14 · 10−2

σCD 1.08 · 10−3 1.34 · 10−3

Table 7.2: Optimization under uncertainties of a 2D airfoil in laminar flow condi-
tions. Mean value and standard deviation of drag coefficent for optimal airfoil geome-
tries in optimization under uncertainties for C = 1, 2.

C = 1 C = 2

µCD 7.44 · 10−2 7.32 · 10−2

σCD 1.34 · 10−3 1.50 · 10−3

Table 7.3: Optimization under uncertainties of a 2D airfoil in laminar flow con-
ditions. Mean Value and standard deviation of drag coefficent predicted by the iPCE
solver with optimal design variables from optimization without uncertainties as inputs,
for C = 1, 2
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Chapter 8

An Alternative to the Adjoint
iPCE

In this chapter, a more efficient alternative to the adjoint iPCE method is pro-
posed, programmed and assessed. This approach will be referred to as ‘Determin-
istic Derivatives – Stochastic Primal’, or as DDSP. The main idea is to replace the
adjoint iPCE with a solution of the adjoint equations without uncertainties (at a
specific value–set of the uncertain variables, determined through a process explained
below), while computing the derivatives of the objective function accurately.

8.1 The DDSP method

Recall the definition of the objective function for the problem with uncertainties

J =

q∑
i=0

ζi|F i| =
q∑
i=0

ζisignF iF i (8.1)

where ζi are user–defined coefficients and F i stand for the spectral coefficients of the
PCE of the QoI that may become known only after solving the (primal) iPCE equa-
tions. The gradient with respect to the design variables (let δ denote the gradient
in this section) that the adjoint iPCE method should compute is

δJ =

q∑
i=0

ζisign(F i)δF i (8.2)

The adjoint run always follows the primal iPCE run, which means that the spectral
coefficients F i of the QoI at the current solution (current value–sets of the design
variables) have been computed and are known. This means that sign(F i) are known
quantities. On the other hand, the gradient computed by the numerical solution,
for a given ξ = ξs (this value–set will be defined later on), of the adjoint equations
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without uncertainties is

δF (ξs) ≡
∞∑
i=0

δF iYi(ξs) (8.3)

Recall that giving the uncertain variables a fixed value–set ξ = ξs means that the
uncertain flow conditions of the stochastic problem (or any other input to it, should
this be the case), take on values that can directly be derived from ξ = ξs and the
deterministic problem (i.e. the flow solver in the absence of uncertainties) should
be solved for those values.

Since this new idea aims at replacing the solution of the iPCE adjoint equations
with a single solution of the adjoint problem without uncertainties (being much less
expensive, of course), without damaging the accuracy of computing δJ , we require
that

δF = δJ ⇒
∞∑
i=0

δF iYi(ξs) =

q∑
i=0

ζisign(F i)δF i (8.4)

Note that the RHS of eq. 8.4 is not a truncated infinite sum, but the weighted
sum of q + 1 terms, exclusively depending upon the selected chaos order C and
number of uncertain variables m. The LHS, however, is an infinite sum which must
be truncated; thus, the first q+ 1 terms must be retained and terms of higher–order
are neglected. The next step is to express the following equalities

Yi(ξs) = ζisign(F i), i = 0, 1, . . . , q (8.5)

Eqs. 8.5 essentially imply that, by selecting ξs so as to satisfy eq. 8.5, the derivatives
computed by a solution of the problem without uncertainties can be used, instead of
solving the iPCE adjoint equations (if, of course, such a ξs can be found). Therefore,
if the problem without uncertainties is solved for that ξs (along with its adjoint
equations), the sensitivities computed this way can be used, instead of those resulting
from solving the adjoint to the iPCE equations. However, it is very important to
note that the sole source of error of the DDSP method spings from the truncation
in eq. 8.4. It is expected that, if low–order truncation is performed (i.e. for a low
value of q) the error in computing the gradient through the DDSP method should
be higher; this is investigated, to a certain extent, in this section.

8.2 Solving eqs. 8.5

As it was previously mentioned, the DDSP method aims to determine a value–set
ξs of the uncertain variables that satisfies eq. 8.5. Therefore, the unknowns in those
equations are the components of ξs, of course. However, for j = 0, the first out of
the q + 1 equations to be satisfied is

ζ0 = Y0sign(F 0) = sign(F 0) (8.6)

since Y0 = 1 for any set of orthonormal polynomials. Eq. 8.6 does not involve any
component of ξs, but must be satisfied, if the gradient of the objective function
is to be accurately computed. For this reason, eq. 8.6 is considered to be an
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additional constraint, which imposes a specific value to the otherwise user–defined
ζ0. However, this is not an issue. Without loss of generality, it would be possible
to assume |ζ0| = 1 anyway, and then proceed to define the magnitude of the other
weights ζj, since only the relative size ζj/ζ0 , j > 0 is needed for the optimization to
yield the desired results.

After defining ζ0 through eq. 8.6 (and, of course, having already chosen the other
weights ζj based on the user–defined ratios of ζj’s), the number of remaining equa-
tions is reduced to q

Yi(ξs) = ζisign(F i), i = 1, . . . , q

which are handled differently, depending on the choice of chaos order. Note that
defining ζ0 through the constraint of eq. 8.6 will not result in ζ0 changing signs
between optimization cycles, as F 0 usually has a fixed sign (it may be the mean
value of the drag/lift coefficient of an aircraft, for instance, which has a fixed sign)

Solving eqs. 8.5 for C = 1

The solution of eqs. 8.5 is straightforward, if the chosen chaos order is C = 1. In
such a case, the number of unknowns is equal to the number of uncertain variables
m, as q = m for C = 1, recall eq. 2.26. Thus, they can be easily solved and ξs is
determined this way.

Solving eqs. 8.5 for C > 1

For C > 1, the reader may notice that there are q = (C + m)!/C!m!− 1 equations
and only m unknowns (ζ0 is again given by eq. 8.6). For this reason, ξs will be
chosen so that the following expression be minimized

M :=
1

2

q∑
i=1

[Yi(ξ)− ζisign(F i)]2 (8.7)

Therefore, the system of equations to solve becomes

Rj :=
∂M

∂ξj
=

q∑
i=1

[Yi(ξ)− ζisign(F i)]
∂Yi
∂ξj

= 0 , j = 1, . . . ,m (8.8)

Eq. 8.8 is solved iteratively through Newton’s method(
∂R

∂ξ

)
old

∆ξ = −Rold (8.9)

where R = (R1, . . . , Rm), ξnew = ξold + ∆ξ and(
∂R

∂ξ

)
jk

=

q∑
i=1

(
[Yi − ζisign(F i)]

∂2Yi
∂ξk∂ξj

+
∂Yi
∂ξj

∂Yi
∂ξk

)
(8.10)
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After the non–linear least–squares problem, eq. 8.8, is solved, a value–set ξs will
be determined that does not, however, completely satisfy eq. 8.5. In order to
completely satisfy eq. 8.5, the user would have to redefine the weights ζj , j > 0,
so that they would be equal to the RHS of eq. 8.5, for the ξs that was just found.
Equivalently, the solution of the least–squares problem will yield a value–set ξs (for
which the gradient of the objective function J will be computed) that corresponds
to the coefficients

cj := sign(F j)Yj(ξs) , j = 1, . . . , q (8.11)

and, as a result, the gradient of
∑q

j=0 cj|F j| instead of that of
∑q

j=0 ζj|F j| will be
computed. This essentially means that the whole optimization will correspond to a
somewhat different objective J , than the one initially chosen. This will be shown to
be a minor issue and a small price to pay though, if a major gain in computational
cost is to be achieved.

8.3 How to Apply the Idea - Discussion

Summing up, it has been proven that the solution of the adjoint equations without
uncertainties can be sufficient, when the goal is to compute the gradient δJ . To
achieve this, the solution must be made for a fixed ξs, which is determined by
solving the least squares problem discussed in the two previous sections.

However, one first thing to notice is the approximation of the infinite sum in eq. 8.4.
Should the chosen chaos order be not high enough, the DDSP method is expected
to have a non–negligible error in estimating δJ . More specifically, low chaos orders
may not be sufficient to approximate the infinite sum of eq.8.4; in this case, the
derivative δJ would be set equal to a sum containing not only δJ but also some
other, non–negligible, terms, eventually leading to inaccuracies.

For example, assuming one uncertain variable m = 1 and a chaos order C = 1,
eq. 2.26 yields q = 1. Then J = ζ0|F 0| + ζ1|F 1|. It is possible, though, that the
term F 2, which corresponds to C = 2, is non–negligible compared to F 1 (terms
that correspond to C > 2 are assumed negligible). Therefore, it would have been
preferable to set C = 2. Having chosen C = 1, eq. 8.4 would be written as

δJ = δF ⇒ ζ0sign(F 0)δF 0+ζ1sign(F 1)δF 1 = δF 0Y0(ξs)+δF
1Y1(ξs)+ δF 2Y2(ξs)︸ ︷︷ ︸

source of error

After this issue is dealt with and a high enough C is chosen, the following steps have
to be followed in every robust design optimization cycle

� Solve the primal iPCE equations

� Solve the least squares problem, to find ξS

� Solve a primal and an adjoint problem without uncertainties, for ξ = ξs and
compute δJ
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Instead of solving the primal problem without uncertainties in order to obtainU(ξs),
the iPCE primal equations can be used as a surrogate model. The spectral repre-
santation of U , which becomes available after the iPCE equations are solved, is an
explicit expression of U , as a function of ξ. Setting ξ = ξs yields U(ξs).

The approach used in this diploma thesis is slightly different though. The only
information required from the relatively costly step of solving the iPCE equations is
to find sign(F i), i = 0, . . . , q. For this reason, the first step described above can be
shortened to a great extent; one only needs to solve the iPCE equations up to the
point where the signs of the spectral coefficients F i are safely determined. To this
end, a loose ‘convergence’ criterion is applied, making this step much more faster
than completely solving the iPCE equations.

8.4 Applications/Comparison with adjoint iPCE

In this section, the DDSP method is applied to the isolated airfoil case presented in
chapter 9, for laminar flow conditions. Recall that the airfoil was created from two
Bezier curves and the coordinates of their control points are the design variables. In
all cases, the QoI of the problem without uncertainties is

F = β(CL − CLtar)2 + CD , CLtar = 0.18 , β = 0.2 (8.12)

8.4.1 Accuracy Tests

First, we discuss the accuracy of the DDSP method in correctly evaluating deriva-
tives. All tests are carried out for a single uncertain variable, the free–stream Mach
number, and the derivatives are found by applying the finite difference method to
the iPCE solver (yielding the ‘exact’ derivative). After that, eq. 8.5 is solved to find
a fixed ξs, for which finite differences are applied to the solver of the deterministic
equations, yielding the derivating computed by the DDSP method.

First Test

The first test is carried out for C = 1 and a probability distribution of the free–
stream Mach number given by

M∞ ∼ N (0.5, 0.01)⇔M∞ = 0.5 + 0.01ξ , ξ ∼ N (0, 1) (8.13)

while the objective function is defined as

J = |F 0|+ 10|F 1| (8.14)

which implies that ζ0 = 1 and ζ1 = 10. Note that the requirement that ζ0 =
Y0sign(F 0) = 1 is satisfied in this case.
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The solution of eq. 8.5 is straightforward

Y1(ξs) = ζ1sign(F 1)⇒ ξs = 10 (8.15)

since F 1 was positive. Therefore,

M∞ = 0.5 + 0.01ξs = 0.6 (8.16)

is the boundary condition for which the deterministic problem has to be solved, in
order to compute the derivatives with the DDSP method. Hence, the DDSP deriva-
tives were found after the application of finite differences to the primal problem,
after setting M∞ = 0.6. The comparison was made with the derivatives found by
applying finite differences to the primal iPCE solver.

The results are shown in fig. 8.1 and in table 8.1. It is evident that there is very
good agreement between the two.

Pressure Side Suction Side
Control Point # FD (iPCE) DDSP FD (iPCE) DDSP

1 -0.55071 -0.55756 0.78802 0.79789
2 -0.58644 -0.59409 0.58944 0.60527
3 -0.37392 -0.38137 0.27344 0.28936
4 -0.19606 -0.20255 0.08028 0.09312
5 -0.08533 -0.09038 -0.00864 0.00050
6 -0.02707 -0.03060 -0.03625 -0.03049
7 -0.00433 -0.00652 -0.03277 -0.02953
8 -0.00585 -0.00712 -0.01478 -0.01332
9 -0.03228 -0.03357 0.01065 0.01144

Table 8.1: First accuracy test. Comparison of finite difference derivatives computed
by the iPCE solver and the deterministic solver for input boundary conditions deter-
mined by eq.8.5 (DDSP method), for one uncertain variable and C = 1.
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Figure 8.1: First accuracy test. Comparison of finite difference derivatives com-
puted by the iPCE solver and the deterministic solver for input boundary conditions
determined by eq.8.5 (DDSP method), for one uncertain variable and C = 1.

Second Test

The second test is similar to the first, with a higher standard deviation of the free–
stream Mach number though, namely

M∞ ∼ N (0.5, 0.07)⇔M = 0.5 + 0.07ξ , ξ ∼ N (0, 1) (8.17)

and the objective function is defined as

J = |F 0|+ 5|F 1| (8.18)

which implies that ζ0 = 1 and ζ1 = 5. Again, the requirement that ζ0 = Y0sign(F 0) =
1 is satisfied. The solution of eq.8.5 yields ξs = 5 and now the imposed boundary
condition is

M∞ = 0.5 + 0.07ξs = 0.85 (8.19)

which is aerodynamically much higher than 0.5. The results are summarized in fig.
8.2. It is evident that the DDSP method is somewhat inaccurate this time. This
should be attributed to the relatively high variance of the boundary conditions,
combined with the low chaos order chosen. This test highlights the main drawback
of this chapter’s idea, which is its dependence on the chosen chaos order, if we are
to have accurate results.
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Figure 8.2: Second accuracy test. Comparison of finite difference derivatives com-
puted by the iPCE solver and the deterministic solver for input boundary conditions
determined by eq.8.5 (DDSP method), for one uncertain variable and C = 1.

Third Test

In this final test, the free–stream Mach number is again given by eq. 8.17. This
time, however, the method is tested for C = 2 and C = 3. Recall that, for C > 1,
a least squares problem has to be solved, eq. 8.8, to determine the value of ξs for
some desired ζj. However, the resulting ξs will not of course satisfy eq. 8.5. For this
reason, the derivatives computed by the DDSP method will correspond to different
coefficients cj than those given by the user, that are found from

cj = sign(F j)Yj(ξs)

In table 8.2 the solution ξs of the least squares problem is given, for C = 2 and
C = 3, along with the user–defined ζj and the resulting cj that are found from
eq.8.11. Therefore, finite differences were applied to the deterministic equations
for the values of the infinite Mach number found in table 8.2, which resulted in
the computation of the derivatives that correspond to the coefficients cj. For the
comparison to be fair, finite differences were now applied to the iPCE solver, not
for ζj = 5, but for ζj = cj. Results are shown in fig.8.3. It is now clear that the
proposed method is accurate and the accuracy increases with the chaos order.
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C = 2 C = 3
ζj cj
5 2.9598 2.7918
5 5.4874 4.7646
5 - 5.3810
ξs 2.9598 2.7818
M∞ 0.7072 0.6947

Table 8.2: Summary of least squares solution for C = 2, 3, along with the resulting
value of the boundary condition.

Figure 8.3: Third accuracy test. Comparison of finite difference derivatives for C = 2
(top) and C = 3 (bottom), calculated by the iPCE solver and the DDSP method.

The main conclusion of these accuracy tests is that the DDSP method correctly
finds derivatives if the chaos order is relatively high (C > 1) or if the uncertainties
are rather small, so that they can be correctly quantified for C = 1.
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8.4.2 Optimization – Comparison of Computational Cost

The DDSP method is now applied to the optimization of an isolated airfoil at laminar
flow conditions; the objective function is the drag coefficient in the case without
uncertainties. Uncertainty is introduced through the free–stream Mach number,
free–stream flow angle and chord–based Reynolds number, that have the following
probability distributions

M∞ ∼ N (0.5, 0.05) , a∞ ∼ U(−1.5o, 2.5o) , Re∞ ∼ N (5000, 300) (8.20)

The objective function to be minimized is defined in this case as

J =

q∑
i=0

ζj|Cj
D| , ζ0 = 1 , ζj = 5 , j > 0 (8.21)

Comparisons in terms of computational cost and drag minimization are made be-
tween the DDSP and the adjoint iPCE approach.

Optimization for C = 1

The results of the optimization for C = 1 are summarized in fig.8.4, where the mean
drag coefficient, its standard deviation and the objective function are shown, as a
function of the optimization cycles. Note that these values were available every
two optimization cycles, when the DDSP method was applied; this is because the
application of this method does not require the full convergence of the iPCE solver
in every optimization cycle. So, to save time, the iPCE was allowed to fully converge
once every second cycle.

It is evident that both the adjoint iPCE and the DDSP methods failed to prop-
erly lower the standard deviation of the QoI. Although small values were achieved
(especially in the 12th optimization cycle), the convergence was not smooth but
had many oscillations. In both methods, this should be attributed to the choice
of chaos order, which seems not high enough to correctly estimate the true value
of the standard deviation. It is also clear that the results of the two methods are
close. The reason any differences are seen is unclear though; since the derivatives
were calculated using the fast, but rather inaccurate, SI (Surface Integral) adjoint
method, it is not certain whether they should be attributed to the DDSP method
or to the accuracy of the adjoint SI calculation.

Finally, in terms of computational cost, the DDSP method is noticeably faster; it
required 869 seconds, whereas the adjoint iPCE method took 1673 seconds to be
completed. This difference could grow even more, if the iPCE solver used in the
DDSP method was allowed to converge more rarely than once every two optimization
cycles.
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Figure 8.4: Optimization results for C = 1. Value of the QoI (top), mean drag
coefficient (bottom left) and standard deviation of drag coefficient (bottom right).

Optimization for C = 2

Similar results to those previously presented for C = 1 are now shown in fig.8.5,
for C = 2. This time, the convergence of the standard deviation value is somewhat
smoother, although in the adjoint iPCE case it still has some oscillations. In terms
of computational cost, the adjoint iPCE needed 5710 seconds, while the DDSP only
took 1908 seconds to be completed, offering thus a major gain in computational
burden.

In addition to that, it seems that the DDSP method yields lower values for the
QoI. Although this might be coincidental, it can be argued that the DDSP method
can sometimes compute derivatives more accurately than the adjoint iPCE method.
More specifically, both the adjoint iPCE and the deterministic adjoint solver used
in the DDSP take the values of the field variables U as input. In the adjoint iPCE,
the PCE of U is truncated, based on the chosen chaos order; in the DDSP method,
however, this is not the case. The value of U(ξ = ξs) that is used as an input has
no truncation, which may be a reason why the DDSP derivatives can sometimes be
more accurate.
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Figure 8.5: Optimization results for C = 2. Value of the QoI (top), mean drag
coefficient (bottom left) and standard deviation of drag coefficient (bottom right).

8.4.3 Overall Conclusions Regarding the DDSP Method

Overall, it is clear that the DDSP method is preferable probably to the adjoint iPCE
method, mainly due to the huge gain in terms of computational cost it involves
and its simplicity (no adjoint iPCE programming needed). The limitations of the
method have to be taken into account of course, as it generally fails for low chaos
orders; that being said, it may sometimes be preferable to apply the DDSP for a
higher chaos order, than the adjoint iPCE method for a lower one. Finally, the
DDSP method limits the choices regarding the selection of the coefficients ζj of the
objective function, as a least squares problem has to be solved and the resulting
coefficients are those given from eq. 8.11; probably a small price to pay.
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Chapter 9

Overview and Conclusions –
Future Research Ideas

9.1 Overview

This work proposed an intrusive PCE method that also benefits from the simplicity
of non–intrusive approaches. The changes in the software it requires are minimal
and its applicability is wide, as it does not depend on the governing equations of a
problem.

In chapter 3, several new definitions were given and some propositions were proven.
This way, the theory behind the proposed iPCE method was established. It was
shown that there is no need to derive the iPCE equations by hand, as is usually
the case in ‘conventional’ intrusive approaches. Instead, non–intrusive operations
were introduced, so that the residuals of the iPCE equations can be computed.
Moreover, a numerical solution scheme was derived, which still does not ask for the
explicit derivation of the iPCE equations, but is based on the solution scheme of their
deterministic counterpart. Ways to drastically reduce the memory requirements and
computational cost of the method were also presented. The proposed approach was
not specific to any set of equations and was rather general; this is a huge advantage
over other intrusive methods, that greatly depend on the set of governing equations.

In chapter 4, the proposed method was applied to aerodynamic problems. It was
programmed for 2D and 3D flow problems, in laminar or turbulent flow conditions,
using the Spalart–Allmaras turbulence model. Comparisons in terms of accuracy
and/or computational cost were made with the Monte–Carlo and the niPCE method.
It was found that the iPCE approach outperformed the other methods, as it was
significantly faster and just as accurate.

In chapter 5, the continuous adjoint equations of the proposed iPCE method was
derived. Again, the approach was general and not specific to the governing equations
of a problem. Non–intrusive operations were again added to the method, so as to
make it painless and easy to program, with as little interventions in the original
deterministic code as possible.

73



In chapter 7, the previously mentioned continuous adjoint method was programmed
and applied to an isolated airfoil in laminar flow conditons. Shape optimizations
under uncertainty that aimed to minimize the drag coefficient were carried out. The
optimized airfoil geometries were shown to have a robust performance in the presence
of uncertainties, when compared to geometries that resulted from optimizations that
did non acount for uncertainties.

In chapter 8, an alternative approach to compute the sensitivity derivatives of an
objective function was proposed. The DDSP method replaced the adjoint iPCE
equations with a deterministic adjoint problem. After several accuracy tests, the
accuracy of the method was well–established. In addition to that, the DDSP method
also allowed for looser convergence criteria of the iPCE equations. Thus, overall,
the DDSP method offers a huge gain in computational cost, when compared to the
adjoint iPCE equations. This was shown, as the method was applied to a 2D airfoil
and compared to the adjoint iPCE solutions.

Overall, the conclusions of this diploma thesis are summarized as follows

� The proposed iPCE method combines the merits od both intrusive and non–
intrusive approaches.

� The implementation of the method is painless, as the programming required
is the least possible.

� No mathematical groundwork is required to derive and discretize the iPCE
equations.

� The proposed approach is general, robust and applicable to any set of PDEs.

� The same is true for the proposed adjoint appoach and the DDSP method.

� The adjoint and the DDSP methods offer a computationaly affordable way to
take uncertainties into account in optimization and robust design.

9.2 Proposals for Future Work

Regarding future research ideas, the following are proposed

� Application of the proposed iPCE approach using a method of estimating the
Galerkin projections involved other than the Gauss Quadrature, such as least–
squares. This could help speed up the ‘non–intrusive’ part of the method.

� Formulation of the method’s continuous adjoint when there is uncertainty in
the domain of the problem, i.e. shape uncertainties.

� Application of the adjoint iPCE approach (or the DDSP method) to real–world
3D problems.

� Use of the proposed iPCE approach as a surrogate model. For instance, the
dependance of a QoI to the changes in the flows’ boundary conditions can be
found through its computed PCE coefficients.
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� Use of arbitrary probability distributions, which result from curve–fitting of
data points. The corresponding orthogonal polynomials can be created through
the Gram–Schmidt process (see chapter 2).

� In all applications presented in this diploma thesis, the probability distribu-
tions of inputs/boundary conditions were arbitrarily chosen. Methods such as
Bayesian UQ approaches can be used, so as to better define such distributions.
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Appendix A

Proof of Proposition 3.3.1

Let D := {d1, . . . , dd} and Q := {ξ1, . . . , ξd} denote the sets of quadrature weights
and nodes, corresponding to d value–sets of the uncertain variables ξ ∈ Rm, where
d = (C + 1)m ; C is the chosen chaos order.

Then, we assume that the chosen chaos order is such that U(ξ) is exactly equal to
the truncated expansion of the flow variables U with q terms, namely,

U =

q∑
i=0

U iYi(ξ) (A.1)

In what follows, let Gq
[
U (p)

]
≡ [(U 0)(p), . . . , (U q)(p)]T denote the PCE coefficient

fields at the p–th iteration, as found by the iPCE and Gq
[
U ′(p)

]
≡ [(U ′0)(p), . . . , (U ′q)(p)]T

denote the PCE coefficient fields at the p–th iteration, as found by the niPCE.

Upon completion of the p –th iteration of each non–intrusive run, U and R fields at
each Gaussian node of Q are available; these are denoted by U ′(p)(ξi) and R′(p)(ξi)
respectively. Then

(U ′g)
(p)

=
d∑
i=1

diYg(ξi)U
′(p)(ξi)

(R′g)
(p)

=
d∑
i=1

diYg(ξi)R
′(p)(ξi) (A.2)

To prove proposition 3.3.1, it suffices to show that

(U g)(p) = (U ′g)(p) implies (U g)(p+1) = (U ′g)(p+1), g = 0, . . . , q (A.3)

The solution of eq. 3.8 for each ξ ∈ Q leads to

U ′(p+1)(ξi) = U ′(p)(ξi)− J −1R
′(n)(ξi) (A.4)
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where J := ∂R(p)

∂U (p) . Assuming U
(p)
g = U

′(p)
g , which also results to

(Rg)(p) = (R′g)(p), g = 0, . . . , q (A.5)

the application of eq. A.4 for all ξ ∈ Q, by considering eq. A.2, leads to

(U ′g)(p+1) = (U g)(p) −
d∑
i=1

diYg(ξi)J −1(ξi)R
(p)(ξi) (A.6)

Moreover
Gq
[
U (p+1)

]
= Gq

[
U (p)

]
−Gq

[
J −1

]
Gq
[
R(p)

]
(A.7)

From eqs. A.6 and A.7, it can be seen that in order to prove that (U g)(p+1) =
(U ′g)(p+1), g = 0, . . . , q, it suffices to show that

d∑
i=1

diYg(ξi)J −1(ξi)R
(p)(ξi) = Gq

[
J −1

]
Gq
[
R(p)

]
Thus

Gq[J −1]Gq[R(p)]|g =

q∑
k=0

(J−1)gk(Rk)(p) =

d∑
i=1

diJ −1(ξi)Yg(ξi)

q∑
k=0

Yk(ξi)
d∑
j=1

djR
(p)(ξj)Yk(ξj) =

d∑
i=1

diJ −1(ξi)Yg(ξi)

q∑
k=0

Yk(ξi)R
(p)
k =

d∑
i=1

diJ −1(ξi)Yg(ξi)R
(p)(ξi)

Note that eq. A.1 holds only approximately due to truncation and so does eq. A.5.
Therefore, it is expected that the results of the proposed iPCE formulation will
tend to those of the corresponding niPCE, as chaos order increases. Also, since the
correct solution Gq [U ] is obtained after all non–intrusive runs are completed, the
iPCE will also converge after the last run is completed, that is, after max(n1, . . . , nd)
iterations.

Proposition 3.3.1 is an important property as it implies that the only prerequisite for
the convergence of the iPCE equations is that the corresponding problem without
uncertainties converges for all ξ ∈ Q. In other words, ensuring that the solver in eq.
3.8 converges for input uncertainties, taking the fixed values given by Q is sufficient
for the iPCE equations to converge as well.
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Appendix B

Discrete Adjoint of the iPCE Problem

The Discrete Adjoint of the iPCE equations is presented in this Appendix. Again,
emphasis is laid on establishing a general, flexible method that is easy to program,
given some existing software that solves the deterministic equations’ adjoint prob-
lems.

B.1 Deterministic Discrete Adjoint Problem

The discrete primal residual equations are written as

R(U , b) = 0 (B.1)

where U is their discrete solution, i.e. the field variables at every mesh node, and b
is the array of design variables. Let I(U , b) be a chosen discrete approximation of
the selected objective function. For instance, if the objective function is an integral,
then I(U , b) is essentially a sum of terms involving U and b. Then, the total
derivative of I with respect to b, δ ≡ δ

δb
is

δI =

(
∂I

∂U

)T
δU +

∂I

∂b
(B.2)

Also

δR =
∂R

∂U
δU +

∂R

∂b
= 0 (B.3)

since R = 0 regardless of the choice of b. Solving eq.B.3 for δU and substituting
into eq. B.2 leads to

δI = −
(
∂I

∂U

)T (
∂R

∂U

)−1
∂R

∂b
+
∂I

∂b
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which, through the discrete adjoint equation(
∂R

∂U

)T
Ψ +

∂I

∂U
= 0 (B.4)

is finally written as

δI = ΨT ∂R

∂b
+
∂I

∂b
(B.5)

B.2 Discrete Adjoint iPCE Problem

The discrete iPCE primal residual equations are written as

Gq [R] = 0 (B.6)

and Gq [U ] is their discrete solution. The objective function chosen in this case
involves the spectral coefficients of the PCE of the deterministic objective function
and its discrete approximation is

J =

q∑
j=0

ζj|Ij| = Gq [ζ]T Gq [I] (B.7)

where ζj are some user–defined weights, ζ :=
∑q

j=0 ζjsign(Ij)Y (ξ) and Ij ≡ 〈I, Yj〉
are the spectral coefficients of the discrete deterministic objective function. To
formulate the discrete adjoint equation, we first differentiate eq.B.6 with respect to
the design variables (note that operators δ() and Gq [] permute and recall proposition
3.5)

δ(Gq [R]) = Gq [δR] = Gq

[
∂R

∂U

]
Gq [δU ] + Gq

[
∂R

∂b

]
= 0 (B.8)

We then differentiate J and use propositions 3.5 and 3.6:

δJ = Gq [ζ]T Gq

[(
∂I

∂U

)T
δU +

∂I

∂b

]

= Gq [ζ]T Gq

[
−
(
∂I

∂U

)T (
∂R

∂U

)−1
∂R

∂b
+
∂I

∂b

]

= Gq

[
ζ
∂I

∂U

]T
Gq

[
−
(
∂R

∂U

)−1
]

Gq

[
∂R

∂b

]
+ Gq [ζ]T Gq

[
∂I

∂b

]
= ΨT Gq

[
∂R

∂b

]
+ Gq [ζ]T Gq

[
∂I

∂b

]
(B.9)
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where

Gq

[(
∂R

∂U

)T]
Ψ + Gq

[
ζ
∂I

∂U

]T
= 0 (B.10)

is the discrete adjoint equation, the solution of which allows for the calculation of
the sensitivity derivatives, given from eq.B.9.
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Appendix C

Gauss Quadrature Nodes and Weights

Below are summarized the values of the nodes and weights for GQ–based integration
involving probability distributions, in the corresponding intervals of orthogonality.
Recall that for a single variable and a chosen chaos order C, the order of the quadra-
ture is given by

d = C + 1

which guarantees the exact evaluation of integrals involving two polynomials, each
with degree up to C.
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Hermite Legendre
Normal Distribution Uniform Distribution

w(ξ) = 1√
2π
e−ξ

2/2 w(ξ) = 1
2

E = (−∞,+∞) E = (−1, 1)
d ξ ω ξ ω

2 1.00000000000000 0.50000000000000 0.57735026918963 0.50000000000000
2 −1.00000000000000 0.50000000000000 −0.57735026918963 0.50000000000000
3 0.00000000000000 0.66666666666667 0.00000000000000 0.44444444444444
3 1.73205080756888 0.16666666666667 0.77459666924148 0.27777777777778
3 −1.73205080756888 0.16666666666667 −0.77459666924148 0.27777777777778
4 0.74196378430273 0.45412414523192 0.33998104358486 0.32607257743127
4 −0.74196378430273 0.45412414523192 −0.33998104358486 0.32607257743127
4 2.33441421833898 0.04587585476807 0.86113631159405 0.17392742256873
4 −2.33441421833898 0.04587585476807 −0.86113631159405 0.17392742256873
5 0.00000000000000 0.53333333333331 0.00000000000000 0.28444444444444
5 1.35562617997427 0.22207592200559 0.53846931010568 0.23931433524968
5 −1.35562617997427 0.22207592200559 −0.53846931010568 0.23931433524968
5 2.85697001387281 0.01125741132772 0.90617984593866 0.11846344252809
5 −2.85697001387281 0.01125741132772 −0.90617984593866 0.11846344252809
6 0.61670659019260 0.40882846955603 0.66120938646626 0.18038078652407
6 −0.61670659019260 0.40882846955603 −0.66120938646626 0.18038078652407
6 1.88917587775371 0.08861574604194 0.93246951420315 0.08566224618959
6 −1.88917587775371 0.08861574604194 −0.93246951420315 0.08566224618959
6 3.32425743355212 0.00255578440206 0.23861918608320 0.23395696728635
6 −3.32425743355212 0.00255578440206 −0.23861918608320 0.23395696728635

Table C.1: Hermite and Legendre GQ weights and nodes
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Κεφάλαιο 1

Εισαγωγή

1.1 Ποσοτικοποίηση της Αβεβαιότητας

Στις περιπτώσεις που η στοχαστικότητα στα προβλήματα ρευστομηχανικής αμελείται, οι
κώδικες Υπολογιστικής Ρευστομηχανικής (ΥΡΔ) προλέγουν ροές πολύ αποτελεσμα-
τικά. ΄Ομως, σε πλήθος περιπτώσεων οι αβέβαιες παράμετροι έχουν σημαντική επίδραση
στην απόδοση ενός συστήματος. Για παράδειγμα, η απόδοση ενός συμπιεστή αλλάζει
δραστικά αν μεταβληθεί η γωνία της ροής στην είσοδό του. Για τον λόγο αυτό, α-
ναπτύσσονται μέθοδοι Ποσοτικοποίησης Αβεβαιότητας (Uncertainty Quantification,
UQ), ώστε να μπορεί να γίνει ποσοτική εκτίμηση της επίδρασης αβέβαιων παραμέτρων
στην Ποσότητα Ενδιαφέροντος (Quantity of Interest, QoI)

Ορισμένες μέθοδοι UQ είναι οι εξής:

❼ Μέθοδοι Στοχαστικής Δειγματοληψίας (Stochastic Sampling)
Είναι οι πιο ακριβείς αλλά και υπολογιστικά ακριβές μέθοδοι, αφού περιλαμβάνουν
τη λήψη πολλών δειγμάτων, δηλαδή λύσεων του προβλήματος χωρίς αβεβαιότη-
τες, ώστε να μπορέσει να εκτιμηθεί η κατανομή πιθανότητας της εξόδου που
ενδιαφέρει το μηχανικό. Τέτοιες μέθοδοι είναι οι Monte Carlo, quasi– Monte
Carlo και η Latin Hypercube , [1, 2, 3].

❼ Μέθοδοι Στατιστικών Ροπών (Method of Moments)
Σε αυτήν τη μέθοδο χρησιμοποιείται το Taylor ανάπτυγμα της ΧοΙ, μέσω του
οποίου εκφράζονται οι στατιστικές ροπές της QoI συναρτήσει των παραγώγων
της ως προς τις αβέβαιες μεταβλητές, [4, 5].

❼ Στοχαστική Παράθεση (Stochastic Collocation)
Σε αυτήν τη μέθοδο η QoI εκφράζεται ως ανάπτυγμα με βάση τα πολυώνυμα
Legendre . Με λήψη τιμών της για διάφορες τιμές των αβέβαιων παραμέτρων
γίνεται κατάλληλη παρεμβολή και προσεγγίζεται η στατιστική συμπεριφορά της
[6, 7, 8].

❼ Φασματικές Μέθοδοι (Spectral Methods)
Στις φασματικές μεθόδους, η QoI εκφράζεται μέσω συναρτήσεων βάσης που
σχηματίζουν τον χώρο/φάσμα των στοχαστικών εισόδων. ΄Ενα παράδειγμα φα-
σματικής μεθόδου είναι το ανάπτυγμα Karhunen–Loève , [9, 10]. Το Ανάπτυγ-
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μα Πολυωνυμικού Χάους (Polynomial Chaos Expansion, PCE) είναι μία άλλη
μέθοδος, [11, 12]. Διακρίνεται σε επεμβατικό και μη–επεμβατικό, ανάλογα με
το αν απαιτείται ή όχι τροποποίηση του λογισμικού επίλυσης των εξισώσεων
[13, 14, 15, 16, 17, 18, 19, 20]. Εκτενής σύγκριση των δύο μεθόδων παρουσι-
άζεται στο [21].

1.2 Βελτιστοποίηση Στιβαρού Σχεδιασμού

Οι αβεβαιότητες στο περιβάλλον ή/και στις συνθήκες λειτουργίας ενός συστήματος
δημιουργούν την ανάγκη για Στιβαρό Σχεδιασμό (Robust Desgin) , δηλαδή τον σχε-
διασμό συστημάτων των οποίων η απόδοση δεν αλλάζει σημαντικά όταν μεταβάλλεται
το περιβάλλον τους. Μαθηματικά, αντί της ελαχιστοποίησης μίας συνάρτησης F , ο
Στιβαρός Σχεδιασμός ελαχιστοποιεί μια ποσότητα της μορφής

µF + kσF , k ∈ R
+ (1.1)

όπου µF είναι η μέση τιμή και σF η τυπική απόκλιση της F , ενώ το k είναι ένας συ-
ντελεστής βαρύτητας που δίνει ο χρήστης. Μία μέθοδος UQ επιτρέπει τον υπολογισμό
των τιμών των συναρτήσεων ως αυτή της εξ. 1.1. Με τη χρήση στοχαστικών μεθόδων
βελτιστοποίησης, όπως οι εξελικτικοί αλγόριθμοι, αυτό είναι αρκετό για να γίνει η βελ-
τιστοποίηση [22, 23, 24, 25, 26]. Η βελτιστοποίηση μπορεί φυσικά να γίνει και με χρήση
της κλίσης της συνάρτησης–στόχου (όπως αυτή της εξ. 1.1) ως προς τις μεταβλητές
σχεδιασμού, η οποία υπολογίζεται μέσω συζυγών τεχνικών [27, 28], όπως γίνεται και
στη διπλωματική αυτή εργασία, όπου προτείνεται μία συνεχής συζυγής προσέγγιση για
τον υπολογισμό παραγώγων ευαισθησίας συναρτήσεων όπως αυτή της εξ. 1.1.
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Κεφάλαιο 2

Ορθογώνια Πολυώνυμα και PCE

Σε αυτό το κεφάλαιο εισάγονται τα ορθογώνια πολυώνυμα, που αποτελούν βασικό
στοιχείο της θεωρίας του PCE, το οποίο αναλύεται στη συνέχεια.

2.1 Ορθογώνια Πολυώνυμα

Μίας μεταβλητής

Oρισµóς 2.1.1. Μια σειρά πολυωνύμων {pn(ξ)}
∞

n=0 με degree [pn] = n ονομάζεται
ορθογώνια ως προς τη συνάρτηση w(ξ) στο διάστημα (a, b) αν

〈pn, pm〉 ≡

∫ b

a

pn(ξ)pm(ξ)w(ξ)dξ = δmn 〈pn, pn〉 (2.1)

όπου δmn είναι το δέλτα του Κρόνεκερ. Αν < pn, pn >= 1 ∀n ∈ N, τότε τα πολυώνυμα
λέγονται ορθοκανονικά.

Πολλών μεταβλητών

Υποθέτουμεm σειρές ορθογωνίων πολυωνύμων μίας μεταβλητής pk ≡ {pkn(ξk)}
∞

n=0, k =
1, . . . ,m. Κάθε σειρά είναι ορθογώνια ως προς μία συνάρτηση βάρους wk(ξk) με πεδίο
ορισμού Ek. Μεταξύ οποιονδήποτε τέτοιων σειρών ορίζεται ένα τανυστικό γινόμενο,
ως εξής:
Oρισµóς 2.1.2. Το τανυστικό γινόμενο δύο σειρών συναρτήσεων A = {an(ξ1)}

∞

n=0

και B = {bn(ξ2)}
∞

n=0 ορίζεται ως

A⊗ B := {an1
(ξ1)bn2

(ξ2)}
∞

n1,n2=0 = {a0b0, a1b0, a0b1, a1b1, a2b0, a0b2, . . . } (2.2)

Συνεπώς, μπορεί να οριστεί η ακόλουθη σειρά πολυωνύμων m μεταβλητών

Y ≡ {Yn}
∞

n=0 := ⊗m
k=1p

k = {p1n1
(ξ1)p

2
n2
(ξ2) . . . p

m
nm

(ξm)}
∞

n1,n2,...,nm=0 (2.3)
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Αυτά τα πολυώνυμα είναι ορθογώνια ως προς το εσωτερικό γινόμενο

< f, g >W=

∫

E

fgWdξ1 . . . dξm , W :=
m∏

j=1

wj(ξj) (2.4)

το οποίο αποδεικνύεται ως εξής
∫

E

YkYlWdx1 . . . dxm =

∫

E1

p1n1
(x1)p

1
l1
(x1)w1dx1· · ·

∫

Em

pmn1
(xm)p

m
l1
(xm)wmdxm =

δn1l1 < pn1
, pn1

>w1
. . . δnmlm < pnm

, pnm
>wm

= δkl < Yk, Yk >W

2.2 PCE μιας συνάρτησης

΄Εστω φ = φ(ξ) μία συνάρτηση του ξ.
Oρισµóς 2.2.1. Το ανάτυγμα πολυωνυμικού χάους PCE του φ(ξ) ορίζεται ως η
άπειρη σειρά

φ(ξ) =
∞∑

j=0

φjYj(ξ) (2.5)

όπου τα πολυώνυμα Yj είναι ορθογώνια ως προς τη συνάρτηση W (ξ) :=
∏m

j=1 wj(ξj)
και οι συντελεστές της σειράς δίνονται από τη σχέση

φj := 〈φ(ξ), Yj〉 (2.6)

Μια βασική ιδιότητα είναι η εξής
Πρóταση 2.2.1. Οι φασματικοί συντελεστές του PCE του φ(ξ) ικανοποιούν τις
σχέσεις

E[φ] ≡ µφ = φ0

V ar[φ] ≡ σ2
φ =

∞∑

j=1

(< Yj, Yj > φj)2 (2.7)

το οποίο αποδεικνύεται εύκολα, αφού

µφ ≡

∫

E

φWdξ =

∫

E

φY0Wdξ = φ0
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σ2
φ ≡

∫

E

(φ− µφ)
2Wdξ =

∫

E

(
∞∑

j=0

φjYj(ξ)− φ0

)2

Wdξ =

∞∑

j=1

∞∑

k=1

φjφk

∫

E

Yj(ξ)Yk(ξ)Wdξ =
∞∑

j=1

∞∑

k=1

φjφkδjk < Yj, Yk >=
∞∑

j=1

(< Yj, Yj > φj)2

2.3 Μη–Επεμβατικό PCE (niPCE)

Στο niPCE, η QoI γράφεται ως

F =
∞∑

j=0

F jYj(ξ) (2.8)

Επομένως

E[F ] = F 0

V ar[F ] =
∞∑

j=1

(< Yj, Yj > F j)2 (2.9)

Το παραπάνω ανάπτυγμα αποκόπτεται, κρατώντας πεπερασμένο αριθμό (q+1) όρων, ο
οποίος καθορίζεται από την επιλογή τάξης χάους C και από το πλήθοςm των αβέβαιων
μεταβλητών και δίνεται από

q + 1 =
(C +m)!

C!m!
(2.10)

Τότε

F =

q
∑

j=0

F jYj(ξ) (2.11)

που σημαίνει ότι οι φασματικοί συντελεστές που πρέπει να υπολογιστούν είναι οι

F j ≡ 〈F, Yj〉 ≡

∫

E

FYjWdξ , j = 0, . . . , q (2.12)

Αυτό γίνεται με αριθμητική ολοκλήρωση, που απαιτεί τη λήψη ορισμένων τιμών της F με
επιμέρους τρεξίματα του λογισμικού αξιολόγησης, δηλαδή του κώδικα Υπολογιστικής
Ρευστοδυναμικής στην περίπτωση της εργασίας αυτής (ή οτιδήποτε άλλο, στη γενική
περίπτωση).
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2.4 Επεμβατικό PCE (iPCE)

Στο iPCE γράφουμε

U =

q
∑

j=0

U jY (ξ) (2.13)

όπου τα πεδία U j , j = 0, . . . , q είναι οι άγνωστοι του προβλήματος. Η έκφραση του
U εισάγεται τότε στην εξίσωση R(U ) = 0 του προβλήματος χωρίς αβεβαιότητες

R

(
q
∑

j=0

U jY (ξ)

)

= 0 (2.14)

και κατόπιν εφαρμόζονται προβολές Galerkin, οπότε προκύπτουν οι εξισώσεις

∫

E

R

(
q
∑

j=0

U jY (ξ)

)

YkWdξ = 0 , k = 0, . . . , q (2.15)

που επιλύονται αριθμητικά αφού γίνουν αλλαγές στο λογισμικό επίλυσης των εξισώσε-
ων χωρίς αβεβαιότητες.
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Κεφάλαιο 3

Η Προτεινόμενη iPCE
Προσέγγιση

Σε αυτό το κεφάλαιο παρατίθενται διάφοροι ορισμοί και προτάσεις που αναπτύχθηκαν
για τις ανάγκες της προτεινόμενης iPCE μεθόδου. ΄Ολες οι σειρές πολυωνύμων θα
θεωρούνται ορθοκανονικές από εδώ και στο εξής, 〈Yn, Yn〉 = 1, χωρίς βλάβη γενι-
κότητας.

3.1 Μερικοί Ορισμοί

Σε όλους τους παρακάτω ορισμούς υποθέτουμε ένα σύνολο m ανεξάρτητων αβέβαιων
μεταβλητών ξ ∈ R

m, με συναρτήσεις κατανομής πιθανότητας wk(ξk) και πεδία ορισμού
Ek. Επίσης, υποθέτουμε ένα σύνολο πολυωνύμων Y = {Yn}

∞

n=0 που είναι ορθογώνια
ως προς τη συνάρτηση W =

∏m

j=1 wj στο E =
∏m

j=1 Ej.

Oρισµóς 3.1.1 (Προβολή Galerkin βαθμωτού μεγέθους). Η προβολή Galerkin ενός
βαθμωτού μεγέθους φ(ξ) στο πολυώνυμο Yj ορίζεται ως

φj :=

∫

E

φYjWdξ (3.1)

Oρισµóς 3.1.2 (Προβολή Galerkin διανύσματος). Για κάθε διάνυσμα U (ξ) =
[U1(ξ), ..., Un(ξ)]

T ∈ R
n, η προβολή Galerkin του, τάξης q, ορίζεται ως

Gq [U ] := [U 0,U 1, ...,U q]T (3.2)

με U k = [Uk
1 , U

k
2 , ..., U

k
n ]

T ∈ R
n , k = 0, . . . , q.

Σημειώνεται ότι η εφαρμογή του τελεστή Gq [] σε ένα βαθμωτό μέγεθος είναι ειδική
περίπτωση του παραπάνω ορισμού, για n = 1. Αν φ = φ(ξ) ∈ R, τότε Gq [φ] =
[φ0, . . . , φq]T .
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Oρισµóς 3.1.3 (Προβολή Galerkin πίνακα). Για κάθε πίνακα A ∈ R
n×n με στοιχεία

Aij=Aij(ξ),η προβολή Galerkin του, τάξης q, ορίζεται ως το block μητρώο

Gq [A] =







A00 A01 . . . A0q

A10 A11 . . . A1q

...
...

...
...

Aq0 Aq1 . . . Aqq







(3.3)

όπου το (i, j) στοιχείο του Aλµ ∈ R
n×n δίνεται από τη σχέση

Aλµ
ij :=

∫

E

AijYλYµWdξ =
∞∑

ρ=0

Aρ
ij < Yρ, Yλ, Yµ > (3.4)

όπου < Yρ, Yλ, Yµ >:=
∫

E
YρYλYµWdξ .

Στις εφαρμογές της προτεινόμενης μεθόδου, σε όλες τις ποσότητες εφαρμόζεται το ίδιο
σχήμα αποκοπής (δηλαδή σε κάθε ανάπτυγμα διατηρείται ο ίδιος αριθμός q + 1 όρων).
Σε αυτή την περίπτωση, αποδεικνύονται οι ακόλουθες προτάσεις.
Πρóταση 3.1.1. Αν τα αναπτύγματα των συνιστωσών των A και U αποκοπούν
στους q + 1 όρους, δηλαδή

Aij=

q
∑

k=0

Ak
ijYk(ξ) ανδ Uj=

q
∑

k=0

Uk
j Yk(ξ) ωιτη i, j = 1, . . . , n

αποδεικνύεται ότι
Gq [AU ] = Gq [A] Gq [U ] (3.5)

Απόδειξη. ΄Εστω f=AU ή fi=AijUj. Τότε, για κάθε 0 ≤ p ≤ q

f p
i = (AijUj)

p ≡

∫

E

AijUjYpWdξ = Uρ
j

∫

E

AijYρYpWdξ = Uρ
j A

ρp
ij

που είναι το p-οστό στοιχείο του Gq [A] Gq [U ].

Πρóταση 3.1.2. Για δύο διανύσματα g = (g1(ξ), . . . ) ανδ h = (h1(ξ), . . . ) και μία
σταθερά λ(ξ), ισχύει ότι

Gq
[
gT
]
Gq [λh] = (Gq

[
gTh

]
)T Gq [λ] (3.6)

αν τα PCE τους αποκοπούν μετά από q + 1 όρους, δηλαδή

gi =

q
∑

j=0

gjiYj(ξ) , hi =

q
∑

j=0

hj
iYj(ξ) , λ =

q
∑

j=0

λjYj(ξ)

Απόδειξη.

Gq
[
gT
]
Gq [λh] = (gj)T (λh)j = (gj)Tλkhi < Yk, Yi, Yj >=
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(gj)Thi < Yk, Yi, Yj > λk = (Gq
[
gTh

]
)T Gq [λ]

Οι προηγούμενες προτάσεις είναι βασικές για την παραγωγή του αριθμητικού σχήματος
επίλυσης των iPCE εξισώσεων. Διευκολύνουν επίσης την παραγωγή των συζυγών
iPCE εξισώσεων, στο κεφάλαιο 5.

3.2 Αριθμητική Επίλυση των iPCE Εξισώσεων

΄Εστω πρόβλημα από n ΜΔΕ, που γράφεται σε διακριτή μορφή ως

R(U ) = 0 (3.7)

Για μη–γραμμικά προβλήματα, το σύστημα 3.7 επιλύεται μέσω του επαναληπτικού
σχήματος (γνωστού και ως Δέλτα Διατύπωση)

(
∂R

∂U

)

old

∆U = − (R)old , ∆U = Unew −Uold (3.8)

που λύνεται ως προς ∆U και ακολουθείται από την ακόλουθη ανανέωση

Unew = Uold +∆U (3.9)

των τιμών του U σε κάθε κόμβο του πλέγματος. Μετά από αυτό το βήμα, το σύστημα
κατασκευάζεται ξανά και επιλύεται, μέχρι τη σύγκλιση (αρκετά μικρές τιμές του R).

Η παραπάνω διαδικασία εφαρμόζεται στις iPCE εξισώσεις, εξ. 2.15, που με απλή
αλλαγή συμβολισμού γράφονται ως

Gq [R] = 0 (3.10)

Λόγω της εξ. 3.8 και της πρότασης 3.5

Gq

[
∂R

∂U

]

Gq [∆U ] = −Gq [R] (3.11)

Το δεξί μέλος της εξ. 3.11 υπολογίζεται με αριθμητική ολοκλήρωση των υπολοίπων
R του μη-στοχαστικού προβλήματος. Το ίδιο συμβαίνει και με το αριστερό μέλος, που
βρίσκεται με ολοκλήρωση του ∂R

∂U
.

3.3 Εξοικονόμηση Μνήμης και Υπολογιστικού
Κόστους στο iPCE

Σε αυτήν την ενότητα αναλύεται ένας τρόπος επιτάχυνσης της επίλυσης των iPCE
εξισώσεων, ο οποίος οδηγεί σε εξοικονόνηση μνήμης και υπολογιστικού χρόνου. Η
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εξ. 3.11 ξαναγράφεται σε μητρωική γραφή ως







J 00 J 01 . . . J 0q

J 10 J 11 . . . J 1q

...
...

...
...

J q0 J q1 . . . J qq













∆U 0

∆U 1

...
∆U q






= −







R0

R1

...
Rq







(3.12)

όπου J = ∂R
∂U
. Το σύστημα 3.12 μπορεί να διασπαστεί σε μικρότερα συστήματα. Με

αυτό τον σκοπό, η μέση τιμή U 0 των ροϊκών μεταβλητών προσεγγίζεται από το U
πεδίο που προκύπτει από μία επίλυση του προβλήματος χωρίς αβεβαιότητες εξ. 3.7. Η
επίλυση αυτή γίνεται θέτοντας ξ = ξz, όπου οι συνιστώσες του ξz είναι οι ρίζες όλων
των ορθοκανονικών πολυωνύμων πρώτου βαθμού. Τότε, το σφάλμα της προσέγγισης
είναι

U (ξz)−U 0 =

q1∑

i=1

U iYi(ξz) +
∞∑

i=q1+1

U iYi(ξz) =
∞∑

i=q1+1

U iYi(ξ = ξz) (3.13)

όπου το q1 βρίσκεται θέτοντας C = 1 στην εξ. 2.10.

Επιπλέον, για C=1,

J λµ
ij =

q1∑

ρ=0

J ρ
ij < Yρ, Yλ, Yµ >= δλµJ

00
ij (3.14)

αφού
< Yρ, Yλ, Yµ >= δ0ρδλµ , 1 ≤ λ, µ ≤ q1 , 0 ≤ ρ ≤ q1 (3.15)

΄Αρα, η εξ. 3.12 λαμβάνει τη μορφή









J 00
ij J 01 J 02 . . . J 0q1

J 10 J 00
ij 0 . . . 0

J 20 0 J 00
ij . . . 0

...
...

...
...

...
J q10 0 0 . . . J 00

ij

















∆U 0

∆U 1

∆U 2

...
∆U q1









= −









R0

R1

R2

...
Rq1









(3.16)

Υποθέτοντας ότι το U 0 έχει προσεγγιστεί καλά, προκύπτει το συμπέρασμα ότι ∆U 0≈
0, το οποίο δικαιολογεί την απόφαση να κρατηθούν μόνο τα διαγώνια blocks του πίνακα
της εξ. 3.16. Το απλοποιήμενο σύστημα αποτελείται από q1+1 συστήματα, διάστασης
ίδιας με αυτή του προβλήματος χωρίς αβεβαιότητες, με ίδιο αριστερό και διαφορετικό
δεξί μέλος.

Επίσης, δεν χρειάζεται να υπολογιστεί το J 00
ij , αφού μπορεί να προσεγιστεί από το J

που υπολογίστηκε στην τελευταία επανάληψη της επίλυσης του προβλήματος χωρίς α-
βεβαιότητες που έδωσε την προσέγγιση του U 0. Τα προηγούμενα βήματα υπολογίζουν
τους συντελεστές PCE των ροϊκών μεγεθών για C = 1. Αν C > 1, η διαδικασία είναι
παρόμοια. Θέτοντας q = q(C) και υποθέτοντας ότι οι πρώτοι q(C − 1) όροι είναι
γνωστοί, οι υπόλοιποι q(C) − q(C − 1) όροι βρίσκονται χρησιμοποιώντας την ίδια
προσέγγιση, δηλαδή κρατώντας μόνο τα διαγώνια blocks του.
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Κεφάλαιο 4

Εφαρμογή της Μεθόδου iPCE σε
Προβλήματα Αεροδυναμικής

Σε αυτό το κεφάλαιο παρουσιάζεται η εφαρμογή της προτεινόμενης μεθόδου και ε-
λέγχεται η ταχύτητα και η ακρίβειά της. Η μέθοδος προγραμματίστηκε για τις εξι-
σώσεις RANS συμπιεστού ρευστού, μαζί με το μοντέλο τύρβης μίας εξίσωσης, των
Spalart–Allmaras, [29]. Ο προγραμματισμός έγινε σε οικείο λογισμικό βασισμένο σε
πεπερασμένους όγκους και την κεντροκομβική διατύπωσή τους.

Μεμονωμένη Αεροτομή

Επιλύεται η τυρβώδης ροή γύρω από μια αεροτομή, με χρήση του μοντέλου μίας εξίσω-
σης των Spalart–Allmaras ;;. Οι QoI είναι οι συντελεστές άνωσης και οπισθέλκουσας
της αεροτομής, ενώ η αβεβαιότητα εισάγεται στις εξισώσεις μέσω των οριακών συνθη-
κών της γωνίας και του αριθμού Mach της ελεύθερης ροής και του αριθμού Reynolds
που βασίζεται στη χορδή της αεροτομής a∞, M∞ και Re, αντίστοιχα. Οι κατανομές
πιθανότητας που επιλέχθηκαν είναι οι

a∞∼U(1.5o, 2.5o) M∞∼N(0.3, 0.01) Re∼N(106, 2.5 · 104)

όπου N (µ, σ) συμβολίζει την κανονική κατανομή με μέση τιμή µ και τυπική απόκλιση
σ ενώ U(a, b) συμβολίζει την ομοιόμορφη κατανομή στο διάστημα [a, b].

Στον πίνακα 4.1 συνοψίζονται τα αποτελέσματα της προτεινόμενης μεθόδου (οι δύο
στατιστικές ροπές των QoI που επιλέχθηκαν) και γίνεται σύγκρισή τους με αυτά του
niPCE. Οι χρόνοι έχουν αδιαστατοποιηθεί με το υπολογιστικό κόστος του iPCE για
C = 1. Είναι προφανές ότι οι δύο μέθοδοι δίνουν ίδια πρακτικά αποτελέσματα, όμως
το iPCE είναι αρκετά γρηγορότερο. Η μέση τιμή του πεδίου του αριθμού Mach και η
αντίστοιχη τυπική απόκλιση φαίνονται στο σχ. 4.1, για C = 1.
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iPCE niPCE iPCE niPCE iPCE niPCE
C=1 C=2 C=3

µCL
0.095598 0.095567 0.095591 0.095600 0.095611 0.095598

σCL
0.013534 0.013546 0.013535 0.013438 0.013535 0.013512

µCD
0.029460 0.029540 0.029426 0.029538 0.029319 0.029539

σCD
0.000787 0.000764 0.000789 0.000768 0.000790 0.000768

CPU 1 3.678 2.933 9.598 20.196 36.714
time units

Πίνακας 4.1: Τυρβώδης ροή γύρω από μεμονωμένη αεροτομή, με τρεις αβέβαιες
οριακές συνθήκες. Στατιστικές ροπές του CL και του CD που υπολογίστηκαν με τις
μεθόδους iPCE και niPCE, για C = 1, 2, 3, και υπολογιστικό κόστους.

Σχήμα 4.1: Τυρβώδης ροή γύρω από μεμονωμένη αεροτομή, με τρεις αβέβαιες συνο-
ριακές συνθήκες. Υπολογισμένο μέσο πεδίο (αριστερά) και τυπική απόκλιση (δεξιά) του
αριθμού Mach (iPCE, C = 1).
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Κεφάλαιο 5

Συνεχής Συζυγής Μέθοδος του
iPCE

Στο κεφάλαιο αυτό παρουσιάζεται η συνεχής συζυγής μέθοδος για τις iPCE εξισώσεις,
σε αντιπαραβολή με τις συζυγείς εξισώσεις του προβλήματος χωρίς αβεβαιότητες. Με
τη συνεχή συζυγή μέθοδο υπολογίζονται οι παράγωγοι της συνάρτησης–στόχου (εκ-
φρασμένη με τους φασματικούς συντελεστές του PCE της QoI) ως προς τις μεταβλητές
σχεδιασμού.

❼ Συνεχείς Συζυγείς Εξισώσεις

AΨ− g = 0 (χωρίς αβεβαιότητες) , Gq [AΨ− ζ g] = 0 (iPCE)

❼ Συζυγείς Οριακές Συνθήκες

B∗Ψ− h = 0 (χωρίς αβεβαιότητες) , Gq [B∗Ψ− ζ h] = 0 (iPCE)

όπου ζ =
∑q

j=0 ζjsign(F
j)Yj(ξ)

❼ Συνάρτηση–Στόχος

J =

q
∑

j=0

ζj|F
j| (iPCE) ή η QoI (F) αν δεν υπάρχουν αβεβαιότητες

❼ Παράγωγοι Ευαισθησίας

δF = δFSD + δFΨ
SD (χωρίς αβεβαιότητες)

δJ = Gq [ζ]T Gq [δFSD] + Gq
[
δFΨ

SD

]T
Gq [1] (iPCE)

όπου Gq [1] = [1, 0, . . . , 0]
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Κεφάλαιο 6

Εφαρμογή της Συζυγούς
Μεθόδου του iPCE

Η προτεινόμενη συνεχής συζυγής διατύπωση παρουσιάζεται για τις εξισώσεις Euler σε
δύο διαστάσεις. Οι εξισώσεις Euler γράφονται σε συντηρητική γραφή ως

∂fi

∂xi

= Ai

∂U

∂xi

= 0 , στο Ω

uini = 0 , στο S

U = U∞ , στο S∞

(6.1)

όπου S είναι το περίγραμμα της αεροτομής και n = [n1, n2]
T το κάθετο μοναδιαίο

διάνυσμά του. Επίσης, το S∞ είναι το απ΄ άπειρο όριο του χωρίου και U∞ είναι η
συνθήκες ελεύθερης ροής. Η QoI είναι η δύναμη της άνωσης

F = L ≡

∫

S

p(n2 cos a∞ − n1 sin a∞)dS (6.2)

Με εφαρμογή του τελεστή Gq [] στις εξ. 6.1 προκύπτει

Gq

[
∂fi

∂xi

]

= Gq

[

Ai

∂U

∂xi

]

= 0 , ιν Ω

Gq [uini] = 0 , ιν SGq [U ] = Gq [U∞] , ιν S∞

(6.3)

και η συνάρτηση–στόχος ορίζεται ως

J =

q
∑

j=0

ζj|F
j| (6.4)

ενώ η επαυξημένη συνάρτηση–στόχος είναι η

Jaug = J −

∫

Ω

Gq [Ψ]T Gq

[
∂fi

∂xi

]

dΩ (6.5)
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΄Αρα

δJaug = δJ −

∫

Ω

Gq [Ψ]T Gq

[
∂(δfi)

∂xi

]

dΩ

−

∫

Ω

Gq [Ψ]T Gq

[
∂(δfi)

∂xk

∂(δxk)

∂xi

]

dΩ

(6.6)

με

δJ =

q
∑

j=0

ζjsign(F
j)δF j = Gq [ζ]T Gq [δF ]

= Gq [ζ]T Gq

[∫

S

δp(n2 cos a∞ − n1 sin a∞)dS

]

+Gq [ζ]T Gq [δFSD]

(6.7)

όπου ζ =
∑q

j=0 ζjsign(F
j)Yj(ξ). Στη συνέχεια, με παραγοντική ολοκλήρωση

∫

Ω

Gq [Ψ]T Gq

[
∂(δfi)

∂xi

]

dΩ =

−

∫

Ω

Gq

[
∂Ψ

∂xi

Ai

]T

Gq [δU ] dΩ +

∫

S

Gq [Ψ]T Gq [δfi]nidS (6.8)

Επίσης
∫

S

Gq [Ψ]T Gq [δfi]nidS =
∫

S

Gq [Ψi+1]ni G
q [δp] dS +

∫

S

(Gq [Ψi+1] G
q [p]−Gq [Ψ]T Gq [fi])δ(nidS)

︸ ︷︷ ︸

=Gq[δFΨ
SD]

T

Gq[1]

(6.9)

Επομένως, προκύπτει ότι

δJaug = Gq [ζ]T Gq [FSD] + Gq
[
FΨ
SD

]T
Gq [1] +

∫

Ω

Gq

[
∂ΨT

∂xi

Ai

]

Gq [δU ] dΩ

Gq [ζ]T Gq

[∫

S

δp(n2 cos a∞ − n1 sin a∞)dS

]

−

∫

S

Gq [Ψi+1]
T Gq [δp]nidS

(6.10)

και οι συζυγείς iPCE Euler εξισώσεις είναι

Gq

[

AT
i

∂Ψ

∂xi

]

= 0 (6.11)

με οριακές συνθήκες που προσδιορίζονται ως εξής

Gq [ζ]T Gq

[∫

S

−δp(n2 cos a∞ − n1 sin a∞)dS

]

−

∫

S

Gq [Ψi+1]
T Gq [δp]nidS = 0 ⇒
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Gq [ζ]T
∫

S

−Gq [δp] (n2 cos a∞ − n1 sin a∞)dS −

∫

S

Gq [Ψi+1]
T Gq [δp]nidS = 0 ⇒

Gq [ζ(n2 cos a∞ − n1 sin a∞) + Ψi+1ni] = 0 (6.12)

Τέλος, οι παράγωγοι ευαισθησίας είναι

δJ = Gq [ζ]T Gq [FSD] + Gq
[
FΨ
SD

]T
Gq [1] (6.13)
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Κεφάλαιο 7

Αριθμητική Εφαρμογή της
Συζυγούς iPCE Μεθόδου

Η μέθοδος που παρουσιάστηκε εφαρμόζεται στην στρωτή ροή γύρω από μια αεροτομή,
η οποία παραμετροποιείται από δύο καμπύλες Bezier, τα σημεία ελέγχου των οποίων
είναι οι μεταβλητές σχεδιασμού, σχ. 7.1.

Σχήμα 7.1: Βελτιστοποίηση μορφής αεροτομής. Αρχική γεωμετρία και σημεία ελέγ-
χου καμπυλών Bezier (μία ανά πλευρά).

Ο συντελεστής οπισθέλκουσας είναι η συνάρτηση–στόχος, στην περίπτωση χωρίς α-
βεβαιότητες, δηλαδή F = CD, ενώ οι οριακές συνθήκες είναι

M∞ = 0.5 , a∞ = 2o , Re = 6000 (7.1)
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Στην περίπτωση με αβεβαιότητες, η συνάρτηση–στόχος ορίζεται ως

J =

q
∑

j=0

ζj|F
j|

με q=19 (για m=3 μεταβλητές και τάξη χάους C=3), ζ0=1 και ζj=3 ∀ j > 0. ενώ
οι αβέβαιες συνοριακές συνθήκες είναι

M∞ ∼ N (0.5, 0.05) , a∞ ∼ U(1.5o, 2.5o) , Re ∼ N (6000, 250)

Τα αποτελέσματα των δύο βελτιστοποιήσεων, με και χωρίς αβεβαιότητες, φαίνονται
στο σχ. 7.2
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Σχήμα 7.2: Βελτιστοποίηση σχήματος αεροτομής, στρωτή ροή. Μείωση της
συνάρτησης–στόχου χωρίς αβεβαιότητες (πάνω) και με αβεβαιότητες (κάτω).

Στο σχ. 7.3 φαίνεται η βέλτιστη γεωμετρία για τη βελτιστοποίηση υπό αβεβαιότη-
τες. Τέλος, στον πίνακα 7.1 συνοψίζονται τα αποτελέσματα της βελτιστοποίησης με
αβεβαιότητες και συγκρίνονται με τις τιμές για την τυπική απόκλιση και τη μέση τιμή
του συντελεστή οπισθέλκουσας που προκύπτουν με εφαρμογή του iPCE στη βέλτιστη
γεωμετρία που προκύπτει από τη βελτιστοποίηση χωρίς αβεβαιότητες.
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Σχήμα 7.3: Βελτιστοποίηση σχήματος αεροτομής με αβεβαιότητες, στρωτή ροή. Βέλ-
τιστη γεωμετρία.

Χωρίς Με
Αβεβαιότητες Αβεβαιότητες

µCD
6.81 · 10−2 6.97 · 10−2

σCD
1.11 · 10−3 1.05 · 10−3

Πίνακας 7.1: Βελτιστοποίηση σχήματος αεροτομής, στρωτή ροή. Σύγκριση στα-
τιστικών ροπών του συντελεστή οπισθέλκουσας για τις βέλτιστες γεωμετρίες των δύο
βελτιστοποιήσεων.
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Κεφάλαιο 8

Μία Εναλλακτική της Συζυγούς
iPCE Διατύπωσης

Σε αυτό το κεφάλαιο προτείνεται μία εναλλακτική μέθοδος της συζυγούς διατύπωσης
του iPCE, η οποία είναι υπολογιστικά οικονομικότερη. Η μέθοδος αυτή θα αναφέρεται
ως DDSP (‘Deterministic Derivatives – Stochastic Primal’).

8.1 Η μέθοδος DDSP

Η βασική ιδέα της μεθόδου είναι ο υπολογισμός της παραγώγου της συνάρτησης–
στόχου του προβλήματος υπό αβεβαιότητες δJ να γίνει μέσω του υπολογισμού της
παραγώγου δF , όπως αυτή προκύπτει από το συζυγές πρόβλημα χωρίς αβεβαιότητες.
Για το σκοπό αυτό, γίνεται η υπόθεση ότι υπάρχει ένα σύνολο τιμών ξ = ξs τέτοιο
ώστε δF (ξs) = δJ , δηλαδή

∞∑

i=0

δF iYi(ξs) =

q
∑

i=0

ζisign(F
i)δF i (8.1)

Η εξ. 8.1, μετά από την αποκοπή όρων από το άπειρο άθροισμα στο αριστερό της
μέλος, οδηγεί στη σχέση

Yi(ξs) = ζisign(F
i), i = 0, 1, . . . , q (8.2)

Ικανοποίηση της εξ. 8.2, για κατάλληλο ξs αναμένεται να οδηγήσει στον υπολογισμό
ενός δF (ξs) το οποίο θα ισούται με την παράγωγο δJ της συνάρτησης–στόχου του
προβλήματος υπό αβεβαιότητες. Ασφαλώς, πριν την ικανοποίησή της απαιτείται η λύση
των iPCE εξισώσεων, ώστε να προσδιοριστούν τα sign(F j).
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8.2 Επίλυση της εξ. 8.2

Πριν επιλυθεί η εξ. 8.2 ως προς ξs πρέπει να ικανοποιηθεί η σχέση που προκύπτει
θέτοντας j = 0 σε αυτή, δηλαδή

ζ0 = sign(F 0)Y0 = sign(F 0) (8.3)

΄Αρα, ο όρος ζ0 δεν μπορεί να επιλεχθεί ελεύθερα από τον χρήστη, σε αυτήν την
περίπτωση. Ωστόσο, θα μπορούσε ούτως ή άλλως να είχε τεθεί |ζ0| = 1 από την αρχή,
χωρίς βλάβη γενικότητας και με το ίδιο αποτέλεσμα στη βελτιστοποίηση. Κατόπιν,
επιλύονται οι υπόλοιπες q εξισώσεις της εξ. 8.2

Επίλυση της εξ. 8.2 για C = 1

Για C = 1 η εξ. 8.2 αποτελεί ένα γραμμικό σύστημα με ίσο αριθμό αγνώστων m
και εξισώσεων, διότι q = m όταν C = 1. Συνεπώς, σε αυτή την περίπτωση, το ξs
προσδιορίζεται εύκολα.

Επίλυση της εξ. 8.2 για C > 1

Για C > 1, ο αριθμός των εξισώσεων γίνεται q = (C +m)!/C!m!− 1, ενώ το πλήθος
των αγνώστων είναι m. Συνεπώς, επιλέγεται να ελαχιστοποιηθεί η έκφραση

M :=
1

2

q
∑

i=1

[Yi(ξ)− ζisign(F
i)]2 (8.4)

και οι εξισώσεις προς επίλυση είναι οι

Rj :=
∂M

∂ξj
=

q
∑

i=1

[Yi(ξ)− ζisign(F
i)]

∂Yi

∂ξj
= 0 , j = 1, . . . ,m (8.5)

Η εξ. 8.5 λύνεται επαναληπτικά μέσω του σχήματος
(

∂R

∂ξ

)

old

∆ξ = −Rold (8.6)

όπου R = (R1, . . . , Rm), ξnew = ξold +∆ξ και

(
∂R

∂ξ

)

jk

=

q
∑

i=1

(

[Yi − ζisign(F
i)]

∂2Yi

∂ξk∂ξj
+

∂Yi

∂ξj

∂Yi

∂ξk

)

(8.7)
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8.2.1 Βελτιστοποίηση και Συγκρίσεις Υπολογιστικού Κόστους

Σε αυτή την ενότητα εφαρμόζεται η μέθοδος DDSP σε μία μεμονωμένη αεροτομή, σε
στρωτή ροή. Η αβεβαιότητα εισάγεται στις οριακές συνθήκες ως εξής

M∞ ∼ N (0.5, 0.05) , a∞ ∼ U(−1.5o, 2.5o) , Re∞ ∼ N (5000, 300) (8.8)

ενώ η συνάρτηση–στόχος, όταν υπάρχουν αβεβαιότητες ορίζεται ως

J =

q
∑

i=0

ζj|C
j
D| , ζ0 = 1 , ζj = 5 , j > 0 (8.9)

όπου CD είναι ο συντελεστής οπισθέλκουσας.

Βελτιστοποίηση για C = 2

Στο σχ. 8.1 απεικονίζεται η πορεία της βελτιστοποίησης με τη μέθοδο DDSP και συ-
γκρίνεται με τη συζυγή iPCE μέθοδο. Από άποψη υπολογιστικού κόστους, η συζυγής
iPCE μέθοδος χρειάστηκε 5710 δευτερόλεπτα ενώ η μέθοδος DDSP μόλις 1908. Επι-
πλέον, η λύση της μεθόδου DDSP είναι καλύτερη από την λύση της συζυγούς iPCE
μεθόδου. Το συμπέρασμα είναι ότι η μέθοδος DDSP μπορεί να είναι αποδοτικότερη
και πιο οικονομική.
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Σχήμα 8.1: Αποτελέσματα βελτιστοποίησης για C = 2. Τιμή της συνάρτησης–στόχου
(πάνω), μέση τιμή (κάτω αριστερά) και τυπική απόκλιση (κάτω δεξιά) του συντελεστή
οπισθέλκουσας.
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Κεφάλαιο 9

Συμπεράσματα

Η προτεινόμενη μέθοδος iPCE προγραμματίστηκε σε οικείο λογισμικό για τις 3Δ εξι-
σώσεις RANS συμπιεστού ρευστού, με το μοντέλο τύρβης μιας εξίσωσης των Spalart–
Allmaras. Η συζυγής διατύπωσή της προγραμματίστηκε επίσης, για τις εξισώσεις
Navier–Stokes για στρωτή ροή συμπιεστού ρευστού, σε δύο διαστάσεις. Και οι δύο
μέθοδοι θεμελιώθηκαν μαθηματικά, έτσι ώστε η εφαρμογή τους να είναι εύκολη και
άκοπη, χωρίς όμως να στερούνται ακρίβειας στα αποτελέσματα.

Το κύριο συμπέρασμα αυτής της διπλωματικής εργασίας είναι ότι η προτεινόμενη μέθο-
δος iPCE φαίνεται να συνδυάζει τα πλεονεκτήματα τόσο των επεμβατικών όσο και
των μη–επεμβατικών εκδοχών. Πρώτα απ ΄όλα, είναι εύκολο να προγραμματιστεί /
εφαρμοστεί. Απαιτεί ελάχιστες αλλαγές λογισμικού και απολύτως καμία μαθηματική
επεξεργασία για την εξαγωγή και διακριτοποίηση των iPCE εξισώσεων. Επίσης, ε-
ίναι γενική και ισχύει για οποιοδήποτε σύστημα εξισώσεων, αλλά και υπολογιστικά
συμφέρουσα.

Το ίδιο ισχύει και για την προτεινόμενη συζυγή μέθοδο για προβλήματα βελτιστοποίη-
σης με αβεβαιότητες. Η διατύπωση που προτείνεται είναι γενική ενώ ο προγραμματισμός
της γίνεται άκοπα, με την προϋπόθεση της ύπαρξης του αντίστοιχου λογισμικού για
το συζυγές πρόβλημα χωρίς αβεβαιότητες. Τέλος, η προσέγγιση DDSP, η οποία προ-
τάθηκε, ως εναλλακτική της συζυγούς μεθόδου, την καθιστά ακόμα πιο οικονομική σε
κόστος υπολογισμού, μέσω της επίλυσης του συζυγούς προβλήματος σε `κατάλληλα
μετατοπισμένο σημείο του χώρου των αβέβαιων μεταβλητών.
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State University, Lecture Notes, 2015.
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