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Abstract

Artificial Intelligence (AI) has developed rapidly in recent years. It has penetrated
deeply into the daily life of the average human, as well as the industry and academia.
Deep Neural Networks (DNNs), which are part of the field of Al, are interconnected
neural networks that have the ability to make predictions by presenting them with
the corresponding input. Inhere, two types of DNNs are utilized, the Long Short-
Termo Memory (LSTM) networks and the A-DNN.

Firstly, a quasi-1D flow in a human artery is modelled and the 1DAS software is
created, which solves the blood flow numerically. The initial artery shape and the
wall thickness longitudinal distribution vary, while the blood inflow is time-varied
(pulsatile heart action). The software generates time-varying longitudinal distribu-
tions of velocity, cross-sectional area and, pressure, creating a training dataset for
the network. The LSTM network is, then, trained to predict the following velocity
distribution by presenting it with the preceding ones of the same quantity. Its archi-
tecture and input are, later, optimized through a population-based algorithm and
a statistical method, respectively. Two benchmark cases (simple periodic function
and heat conduction equation) demonstrate the capabilities of the LSTM network,
as well.

Later in this diploma thesis, the A-DNN is utilized for predicting aerodynamic flows
and temperature distributions. It is a multi-branch architecture, with its input
consisting of nodal coordinates and case-related data. Firstly, the network is trained
to predict the pressure field around an isolated airfoil. Secondly, the same network is
trained to predict the pressure distribution on the surface of a Francis runner. Lastly,
the network is implemented in a multi-disciplinary problem, namely a Conjugate
Heat Transfer (CHT) one. The A-DNN is trained to replicate the solver of the heat



conduction equation (one discipline) and predicts the temperature distribution on
the contour of an internally cooled blade. Its capabilities are evaluated by a short
presentation of an optimization that utilizes its predictions.
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EO9vixd MetodfBio IloAuteyveio

Eyxorh Mryavohoywy Mryavixdy

Touéag Pevotov

Movdda ITapdAAnAne YroloyioTixrc PeuocTtoduvauixng
& Beltiotonoinong

ITeoPBAedn Powdyv pe Badid Nevpwvixd Aixtua
Aimhopotixd epyaoto
Iwavvne MnroxAayrg

EmufBiénwy: Kupdxog X. Tavvéxoyiou, Kadnyntrig EMII
Adrva, 2021

H Teywnth Nonuooivn (TN) éyer avomtuydel poydaia ta teheutaior ypdvia xan €yet
eloywefoet Baditata oty xadnuepwi| {or Tou péoou avipwrou, xudng xou ot Blo-
unyovior xoun Tov axadnuoind yweo. To Badid Nevpwvixd Aixtua (BNA), tou avixouy
oto medio g TN, elvon SlacLYOEBEUEVAL BIXTUA VEUPMVKY TTOU €Y0UV T1) BUVATOHTNTAL VoL
x&vouv TeoPAEPElC Tpo@oBoTOUUEVY UE TNV avTioTolyn €ico80. XTr SITAGUATIX oUTH
epyooio yenoyonotolvtor dVo eidn dxtinmy, to Long Short-Term Memory (LSTM)
otxtuo xat To A-DNN.

Apyxd, povtelomoteitan 1 (peudo-uovodldoTaTn EOT| AUUTOC GE UOVTELO avipmTvng
apTnelag xan dnuoupyeiton o Aoylouxd 1DAS, 1o onolo emAlel aprduntixd tn o).
To apyxd (om)\orcompévo) oo TNG aeTNELG Xow 1) DLW UG XATAVOUT TéYOUC TOU
TOLYOUTOG UETUBIANOVTOL Y WEiXd, EVE) 1) ELOEOT ofuaTog HETABAARETOL YEOVIX. (TEO()\HL—
X1} xoEOLXY) decon). To hoyiopod dnutovpyel YWEIXES XATUVOUES Toy OTNTAS, OLUTOUTG
xou TEOTG TTOU UETABAAAOVTOL OTO YPOVO, BNULOVEYOVTIS VA GUVOLO BEBOUEVKY EXTO-
(deuomne yia 1o dixtuo. To LSTM bixtuo exnoudedeton yior vor tpofBiédet tny xotovour)
Ty UTNTUC OE AAVE ETOUEVY YEOVIXY CTIYUT TEOPOBOTMVTOS TO UE TIC TEONYOUUEVEC.
H opyitextovint| xau ot glcodol Tou dixtiou BeiticTomololvta PEow evog alyodpriuou
ehayotonoinong mou yelleton TAnYuouolE UTOPRPLY AICEWY Xt UG CTATIO TIXAG
uedodou, avtiotoryo. Ao egapuoyéc (amhr teplodixy cuvdptnon xo e&iowon oy wY NS
Yepuodntog) xatadewviouy enione tig SuvatdTnteg tou dixtiov LSTM.

Ynv enduevn @don e gpyaciog, o A-DNN yonowonotettar yioo v npoBiedn oe-
COBUVOLXMY oWV xal xaTovouny Jepuoxpactioc. H opyitextoviny tou dixtiou eivon
plot eyl TEXTOVIXT) TOAAATAGY XAADWY, UE TNV €l0006 TOL Vo amoteheiton amd xoufixég
CUVTETAYUEVEC X0 OEGOUEVA TTOU ECORTAOVTAL OO TNV EXACTOTE EQUPUOYY. Apyxd, TO
olxtuo exmoudedeTon vor TpofBAémel to medio mieong yVpw amd uio acpotour|. ‘Erneita,
70 (810 BixTUO ExTdEVETOL Vo TROBAETEL TNV XaTovour TECNC OTNV ETLPAVELN EVOC
dpouca evog udpooTeofilou tumou Francis. Téhog, To dixTuo yenowonolEeital o Eva
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TOAUTEDLXG TEOBANUA, X0, o CUYXEXPYEVA, To TEoBAnua Xulevypévne Metagopdc
Ocpuomtac (XMO). To \-DNN exnawdedeton vor avTixatoo THoeL Tov EmAUTN g €-
Elowong aywyydtnTog ﬂsppérntug(évu 100 TOU TOAUTEDLOOY npoﬁkﬁparog)‘xatva
TEOPAETEL TNV xaTavour| NG Vepuoxpaciog oto meplypauud EVOS E0WTERXE YUy OuE-
vou TTEELYIoL. Ot BuVITOTNTES TOL a€lohoyoUVTOL UE [lal GUVTOUY TUEOLGTLUCT) LG
BehtioTtomolnong mou yenoylomolel Tic TpofBAdelc Tou.
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Nomenclature

NTUA National Technical University of Athens
PCopt Parallel CFD & Optimization unit
Al Artificial Intelligence
ML Machine Learning
ANN Artificial Neural Network
DNN Deep Neural Network
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
GAN Generative Adversarial Network
LSTM Long Short-Term Memory
RBF Radial Basis Function

MAEA Metamodel Assisted Evolutionary Algorithm

MAE Mean Absolute Error
MAPE Mean Percentage Absolute Error
RNN Recurrent Neural Network
A Cross-Sectional Area
u Velocity

p Pressure
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Initial Cross-Section Area of the Artery
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Windkessel Model

Control Point

Artery Radius

Time Period of Heart Rate

Density of Blood

External Pressure around the Artery Wall
Young Modulus of Artery Wall

Poisson Ratio of Artery

Thickness of Artery Wall

Initial pressure of Capacitor (WK)
Capacitance (WK)

Resistance R1 (WK)

Resistance R2 (WK)

Length of the Artery

1-D Arterial Solver

Temperature of Plate

Width of Plate

Internal Temperature

External Temperature



Convective Heat Transfer Coefficient - Internal
Convective Heat Transfer Coefficient - External
Coefficient of Thermal Conductivity of Plate
Thermal Capacity of Plate

Density of plate

Number of Time Instants
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Chapter 1

Artificial Intelligence

1.1 Artificial Intelligence and Machine Learning

In recent decades, there has been a rapid development in the field of computer
systems. Computers are able to perform many calculations very fast and on a
large scale. They have dominated human life and often tend to replace jobs/tasks
traditionally done by humans. Today’s youth can not imagine their lives without the
automatic translation (i.e. Google Translate), [I], or personalized recommendation
in video streaming applications. Smartphones are becoming smarter day by day.
Smart watches are capable of notifying their user for irregular cardiac rhythm, [2].
Text-to-speech and speech-to-text features are of the utmost importance to some
people. Cars are revolutionized by computer science with the incorporation of self-
driving, [3]. Each one of these examples highlights the domination of the intelligence
demonstrated by machines, also known as Artificial Intelligence (AT).

Machines are programmed to simulate human intelligence by acting like them and
mimicking their behaviour (cognitive activity). They can learn to recognize complex
patterns in big data, make decisions in challenging problems and, execute tasks.
A great benchmark for validating the current progress and state of Al are games
created for humans (i.e. Chess, Go). The DeepBlue computer, designed by IBM, was
able to beat chess grand master Garry Kasparov at the game in 1997. Alpha Star is
bot that plays the game StarCraft II, [4]. The game is a fast-paced multiplayer real-
time strategy game developed and published by Blizzard Entertainment and it is
consider as one of the hardest and most challenging strategy games. The Alpha Star
program was created by the British artificial intelligence subsidiary of Alphabet Inc.,
called DeepMind. In January 2019, the program managed to win two professional
players, [5], and in October, of the same year, reached the top league, becoming the
first AT to advance in this position, [6].



Thus, the applications of Al are endless and can be in many sectors. As industrial
and academic demands have increased, their problems have become more complex.
It is reasonable, for the industry and academia, to turn to Al to assist them in
problem-solving and decision-making, utilizing artificial learning, reasoning, and
perception. In terms of engineering, Al helped to improve tasks or even to overcome
previously unresolved problems. Consider how Computer Aided Engineering (CAE)
is a fundamental tool of mechanical engineering, and it was once just a supplemental
software. Correspondingly, Al penetrates the life of the engineer. Many papers are
published every day that showcase implementations of Al in various engineering
topics, such as CAD, [7], mechanical systems with gears, [8] and, thermal systems,

[9].

Machine Learning (ML), fig. [1.1} is an application of Al that has the ability to
acquire its own knowledge (learn) by presenting it with raw data, [I0]. ML models
are capable of learning automatically by extracting patterns from sample data. As
a baby learns to distinguish a dog from a cat by presenting examples from each one,
so a sophisticated algorithm can recognize objects or faces by presenting it with
labelled or not labelled samples. ML can be categorised:

e Supervised Learning: The model is presented with labelled samples, with
input and the corresponding output, which it is trained to predict.

e Non-Supervised Learning: The model is called to map patterns in input
data without presenting it with the output (unlabeled data).

e Reinforcement Learning: The model is trained to make decisions that
either reward it or punish it. Its goal is to maximize the reward by completing
challenging tasks, such as navigating a robot in a room.

Deep Learning (DL) is a method of ML that is based on Artificial Neural Networks
(ANN), [11]. An ANN is a ML model consisting of units, called nodes or neurons,
that is presented with labeled data. It is trained to predict the desired output by
minimizing the error between it and its prediction. Deep Neural Networks (DNNs)
are ANN with many layers of neurons. ANNs and DNNs are further discussed in
Chapter 2

1.2 Artificial Intelligence in CFD and Optimiza-
tion

DNNs have been widely exploited in the field of Computational Fluid Dynamics

(CFD), [12]. CFD codes are utilized today to solve more computationally expen-

sive problems. Despite the rapid development in GPUs and CPUs, the demand for

computational resources has rocketed. The ability of DNNs models to extract pat-
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Deep Learning

Machine Learning

Artificial Intelligence

Figure 1.1: Machine Learning and Deep Learning as subfields of Artificial Intelli-
gence and Machine Learning, respectively.

terns in raw data and, map the correlation between their input and output, makes
them the perfect tool for replicating or assisting these expensive codes. In addition
to that, when industries are creating and testing new designs, they produce train-
ing data available for training the ML models. For instance, Convolutional Neural
Networks (CNNs) were utilized for approximating steady velocity fields, [13]. A
symmetrical DNN (normal and transposed convolutional layers, max-pooling layers
and, fully connected layers) was used for reconstructing the flow field structure by
presenting it with the discrete pressure coefficient distribution on the wall surface
of the cascade channel, [14]. In [15], CNNs were used to predict aerodynamics flow
fields. A Generative Adversarial Network (GAN) combined with CNNs, called ffs-
GAN, predicted transonic flow field profiles of parameterized supercritical airfoils,

[16].

Inhere, the DNNs are implemented in various cases for predicting flows. Two differ-
ent types of DNNs are utilized, the LSTM networks and the A-DNN. The training
patters are generated by CFD software, created either by the author or by the mem-
bers of the PCOpt/NTUA team. The DNNs are used for reconstructing biological
or aerodynamic flows and, for replicating a discipline, in aero-thermal analysis.

In engineering optimization procedures, in order to reach the optimal design, it is
required to evaluate many designs. In computational mechanics, the evaluation of

3



shapes, to be optimized, claims the run of time-consuming and computationally
expensive simulation codes. Especially, when a stochastic optimization (i.e. Evolu-
tionary Algorithm) is in use, the number of shapes is highly increased. Thus, DNNs
are perfect candidates for replicating these expensive CFD codes and, they are ca-
pable of acting as surrogate models during shape optimization. These DNNs are
often referred as metamodels. In[17] and [18], Gaussian processes and radial basis
function networks (RBF) were used in Metamodel Assisted Evolutionary Algorithms
(MAEASs) as metamodels. [19] proposed a DNN that was utilized in MAEA opti-
mization of an isolated wing, maximizing its lift. Inhere, a MAEA optimization is
presented, shortly, by exploiting the A-DNN.

1.3 Thesis outline

Following the introduction, the chapters composing this thesis are presented:

e Chapter 2: A gentle introduction is made to how Deep Neural Network work.
The model of the neuron, the building blocks of the neural networks, and the
training elements are explained. Recurrent Neural Networks and Long Shot-
Term Memory networks are presented, as well.

e Chapter 3: The mathematical foundation of the quasi-1D arterial blood flows
is presented. The system of equations is numerically solved and the 1DAS
software is created and showcased.

e Chapter 4: Two benchmark cases are introduced for evaluating the LSTM
network capabilities. In the first case, the network predicts a periodic function.
In the second case, the network predicts temperature distributions of a plate.

e Chapter 5: Long Shot-Term Memory neural networks are exploited for pre-
dicting time-varying flows in quasi-1D arteries. In each case, the distributions
of cross-sectional area and wall thickness vary in order to evaluate the perfor-
mance and the capabilities of the network.

e Chapter 6: Another type of network, the A-DNN, is used for predicting
scalar fields in three cases. In the first two cases, the network is trained to
predict the pressure distribution around an isolated airfoil and on the surface
of a Francis turbine runner. In the third case, network is trained to replicate
the heat conduction equation solver in a multi-disciplinary problem, known as
Conjugate Heat Transfer. The network is trained to predict the temperature
distribution along the contour of an internally cooled turbine blade.



Chapter 2

Deep Neural Networks

2.1 Artificial Neural Networks

Artificial Neural Networks are computing systems that mimic the biological neural
networks and how they function. They fall into the field of Artificial Intelligence
and in particular that of Machine Learning. ANNs have been widely used in a
variety of applications, such as speech recognition, [21], computer vision, [20], med-
ical diagnostics, [22], automatic translation, [I], and even in activities traditionally
considered to be exclusively human, such as painting, [23].

Modern computers attempt to mimic the brain in its complexity and non-linearity.
The human brain has the ability to organize its components (neurons), fig. , SO
that it can perform calculations fast, make decisions, and develop its own behaviour
(experience), [24]. This experience allows the human to adapt to its environment,
keeping him alive. So, ANNs, made up of artificial neurons, attempt to mimic the
way the brain performs a specific task.

An ANN is a network of interconnected neurons, whose goal is to solve a computa-
tional problem. ANNs use an interface of simple computational nodes, referred to
as neurons. The network has a tendency to store experience/knowledge and use it
later for decision-making and information-processing. This experience is acquired
through a learning process, called training, by presenting it with the input values
(or signal) and the corresponding output ones (desired target of the ANN). The
connection weights between neurons, namely the synaptic weights, are used to store
this information. Each neuron is capable of receiving an input, processing it, and
producing an output that transmits to other neurons connected to it. Note that
the synaptic weights adjust as training progresses, while the weight increases or
decreases the output strength in a synaptic connection.
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Figure 2.1: Neuron and myelinated axon. The signal flows from dendrites to

axon terminals. From: Egm/43183.s12 at English Wikipedia, CC BY-SA 3.0 |https:
// creativecommons. org/ licenses/by-sa/3. 0, via Wikimedia Commons

2.2 Neuron Model and Neural Networks

The building blocks of the ANNs are the neurons. A neuron is an information
processing unit. It is modelled, fig. by a set of 4 elements, [24],

Activation
function

Input
signals

) Output
(P . _>>

_\ ' k

Summing
junction

Synaptic
weights

Figure 2.2: Model of neuron k. From [2]]

o A set of synaptic weights (w). The input x; that is being fed to neuron k is
multiplied by the synaptic weight wy;.

e A summing junction (uy) that sums the weighted inputs.

e An activation function (¢(-)) that limits the output, increasing or decreasing
the neural connection strength.
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e A bias (bk) of the neuron k.

or in terms of mathematical relations
m
up = Zwkj:z:j (2.1)
j=1

and
Yr = d(uy, + br) (2.2)

A neural network, fig. , is a directed graph of interconnected neurons/nodes
with synaptic weights and activation functions, [24]. Neurons are organized into
layers, where neurons of each layer connect only (except in special cases) to all
neurons of the immediately preceding and immediately following layers. The layer
that receives input data is the input layer, while the one that produces the network
output/prediction is the output layer. Between them, there can be other layers,
namely the hidden layers. Their name comes from the fact that they do not come
in direct contact with either the input or output. By adding one or more hidden
layers, the network can extract higher order information from its input, due to the
increase of the synaptic connections. When the network consists of more than 2
hidden layers, then it is called Deep Neural Network (DNN). Finally, a feedforward
neural network is a ANN whose connections between nodes do not form a circle
(unlike Recurrent Neural Networks) and, the information is directed from the input
layer, flowing successively from all hidden layers, to the output one.

Y1
Y2
Ym-1

Ym

Figure 2.3: A feedforward neural network. It consists of one hidden layer. It has n
inputs (x) and m outputs (y).



2.3 Training

The training is carried out by presenting the network with input values and the cor-
responding output ones, which it tries to predict. The learning algorithm performs
an optimization by adjusting the synaptic weights of the network smoothly. This
is done by minimizing the calculated error between the network prediction and the
desired output, with respect to the synaptic weights. Thus, it is required to create
a database (data set) with a correspondence of input and output values, which are
called patterns/samples. It is divided into two sets, one for training (training data
set) and one for network evaluation (validation data set). Usually, the ratio is 8 to
2, i.e. in 10 samples, 2 are used for evaluation and the remaining 8 for training, [10].
In addition, the set used for training is divided into smaller sets of the same number
of samples, which are called batches. The number of samples per batch is called
batch size and affects the speed as well as the accuracy of the training. Batch size
is the number of samples presented to the network before correcting the synaptic
weights. Finally, the number of epochs determines how many times the entire data
set will be presented to the network (ie only the training data set).

2.4 Architecture

The two main design variables of the architecture are the width and the depth of
the network. Width refers to the number of neurons per layer, while depth refers
to the number of layers. As the parameter space of the learning algorithm increases
(the number of weights), the algorithm can learn more complex patterns and extract
more features. At the same time, however, the algorithm is more prone to overfitting
and its generalization capability is likely to decrease. Overfitting is when a neural
network has learned the training dataset too well. The network is capable of making
accurate predictions only in the training dataset and performs poorly on any other
set of patterns.

Networks with few layers and many neurons (very wide and shallow networks) are
prone to overfitting. Networks with multiple hidden layers (deep networks) are much
better at generalizing, since they may extract high-order features in between layers.
For instance, if a CNN is called to classify images of human faces, its first layer
will be trained to recognize shape edges. The second layer will recognize shapes
and the third will recognize a set of shapes composing the nose, etc. In each layer,
an extraction of higher-order features/information takes place and, the network can
easily map the correlation between the input and the output. Thus, the selection
process of the network architecture involves several stages, utilizing the trial and
error method. Initially, a network with very few layers is created. Then, more
layers are added, with a small number of neurons. At the same time, the number
of neurons increases at each layer, until a network with acceptable error is reached

8



without overfitting.

2.5 Hyperparameters

Hyperparameters are fixed network parameters whose values are set a priori the
learning process and are usually determined empirically. Examples of hyperparam-
eters comprise the learning rate, the number of hidden levels, epochs and the batch
size. The values of some hyperparameters are dependent on the values of other hy-
perparameters. For instance, the value of the learning rate may depend on the total
number of layers. The hyperparameters determine the network architecture and how
it is trained. Their values are selected by the user, while the network parameters
(e.g. synaptic weights) are adjusted, automatically, during training.

2.6 Cost Function

The goal of the network training is to minimize the Cost Function. It is related
to the Loss Function that accounts for the error between the DNN output and the
target for the corresponding input values, for a single training pattern. On the other
hand, a Cost Function can contain many Loss Functions (or their average) and it
describes all the training data. An example of a Cost Function is Mean Absolute
Error

MAE = Zz:l(’ Y — Ytar |) (23)
n
where y is the output of the DNN, y,,, is the ideal output of the DNN for the

corresponding input and n is the number of predictions. The Loss Function of the
MAE is the Absolute Error (AE)

AE :| Y — Ytar | (24)

Thus, the MAE Cost Function is the average of the AE Loss Function. In the
literature, the terms Loss Function and Cost Function are usually synonymous, if
not identical. Note that Mean Absolute Percentage Error (MAPE) may also be used
as Cost Function,

n

MAPE = @Zq Y~ Ytar |y (2.5)

n i=1 Ytar



2.7 Back Propagation and Optimization Algorithm

Back Propagation, [25], is an algorithm used during the training of NN. Tt calculates
the gradient of the cost function with respect to the synaptic weights. The amount of
error is distributed (back propagated) between the neural connections, in proportion
to how much they contribute to the computed error. It is called back propagation
because it is applied repeatedly in reverse order with the flow of information, starting
from the output layer and continuing to the input layer.

The optimization algorithm uses the computed gradient (from the back propagation
algorithm) to perform the gradient descent. Note that the derivative is a vector
in the opposite direction from the desired minimum. The goal of the algorithm
is to minimize the cost function by adjusting the synaptic weights. The Adam
optimization algorithm, [26], is a specialized stochastic gradient descent algorithm
and is one of the most common optimization algorithms in DNN training. Since it
is an efficient algorithm, it is well suited for large problems (in terms of parameters
or/and data). It uses the calculated gradient, as well as its statistics and previous
values (during training) in order to optimize the weights. The Adam algorithm
combines the advantages of the Adaptive Gradient Algorithm (AdaGrad), [27], and
Root Mean Square Propagation (RMSProp), [28].

2.8 Learning Rate

The learning rate is a hyperparameter that determines the size (the order) of the
corrective update to the network weights, at each iteration during its training, to
minimize the error between its output and the desired values. It is a weight (in form
of a factor) applied to the correction of the synaptic weights during the network
training. A higher learning rate decreases the training time, but with decreased
final accuracy. In contrast, a lower rate increases the training duration, although
with the possibility of a greater accuracy.

2.9 Recurrent Neural Networks

A Long Short-Term Memory (LSTM) neural network, [29], which is later exploited
for blood flow predictions, is a type of Recurrent Neural Network (RNN) architec-
ture, [25]. RNNs are a type of neural network that process sequential data and can
scale to much longer sequences. RNNs connect the outputs of all neurons to the
input of all neurons, fig. 2.4 The current input and output is influenced by the
previous input and output (previous elements in the sequence). This directional
information forms a type of "memory” in weights of the RNN, which are adjusted
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during the training.

S A

/ \_/

Feedforward ‘ ‘ Recurrent ‘

Figure 2.4: The comparison between the classic Feedforward Neural Network (left)
and Recurrent Neural Network (right).

If the RNN is unfolded, fig. [2.5] it is easier to understand the significance of directing
the output to itself. In order to perform a prediction at a time step ¢ in sequen-
tial data, the network utilizes the previous outputs. Highlight that the output of
previous time steps is dependent on the previous inputs and carries out informa-
tion through the time. The network creates a form of "memory”, which is critical
for temporal or ordinal problems, such as speech recognition, [30] and handwriting
recognition, [31].

RNNSs share the same weights within each layer compared to a typical feedforward
network, in which the weight varies in each node. Thus, the Back Propagation is
altered to Back Propagation Through Time (BPTT), which is a generalized form of
the algorithm, used during the network training. The most common drawback of
RNNs are the vanishing or exploding gradient problems. The error, which is back
propagated, tends to vanish or explode, preventing the training. When the gradient
is decreased, it continues to shrink, and, thus, the network is unable to train. This
is known as the vanishing gradient problem. On the other hand, the exploding
gradient problem is when the gradient becomes too large and, the model becomes
unstable, resulting in weights with infinite values.

2.10 Long Short-Term Memory Networks

LSTM networks were introduced as a solution for the vanishing gradient problem.
The presence of long-term dependencies in the input sequence leads to inaccurate
predictions from the RNN. Practically, if the prediction of the current state is de-
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Figure 2.5: An unfolded RNN. The state at time t influences the future states. The
layers are different steps in time of the same RNN.

pendent on a previous one and this previous state was not in the recent past, the
RNN is unable to predict the current state.

The aforementioned problems were addressed and solved, [29], by introducing the
LSTM unit. This unit, fig. is capable of learning long-term dependencies and
comprises a memory cell and three gates, an input gate, an output gate and a forget
gate. The cell stores the acquired information through time and the three gates
control the flow of information.

Yt Yt Y+
Ci PR - Ct
— —{ X ) { + ) H | I
I ¥
™ =
(x)
sigmoid e EE.'X
sigmoid
Yi-1 Yi
L4209 H | -
Xt Xt Xi+1

) B - N .
. Concatenation \) Pointwise Operation == Data Vector |:| Layer with Activation Function

Figure 2.6: An unfolded LSTM wunit. It comprises the cell (red line) and three gates.
The basic vectors are the input (xy), the output (y;) and the cell state (c;).

In fig. the top line that runs through the unit is the cell, which carries out
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the information along the LSTM unit. The LSTM unit is capable of regulating
the information in the cell by adding or removing information, using the gates with
pointwise operations. The inputs of the cell consist of its previous cell state (¢;—1),
its previous prediction (y;,_1) and the current input ().

Firstly, the unit decides what information will forget. On the bottom left, the two
inputs (z; and y;_1) are concatenated into a vector that is copied in every branch
that is passed to. In the first branch, the resulted vector passes through a sigmoid
layer, the forget gate layer. Secondly, the unit decides what information will be
"memorized” by the cell. The second branch of the concatenated vector passes
through a sigmoid layer, called the input gate layer. This branch, actually, decides
what values of the current state cell will be updated. The third branch passes
through a tanh layer, which proposes values for the cell state. The second and the
third branches are multiplied pointwise, resulting into a proposed vector for updating
the cell state. The new, updated, cell state (¢;) results from the multiplication of
the old cell state with the first branch and the addition to it of the proposed vector.

The output of the unit (y;) is influenced by the current state. The concatenated
vector of the two inputs (x; and y;_1) is passed through a sigmoid layer that decides
what values of the current state will be utilized for the output. The current cell
state passes through a tanh layer and is multiplied by the output of the sigmoid
layer. This resulted vector, the output of the LSTM unit, is the combination of the
current cell state, the current input and the previous prediction. Note that in every
sigmoid and tanh layer a bias is added.

2.11 Implementation

Data pre- and post-processing as well as the DNN implementations are carried out
in Python 3.6 utilizing an open source machine learning library, called Tensorflow,
[32], all running on CPUs or GPUs, such as K20, V100 and 1050, manufactured by
NVIDIA.
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Chapter 3

Quasi-1D Artery Blood Flow

A quasi-1D flow problem in an artery with elastic walls is modelled. The artery
has varied wall thickness along its length. Its longitudinal initial cross-sectional
area distribution is varied, as well. The time-varying blood inflow represents the
pulsatile action of the human heart. The generated biological flows are later used
as patterns for training the LSTM network.

3.1 System of Governing Equations

As presented in [33], continuity of mass and momentum leads to the following equa-
tions in terms of the cross-sectional area (A), the mean velocity (u) over a cross-
section and the internal pressure (p) of the artery,

9A  9(Au)
_l’_

ot ox

=0 (3.1)

ou Oou 10p 107
A Ve 2
ot +u(9:c + pOx  pox 0 (32)

where p is the constant blood density and 7 is the shear stress.

For the shear stress gradient, the expression for a Poiseuille flow,

8 *

dr _SMQ _ Bmpu =T ptpu (3.3)

dr 7R A A
is used where ) = Au is the volume flowrate, R is the inner artery radius and y the
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blood viscosity. Note that the expression of eq. (3.3)) is not valid for non-Newtonian
or turbulent flows.

By incorporating eq. (3.3) into eq. (3.2)), the system of two (rather than three)
equations (in conservation/vector form), governing the blood flow in an artery with
elastic walls, is derived,

(3.4)

where

Since there are 2 equations and 3 variables (A, u, p), a third equation is necessary
to close the system. This third equation describes the vessel wall behaviour due
to pressure changes and its difference between the inside of the artery and the
surrounding tissue. It introduces the adaptation of the cross-sectional area to the
changing internal pressure and deals with the fluid-structure interaction.

Many different models that simulate the relation between the pressure and the cross-
sectional area are in use. These are classified as:

Linear elastic: The area is linearly related to pressure, [34].

Non-linear elastic: The area is non-linearly related to pressure, [35].

Collapsible tube: The area is related to pressure with a ”tube law” in which
the tube can collapse and distend, [36].

Visco-elastic: Viscoelastic behaviour of the elastic walls is being considered,

137).

In this study, the equation of the non-linear elastic model, presented in [35], is used
to provide a relation between the pressure and the wall deformation by also involving
the cross-sectional area (A). This is written as

P = Peaxt + 5(\/Z - \/A_O) (3~5>

where p..; is the external pressure from the surrounding tissue, Ag is the area when
there is zero transmural pressure (i.e. p = pey) and [ accounts for the material
properties of the elastic vessel (Ag also appears) and is independent of the transmural

pressure,
5 VB

= =7 (3.6)
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where h is the wall thickness, F is Young’s modulus and o is the Poisson ratio.
Note that only Ay and h vary along the artery. Ay is also considered as the starting
artery shape in all computations. Since the system is highly coupled and non-linear,
a numerical solution is required.

3.2 Formulation as a 2-Equation System

In order to reduce the number of variables in the system to be solved, one may replace
the pressure in the system of governing equations with its derivative computed from

eq. (3.9),

Op  Opeat g oA [ 0A 98
or Oz + WA dr  23/A, Ox + (\/Z AO)ax (3.7)

By doing so, the 3-equation system, egs. (3.7)) and (3.4]), takes the form of a quasi-

linear system of 2 equations, written in non-conservative form, as follows,

oU  0U _

-, THo—=C (3.8)

where

1
C=—1|,pu | Open a}
p{“f + % = s e + (VA= VA5

eq. (3.8) must be solved to compute the 2 unknowns (A and u) at each node.

3.3 Flux Vector Splitting Scheme

The eigenvalue vector A of the coefficient matrix H results by solving the equation
| AT-H |=0, [38] which gives:

B
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where ¢ is the speed at which a small pulse propagates through the artery (wave
speed),

c= M (3.10)

2p

Since the flow is physiological, the velocity is less than the wave speed (u < ¢) and,
thus, the eigenvalues are real and the system is hyperbolic. The physical meaning
of the eigenvalues is that cross-sectional area and velocity wave fronts propagate
through the artery forward with velocity Ay = u + ¢ and backward with velocity
A2 = u — c. The set of left eigenvectors is computed by solving the equation T;H =
Ail;, where I; is the right eigenvector of H corresponding to \;,

o[- [

and, therefore, matrix L is computed as

TP

Note that H=LAL™'. The coefficient matrix H is then decomposed into a positive
H™ and a negative H™, such that: HT+H~=H. Each component is defined by
using the properly signed eigenvalues as follows,

1A 24X
Ht =LATL '==|/! <™ 1
2 L%)q At (3:13)
1 _A
H =LA L '= 3 [_32 ACQAQ] (3.14)

where

The artery length is discretized with K equidistant nodes and the total simulation
time is discretized with 7" time instants, as well. Applying 2nd order Flux Vector
Splitting to the system of equations, eq. , leads to the discretized form at time
instant n + % and in L-th node,

0 n+l ntl 1 a1 ntl
0 SIS © 8 DA - oy § A SN (A 1
atUK + Uplus Azr Ummus Azr Ck (3 5)
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where the plus and minus indices represent the U one-sided difference stencils for
H* and H—, respectively,

n+i 3 ntl n+i 1 nt
Ujs = §Uk *=2U, 7+ §Uk—22
n+i 3 n+= n+i 1 n+i
Uminzus = _§Uk ? + 2[Ik—l—l2 - §Uk+22

Exponent (n) and index (k) represent time instant and node, respectively. By
n 1 n 1 . .

replacing Uk+2 = U} + ;AU and C,;r2 = C} + :AC} in eq. (3.1F)), the following

system emerges. Vector AU"™ makes up the matrix of independent variables,

1 1 1
— AU+ HTA H™AU? — =-AC?} =
At Uk+ UpluszA + Umznus2A 92 Ck
1
Ccy-HtU” —H~U” 1
pluSQA mmu52A (3 6)

where

3 n n 1 n
A-U-mmus - _EAU + 2AUk+1 2AUk+2

and, C; and AC} are given from

1 n
Ch=—|1pu |, Opes a}
A A )

1 0 "
ACy = —— |:,u*pAu _ p*puAA + M%} = K;AU}
Pl 24 2A2 4/A oz ly,
1 0 0
R vt

The governing equations are written as a 5-diagonal block system by introducing
five 2 x 2 coefficient matrices,

VIAU} , + XPAUL , + YPAU} + ZRAUY, | + WPAU}, , = RHS]  (3.17)

19



where the coefficient matrices are

A A) T
V) = 1 +L - 1 [ 4§x 4(5\A1z:|
CA1 1
2 280z 2 [gxAs  1Ax g
X | 1 { L Axlr
n_—_9 - —— T cQAx
k c
2Ax 2 | 4rs Arle
3 1 1.1 S L 3Au !
Yn — H+ —_H ) — + —1I-— K = 3eu 4A:E*u At 1 98 . 4cAzx
1 1[ 22 A"
Zp = 2H —— = - { A% )?Az}
20 2 [~Aar Ar 1k
1 1 1 A2 Aly 7
W= __HtH— == |: C%\Am 4cA)\z :|
‘ 2 2AZ‘ 2 4AA2a: _4A2x k
and the RHS is
pisy _ | ~H AN £ B A, - Sy
1 (U+>\1 + c)\1A ) )\ c)\zA ) + 02

T 2Az

where

2
n,+ 3 n n n
U = Uk~ 2up g+ SUk
n,— n 1 n
Ak = __A +2Ak+1 Ak+2
uy = _§U7I;L + 2up — §UZ+2

2,k —

N 1 pwpu  Opes g 0A 0B, n
—( 2 L+ (VA= VA0 ) i

A or 2v/Ay Ox

At the second and the before-last nodes of the 1-D spatial domain, due to the absence
of enough adjacent nodes on the one side (without interrupting the diagonal form
of the system), the system becomes 1-st order,

XPAUY |+ YPAUR + ZpAUY, | — RHS (3.18)
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and, there, the coefficient matrices are

1 1 A1 A)\l n
Xp— Mo o[ B ]
24z 2 1547z 2274
1 1.1 e 4L Au "
Y" — (H+ _ H—) +—JI--K-= o 2A;cu At L op . QCAlx .
: 20z At 2 isz — 547 * vioe 3AAs T ar T oA i

1 1 )\2 _ A)\Q n
Zi-m -1 |
YN 20z

3.4 Windkessel Model

The segment of the simulated artery is part of a complex network of arteries con-
sisting the human cardiovascular system. In order to take the effect of arteries lo-
cated beyond this segment into account, it is necessary to include a lumped-element
model, which simplifies this effect. The outlet lumped parameter model, known as
the Windkessel Model, [39], is used.

Large arteries are quite elastic due to their structure, which comprises elastic fibers.
Thus, they are able to either distend or recoil, depending on the part of the cardiac
cycle (systole/diastole). This behaviour leads to a flowrate difference between the
inlet and outlet of the artery, creating a biological capacitor that temporarily stores
the excess blood. This capacitor charges during the systole and discharges the
blood to the peripheral arteries, during the diastole of the heart. It plays the role
of a damper, resulting to a relatively smooth blood flow in the peripheral arteries,
despite the pressure fluctuations presented over the cardiac cycle. This interaction
is similar to a fire hose in which an air chamber (Windkessel in German) damps the
pulsatile action of the pump, fig. Note that in order for the blood to flow, it is
required for this to overcome the vascular resistance of the peripheral arterioles and
capillaries.

3.4.1 Two-Element Model

The mathematical model that simulates this phenomenon consists of two elements:
the total arterial compliance (Cy) which accounts for the elasticity of the larger
arteries and the peripheral resistance (Ry) which accounts for the resistance of the
peripheral arteries.

The two-element Windkessel model, fig. also referred as the C'R; model, is
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Figure 3.1: Illustration of the Windkessel analogy. By Kurzon - Own work, CC
BY-SA 3.0, https: // commons. wikimedia. org/ w/ index. php? curid=31288770

governed by a first-order differential equation,

Q(t) = p]%) +C, dz;(tt) (3.19)
Q(t)
g —
p(t) C, R,

Figure 3.2: The two-element Windkessel model. The model consists of two elements:
the total arterial compliance (Cs) and the peripheral resistance (Ra).

3.4.2 Three-Element Model

The three-element Windkessel model (R1CRy), fig. [3.3] is based on the two-element
Windkessel model with an additional characteristic resistance (R;) in order to elim-
inate abnormal reflected pulse wave oscillations. R; takes into account the effects
(compliance and resistance) of the very proximal aorta to the simulated segment.
Let p. denote the pressure across the compliance CY; the pressure at the end of the
artery (p) is given by:

p(t) = pe(t) + R1Q(t) (3.20)

22


https://commons.wikimedia.org/w/index.php?curid=31288770

where p. is given by eq. (3.19)) if the pressure p is substituted with the pressure
across Cs (p.). Thus, the final system of the Windkessel model equations is derived

Q(t)
— R T

p(t) Il

O
o
o
M

Ry

S

Figure 3.3: The three-element Windkessel model. The model is based on the two-
element model with an additional characteristic resistance (Ry).

providing the pressure value at the last node (pg),

p(t) = pe(t) + R1Q(t) (3.21)
Qt) = p;g) +C, dp;it) (3.22)

In this study, the three-element Windkessel model is used to update the pressure at
the last node of the artery (K) using the Qe as Q.

3.4.3 Numerical Solution

The system of egs. (3.21) and (3.22) is numerically solved. If Q" 2 is given by
Qe = Q™+ Q"), eq. (3.22) can be discretized as,

n __ . n—l1 7 n—1
Qn—% —C Pe P + 28 +pc

s —
At 2R,
-3 _ (L _ Cs
p? _ (Q - (2R21 At)) (323)
At T am,

Therefore, the pressure at the last node of the artery, at the n-th time instant, is
given by

P = pi + Q" (3.24)
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3.5 Initial & Boundary Conditions

The cross-sectional area distribution is initialized by setting it to the Aq distribution.
The initial velocity distribution is constant and computed from the equation Q=
Au, where A and Q take on the corresponding initial values. The initial pressure
distribution is equal to pey;.

For the inlet boundary condition (k=1): '
Crross-sectional Area: Since the instantaneous flowrate (Q™) is known, the velocity at
the (n+1)-th time instant may be computed from the continuity equation @ = Au,

n+1
u"t ="+ A" = A’E“
if # is linearized as Ai,f — %, then
o ar
AAT + Aui = — uy 3.25
Velocity: A first-order Neumann boundary condition is imposed, where %T; = 0.
Thus, u} = uj and,
Auy = Auj (3.26)

For the outlet boundary condition (k=K):
Cross-sectional Area: Since the pressure at the last node (pg) is computed by the
Windkessel model, eq. (3.24), the area can be computed as

At = (YM /Ao r)? AR AR AT
" Brc ,
p?;rl — Peat 9
Adie = (T =+ VAux) — Ak (3.27)
K

Velocity: A Neumann condition is imposed, where g—;; = 0, as well. Therefore,

UT}( = unK—l anda
Aue = A (3.28)

or in matrix form:
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Inlet:

Y?AU? 4+ ZTAUZ = RHS? (3.29)

AT
n_|—1 0
2=
H n = yn+1
st =g
Outlet:
XEAU% | + YR AU = RHS): (3.30)
n 100
xi=[o )]
|10
Yi= |y Y]
RHS”? 0
g n+1l_
e A -

3.6 The 1DAS Software

The above flow model is programmed as a quasi-1D flow solver software (to be
referred as 1DAS). Code programming was carried out in FORTRAN while data
pre- and post-processing in Python 3.6.

The 1DAS software inputs comprise the parameters of the previously presented
equations and consist of:

e The number of equidistant spatial nodes (K).
e The number of time instants per period (kdit).

e The total simulation time (7},).
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The length of the artery (Lg.).

The starting shape of the artery (Ag(x)).
The time dependent blood inflow (leet(t)).

Blood Properties:
— Density (pp)
— Kinematic Viscosity (1)

— Pressure in the surrounding tissue (pest)

Artery Properties:
— Young Modulus (F)
— Poisson Ratio (o)

— Spatial distribution of thickness (h(z))

Windkessel model parameters:
— Initial Pressure of Capacitor (p.)
— Capacitance (Cs)
— Resistance R1 (R;)
— Resistance R2 (Ry)

The software solves the 5-diagonal block linear system with the block elimination
method. This method effectively computes the LU factorization of the coefficient
matrices, then, performs the forward block substitution and, at the end, the so-
lution emerges through the backward substitution. It is a modified version (two
additional coefficient matrices) of the 3-diagonal block linear system solver, called
LU Factorization, which is presented in [40]. This method was already programmed
as a FORTRAN subroutine and is utilized by the 1DAS as its system solver. It is
worth noting the creation of a PYTHON code, which is capable of plotting 1DAS
software results while running. This code assisted the 1DAS software development
and live results evaluation.

3.6.1 Examples of 1DAS runs

In order to showcase the running of the 1DAS software, a run of a dummy case was
performed. The distributions of the initial cross-sectional area and thickness are
shown in fig. A physiological blood flow is used by the software, fig. [3.4, How
these curves were generated and their physical meaning are discussed in Chapter [5

The fig. shows the 3-D plots of the cross-sectional area and velocity distributions
for one period (after the solution is converged). The results showcase the capabilities

26



0.00 0.02 0.04 0.06
Artery Length [m]

0.08 0.10
1.00 A

0.95 1

0.90 1

Thickness [mm)]

0.85 4

0.0

0.00 0.02 0.04 0.06

0.08 0.10
Artery Length [m]

00 01 02 03 04 05 06 07
Time [s]

Figure 3.4: The cross-sectional area and thickness distributions (left) used by the
1DAS software for the dummy case. The physiological time-varying bloodflow (right).

of the software. The elastic walls of the artery adapt to the evolving flowrate and
pressure. The inlet velocity profile follows the bloodflow form.

Area Velocity
o
b6
g s
2
é‘" 4
T 3
= 2
1

0.10
4,,0.08
ey, 0.06 506 0.7
L, 0.04 . 04
f, 3
¢y, . 0.02 0293 s
fqv 0.00 0.0 01 T\n“e‘

Figure 3.5: The cross-sectional area and velocity distributions generated by the 1DAS
software for the dummy case.

3.7 Artery with Rigid Walls

For performing the first tests, a version of 1DAS to be referred as 1DASR, was

created, but with an artery with rigid walls. The flow is governed by a system of
equations,

d(Au)
=0 (3.31)

27




du du @_ W

# Yt A

(3.32)

The velocity is given from the continuity equation, where cross-sectional area (A) is
varied along the artery and the bloodflow (Q) is time-dependent,

u(z,t) = Alr) (3.33)
and, thus, by taking the derivatives of it,
du Q dA
o x .34
dz A? dx (3:34)
du 1dQ
o= 3.35
dt A dt (3:35)

The artery length is discretized with K equidistant nodes and the total simulation
time is discretized with T" time instants, as well. By replacing the velocity derivatives
in eq. (3.32), and discretizing the equation, the following formula is derived for time-
step n and in node k,

dp" Q™ (QM)2dA 1 dQ"
der A2 + A3 dxk Ay di (3.36)

The pressure derivative can be written as

Prs1 — Pk _ l(dp” dp”

Ar  2Vdrk | drio (3:37)
The pressure is given by
" . Ax dp™ dp"
Pt = Gt e (339
The velocity can be computed from the discretized form of eq. (3.33)),
Qn
r=— 3.39

Note that the pressure in the last node (K) is given from the Windkessel model, as
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described in Subsection m The numerical solution of the discretized eqgs. (3.36)),
(3.38) and (3.39)) was programmed in FORTRAN code and its results were used for
training the LSTM network.

29



30



Chapter 4

LSTM Benchmark Cases

Before moving into the main implementation of the LSTM network in biological
flows, two benchmark cases were performed. Since the generation of dataset (i.e.
biological flows) is time-consuming, the benchmark cases act as introduction on how
the LSTM are implemented (computationally), and further exploited in predicting
sequential data.

4.1 Periodic Function

Firstly, a benchmark case is introduced for exploring the capabilities of LSTM net-
works in prediction of periodic functions. LSTM networks are known for their
performance in reconstructing time-series and memorizing patterns through time-
dependent data.

A periodic function was used for generating training patterns,
y = aysin(agr) + azcos(asx) + sin(asx) + ag (4.1)

where x € [0, 160] represents the pseudo-time and ay, ..., ag € [0, 1] are parameters.
By varying the parameters, different time-series were generated. The period and
amplitude are influenced by this variation. The x-axis was discretized using 401
equidistant nodes.

The goal of the LSTM network was to predict the following value of this function,
each time, by presenting it with n.,s preceding instantaneous values of it. These
preceding values can either be computed from eq. or be network predictions.
The training dataset comprised 28 time-series, fig. [4.1], generated by varying ran-
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domly the parameters in the aforementioned space. The total computational cost
for the generation of the training patterns was ~ bmins.
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Figure 4.1: The 28 times-series constituting the training dataset.

The network architecture consists of 5 layers, of which the 2 first layers are the
LSTM units, the following layer is the flatten layer and the last layers are the dense
ones, fig. [£.2l The 2 LSTM units have 64 neurons each, and the dense have 64
neurons each, as well. The tanh activation function was used for all layers, except
the last one, in which the linear activation function was utilized.
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Figure 4.2: The LSTM network architecture.
part, a flatten layer and the dense part.

Units =101
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The network consists of the LSTM

The network was, then, trained for predicting the following value by presenting it
with the 20 preceding values (ns.ps) and the 6 values of the parameters. At first,

32



the network was trained for 150 epochs. It was called, then, to make predictions
by feeding back its predictions to itself and utilizing them as input for the subse-
quent time steps. The input dataset was updated with these predictions and the
network was retrained for 150 epochs. The goal of the network was to reconstruct
the entire time-series, which consisted of 381 values. This number was derived by
subtracting the ng.,s from the number of equidistant nodes (401), that the x-space
was discretized with. The training cost was ~ bmins, on a NVIDIA 1050 GPU.

Two, not seen by the network, time-series were used for assessing its performance,
fig. [4.3 The average MAE of the LSTM predictions is 3 x 1072, Firstly, the
network was presented with 20 instantaneous values, computed from the eq. .
The network predicted the following value and fed it back to itself and, used it as
input for the next one. The procedure of feeding back the prediction continued until
the network had reconstructed the entire time-series. The prediction for the entire
time-series (381 values) is based on the 20 starting values (ng.ps) and the 6 values
of the parameters. A further explanation of both training and prediction techniques
is given in Section [5.2.4] The results are more than satisfactory and indicate that
LSTM networks can be utilized to predict periodic functions.
— Prediction

Input
Target

0.54

0.0 4

Figure 4.3: Two, not seen by the network, time-series, reconstructed by the LSTM
network.

4.2 Heat Conduction

In the second benchmark case, the LSTM was trained to predict time-varying tem-
perature distributions on a 1D plate, with length L, = 0.3m, fig. @ On the left
end of the plate, there was air with time-varying temperature and, on the right
end, the temperature of air was constant. This was a simulation of a metallic wall,
which was adjacent to the air both inside and outside of it. The right end of the
plate represented the inside (7},), with the constant temperature, while the outside
varied along the day (T,,;). This phenomenon is governed by a partial differential

33



equation, the heat conduction equation,

32 K g) = PO (4.2)

Tout T Tin

Temperature
Temperature

‘ Time Time

Lo

Figure 4.4: The plate, in 2-D perspective, with constant internal and time-varying
external temperatures.

where T is the temperature, k = 2 W/m°C'is the coefficient of thermal conductivity,
p = 2000 kg/m? is density, and C, = 1000 J/kg°C' is the thermal capacity. All
quantities refer to the simulated plate. At the right end, the plate was adjacent to
air with temperature T;, = 27°C. At the left end, the air temperature (7,,;) was
parameterized with the following periodic function,

27 (t — 3600b,)
360005

Tout = 35 + bycos( ) (4.3)
where by,by € [0,24] and b3 € [—5,5] are the parameters. The convective heat
transfer coefficient of the left end was h,,; = 28 W/mzK and on the right end
hin = 8 W/m*K. Eq. was solved numerically in PYTHON. The plate width
(Ly) was discretized using 60 equidistant nodes (59 cells). The total simulation
time was 3 days or ~ 259K seconds and was discretized with 301 time steps, at
constant time intervals. The equation was solved with the finite volumes method
(cell-centered), which resulted in a tri-diagonal system of equations. The Neumann
boundary conditions, at both ends, were set through the heat convection, between
the solid plate and the air. The temperature of 20°C' was used as the initialization
for the temperature distribution.

By varying the parameters of the outside temperature, different temperature time-
series were generated and were, later, used from the solver for determining the
boundary conditions, fig. 4.5 28 time-series were generated and, thus, 28 x 301
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time-varying temperature distributions resulted. The solver took ~ 1.5mins for
generating the distributions. As shown in fig. the solution had a transient
phase that converges to a periodic solution.

38
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Figure 4.5: The T, time-series used for determining the boundary conditions.

20 distributions were presented to the network in order to predict the following one
and, thus, ngeps was equal to 20. The network architecture of fig. was adjusted
to this benchmark case. The number of hidden layers, as well as the number of
their neurons, remained unchanged. The input size was (20,59) while the output
size was a distribution of 59 temperatures. Note that 59 was the number of cells and
therefore the number of temperature values along the plate. The training procedure
was identical to the previous case. The training cost was ~ 5mins on a NVIDIA
1050 GPU. Note that, the network was not presented with any information about
the T, (its time-series or the values of the parameters).

The network, during the prediction of the temperature distributions, was feeding
back its prediction to itself, as mentioned in the previous case. The predictions of
two, not seen by the network, patterns are shown in figs. [£.7] and The average
MAE of the LSTM predictions is 15 x 1072 °C. They indicate that the LSTM
network is capable of reconstructing the temperature time-series of the entire plate
with the information of the transient phase, since the first 20 distributions, used
by the network, are of this phase. The network used only these 20 distributions to
predict the entire time-varying temperature field.
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Chapter 5

Prediction of 1D Time-Varying

Flows in Arteries with LSTM
Networks

5.1 Introduction

Inhere, a code for simulating arterial flows was developed and used to generate
quasi-1D flows in axisymmetric arteries. A Long Short-Term Memory (LSTM) net-
work was trained to predict velocity distributions. It constitutes an initial study on
how LSTM networks can further be used in biological flows studies, utilizing data
generated from CFD software solving 3D flows. Note that the problem of realistic
arterial flows is an unsteady multi-discipline problem, since the elastic walls interact
with the blood, which follows the pulsatile cardiac action. Thus, the generation of
3D data for training the LSTM network would be computationally expensive.

5.2 Varying Initial Artery Shapes

The LSTM neural network was trained to reconstruct the time-series of blood flow
quantities of a quasi-1D flow problem in an artery with elastic walls of a simplified
axisymmetric geometry though. The network was able to predict the time-evolution
of velocity and area distributions along the artery, using the corresponding distri-
butions at previous time instants. These previous spatial distributions were either
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generated by a CFD solver or, after the first time instants, they were flow predictions
by the network itself.

The quasi-1D flow solver (1DAS) in arteries with flexible walls was the analysis
tool providing the training and validation patterns for the network. The artery was
modelled as a tube with a non-constant cross-sectional area along its length. The
solver data comprise the starting cross-sectional area distribution (Ap), the wall
thickness distribution, the physiological data of the artery (blood properties, artery
mechanical properties and Windkessel model parameters), and the time-dependent
blood inflow as boundary condition (leet). In order to represent the pulsatile
cardiac output (heart rate and stroke volume), a periodic functional form for the
inflow was used. The physiological data remained constant in all runs, whereas
the starting cross-sectional area distribution, the wall thickness distribution and the
time-series of the blood inflow varied. In this first case, only the starting cross-
sectional area distribution varied. The velocity, pressure and area distributions
along the length of the blood vessel at each time instant are the output of the 1DAS
software and these were used for training and, then, assessing the LSTM network.

5.2.1 Initial Cross-Sectional Area

The initial cross-sectional area distribution of the artery was arbitrarily selected
and parameterized using a Bezier curve with 7 control points (CPs), fig. 5.1} Then,
by varying their coordinates (with fixed abscissas), various shapes of arteries were
generated and later used by the 1DAS software as the initial shape.

A constant cross-sectional area curve, computed for an artery with radius equal to
Ry = 0.010 m, was utilized as a starting artery for the parameterization procedure.
The first and last CPs were fixed at 15% and 85% of the artery length. The abscissas
of the other control points remained constant and distributed evenly. Note that the
second and the before last ones had the same ordinate as the first and last CPs
respectively, for derivative continuity purposes. By varying R, by £50% at each
end of the artery, new first and last control CPs emerged while the ordinates of
the 3 intermediate points were distributed evenly between them. The ordinates of
the 3 intermediate CPs were multiplied by the factors 1.1,1.35 & 1.4 respectively.
These factors varied from —10% to +50%. In an effort to evaluate the solutions
generated by the 1DAS software, an artery with inlet and outlet radii both equal to
Ry = 0.010m and factors 1.1,1.35 & 1.4 was selected as the reference artery, fig.
Bl

By varying the aforementioned parameters (inlet and outlet radii & factors), a
dataset of 30 arteries was generated, and these were used in the unsteady runs

of the 1DAS software as initial cross-sectional area distributions, fig.
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Figure 5.1: Reference Artery. It is parameterized using a Bezier curve (blue) with
7 CPs (orange/dotted). The inlet and outlet radii are both equal to Rs+ = 0.010m,

corresponding to area equal to 3.1413 - 10~*m?, and the intermediate CPs factors are
1.1,1.35 & 1.4.

5.2.2 Blood Inflow and 1DAS Parameters

The leet that was used for the first case study was a very simple periodic (sinu-
soidal) function, fig. with period T} = 0.75s, representing a pseudo-pulsatile
cardiac output, namely:

Qintet =7 - 107° +5- 10" sin wt (5.1)

where w = 7/0.75 and t € [0,0.75]. Every quantity was written in SI base units.

The rest of the 1DAS software parameters are presented in table [5.1]

5.2.3 Training Dataset Creation

The total simulation time was 8s (corresponding to 10.6 periods of 0.75s each), with
7500 time instants in each period, resulting in 80000 time instants in total. The
artery length (L) was 0.1m and was discretized using 101 equidistant nodes.
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Figure 5.2: C(ross-sectional area distributions, created by varying the CPs of the
Bezier curve used by the 1DAS software as initial distributions (Ag) for the 30 training

patterns.
Quantity ‘ Symbol ‘ Value
Blood Properties
Density [kg/m?] B Ob 1060
Kimematic Viscosity [m?/s] B2 Vs 3.5-107°
External pressure [Pal P... 10*
Artery Mechanical Properties
Young Modulus [Pa] E 91 -10*
Poisson Ratio o 0.5
Thickness [m] h 107°
Windkessel Parameters
Initial Pressure of Capacitor [Pal] Pe 0.1-10*
Capacitance [m*s?kg™!| C, 4.5-107°
Resistance R1 [kgm~*s™!] Ry 0.5-107
Resistance R2 [kgm™*s™!] Ry 1.8-10°
Table 5.1: Physiological data of the arteries used by the 1DAS software for all runs.

qu the time slot that corresponds to the first 6 periods (4.5s), leet was constant
(Qinter= 0.7 - 107*m3/5s) resulting in an initial transient phase during which the
flexible walls adapted themselves to the evolving pressure within the artery and, at
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Figure 5.3: The periodic blood inflow (leet) of eq. (b.1) (blue) with period T}, =
0.75s (the black vertical line delineates to the end of the first period) plotted for several
periods. At both ends of each period the inflow derivative is discontinuous.

the end, a steady flow solution was computed. The second phase started upon the
end of the first one and, in this phase, the unsteady inlet flowrate profile Qintets €4
(5.1]), was imposed. Splitting into two phases was decided as it was quite helpful to
have the flow quantities with the steady inlet condition converged at first and, then,
continue the problem solution with the time-varying flowrate. The leet time-series
and the corresponding velocity time-series of the reference initial cross-sectional area
distribution, at the 50th node (almost mid of the artery), are shown in figs[5.4] and
5.5 respectively.

The computed distributions at the selected probe node (the 50tk node) of the cor-
responding cross-sectional area distributions, fig. solved by the 1DAS software
are shown in figs. and 5.8 In fig. 5.9 the converged area distribution at
the end of the first phase is shown in comparison to the reference Ag, pointing out
that the artery, at the end of the first phase, is outward bulged.

In order to reduce the memory requirements and the training cost, the distributions
were sampled every 20 time instants. Practically, the training dataset was formed
by distributions in every 20 time instants, skipping the intermediate ones. One
distribution used by the network carries out the information of 20 distributions.
Thus, each period corresponded to 375 distributions.
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Figure 5.4: The blood inflow (leet) remains constant during the first 6 periods and
then starts varying according to the periodic formula of eq. (5.1) (blue).

5.2.4 LSTM Architecture and Training

The input of the LSTM network was a number (ngps) of preceding instantaneous
flow solutions. In this study, velocity longitudinal distributions were selected as the
network’s output using ngeps= 150. So, the network was presented with the 150
previous velocity distributions along the length of the artery and its role was to pre-
dict the next longitudinal distribution of the same quantity. The 150 previous time
instant distributions can either be computed by the 1DAS software or be predictions
of the LSTM itself. The second feature provided the network the ability to predict
a whole time-series of the velocity longitudinal distributions given only an initial set
of 150 distributions, by feeding back its predictions to itself.

The procedure during which the network predicts a flow quantity time-series, over
the artery, was called Prediction Procedure. This procedure was initialized by setting
150 distributions of a selected quantity, generated by the 1DAS software, as network
input. The network, then, predicted the next distribution and used it as input
for the next time instant prediction, fig. [5.10} It continued to feed back its own
predictions as input and after 149 time instants the network became independent of
the initial 150 distributions computed by the 1DAS software , fig. Practically,
the network required only 150 distributions, as initialization, to predict a whole
time-series.
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Figure 5.5: Velocity time-series of the reference Ay at the 50th node. The solution
is divided into 3 parts (black vertical lines correspond to the end of each part) and two
phases determined by the Qinier. Severe fluctuations are presented in the beginning of
the first phase.

For the network training only 18 arteries were used plus 2 for the test set, making
up 20 arteries in total. Note that not all arteries of the original dataset of 30 arteries
were used due to the high resources demands of the network. More training patterns
resulted in more memory demands and exceeding of the RAM limitations. The 1DAS
software took ~ 2.5 mins to solve the flow, and, thus, the total computational
cost was ~ 50 mins, for the 20 flows. This cost remained constant for all cases.
During its training, the network was presented with distributions starting from
4.125s (half period before the end of the first phase) in order to filter out the
fluctuations presented in the beginning of the first phase of the solution, as shown
in fig. 5.5 The goal of the case study was to provide the network with a set of 150
distributions of the steady part of the first phase and call it to predict the unsteady
one by continuing on its own and utilizing its own predictions.

The network architecture consists of 2 parts combined in the integrated LSTM
network, fig. [5.12 The first part consists of LSTM cells with 2 layers of 101
neurons each while the second one consists of 2 dense layers of 101 neurons. The
first LSTM cell and the last dense layer stand for the input and the output layers
respectively. The 2 parts are interconnected with a flatten layer and the activation
function for all layers, except the output, is the LeakyReLU, [43]. This activation
function is preferably used due to its efficiency during the training procedure. In the
output dense layer, the linear activation function is used. In addition, the selection
of the number of layers and neurons was done by the trial and error method. Further
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Figure 5.6: Velocity time-series at the probe (50th) node. For the first 4.5s (black
vertical line corresponds to the beginning of the second phase) Qinietis constant but the
walls are considered to be flexible.

discussion of network architecture optimization can be found in Section |5.5|

The training procedure was divided in 3 stages with 150 epochs each. In the first
stage, the network was trained by presenting it with the previous time instants gen-
erated by the 1DAS software. At the beginning of the second stage, the semi-trained
network was called to carry out the Prediction Procedure. Each input distribution,
which previously was generated by the 1DAS software, was replaced by a network
prediction. Ergo, the network was enforced to learn to predict a following distri-
bution by using its own predictions (slightly inaccurate distributions) and not the
accurate distributions, generated by the 1DAS software. Then, the network con-
tinued its training with the updated dataset. At the beginning of the third stage,
Prediction Procedure and dataset update were repeated, as mentioned earlier, but
with a more trained network this time. The 3 distinct training stages altered the
typical training process due to the adoption of the Prediction Procedure during the
training phase. Note that the network lacked raw information about the varying
Ap in each artery (i.e. coordinates of Ay or the values of inlet and outlet radii
could have been used as input) and was called to map the correlation only between
the previous time instant distributions and the following one. Each of the training
stages took 22.5 minutes, on a single NVIDIA 1050 GPU, resulting in 67.5 minutes.
Combined with the cost of the predictions during the training the total cost summed
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Figure 5.7: Pressure time-series at the probe (50th) node. For the first 4.5s (black
vertical line corresponds to the beginning of the second phase) Qinieris constant.

to 1.6 hours.

5.2.5 Results

In figs. and [5.14], results of 2 not seen by the network arteries, at the same 50th
probe node, are shown. The average MAE of the prediction is 6 x 1073m/s. The
results are more than satisfactory considering that the LSTM was presented with
150 instantaneous distributions from the first phase (375 instantaneous distributions
in each period) and it was able to reconstruct the requested time-series consisting
of 1875 distributions. Since the 150 initial distributions were part of the first phase
(converged solution/exactly the same distributions), the variation of their number
has no impact on the cost of the Prediction Procedure (regarding the use of the
1DAS software). This means that the value of ng,s influences only the training
cost.

5.2.6 Rigid Walls

The capabilities of the LSTM network were evaluated on the 1IDASR software, that
models the quasi-1D artery with rigid walls. The cross-sectional area (A) was pa-

47



le—3

1.2 1

1.0 1

0.4

Area [m?]

0.2

1 2 3 4 5 6 7 8
Time [s]

Figure 5.8: Area time-series at the probe (50th) node. For the first 4.5s (black
vertical line corresponds to the beginning of the second phase) Qinieris constant. The
converged area at the end of the first phase is slightly increased from the initial one
at the beginning of same phase. The flexible walls adapt themselves to the evolving
pressure within the artery.

rameterized and was used as the initial cross-sectional area, in the previous case,
and the blood inflow was computed form eq. for the whole simulation time.
The total simulation time was 8s and 800 time-steps were used. The artery length
was discretized with 101 equidistant nodes. The physiological artery data of Table
[b.1] were used by the IDASR.

28 arteries were generated by varying the CPs of the Bezier curve that parameterized
the area, as shown in fig. [5.2l 1DASR solved the equations and computed the
28 x 800 time-varying pressure distributions, fig. [5.15 There was an initial transient
phase and, then, the pressure became periodic, following the blood inflow. The goal
of the LSTM was to predict the following pressure distribution by presenting it
with 40 (ns.eps) preceding instantaneous distributions of the same quantity. The
architecture and the training remained unchanged. Apparently, the input of the
network was adjusted to the new ng,s. The training took 35mins on the NVIDIA
1050 GPU.

Results, fig. [5.16] on a, not seen by the network, artery showcase that the same
LSTM can be trained to predict the pressure distribution of an artery with rigid
walls. The MAE of the predicted time-series is 1.6 x 1073m/s.
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Figure 5.9: The converged (end of first phase) area distribution of Ay (orange)
parameterized with the reference Bezier curve (blue), as shown in fig. . The artery
18 outward bulged.

5.3 Realistic Blood Inflow

5.3.1 Digitization and Parameterization

In this case, a physiological ;.. was used as input for the 1DAS software. The
Qiniet, that was previously computed from eq. (j5.1]), was replaced by a waveform
presented in [44]. The period of the waveform was equal to Tj, = 0.75s, as well.

In order to obtain this waveform, it was necessary to use a digitization software. The
data points were digitized and the curve emerged. Since the time intervals between
the values of the curve were not equal, it was required to interpolate the curve.
Thus, the curve was parameterized using a Bezier curve with 10 CPs and the Q;net
values in each time instant were obtained. The Bezier curve was fitted manually,
via the trial and error method, by moving the CPs, until the curve matched the
digitized one. The curve, fig. [5.17, was later used as input for the 1DAS software
run.
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Figure 5.10: Initialization of the Prediction Procedure. The network used as input
distributions generated by the 1DAS software (blue) and then used its prediction (red)
as input.

5.3.2 Network Training and Results

The training and test datasets were generated, fig. [5.18] as mentioned above. The
generated waveform of (Q;,.; was utilized in the second phase, as the unsteady inlet
flowrate profile.

In order to utilize the NVIDIA CUDA Deep Neural Network library (cuDNN),
[45], it was required to use the default LSTM layers configuration with the tanh
activation function, [I0]. The network training was split into 3 stages of 150 epochs,
as mentioned before. The network architecture remained identical to the network
shown in fig. and 150 distributions of previous time instants were used by
the network. The utilization of the GPU-accelerated library, cuDNN, resulted in
the decrease of the total training cost to 1 hour (compared to 1.6 hours without
cuDNN).

The resulted network predictions, fig. , at the probe (50th) node, improved,
compared to the previous case. The average MAE of the predicted time-series is
1.4 x 107*m/s. The predictions of the LSTM network are accurate and the network
was able to reconstruct the velocity time-series. As long as the blood inflow is
computed from a periodic function, the network performance is independent of the
equation from which it is computed. Besides that, the network architecture and
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Figure 5.11: Prediction Procedure presented at time step tsep = j. The network
used its own prediction at tsep = j as input for prediction at tepep = 7 + 1.
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Figure 5.12: The LSTM network architecture. The network consists of the LSTM
part, a flatten layer and the dense part. The number of artery nodes is called features
of the network. The network was presented with the 150 preceding instantaneous flow
solutions.
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Figure 5.13: The 150 steady state distributions as initial input to the LSTM network
(orange), the prediction of the network (blue), and the time-series generated by the
1DAS software (green/thin). All curves are plotted at the probe (50th) node.

the training procedure remained unchanged in this case. Consequently, the increase
in the prediction accuracy is related to the implementation of the tanh activation
function.

5.4 Varying Artery Wall Thickness

In this case, a weakening spot on the artery wall was introduced by varying the
thickness of the wall along the length of the artery. Hence, besides the changes
made in the previous case, the wall thickness distribution was parameterized and
varied.

5.4.1 Parameterization and Training Dataset Creation

The wall thickness distribution curve was arbitrary selected and was parameterized
using a Bezier curve with 7 CPs, as well. The parameterization procedure of the
distribution was similar to the parameterization of the starting artery shape. A
constant curve of thickness equal to hy = 1mm was utilized as an initialization for
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Figure 5.14: The results for a different starting artery shape (Ag). All curves are
plotted at the probe (50th) node.

the procedure. The first and last CPs were fixed at 15% and 85% of the artery
length, while the rest of them were evenly distributed between them. The thickness
of the wall at the inlet was equal to the one at the outlet and, thus, the first and
the last CPs had the same ordinate. The rest of the nodes had the same ordinate
as the first and last CPs. By varying h, by +20%, new CPs emerged. In order to
simulate a bulge, the ordinate of the intermediate CP was multiplied by the factor
0.5, which varied up to —20%.

By varying the CPs of the Bezier curves that parameterized the thickness distri-
bution and the starting shape of the artery, a dataset was generated, fig. [5.20]
It consisted of 18 arteries for the training and 2 arteries for the evaluation of the
network.

The set of the velocity profiles made up the dataset used by the network during the
training procedure, [5.21

A run with the CPs of initial cross-sectional area and thickness distributions in
their reference position was performed, as shown in fig. 3.4l In order to showcase
the results of the 1DAS software, 3D plots were created, fig. [5.22] The initial
cross-sectional area can be seen. The elastic walls of the vessel adapted themselves
to the evolving pressure and the constant bloodflow, in the first phase. The artery
inflated and deflated, in the second phase, following the pulsatile action of the heart,
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Figure 5.15: The pressure time-series in the probe (50th) node.

which was provided by the blood flow time-varying form. The velocity distributions
followed the aforementioned pattern. In the first phase, the transition area and the
steady state area can be highlighted. In the second phase, velocity monitored the
pulsatile action, as well. The waves propagated through the artery.

5.4.2 Network Training and Results

In order to provide the network with more information, the thickness distributions
and the starting artery shapes were utilized as network inputs. The network was
presented with the 150 velocity distributions of previous time instants in conjunction
with the starting shape and the wall thickness distribution of each artery. In total,
152 distributions were fed as input. The input layer of the network was modified
to adapt to the new input dimension of 152 distributions. The training procedure,
as well as the training cost, were identical to the previous case. Results, fig. [5.23]
confirm that the network is capable of reconstructing, accurately, the velocity time-
series. The average MAE of the predicted time-series is 1.8 x 1073m/s.
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in the probe (50th) node.
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Figure 5.17: The digitized waveform of Qiniet (blue) and the Bezier Curve (orange).

5.4.3 Alternative Training and Results

In order to test the capabilities of the network, it was trained, with the same dataset,
to predict the velocity distributions without being presented with either the startigg
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Figure 5.18: Velocity time-series at the probe (50th) node. The physiological Qiniet
was used as the unsteady inlet flowrate profile after the first 4.5s (black vertical line
corresponds to the beginning of the second phase).
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shape of the artery or the thickness distribution. The results were very accurate,
fig. [5.24] since it was able to reconstruct the velocity time-series only by presenting
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Figure 5.20: The 20 starting shapes of the arteries and the corresponding thickness
distributions.

it with the 150 initial distributions. The average MAE of the LSTM predictions is
1.2 x 1073m/s. These 150 distributions contained the necessary information, and
the network was able to map the correlation between them and the 2, not presented
to it, distributions. Note that, the initial cross-sectional area of the artery and the
thickness distribution along it, in terms of Ay and h, appeared in egs. and

B:6).

5.5 Optimization of LSTM Input and Architec-
ture

In order to decrease the network training cost, it was required to reduce the size
of the matrices, used during the training. One dimension of the training matrix
is the number of distributions that the network was presented with, ngeps. This
number encodes the information of the number of preceding distributions needed
for the prediction of the following distribution, by the LSTM. In an effort to reduce
this number, it was necessary to search the dependency of the current prediction to
the number of preceding ones. Thus, a statistical method, called Auto-Correlation
(AC), was utilized to find the optimal nseps.
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Figure 5.21: Velocity time-series at the probe (50th) node. The thickness of the wall
varied along the artery.
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Figure 5.22: The cross-sectional area and velocity distributions generated by the
1DAS software.

AS correlates a time-series to a delayed copy of itself, in different time intervals (time-
lags), by computing the Pearson correlation coefficient, [46]. As the AS coefficient of
a specific time-lag is increased, the more the current value is influenced by the values
in these preceding time intervals. For instance, if the temperature is high today, it
is more likely to be high tomorrow than to be high in one month. The AS coefficient
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Figure 5.23: The predictions of two, not seen by the network, artery shapes and wall
thickness distributions. The network is presented with the starting artery shape and
the wall thickness distribution. All curves are plotted at the probe (50th) node.
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Figure 5.24: The predictions of two, not seen by the network, artery shapes and wall
thickness distributions. The network was presented with only 150 initial distributions.
All curves are plotted at the probe (50th) node.

in 1 time-lag (1 day) is higher than that in 30 time-lags (1 month). Account, also,
for the fact that the temperature of today is influenced by the temperature of the
same day one year ago (365 day - 365 time-lags). The AS computes the correlation
between not only adjacent and near-adjacent values but all delayed values.

Following the example, the temperature of today is mostly affected by the temper-
atures of yesterday and the day before yesterday. Nevertheless, the temperature
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of yesterday is also influenced by the temperature on the day before yesterday. AS
takes account the influence coming from the day before yesterday directly or through
yesterday. The removal of this indirect impact is performed with another statisti-
cal method, the Partial Auto-Correlation (PAC). PAC correlates a time-series to a
delayed copy of itself but the values of the time series are regressed in all shorter
time-intervals.

Both AC and PAC methods were programmed in a PYTHON code. The velocity
time-series in the (50th) probe node was used for presenting the results, fig. |5.25|
The peaks of AC factor in multiples of period time steps (375) indicate the periodic
form of the time-series. The PAC plot shows statistical significance for ~ 60 lags
and, thus, ngeps set equal to 60.
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Figure 5.25: AC (middle) and PAC (bottom) in the velocity time-series (top). Ver-
tical black line correspond to periods.

Subsequently, SHERPA, [47], was used for optimizing the LSTM architecture. It is
a PYTHON library for optimizing hyperparameters of ML models. The Population
Based Training, as introduced in [48], was utilized for optimizing the number of
neurons in each layer. The population size and the maximum number of generations
were set to 5 and 30, respectively. The perturbation factors were 0.8 and 1.2, as
well. The range of the design variables of the optimization algorithm, number of
neurons, was between 50 and 250. The optimization objective was to minimize the
MAE between the predicted distributions and the distributions generated by the
1DAS. During the optimization, the network was trained for, only, 100 epochs. The
NstepsWas equal to 60 and 18 arteries were used. The optimization took ~ 13.5 hours
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on the NVIDIA 1050 GPU. The optimal numbers of neurons for the first and the
second LSTM layers were 108 and 128, respectively. 196 neurons for the dense layer
were the optimal number, according to SHERPA.

The network, with the optimal number of neurons and the 7.y, determined by the
PAC, was retrained with the dataset of the previous case study. The training of
the network became less time-consuming and memory-demanding, since the input
matrix size decreased. The MAE of the optimized LSTM prediction is 1 x 1073m/s,
fig. 5.26] The training cost decreased to 36 mins and the results were very satisfying,
as well.
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Figure 5.26: The prediction of two, not seen by the optimized network, velocity
time-series at the probe (50th) node. The network input of 60 distributions.
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Chapter 6

Prediction of Scalar Fields with
A-DNNs

Following the previous applications, another type of DNN, the A-DNN was utilized
for predicting flows. Its name comes from the Greek letter \. The A\-DNN was
used for predicting aerodynamic flows in two cases, by presenting it with the nodal
coordinates and the case related data. The goal of the network was to reconstruct
entire flow fields by making predictions node by node. In the last case, the network
was used in a multi-disciplinary analysis, by replicating one of the disciplines. The
network was called to predict entire temperature distributions along the contour of
an internally cooled blade.

6.1 Network Architecture

The A\-DNN was proposed and presented in [49] and [50], by the PCOpt/NTUA
group (including the author). It utilized the architecture of multi-branch DNNs; [51]
and [52]. This architecture, fig. , was based exclusively on fully-connected layers
and comprises branches for each type of input. The number of layers per branch
usually varied in each case, depending on the type of input, and it was selected
after some trial and error and literature review. The output of the branches was
fed (concatenation) to another network, the core network, whose output was also
considered to be the output of the total DNN. The number of layers and neurons of
the core network was selected as in the branches. Two types of input were usually
presented to the network, the nodal coordinates of the body shape to be designed
and the case related data.
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Nodal Coordinates | Case Related Data ‘

Figure 6.1: The A\-DNN architecture. The name comes from the Greek letter \, due
to its multi-branch shape. From [50]

The advantages of the multi-branch network structure were that, due to the smaller
number of synaptic weights (compared to a fully connected network), it was less
prone to over-fitting, while at the same time achieving more accurate results. In
addition, it had the ability to predict either nodal quantities or whole fields. Its
structure was superior to a corresponding convolutional network, [53] and [54], in the
prediction of unstructured grid fields. Unlike the implementations of the CNNs, the
A-DNN inputs were independent to the connectivity between the nodes. The multi-
branch architectures allowed convergence to global solutions, during the network
training, due to the fact that they are less non-convex (less local minima), [55].

6.2 Applications

6.2.1 Prediction of Flow Around an Isolated Airfoil

The goal of the A-DNN was to reconstruct the 2-D pressure distribution around an
isolated airfoil. The network was called to predict the nodal pressure by presenting
it with the coordinates of the corresponding node and the coordinates of the airfoil
contour.
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Network Architecture

The network of this case consisted of two branches for the two different inputs, [6.2]
The branch of the nodal coordinates consisted of 4 layers with 128, 256, 256 and 128
neurons respectively. The branch with the case related data as input had 3 layers
with 128, 256 and 128 neurons. The core network had 3 layers with 128, 256 and
128 neurons, as well. The ReLLU activation function was used in all but the last
layer which used the sigmoid function.
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Figure 6.2: The A-DNN architecture. It consists of two branches, for each type of
input. The number below each layer indicates the number of neurons. The number of
nodal coordinates and the parameterization control points vary between the cases.

In order to evaluate the \-DNN architecture capabilities, it was compared with a
Fully-Connected Network (FCNN). For a fair comparison, the architecture of FCNN
was selected with the trial and error method, as well. The networks compared with
their best possible results and not in the manner of the architecture similarity (same
number of trainable parameters). The architecture comprised 4 fully-connected
layers with 512, 312, 256 and 56 neurons. Input to the FCNN were both the airfoil
nodes and the coordinates. Its activation function was the same as the A-DNN.

Training Dataset Creation and Network Training

In order to create the training dataset, the airfoil shape was parameterized using
two Bezier curves, with 6 CPs each, for the pressure and the suction side. The first
and the last CPs were constant (leading and trailing edges). Their ordinates varied
by £20% and 280 airfoil shapes were generated. Only 180 shapes were utilized for
the network training while the rest were used as an evaluation dataset, fig. For
each airfoil shape, different unstructured grids with ~ 10K nodes were generated.
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The software PUMA, [50], was used for solving the Reynolds-Averages Navier-Stokes
equations. The flow was inviscid with free-stream Mach number M, = 0.62 and
flow angle a,, = 2.7°. It took ~ 10sec on a K20 GPU to solve the flow around the
airfoil.

M Training
W Validation

Figure 6.3: The airfoils used for the training (blue) and the validation of the network
(red). The boundaries denote the outer airfoils of each dataset.

Since the \-DNN predicted the pressure at each node, the dataset consisted of the
nodal pressure values of each airfoil shape. The number of training patterns was the
product of the nodes (~ 10K) and the number of the airfoil shapes or flow fields
generated by PUMA software (180). The network training for each network (A-DNN
and FCNN) took 2.5hours on a single K20 GPU.

Results

The network was evaluated using the 100 flow fields not seen by the network during
its training. It was called out to predict the pressure value at each node given the
corresponding coordinates and the contour coordinates. The results, fig. [6.4] were
compared to the PUMA software results and the FCNN predictions. The A-DNN
was able to reconstruct accurately the pressure field around the arfoil. The MAPE
of the A-DNN results was 0.36% compared to the FCNN’s that was equal to 0.50%.
The multi-branch architecture of the proposed network outperformed the classic
fully-connected one.

6.2.2 Prediction of Pressure Distribution in a Francis Tur-

bine Runner

Inhere, the A-DNN with the aforementioned architecture adjusted to this case, was
trained to predict the pressure distribution on the surface of an inlet guide vane of a

66



.

h L9

Figure 6.4: Pressure fields constructed by the A-DNN (middle) and FCNN (bottom)
are compared to those generated by the PUMA software (top). Two airfoils were not
seen by the network during its training.

Francis runner, fig. [6.5] The network input consisted of the nodal coordinates and
the design variables that parameterize the runner.

Figure 6.5: The runner of the Francis water turbine.

Training Dataset Creation and Network Training

The flow was turbulent with inlet total pressure P, ;,;et =261Pa, inlet angles a=20.2°
and b= 90°, outlet static pressure P, et =92Pa and rotation speed 1652RPM. The
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runner geometry was parameterized using the GMTurbo software, [57]. In order to
create the training patterns, 16 design variables varied by +10%. These variables
correspond to the span-wise distributions of quantities parameterizing the camber
surface. For every runner an unstructured grid was generated with ~ 1.2M nodes,
while the number of the surface nodes was ~ 10K. The solution of each field took
~ 40min on a K40 GPU. In total, 31 flow fields were generated by the PUMA
software; 30 out of them were used by the network during its training. Since the
runner was 3-D, the input consists of the 3 nodal coordinates and the 16 design
variables. The input layer was adjusted to be presented with the input matrices,
fig. [6.2] The network training took ~40min on a single K20 GPU.

Results

The network predictions were compared to the surface pressure distributions gener-
ated by the PUMA software. One new, not seen by the network, runner constituted
the evaluation dataset in order to test the network performance, fig.

pressure:

40 80 120 160 200

Figure 6.6: Surface pressure distribution on a, not seen by the network, runner

generated by CFD (left) and predicted by A-DNN (right).

The results, with MAPE equal to 3%, are more than satisfying, considering the
number of runners used for the training. Note that the network architecture was
the same, aforementioned, architecture and it was able to reconstruct the surface
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pressure distribution accurately. The proposed network architecture was capable of
outperforming a typical fully-connected network and,in fact, it can be utilized in
other applications with an almost identical architecture.

6.2.3 Prediction of the Temperature Field in a CHT Prob-

lem

CHT analysis

Since gas turbine engines are designed to operate in high inlet temperatures, it is
required to cool the parts, that are in contact with the hot gas, flowing through it. By
incorporating cooling techniques, such as air passage or film cooling, in the blades,
the thermal load is decreased, and their lifetime is expanded. In order to study and
optimize the thermal behaviour of the structural elements, simulations are necessary;,
utilizing modern CFD software capabilities. For instance, in the thermal design of a
2-D turbine blade, a CFD solver, that computed the flow around the blade, coupled
with a heat conduction solver, that solved the heat conduction equations over the
solid blade, can be utilized. If these solvers/computations are decoupled, many
iterations are required for an accurate solution. In the case that the codes are
coupled, they solved the equations simultaneously, exchanging information over the
adjacent boundary. The communication/interaction (Fluid-Structure Interaction -
FSI) between the two solvers of the equations, during the iterative solving, increases
the demand of resources (time and computational power). Inhere, a coupled multi-
disciplinary simulation, known as Conjugate Heat Transfer(CHT), was performed.

The internally cooled C3X cascade was used for the CHT analysis, [58]. The turbine
blade was cooled by 10 radial channels. The location of these channels with circular
cross-sections was fixed, as well as their diameters. The solid domain of the blade
was in contact with a flow domain around it, fig. [6.7] The blade is made out from
stainless steal and its density was equal to p=T7900kg/m?> and the heat capacity was
equal to C'=586.15J/kgK. The thermal conductivity was a linear function of the
blade temperature and it was defined as k=6.811 + 0.0207167", [58].

In order to analyse a design in a CHT problem, it was necessary to solve the flow
equations over the flow domain and the heat conduction equation, over the adjacent
solid one. The fluid solver provided the computed heatflux distribution, over the
interface of the domains (i.e. the blade contour), to the heat conduction solver. The
heat conduction solver exchanged back the temperature distribution of the solid
domain. The goal of the A-DNN was to replicate the numerical solver of the heat
conduction equation by predicting the temperature distribution by presenting it
with the heatflux one and the coordinates of the blade contour.
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Figure 6.7: The turbine blade with 10 cooling channels in 3D (left) and in plot
(right). Note that the run was 2-D.

Dataset Creation, Network Training and Architecture

Each discipline was resolved and the solvers provided boundary conditions, over
their interface, to each other. For the fluid domain, the PUMA software solved the
Reynolds-Averaged Navier-Stokes equations with the k — w SST turbulence model,
[59]. The hot gas flow had inlet total pressure p! =243700Pa, inlet total tempera-
ture T} = 800K, and outlet static pressure p® = 142530Pa. For the solid domain,
PUMA software was utilized as the solver of the heat conduction equation, as well.
The Neumann boundary conditions along the contour of each cooling channel were
computed by the defined corresponding coolant temperatures and flowrates.

In order to generate training and validation patterns, the airfoil contour was pa-
rameterized with volumetric NURBS, fig. A 7x3 control grid was created with
21 CPs. The CPs at the leading and trailing edges remained fixed while the rest
19 CPs varied, in both directions, #5% of their reference position. Both domains
were discretized using a grid of ~312K nodes. ~ 183K nodes were used for the flow
domain while ~ 129K were used for the solid domain, fig. The solution of this
problem took ~ 15min on a V100 GPU. 162 geometries were created and used by
the CHT solver.

Two types of inputs were presented to the network, the coordinates of the blade
contour and the distribution of heatflux along the interacting boundary, between
the fluid and the solid domain. The A-DNN of fig. [6.2] and a modified version of it
were used in this case. The modified version of A-DNN was presented in [50] and its
both branches consisted of 1 layer of 64 neurons while the core network had 1 layer
of 128 neurons. Note that, in this case, the networks predicted the entire field, in
comparison to the previous cases. For comparison, a FCNN network with 2 layers
with 128 neurons was trained, as well. The input presented to the FCNN was a
concatenated form of the one presented to the A-DNN.
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Figure 6.8: The flow domain of the blade. From [60]. Note that the run inhere was
2-D.

Figure 6.9: The CPs of the volumetric NURBS parameterizing the blade. CPs at
the leading and trailing edges were fized (black). From [50)].

The network was trained to predict the temperature distribution along the contour
of the blade by presenting it with the contour coordinates (z,y) and the distribution
of heatflux. Since the number of FSI nodes was equal to 446, the input comprised
3 x 446 = 1338 values. The training cost was ~ 30min on the V100 GPU, as well.

Results and K-Fold Cross-Validation

The A\-DNN was trained in the manner of replicating the heat conduction solver
in every CHT cycle. Two geometries, not seen by both networks, were used for
validating their prediction capabilities. One of them is shown in fig. |6.10, The
average MAPE was 0.18% for the modified A-DNN 0.30% for the A-DNN presented
in the previous cases, and 1.52% for the FCNN proving the superiority of the A-DNN.
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Figure 6.10: The temperature distribution (prediction) of one, not seen by the net-
works, blade. The results from the \-DNN ( previous cases) (left), the modified \-DNN
from [50] (middle) and from the FCNN (right).

In order to validate that the network performance was not influenced by the selection
of the training and validation dataset, a 16-fold cross-validation, [61], was performed.
The dataset of 160 geometries was split into 16 folds with 10 patterns each. For
each unique group of patterns (fold), a fold was taken as a validation dataset. The
remaining folds were utilized during the network training as training patterns. Its
performance was evaluated on the validation dataset each time by computing the
MAPE and, then, the model was discarded. The total MAPE of the cross-validation
procedure was computed by averaging the MAPE computed for each fold. The
mean value of the computed MAPEs was 0.19% with standard deviation 0.024%.
Considering that only 150 geometries were used for the training, the results showcase
the capabilities of the network and the randomness in the selection of the training
patterns.

Optimization

In order to validate the prediction capabilities of the modified A-DNN and its ability
to replicate the heat solver of the CHT analysis, an optimization procedure was
conducted by another author of [50]. The modified A-DNN is referred as A-DNN for
the optimization section. It is presented shortly, only for demonstrating the current
work (DNN training). Further description of this optimization procedure can be
found in [50]. The in-house stochastic evolutionary algorithm software, EASY, [62],
was utilized for the optimization.

Two optimization objectives were selected. The goals of the optimization were to
minimize the mass-averaged total pressure losses between the inlet and outlet of the
fluid domain (F}) and, to minimize the maximum temperature on the solid blade
(Fy). Two runs were performed. In the first run (Run;), A-DNN acted as a surrogate
model for the heat conduction equation solver, providing the fluid solver with the
temperature distributions along the blade contour. In the second run (Runs), the
CHT analysis was conducted exclusively on the PUMA software. The total compu-
tational cost for both optimization runs was the same. The design variables were
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the 19 varying CPs, parameterizing the blade contour. The optimization results, fig.
[6.11] showcase that the A-DNN was capable of replicating the heat equation solver
and cooperating with the PUMA RANS solver for optimizing the blade design. The
Run; front is dominant to the Runsy one.
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Figure 6.11: The front of non-dominated solutions of the two runs. From [50)].
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Chapter 7

Conclusion

7.1 Overview

In this diploma thesis, two types of DNNs, the LSTM network and the A-DNN were
utilized for predicting flows.

A CFD software, referred as 1DAS, was created, for computing quasi-1D time-
varying blood flows. A 1D human artery was modelled with varied initial artery
shapes and wall thickness distributions along it. The software, by taking these
distributions into account and other artery and blood parameters, numerically solved
a system of equations and generated velocity, cross-sectional area and pressure time-
varying longitudinal distributions.

Before utilizing the LSTM networks for predicting biological flows, two benchmark
cases were perfomed for validating their capabilities in predicting periodic and time-
varying distributions. The concept was that the network could predict the following
value of a function by presenting it with preceding ones. The networks, accurately,
reconstructed the desired distribution with presenting it with the previous values.
In fact, in the first case, the network was presented, in addition to the preceding
values, with the values of parameters that varied between each training pattern (i.e.
parameterization of distribution to be predicted).

Then, the network was called to reconstruct the velocity time-varying distributions
in the quasi-1D arterial flow problem. A simplified blood inflow time-series was
utilized, in the first case, and later was replaced by a realistic one. In each case,
the initial cross-sectional area and the wall thickness distributions varied along the
artery, and the training patterns were generated. Note that the network fed back its
predictions to itself and utilized them as input for future predictions. The results
showcased that the LSTM network is capable of reconstructing velocity distributions
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along the artery by presenting it with preceding distributions of the same quantity.
An optimization of the LSTM network input and architecture was performed and,
thus, the training cost was decreased, without affecting the accurate predictions.

Lastly, another type of DNN, the A-DNN was used for predicting flows. In the
first case, the network reconstructed the pressure field around an isolated airfoil by
predicting the pressure value at each node. The network was presented with the
nodal coordinates and the coordinates of the airfoil contour. In the second case, the
network reconstructed the pressure distribution on the surface of a France runner.
The input of the network consisted of the nodal coordinates and the parameters that
define the geometry. In the third and last case, the network was utilized in a multi-
disciplinary problem, the CHT problem, based on an internally cooled blade. The
goal of the A-DNN was to replicate the heat equation solver in the CHT analysis. In
each cycle, the network was presented with the blade contour coordinates and the
heatflux distribution along its contour and, predicted the temperature distribution
along the same contour. An optimization, that utilized the A-DNN predictions, was
presented, as well.

7.2 Conclusions

By completing the studies conducted in this diploma thesis, the following conclusions
are drawn:

1. Both types of DNNs; used to predict flow field (by replacing CFD runs), are
capable of making accurate predictions.

2. The LSTM networks are capable of predicting sequential data, demonstrated
in the case of biological time-varying flows. They can extract information con-
tained in the preceding values or distributions of a quantity and make accurate
predictions of the following ones. Since they may feed back their prediction to
themselves, they utilize very limited pieces of information. In the biological
flows, the initial distributions provided to the LSTM network include the in-
formation of the varying initial arterial shape and the wall thickness. Since the
blood inflow is constant in each training pattern, there is no need to present
the network with more information about the parameterization. Their main
advantage is that their prediction depends exclusively on the previous states of
the predicting quantity. Statistical methods can be used to optimize the net-
work input consisting of sequential data and, with the addition of architecture
optimization, the training cost can be further decreased.

3. The A-DNN is capable of predicting aerodynamic flows. The network recon-
structs, accurately, the entire fields, by making predictions node by node, and
by presenting it with the coordinates and case related data. The low number
of flows used as training patterns showcase the accurate performance of this
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architecture.

4. The A-DNN architecture is capable of replicating a disciplines into a multi-
disciplinary analysis, CHT, as well. The network predicts the entire tem-
perature field by providing with the corresponding input. In addition to the
accurate predictions, the network is exploited in an optimization procedure,
with a stochastic evolutionary algorithm. The front of the optimization us-
ing the A-DNN dominates the one which used the CHT software. Thus, the
A-DNN architecture can be exploited in CHT optimization by replicating one
discipline and, thus, decreasing the total cost of the procedure.

7.3 Future Work Proposals

Based on the implementation of the DNNs in CFD, the following future works are
proposed:

1. The LSTM can further be incorporated in predicting biological flows. A more
expensive dataset can be generated (i.e. time- and resources-consuming data
generation), containing data from 3D flows. Since the network yields high
prediction of sequential data with little information about the case related
data, it can be further exploited in micro-scale study of human deceases.

2. The LSTM can further be incorporated in other CFD problems, as well. In
unsteady runs of CFD software, the demand of computational resources is very
high. Thus, the LSTM network can be utilized in predicting unsteady flows,
by presenting it with the preceding ones.

3. More types of DNNs can be exploited in predicting CFD flows. For instance, by
incorporating the A-DNN into a GAN network, the predictions could be further
improved in accuracy. In fact, A-DNN could replace the typical generator of a
GAN network.

4. The A\-DNN can replicate other, or more, disciplines, in a multi-disciplinary
problem.
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Teyvnti Nonuooivrn xaw Badid Nevpwvixd Alxtua

T tereutaieg dexactiec o toucag tng TeyvntAc Nonuooivng (TN) éyer yvopioet
wlar porySador avdmTudn eloywemvtag Badhd t6c0 oty xadnuepvy) Lwih Tou avipwrou
660 xou oToug Prounyavixoig xon oxadnuaixols Touelc. H TN é€yel n duvatodtTnTa v
aviyveLel wotiBo yéoo oe mAnidpa 0e00UEVKDY, Vo Aapfdvel amogdoelg xou var ETLAVEL
0UOXON TPOBAAUTA EXTEAMVTAS BIAPORES BLadixacies.

H Mnyovixy Médnon (MM) avixer oto nedio e TN. Ta povtéhoa MM éyouv
ouvatoTnTa Vo pardalbvouy autéuata dToy Tpogodotolvton Ye dedouéva. Ta Nevpw-
vixd Aixtua (NA), etvon povtého MM, to onoior amotelodvtar and StacuVOEdEUEVa
OlxTuO TEYVNTOV VEUROVOLY. AUTd uToPOUV Vo EXTOUOELTOUY VoL xdvouv TEoBAélelg
0 DEBOUEVO TPOPOBOTHVTUG TA PE TNV avTioTolyT {0000 XU EAXYLOTOTOWOVTAS TO
o@dApor peTaEY NG €€6080L Toug xat TS TearypoTAc/Woavixrc e€68ou. Ta NA éyouv
yenowonowniel eupéwe xou otov topéa e Tmoloylouxic Peuotoduvauxhc (TPA),
a&LOTOLWVTOG To, WOTE Vo X8vouy TEoBAEPEC oE BeBoUEVA TPOERYOUEVD Ad AOYLOUL-
%8 TPA. E€outiog tou mixpol umohoyiotixol x06Tt0¢ Tov meofiéewy toug, ta NA
YENOHOTOOUVTOL ETUONG XAl (G UTOXATICTOTA TwV Aoylouxav TPA o diadixaocieg
BehtioTonolnorng.

H Baow povdda evog NA eivon o veuptvag, o onolog eivor uio pordnuotixr oyéon,
O€yeTon ONUa amd GAAOUC VEUPWVES, TO emelepydleTon X ONUATOBOTEL TOUC ENOUE-
voug. To ofjuata modhamhactdlovtar he éva ouvamntixd Bdpoc. Ot vevpwveg evoc NA
opyavwvovton ot eminedo. Otav too NA €youv mapamdve amd 2 xpugd enineda, oautd
ovoudlovtar Bardid Nevpwvixd Aixtuo (BNA). O 6vo Baowxol mopdyovteg Tng opyL-
textovixic Tou NA elvon o mAH00g Twv emmEBLY %ot TV VELPOVWY avd enitedo. Ta
dlxTua exmoudebovTon UEGW VOGS akyopliuou uddnorng, o omolog uetaBdhAer T Guvo-
TTxd Bépn. Trdpyouv 2 eidn Stiny, ta tpdodac tpogoddtnong (feedforward), ota
orola 1 TAnpogopia €yl xatebduvorn and TNy €lcodo TEOC TNV €000 XL TO AVATEO-
(podOTOVUEVY (recurrent), To omoio avoTeo@odoToly TNV €£0do Toug otny eicodo. To
dixtua Tou yenotworouinxay oty dimhwpatixy| epyocio etvar To A-DNN, 1o omnolo
eunintel oty TEw TN xoTnYopla xan to LSTM, o omnolo eunintel otn dedtepn.

Yeudo-Movodidotatn Pon Alpatog oe Aptnela

Y10 xe@dhono autd, poviehomoleiton pa Peudo-govodidoTtaty avipemmivn dptneio e
ehacTixd torywpata. To Aoylouxd mou mpoypauuatileTon yenowwonoteitoan HoTeE va
oLAheydolv Setypata ta onola Yo exmoudedoouy Too NA. Or e€iomoelg opurc xon ou-
véyelog xou xAhiong mieomneg divouv évar clo TN TEIOY Ay VOCTOY, TNe Toyltntac (1),
Tou eufadol e dratounc (A) xou tng mieone (p),
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ER T o
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A
U= |:ij:| R F = |:u_2u+ 2:| a’n,d S - |:_8(7)ruu:|

2 o pA

OTOL p o 1 Elvar 1) GTUdEPT) TUXVOTITAL X0 1) CUVEXTIXOTNTA TOU KfUaTOS, avTloTOLy AL,

Enedr) undpyouv 2 e€iodaoeic xa 3 dyvootol (toydtnto, tieon xou epadov dotourc)
amouteiton o pio oxdun e€lowon. Auti| n edlowon detyvel tn oyéon petald e mleong
oty aptneio Ye to epfudd tne Satophic, TNV mieon yipw amd TV oeTNE(ol (Pegt) Xot
0 euPud6 GTo omolo EcWTEPIXG X eEWTEPIXG UTdPYEL tooppoTia Tng mieong (Ao).

P = Peat + B(VA — /Ag) (2)

To B yopoxtneileton amd TIC UNyavixéC WLOTNTES TOU EAACTIXO) TOLYMUATOC,

JThE

B B Ao(l — 0'2) (3)

omou h elvar To Téyog TOL APTNELIXOL TOLYOUATOS, E T0 UETPO EAUCTIXOTNTAG oL O
o Aoyog Poisson. H mieon oto clotrue, ei., avtixadlotaton omd TNy SE. ol
TEoXUTTEL T G0OTNUL,
ou ou
1+t H-—=C 4
ot or (%)

OTOV

1 0
C:__|:*u Oes 5 0A 85}
p |54+ gxt_g\/roa_;*'(\/z_v/lo)%

Eqapuoletar n teyviny| Tou Flux Vector Splitting, éneita 1o oOotnua Swxpitonoieiton
XOUL TPOXUTITEL €VaL TEVTOBLOY VIO alo TN eELoOTEwY (Yo axpBeta Sedtepnc TéEng) to
orofo emAveTaL aELiuNTXA.

H nieon oty é€odo e aptnpeloc opiCetoun and to poviého Windkessel to onolo Aoy-
Baver unodn TNV ENiBPACT TV UTOAOITKY 0ETNELOY, TEEX AUTAG TOU avahDETOL. XTA
dxpor TG apTNelag UTdEy oLV oplaxés cUVDYXES X TO TEDD apyLxoTOLElTOL XUTAAAT
Ao ‘Etot, onuovpyeiton to Aoylouxd 1DAS, 1o onolo unoloyilet tn por| xon mapdyet
YEOVOUETABANTES Y wpEXES xaTavoués ToybTnTag, Tieong xou eyadol. Enlong dnuiove-
YHOnxe xou plo exdoyr| Tou hoyiouxol, To onolo poviehonolel dpTnple Ue dxoumTa
TOLY WOUOTA.



Egappoyég pe LTSM

Hpw v xOpa epappoyy twv LSTM otnv npdBiedn Blohoyixmy powy, tapouctdlovto
2 amhég EQUEUOYES, OL OTOlEG XATADEWVOOUY TIG DUVATOTNTES TOUG.

Arn\y IIeprodixy) Xuvdpetnon

o tn Onuoupyio derypdtwy exnafdevong yenowdomoteiton uio amhh TeEpLOdI| GuVdp-
mon,
y = aysin(agx) + azcos(asx) + sin(asx) + ag (5)

6mou x € [0,160] avonaptotd Tov Peudsd-ypdvo xa ay, ..., as € [0, 1] ebvar mopduetpo.
Metafdhhovtag Tic mopauéTeoug dnuovpyolvton dedopéva exnaideuong. O x dfovag
otaxprtonoteiton pe 401 xoufoug, oe otadepd oo thuata. Eyouv moapoaydel 28 ypeo-
VOGELREC X0 TO UTOAOYLOTIXG %00TOC HToy ~ Hmins. Xxonog tou dixtiou elvon va
TEOPBAEPEL TNV ENOUEVT TYT| TNS CLVAETNONG, TEOPOBOTWVTAS TO UE Tponyolueves. H
QEYLTEXTOVIXT| TOL O TUOU Tapovatdletan oTo My. |1 xou el we eloodo Tic mpornyolye-
veg 20 TyEg Tng ouvdpTnong xaog xou Ti THIES Twv 6 Tapouetewy. To anoteAcopota
elvor TOA) covoTonTixd xou a&lohoyolvTal o€ 2 CUVIRTACELS TI oToleg Oev efye BeL To
dixtuo xatd 0 didpxeta g exmaideuone, Xy. 2| ue uéoo MAE ogpdhua 3 x 1072,

Dense 2
Input LSTM 1 LSTM 2 Flatten Densel Qutput

QK/% LSTM, LSTM, K
@ -
. [ )
- L ]
[ ]
| LSTM, ‘ LSTM 0,

T4y

-
-

Timesteps = 20 Units =101 Units =101 Units =101 Units =101 Units =101
6 Parameters Timesteps = 20 (None, 101) (None, 101) (None, 101) (None, 101)
(None, 26, 1) (None, 20, 101)

Yynuo 1: H apyicextovikn tov LSTM diktiov.

ESlcwon Avywyng Ocpuodtntog

Y auThVv TNV €QopUoYT To dixTuo xaheiton va meofAédel TNy xatavour Yepuoxpactag
ulog TAGXOS, TROPOBOTWVTAUS TO UE XAUTAVOUEG OE TEOTYOUUEVES YPOWXES oTiyues. H
e€lowon mou BETEL TNV aywyr| YepudTnTog lvou

0, 0T or

%(k%) = /)Cpla (6)

6mou T n Yeppoxpacia tng mhdxac, k = 2W/m°C o oLVTEAECTAG VepUini Ay YL
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Eyxnue 2: O1 mpoPAéers Tou diktiov o€ 2 ouvaptroels TS omoleS dev €lde to OIKTULO
katd Tty exnaidevor) Tov.

wotnrog, p = 2000kg/m? 1 muxvétnta xa, Cp = 1000.J/kg°C o cuvteleothc Yep-
HoYwenToTNTS. 2T0 0edl dxpo undpyer aépag Vepuoxpaotag T;, = 27°C' eve cT0
oplotepd 1) Vepuoxpacta tou aépa bvar tepLodx (Thu),

27 (t — 3600b,)
360005

Tout = 35 + bycos( ) (7)
6mou by, by € [0,24] xou by € [—5,5] elvon napduetpor. H elioworn emhbeton ye
LEVOB0 TWV METEPUOUEVWV OYHWY X0 TROXUTITOLY YPOVOUETHBUNAOUEVES YWELXES X0
Tavopég Yeppoxpacioc tne mAdxag. Metafdhhovtog Tic TapopéToous, dnuLoupyolvToL
OLdpope xatavopéc xan Teoexule pla Bdor dedouévwy yia Ty extaideuor tou LSTM
otoou. To BixTuo, UE TNV APYITEXTOVIXY] TN TEONYOLUUEVNS EQUOUOYTS TROTOTOLN
uévr, exmondeveton e 20 SLopopeTIES XUTAVOPES Thye xou xoAelTan var TpofBhéder tnv
emopevn xotavour| (59 xehid dpa xon 59 Yepuoxpasiec) Teopodotwvtoc To e 20 xorto-
vopéc. To umohoyiotind x6cto¢ g exnaidevorng etvar ~ dmins. Ta anoteAéopota
TOU OWTUOU a€LOAOYOUVTOL AT 2 XUTAVOUES TIC OTOlEC BEV €yEl BeL xou xpivovTal To-
MO ovoTOINTIXL, XY , ool TpoodoTElTaL YoVo pE T 20 xoTavoues, ywels xopulio
mAnpeogopia yio Tig petaBAntég b. To péoo MAE ogdiua etvan 15 X 1072 °C.

ITeoBAredn 1A XpovouetafAntwy Powv os Aptnpleg ue
LTSM Aixtuo

Y1 otmhwpatxd| epyaota, Teayuatonoteiton plor apy Y| ATAOTONUEVT HEAETT GTO TG
oo LSTM unopoiv va egopuoctolyv otny peuva Blodoyixey powyv. To LSTM bixtuo
eXTTOUOEVETOL VO TPOBAETEL TIC EMOUEVES XAUTAVOUES Ty UTNTAUC XOTd WAXOS TNS OPTI-
olog, TPOPOBOTOVUEVO TEOTNYOUUEVES XATUVOUES Tou (Blou peyédoug, we elcodo. To
Aoyouxo 1DAS mopéyet to delypota extaideuong oto dixtuo.
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Yy 31 Or mpopAépers tou LSTM diktiov o€ dUo katavoués Tis onoleg dev éxel bel
7o otktvo. ‘OAes o1 xpovooeipés avapéporvtar oto 300 kel

Metafarropeva Apyixd LyRuata Aptnelog

LTNY TEWTN EPUPUOYT, 1) XATAVOUY| TOU 0) X0V eufadol Blatounc TG apTnelag Topo-
uetpomotelton Pe pio xoumUAn Bezier ye 7 onpeia ehéyyou (XE). Ta XE yetoffdhhovton
XoTd TOV y-3E0VaL Xol, TapdryovToL SLpopeTIXES XaTavopés epfaday. H mapoyr| aipatog
elvon ypovoueToBANTY| xan diveton amd plar amhy| nuiTovoeldt, cuvdpetnon. o o mpwTa
65 1 mapoy 1| datneeiton oTodepn, xou €melTta, auTH UeTUBdAAeTon TepLodixd. TTpoéxule
€ToL o opyed petaBatiny @don xou Enelta 1) teplodixr. O cuvolxdg yedvog Teoco-
uolwong ftav 8s, o onolog daxpitomotinxe e 8000 ypovixd Briuata, eve) To prfxog
e aptnelog pe 101 xépfouc.

To hoywoud 1DAS, noafpvovtog we elo660ug To opyxd oyfua e aptnelag, T yeo-
VOOERA NG Tapoyic ofuaTog xou Tar unyavixd otoryela tng aptneloc, mopdyet xoto-
vopég mieong, ToyuTnTag xou epfadol. Ou xatavoués mou yenoionoolvion ws Bdon
oedouévey mponhday Enetta amo derypatorndio avd 20 yeovixd Bruata (375 ypovixd
Bruortor avd meplodo), uetd to Téhog Tng opy e petaPBatixrc gdone. To dixtuo yio Ty
TEOPBAEPYN TNE EMOUEVNC XUTAVOURC TG TaryUTNTOC TpogodoTeitan ue eicodo 150 xotavo-
uég, ol omoleg mpogpyovtan elte ano To hoytopxod 1DAS elte etvar mpoBiédec Tou (drou
Tou OitOov. Koatd v mpdPiedn, hotndy, TV omoUTOUUEVLY XATOVOUMY ToyUTNTOC
TpogodoTeltan opyd e 150 xatavoués and to hoytouxd 1DAS. To dixtuo npoBrénet
TNV EMOUEVT] XATAVOUT] XAl ETELTAL AVUTROPOBOTEL ALTHY WS €lcodo, cuveyilovtag, £Tat,
e mpofBiédec. H apyrtextovixt| mapouctdletan oto Uy. @l H exnaldevon difpxnoe
~ 1.6hours, oe pio NVIDIA 1050 GPU. H exnaldcuon ywplotnxe oe 3 tufuata, 6mou
AVOVEOVOTOY 1) Bdon) dedouévey e Teofiédelc amd To dixTuo.

To amoteréopata Tou BTOOL Elvar TOA) XAVOTOLNTIXG POV ETLTUY Y AVEL Vo TeoBAEDEL
TIC XUTAVOUES UE MOVo 150 xatavouec we apyxn elcodo, 2. . To péoo MAE cgdhua
Twv TpoBrédeny elvor 6 X 107%m/s.

Aptnpla UE AXAUTTA TOLYOUATA
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YxAuo 4: H apyrtextovikr} tov diktlov (apiotepd) kar n xpovooepd tng tayvtntag
atov 500 kéufo, €vis defyuatos to omoio bev éxer ber to diktuo (deéid).

2Ny enduevn @doT), To dixTuo eniong exTudEVETAUL Vol TPOBAETEL TIC XUTAVOUES TaY TN
Te¢ ot aptnplo e dxounta Torywuata. ‘OAeg Ol TUPIUETEOL XOME XOL Ol XUTAVOUES
TOU AoYlouxoL Topéuevay (Bleg. To dixtuo exmoudeetan xan pe emtuyio TpoBAEmeL Ti
XOUTAVOUES TayUTNTOG, LY. , eyovtog péoo MAE cdipo 1.6 10_3m/3.
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YyxnAue 5: H ypovooepd tng tayvtntag-tpoPfAedn tou diktiov oo 500 koppfo, tny
omola to OikTU0 O€v €lye del katd Tn didpkela TNS €KTaideVong

Ioaypatixy, Ilagoyn Alpatog

e QUTHY TNV EQUEOUOYY| YeNoLoTolELTaL plar Ypovooelpd Tapoy ¢ Tou atuatog and TN
PiBhoypagpia, N omolo avamapio T wia mporyuatixy pot| afpatog, Ny. [6 Auvth dnguo-
molelton xou yivetan mopepolt| ue oxond vo a&lomoindel and to hoyiouxé 1DAS. Xon-
owonotfiinxe n Bihodnxn e NVIDIA, cuDNN, yio tnv exnaidevon tou BNA xou
€T0L UETOPBAAAETOL EANGYIO TAL 1) KEYLTEXTOVIXT) TOU BIXTVOU, UEWWDVOVTAS TO XOOTOG EXTO-
{devong oe ~ Thour. Iapoduota pe Ty TEoNYOUUEVT EQapUOYT, Onuiovpyeltar 1 Bdon
OEDOUEVWV XAl TIEAYHATOTIOLELTOL 1) EXTIUDEVOT).



E€autlag tng ahhayfic oTnv opyltextovixs) Tou dixtlou, moapoatneeiton Behtiwon ota
omotehéoporto/TeoBrédelc Tou, My. |§|, CUYXELTIXG UE TNV TROMYOUUEVY) EQUQUOYTY|, UEL-
Bvovtag To péco opdhua MAE opddua o 1.4 x 1073m/s.
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YxAuo 6: H mpayuatikr napoyri aiuatos (ndvw) kar o1 xpovooeipés/mpofAépes tng

tayvtntas otov 500 kéufo, detypata ta omoia dev éyer el to dikTuvo (KdTw).

Mertafarropevo Ildyog Towyopatog Aptnpelog

H xoatavour| Tou ndyoug Tev Toty wudtony etvor UETABUAAOUEVT) XoTd ufixog Tng apTnelog.
Autod mopopetponoieiton ue pio xoaunUAn Bezier ye 7 XE, 6nog xou 10 apynd oyfua ne
apTnelag. Metafdhhovtog To ME T0V xouTUAGY 0L OTIOIEG TOEAUUETEOTIOLOUY TO 0PYIXO
oy xou To mdyog, 1o 1DAS mopdyer xatavoués toyvtnTag.  Exntodedovton 0o
olxtua, ue tov Blo tpémo. To menTo €yel w¢ eloodo Tic 150 TEONYOUUEVES XUTAVOUES
xou TG 2 mopapeTpomolnuéves xatavouéc. To dido €yel uévo Tic 150 xatavoués. Ta
AmOTEAEGUATO XU TwV BVO €lvor TOM) IXAVOTIOLNTIXE, UE TO BEUTEPO Vo TaEOLGLILEL Alyo
XAANDTEQO ATOTEAEOUATAL, XY , ue péoo opdiua MAE 1.2 x 1073m/s.

BeAtiotonoinon Ewcédou xow Apyitextovixrg Tou AwxtOou

Xpnowornoteiton 1 otatio | pédodoc Mepinric Autduatne Xucyétiong, ue tnv onola
umohoyileton amd TOCEC TEONYOUUEVES XUTAVOUES ECUPTATAL 1) TOPOUGA YO XATH CU-
VETELD TOOEC XATAVOUES TEETEL Vo elvan €lcodog oto dixtuo. To amoteheopa eivon 60
XUTUVOUES TAy UTNTOG.
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Yxnue 7: IlpoPAépers ané to OikTuo TO 0TOI0 TPOPOdOTEITAL KA1 JLE TIS KATAVOUES €ufa-
b0V ka1 wdyous (tdvw) ka1 tpoBAées and to diktuo To omoio dev Tpogodoteltal and avTéS
(kdtw). OAa ta daypdpuata tapovordlovtar oto 500 kéupPo.

Enfonc ye ™ yerjon evoc ahydprduou elayiotonoinone mou yewiletor mAnduouoic
umohipLny Aoewy, yiveta BeAtioTonolnom Tou aptiuol veupvwy Tou dixtlou ot xdie
eninedo. H apyttextoviny| mou mpoxnTel 68 GUVOLIOUS UE TOV aELIUO TWY XATAVOUWDY
HELOYOLY TO x00T0¢ exaideucng ot ~ 36mins Ue to (Bl amotehéouata (uéoo opdhUaL
MAE 1 x 107%m/s) pe to tponyoluevo dixtuo.

ITe6BAen Powyv pe A-DNN

Ye auté T0 xEPIAO, Eva dhho eldoc BNA yenowomoteltan yio Ty npdPAiedn agpodu-
VOUIXWY pOWY %ol XoTavouy Yeppoxpaciog. Autd To 6ixTuo avixel 6TV xatnyopia
TV TOALXAUBIX®Y BIXTUMY, PE BLO xAddoug, 6ca xou ta eldn eloddwy oe autd. H
apyrteExToviXr| Tou mopouctdleton oo Xy. [§

ITpoBAedm Ilediov Ilicong yVpw and Acpotoun

To dixtuo xaheiton va mpofiéder 2A xatavouée micong yopw amd uio acpotour,. H
agpoTour| TtopauetpomoLe{ton pe 2 xounUAeg Bezier, pe 6 XE 1 xadepla. Metadirovtog
xdmota amd autd meoxUTouy 180 agpoToués xon, xatd cuvénela, 180 media tieone. To
oixTuo exmoudeveTon vor TEoBAETEL TNV Tiur TNg Ttleong ot xdde xéuPo TPoYodoTHVTIC
TO UE TIC CUVTETAYUEVES TOU XOUBOU X0l TIC CUVIETAYMEVEC TOU TEQLYPOUUATOS TNG
UEQOTOUTC.



Nodal Coordinates Case Related Data

Yynuo 8: H apyitektovikn touv A\-DNN diktiov.

To amoteréopata ToL BTOOL CUYXEIVOVTOL UE AUTE EVOC XAAGIXOU TATIPWS BLACUVDE-
depévou duxtvou (FCNN) pe to A-DNN va éyer ogpdhuo MAPE 0.36% oe oyéon ue
70 &\)ho o onofo €xer 0.50%, L. [9]

./

Exhue 9: Ilpoprépes ané to \-DNN (uéon) kar ané to FCNN (kdtw) ovykpivortar
1€ Ti§ TpoPAéers Tou Aoyiopukod TPA (tdvw).

ITpoBAedm Ilediov Ilicong otnv Empdveia Apopéa Francis

211 0e0TEPN) EPAQUOYT|, TO BIXTUO EXTIOUOEVETOL VO TTOOBAETEL XUTAVOUES ETLPAVELAXTIC
Tleomng evog dpouca LdpoaTeoBihou Francis. H yewuetpla Tou dpouca nopauetpomoteito
e tn Pordeia Tou hoyiouxod GMTurbo xou mpoxintouy 16 pyetoBAntéc oyedaouot. Ot
eloodol Tou BixTOou elvan ot 3 cuvTeETAYHEVES TO XOUSBoU Yl ToV oTolo TEaypaToTOLE(TON
n meoPredn xodwg xou ov 16 uetafAntéc oyediaouol. H apyitextovinr tou dixtiou
OLUUOPPWVETAL WOTE VoL TP0POdOTNVEL UE TIC VEEC EL0ODOUC.

To dixtuo exmoudedetan xou emTUYOS PTopel Vo TEOPBAEPEL xoTavouES EmLPAVELOXNC
Tleong oty empdveln EVOC DpOUEN TOV OTolo BEV EYEL DEL xuTd TNV eExTaideuoT), Ly.

10



ue opdhuo MAPE 3%.

pressure:

40 80 120 160 200

YyAue 10: Emgaveaxés katavoués nieong o€ évay dpouéa tov omolo Sev éyel del to
diktvo and to Aoywopuké YPA (apiotepd) kar and to A\-DNN (6e&d).

ITp6PBAedn Katavourg Oepuoxpaciog oe Ilpocopoiworn Xulevypevng
Mertagopds Ocpuodintag

Ytnv tehevtalor EQappoYT| TO BixTUO YENOoWOoTOLETUL OF €val TOAUTESLIXO TEOBANUA,
ot Xulevyuévn Metogopd Oepudtntac (EMO). e auth v avdhuon o emhltng Tou
PELOTOV EMXOWVKVEL AVTUAAICGOVTUC TANEOYORi0 UE TOV ETAUTY TN¢ e&lowong aymYNC
Yepudtnrac. Xenowomoleltar évo ecwTepnd Puyduevo tteplyto Yepuinnic otpofilo-
unyovic, ue 10 xavdhior ye otadepée xuxhinée dutouéc xan oe otadepéc Véoewg, Ly.
. O emAdTng Tou peucTol emAVEL TN POT| YUpw amd To TTEPUYLO xou uToroyilel T
Vepuopot| otny mepLpépeta Tou ttepuyiou. O emhitng tng edicwong Vepuinric aywyne
umoloyilel Ty xatavour) T Yeppoxpaciag hauBdvovtag utddn TNy xotavour| Tng Vep-
Hoponc. AuTY 1 emxowvwvio Twv V0 emALTOY xohoTd TNV apriunTixy| eniAvon Tou
TeoBAAUATOC TOND axELBH.

000 002 004 006 008
xIml

YyAuo 11: To nreptyo o€ 3A mpoorntikn (apiotepd) ka1 o€ didypaupa (Se&id).

To A-DNN 6ixtuo extoudeteton wote vor umoxohoté Tov emAlTn ¢ e€lowong aywyhc
NG VepuoTNTOC Yo ETOL €YEL (G ELGODOUS TNV XUTAVOUT| TN VEQUOROTC 6TO TeEplypauua

11



Tou mTepuUYiou xan Tic ouvTeTayuéveg TNne TepLpépetac. H €€odog autol fTav ol Yepuo-
xpaolec otny mepLpépeto (oe avtiVeon Ue T TEONYOUUEVES EQUPUOYES TO BiXTUO €8
npoBhénet ancuvieiac Ty xatavour xow oyt and x6uBo o€ x6ufo).

H apyitextovinr} Tou dixtiou adAdlel o€ oyéon Ue TI¢ TpoNYoUUEvES qapuoyés. Ta
amOTEAESUATA TOU BIXTOOU Elval TOAD IXAVOTIOLNTLIXG, Y. ue opdhuo MAPE 0.18%.
Autd ouyxpivovton pe éva FCNN dixtuo, pe ogdhuo MAPE 1.52%, xodog xa pe tny
opyrtextovixy) Tou A-DNN twv mponyoluevov epopuoyoy, ue MAPE 0.30%. 2 Bekti-
otomoloelc Pactloueveg oe eEeAxTING olybprluo emBePotmdvouy TIC BUVITOTNTES TOU
VEOU OIXTUOU, X0l EYOUV WS GTOYO TNV EAAYLOTOTOMNOT TWV AMWAEWDY ONXC Tieong
ueTall €10600L xou €£600L ToL PEUGTOV xou TN Vepuoxpaoiaug 6To TTeplYD. XTNV
TewN Behtiotonoinom, to yenowonoeltar A-DNN, evéy 1) 6ebtepn Baotileton anoxhiel-
oTxd 670 Aoylouixd g Tpocopoinong XMO. To uétwno un xuptaeyoUueEVLY AVCEKDY
¢ TewTNS PelTioTomoinomne xuptapyel EvavTt Tou dhhou.
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YyAuo 12: H katavour Oepuokpacias (tpdPAeyn) evés nrepuyiov, to onolo dev éxouy
ber ta diktva. Ta anotedéopata and to A\-DNN (mponyolueves epappoyés) (aprotepd),
and o ponomomnuévo A-DNN (uéon) kar to FCNN (beid).

Y VUTEEACUAT

Kou 7o 800 €ldn duxtiwy ebvon iwovd var mpofBiédouv medio powyv. To dixtuo LSTM
umopel va mpoPAédel ypovixd petaBaihoueva yeyélr. Mropel va avatpogodotel Tig
TEOPAEPEC OTOV EQUTO X0 VAL TIC YENOWOTOLEL YLl UEANOVTIXES Xou €TOL OmoUTEl TTo-
AO Myn mAnpogopla yior TV TeoBhedn ypovooelphy. Erlong elivon iwavo vo mpofiénet
YPOVOGELREC TPOPOBOTMVTAS TO UOVO UE TRONYOUUEVES XATUVOUES, Ywelc Vo £yel TAN-
cogopla yioo Tnv mopouetponoinon. To A-DNN unopel vo mpoAéder agpoduvapixéc
P0EC e PEYSAN axpifeior xodme xan vo yenotonondel oe ToAumedloxd TEoBAfuaTA,
avToho TOVTAS ToV €MAVTH Tou evog mediou. Mdhiota, ol mtpofiéleic Tou umopoly
va oglomomndoly oo Touéa TN Behtic Tomolnorng.
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